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NON-ITERATIVE LOW-MULTILINEAR-RANK TENSOR
APPROXIMATION WITH APPLICATION TO DECOMPOSITION IN
RANK-(1, L, L) TERMS*

JOSE HENRIQUE DE MORAIS GOULART! AND PIERRE COMONT'

Abstract. Computing low-rank approximations is one of the most important and well-studied
problems involving tensors. In particular, approximations of low multilinear rank (mrank) have long
been investigated by virtue of their usefulness for subspace analysis and dimensionality reduction
purposes. The first part of this paper introduces a novel algorithm which computes a low-mrank
tensor approximation non-iteratively. This algorithm, called sequential low-rank approximation and
projection (SeLRAP), generalizes a recently proposed scheme aimed at the rank-one case, SSROAP.
We show that SeLRAP is always at least as accurate as existing alternatives in the rank-(1, L, L)
approximation of third-order tensors. By means of computer simulations with random tensors, such
a superiority was actually observed for a range of different tensor dimensions and mranks. In the
second part, we propose an iterative deflationary approach for computing a decomposition of a tensor
in low-mrank blocks, termed DBTD. It first extracts an initial estimate of the blocks by employing
SeLRAP, and then iteratively refines them by recomputing low-mrank approximations of each block
plus the residue. Our numerical results show that, in the rank-(1, L, L) case, this remarkably simple
scheme outperforms existing algorithms if the blocks are not too correlated. In particular, it is much
less sensitive to discrepancies among the block’s norms.

Key words. Multilinear rank, low-rank approximation, block term decomposition, tensor.

AMS subject classifications. 15A69, 15A03, 65F99.

1. Introduction. Approximating high-order tensors by parsimonious models is
a recurrent problem across many engineering and scientific disciplines. In particular,
given an Nth-order tensor X € ®7]:[:1 V, 2V, ®---® Vy, one is often interested in
finding subspaces U, C V), of reduced dimension such that X is well approximated
by a tensor X € ®71:/:1 U,, according to some relevant criterion. The present work
addresses this approximation problem in the finite-dimensional complex setting with
a least-squares (LS) criterion:

U, C CIn

1 min X —X|[% subj. to forn=1,...,N,
() min XX sbjro (S

n=1"""n

where the target dimensions R, < I, are given and || - | denotes the Frobenius
norm. This is called best low-multilinear-rank approzimation (LMA) problem, because
the multilinear rank (mrank) of a tensor is defined as the tuple m = (Ry,...,Ry)
containing the minimal numbers such that (1) yields zero, i.e., X = X. Contrarily to
the best low-rank approximation problem, which is generally ill-posed for tensors of
order higher than two, minimizers of (1) always exist [10].

A direct connection exists between mrank and the so-called Tucker decomposition:
every finite-dimensional complex rank-(Ry,..., Ry) tensor! X e ®T]:[=1 C!» can be
expressed in the form

(2) :X::S leU(”)ég.l U(l) OQONU(N),

*The contents of this work have been partially submitted to the EUSIPCO’2017 conference [13].

TUniv. Grenoble Alpes, CNRS, Gipsa-Lab, F-38000 Grenoble (jose-henrique.de-morais-
goulart@gipsa-lab.fr, pierre.comon@gipsa-lab.fr). This work is supported by the European Research
Council under the European Programme FP7/2007-2013, Grant AdG-2013-320594 “DECODA.”

'Though (R1,..., Ry) is the mrank of X rather than its rank, we employ the usual terminology
“rank-(R1, ..., Rn)” without confusion since we exclusively work with the mrank throughout.
1
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where G € @2_, CF is called the (Tucker) core tensor, U™ € C»*Br is a matriz
factor and e,, denotes mode-n contraction (also called mode-n product, see subsec-
tion 1.3 for a definition). This fundamental relation allows parameterizing problem
(1), though in a highly non-unique manner. Furthermore, the factors U™ can be
constrained to have orthonormal columns without loss of generality.

In applications, problem (1) is tackled for subspace analysis and dimensionality
reduction purposes (see, e.g., [15, 27] and the examples given by [17]) by resorting
to one of a host of existing iterative and non-iterative algorithms. A widely used
iterative one is the higher-order orthogonal iteration (HOOI) [8], which extracts at
each iteration an orthonormal basis for the dominant low-dimensional subspace asso-
ciated with each mode by means of a singular value decompositions (SVD), thereby
producing a low-mrank Tucker decomposition. This scheme, which is essentially an
alternating least-squares (ALS) one with orthogonality constraints, generalizes the
classical orthogonal iteration method [12]. A globally convergent Jacobi algorithm
for symmetric tensors is derived in [16], being better suited than HOOI especially for
large tensors, as it does not require SVDs. Another approach consists in iteratively
performing the minimization over a Riemannian manifold; see [11, 17] and references
in [17]. This allows circumventing the non-unique nature of the Tucker decomposition
by restricting the search of the factors U™ to the product of quotient manifolds. The
rank-one case (i.e., R, = 1 for all n) has been studied by [28], which proposes and
compares three iterative algorithms.

Non-iterative algorithms constitute a more suitable recourse whenever some error
is tolerated or the computing cost must be kept at a low level (or both). The reason is
that they try to compute a reasonable but generally suboptimal solution within a finite
number of steps. As such, they are useful for initializing iterative LM A algorithms and
also for plugging into other iterative algorithms which repeatedly compute LM As, such
as iterative hard thresholding (IHT) schemes for tensor completion (TC) [20, 14, 21].
The first and foremost non-iterative LMA algorithm is known as truncated higher-
order SVD (THOSVD) [7]. It consists in projecting X onto the tensor product of
dominant low-dimensional modal subspaces, i.e., those which (separately) capture
most of the energy of each modal unfolding of X (see subsection 1.3 for a definition).
Computing these subspaces requires N SVDs. Even though this solution is suboptimal
in general, its LS error is bounded as

(3) | —X[% < N||X —X*|%, where X* is a minimizer of (1).

The alternative proposed in [25], which we refer to as sequentially optimal modal
projections (SeMP), is less computationally intensive than the THOSVD, especially
for small dimensions R,,. It also computes N SVDs, but they are interleaved with
contractions which gradually reduce the tensor dimensions, each one being optimal
given the preceding ones. Moreover, the resulting approximation error also obeys the
bound in (3). In particular, for rank-(1, L, L) approximations SeMP was shown to
perform at least as well as THOSVD. Simulation results presented in [25] with ran-
dom tensors suggest that this superiority actually holds in most cases. Concerning the
special case of rank-one approximations, [3] has come up with a two-stage algorithm
called sequential rank-one approximation and projection (SeROAP). It first reduces
dimensionality similarly to SeMP, and then performs a sequence of “backward” pro-
jections to refine the approximation. For third-order tensors, it has been proven in
[3] that SeROAP performs at least as well as SeMP and, consequently, as THOSVD
too.
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1.1. A generalization of SeROAP. Our first contribution is a generalization
of SeROAP to arbitrary target mranks. We call this algorithm sequential low-rank
approximation and projection (SeLRAP). In the case of third-order tensors, we show
that SeLRAP performs at least as well as SeMP (and, consequently, as THOSVD) for
rank-(1, L, L) approximations. Despite the lack of proof for other cases, such a supe-
riority was also observed in the overwhelming majority of our numerical simulations.
This situation is similar to that described in [25] concerning the relationship between
SeMP and THOSVD.

We point out that the contents of this article are partially reported in the confer-
ence paper [13]. In that paper, we give examples of TC scenarios where a SeLRAP-
based IHT algorithm converges faster and attains smaller approximation error than
SeMP- and THOSVD-based ones. Here, we focus instead on applying SeLRAP to the
decomposition of a tensor in rank-(1, L, L) blocks, as discussed next.

1.2. Decomposition in rank-(1, L, L) terms via deflation. The block term
decomposition (BTD) problem consists in decomposing a tensor Y € ®f:f:1 Cl as [4]

(4) Y= Zil Y, such that mrank(Y,) < m() = (RY)a cees RE\?) :

In particular, when N = 3 and m(") = (1, L, L) for all r, it is known as the decompo-
sition of Y in rank-(1, L, L) terms,? and can be written as

(5) Y=Y, a ®(B,CI),

where a, € C'*, B, € C2*% and C, € C3*L, This particularization, which we will
denote by BTD-(1, L, L), has received a great deal of attention in the literature due
to the various applications it finds—examples include, e.g., blind deconvolution [6],
multidimensional harmonic retrieval [19], blind source separation [22] and electron
energy loss spectroscopy [24].

On the theoretical side, conditions for the uniqueness of the blocks of a BTD-
(1,L,L) have been derived (up to a permutation of their indices) in [4, 5]. Such
conditions are of central importance in applications because these blocks are typically
computed as a means of estimating some quantities of interest. For the numerical
computation of (5), an ALS algorithm has been put forth by [9]. In [18], an enhanced
line search (ELS) scheme with exact (complex) step computation is incorporated into
this algorithm, greatly improving its convergence speed. More recently, [23] has pro-
posed conjugate gradient, quasi-Newton, Gauss-Newton and Levenberg-Marquardt
algorithms for the BTD-(1, L, L) problem.

Our second main contribution is the proposition of a deflation-based approach
for the computation of a BTD. It extends the deflation-based canonical polyadic
decomposition (DCPD) algorithm proposed in [2], which sequentially extracts rank-
one terms from a tensor by computing approximations with SeSROAP. Our extension,
named deflation-based BTD (DBTD), employs SeLRAP to sequentially extract low-
mrank approximations, yielding estimates of the desired blocks. Similarly to the
rank-one case, a single application of this procedure does not suffice in general. So,
an iterative refinement stage sequentially absorbs each estimated block into the residue
and computes a new LMA, which is then subtracted from the residue. We show that
the analysis of DCPD presented in [2] carries over to DBTD. In particular, monotonic

2The order of the modes and, consequently, of the components in (1, L, L), can of course be

permuted without changing the nature of the problem.

3
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decrease of the residue norm is guaranteed under the assumption that optimal LMAs
are computed.

Although in principle DBTD applies to the general decomposition (4), we shall
focus here on the computation of rank-(1, L, L) blocks. The reason is that even the
computation of blocks Y, having mranks of the form (1, L,, L,) but with possibly
different values for L, is already considerably more difficult, due to the existence of
local minima corresponding to wrong matchings of mranks to blocks [23]. When all
blocks have mrank (1, L, L) (i.e., L, = L for all r), our simulation results demonstrate
that, despite being remarkably simple, DBTD outperforms competing alternatives,
provided correlation among blocks is low.

1.3. Basic definitions and notation. Before proceeding, we introduce some
basic definitions and notation. Scalars, vectors, matrices and tensors are denoted by
lowercase, bold lowercase, bold uppercase and calligraphic uppercase letters, respec-
tively (e.g., x, x, X, X). The symbols ® and X stand for the tensor and Kronecker
products, respectively. The symbol O denotes the null tensor. Vector inequalities
x < y are meant entry-wise. Submatrices and subtensors are denoted by MATLAB-
like notation, as in [X]. 1., which holds the first R columns of X, and [X]; ., which
holds its ith row. The notation X,y = (X)) stands for the mode-n (flat) matrix
unfolding of X, whose columns are subtensors [X[;, . i, 1, ini1,...in SOrted in reverse
lexicographical order with respect to the fixed indices. Given X € ®7]:[:1 C!» and
P € CM*In | the mode-n contraction (or product) is defined such that (X e, P)iy =

PX (. For brevity, we employ the shorthands Ny £1{1,...,N}, T2 L, I, and
I, £ I/I,. Finally, I,; stands for the M x M identity matrix.

1.4. Paper organization. The rest of this work is organized in the following
manner. Section 2 provides a brief review of existing non-iterative LMA algorithms,
their properties and computational complexity. Then, our proposed approach is de-
scribed and analyzed in section 3. Following that, section 4 introduces the DBTD
algorithm and investigates its properties. Numerical results of computer simulations
are presented in section 5, encompassing comparisons of SeLRAP and DBTD with
competing alternatives for LMA and DBTD-(1, L, L) computation, respectively. Con-
cluding remarks and perspectives are then drawn in section 6.

2. State of the art.

2.1. Truncated higher-order singular value decomposition. Let us de-
note by S(I,R) = {U € C'*E . UHU = Iy} the Stiefel manifold of column-wise
orthonormal matrices and define

(6) P(I,R)={PeC:P=UU" UeS(,R)}.

Observe that P(I, R) contains all orthogonal projectors onto R-dimensional subspaces
of C!. With this notation, one can equivalently formulate (1) as

2

(7) min Hx—:x T P
PP (I,,Rn) n=1

» .

Introducing a telescoping sum inside the norm, one obtains

N N-1
8 min  ||X-) X ¢ P4+ N "x ¢ P
( ) p(n)e”P(I,R) ; m=1 ; m=1 .

4
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Regrouping the terms, we have [25]
2

9) min

sz PO, PV —
P eP(I,R)

2
min x" P(m) P(n) ,
L POEP(LR) 4 Z H g

where IA’(f) 21, - P™ projects onto the orthogonal complement of Span(la(”))
and the equality follows from pairwise orthogonality of the terms in the sum. The
nonexpansiveness of orthogonal projections entails

Z Hx. po Z HP(”)X<n

Hence, it follows from the Eckart—Young theorem that the upper bound in (10) is
minimized by projectors P(") = [UM)]. ;.5 ([U™]. 1.5, ), where U™ is the matrix
of left singular vectors of X ,y. It is thus reasonable to approximate the solution
of (7) by these projectors. To construct them, one can compute the SVD of each
unfolding X,y, and then truncate the obtained matrix of left singular vectors u
at the R,th column. These matrices are the factors of the HOSVD of X [7]. Then, a
truncated core is computed as 8§ = X o2_, ( [U(")}: 1:RH)H, from which X is obtained

2

(10) ZHX Lpom o, P(")

via X = SelN_, [U(”)]: 1.r. - Now, because these projectors P() are optimal when
considered separately (but not jointly), any solution X* of (1) satisfies

2

2
(n *
[POX [ < ||Xem — Xz

o
Plugging this expression into (10) shows the cost function value attained by the
THOSVD solution is no greater than N times (1), which proves the bound in (3).

Denoting by Csyp (I, M) the number of operations required to compute the SVD
of an I x M matrix, THOSVD’s cost can be expressed as

(11)  Cruosvp = ij:l Csvp(In, I,) + 22;1 O(H,R,I,)+ ZnN:1 O(JnRp1y),

where Hn £ R1 N Rn—1]n+1 PN IN and Jn £ Il PN In—an;i-l .o RN The second and
third summations correspond to the calculation of 8§ and X, respectively.?

If one uses a standard algorithm for computing the full (“economical”) SVD prior
to truncation, then Csyp (I, M) = O(IM min{I, M'}). Though there exist methods
which in principle cost O(RIM) for obtaining the R dominant singular triplets of an
I x M matrix [1], in practice they often fall behind on computing time, except for
very small R.

2.2. Sequentially optimal modal projections. Another way of computing
an approximate solution of (9) is by sequentially minimizing the cost function with
respect to the projectors. This leads to the SeMP solution [25], defined as:

(12) Given PO . P® Y compute P™ = argmin HI)C o P(™ o, P(n)
P eP(I,,Ry)

For simplicity of exposition, we have considered such a computation in the natural
order (1,...,N), but any other order can be adopted, generally leading to different
results. The projectors defined by (12) are computed as follows:

3We assume that the contractions needed to calculate 8 and X are performed in the order
n =1,...,N. This simplifies the comparison with the other algorithms.

5
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1. Let W = X.
2. Forn=1,...,N:
(i) compute the SVD of Wgz
left singular vectors;

—mH
(ii) compute WD) = W o [TRRAE (Qn_, Ci) @ (®N (CI">.

m=1 m=n+1

; to obtain ﬁ(n) € C»*En_which holds its first R,

3. Finally, construct the solution X = W+ o, ﬁ(m).
It is easy to show that the resulting approximation error is subject to the same
upper bound as the THOSVD. Indeed, we have [25]

N 2

I — X3 = min [oc"st B o, B
ot ﬁ’(")E'P(I,R) m=1
> Il
13 < min Hx.nf)” < N|IX — X2,
(13) ) po i b iz

n=1

where X* is any solution of (1). Furthermore, the SVDs in step 2.(i) for n > 1
have smaller size than the corresponding ones computed by THOSVD, due to the
dimension reduction performed in step 2.(ii). Thus, the resulting cost

(14) Csenp = SN [Csvp (In, Hy) + O(HyRu )] + SN O(Ju R, 1)

is always smaller than (11), since H,, < I,, must hold for at least one n (otherwise
there is no rank reduction). Typically, H,, < I,, for all n > 1. The smaller the ratios
R, /I, the greater the computational advantage with respect to THOSVD. With the
goal of reducing the computing effort, a heuristic is described in [25] for choosing
the order in which modes are processed. The idea is to sort them according to their
dimensions, in ascending order. This is a greedy strategy in the sense that it picks at
each step the mode whose unfolding has the least costly SVD.

From our practical experience, the approximations obtained via SeMP are virtu-
ally always more accurate than those given by the THOSVD. This is in line with the
conclusions reported in [25]. However, a proof of its superiority currently exists only
for rank-(1, L, L) approximations, as stated below.

THEOREM 1 (Theorem 7.2 of [25]). Let X € ®i:1 C and denote by Xsepp and

X ruosvo the rank-(1, L, L) approxzimations of X produced by SeMP and THOSVD,
respectively, by processing the modes in the natural order (1,2,3). Then,

. 2 . 2
(15) fo-xseMPHF < Hx—xTHOSVDHF~

The proof given in [25] exploits the facts that (1) the projector P computed
by SeMP is the same as in the THOSVD solution and (2) W actually reduces to a
matrix when R; = 1. Thus, P and P®) are obtained in SeMP with a single SVD.
Because by construction these projectors are optimal given P(), THOSVD’s outcome
cannot be more accurate.

2.3. Sequential rank-one approximation and projection. When R; =
.-+ = Ry = 1, problem (1) reduces to the best rank-one approximation of X. In
other words, one seeks an elementary (or decomposable) tensor X=vih®. .. .gv"
minimizing the cost function in (1). Note that no distinction exists between tensor
rank and mrank in this case. The SeROAP algorithm [3] computes an approximate
solution by proceeding as follows:

This manuscript is for review purposes only.



238 1. Order reduction stage:

239 (i) Let W £ o,
240 (i) For n = 2,..., N, recursively calculate the tensor W™ € (®;;11 (Cl) ®
241 (@Z:n (CIM) whose vectorization w(™ £ vec(W™) is a minimizer of
. H||?
242 min WEZ:R —xa™ (\?v("))
AR, M ecin-1 wtec!N - In F
243 This can be done by computing the dominant singular triplet of the matrix
244 WEZ:B € Cln—axIn-In,
245 2. Projection stage:
246 (i) Let 2N 2w gy ¢ CInIv-1,
247 (i) Forn =N —2,...,1, project the rows of WEZ; onto span(zNtY), ie.,
248 16) z!" =wm 1 (z("“)z("“)H) € ClnxIn-tnta
| o = W) |z |
249 and then obtain z(™ as z(™ = vec(Z™).

2

250 3. Construct the estimate X such that Vec(jC) =z1) e C!~¥-I1 | or, equivalently, such
251 that X<1> = ZS;

252 It can be verified that the order reduction stage is identical to SeMP’s dimension
253 reduction stage when R, = 1 for all n. Indeed, using the above notation, the rank-
254 one approximation delivered by SeMP is proportional to u® @ --- @ u™ @ w™).
255 Intuitively, the “backward” projection stage performed by SeMP attempts to improve
256 this initial recursive approximation. For third-order tensors, the following result holds.

257 THEOREM 2 (Theorem 1 of [3]). Let X € ®i:1 C™ and denote by Xseroap and
258 Xgemp the rank-one approximations of X produced by SeROAP and SeMP, respec-
259 tively, both processing the modes in the same (any) order. Then,

260 (17) Hx—:AxSeROAPHi < Hx—xSeMpHi.

261 By employing a k-step Lanczos-type algorithm of cost O(kIM) to compute the
262  dominant singular triplet of an I x M matrix, the order reduction stage has cost

263 Zi::ll O (k fo:n Im>. The overall complexity of SeEROAP can thus be expressed as

204 Csenoar = 0o [0 (KTTncy T + O (TThzn I )|

265 3. Sequential low-rank approximation and projection.

266 3.1. Formulation and algorithm. The same principle underlying SeROAP
267 can also be employed for computing an LMA of arbitrary mrank m = (R1,..., Ry).

268 In the projection stage of SeROAP, the rows of each unfolding WEZ; are projected
269 onto the subspace spanned by a Kronecker-structured vector representing a tensor
product of one-dimensional subspaces. This suggests that a general procedure should
project these rows onto the span of a Kronecker-structured basis representing a tensor
product of low-dimensional subspaces, in consonance with m.

Such a generalization is accomplished by the following procedure (SeLRAP):

7

(e}

NN
BN RN N N
W N =
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Algorithm 1 Sequentially low-rank approximation and projection (SeLRAP).
Inputs: X € ®g:1 CI» and target mrank m = (Ry,..., Ry)
Output: An m-mrank approximation of X, X
1)

1: W<1> — X<1>

2: forn=2,..., N+1do
s (W™ T «proja w1l R

: (n—1)s projdomsp 1
4

(n—1)’
: end for
(V)

o

™ .1 (N+1)
Z<N> +~—U W<N>

6: forn=N—-1,...,1do
H
7: compute the “thin” QR decomposition: Z"7)" = Qr+HR "+

(n)
) (n) () y(n+1)\ on+1)7
8 20« (W<n>Q n )Q n
9: end for

10: return X = 2

1. Dimension reduction stage: In this stage, one computes a sequence of tensors
W e <®Z;11 (CR"> ® (®7Nn:n (CI"> in exactly the same way as in SeMP.

2. Projection stage: Then, one recursively obtains tensors 2™ of same dimensions
as W™ by performing a sequence of orthogonal projections, similarly to SeROAP.
Specifically:

(i) Let 2™V = WVHD o T
(ii) Forn =N —1,...,1, the mode-n unfolding of 2™ is computed as

(N)

—1
) _ gt [ ont1) (e (n+1)
(18) Ziny = WinyDimy (Z<n> Z ) ) Ziy

3. The desired rank-(Ry, ..., Ry) approximation is then X = 2.

It is not hard to check that the above procedure reduces to SeSROAP when R, = 1
for all n. As a matter of fact, in this particular case (16) and (18) are equivalent. In
subsection 3.3, we will give examples of application of SeLRAP which will showcase
the Kronecker structure of the matrices ZEZ;'U.

An explicit pseudocode for SeLRAP is given in Algorithm 1. For simplicity,
the modes are processed in the natural order (1,...,N). If one wishes to follow a
different order, it suffices to permute the modes of X before running the algorithm
and to invert this permutation afterwards. In the dimension reduction stage, SeLRAP
employs the projdomsp routine given in Algorithm 2. When I,,_; < H,_1, instead of

computing the SVD of WEZ:B this routine computes the eigenvalue decomposition
H — (n—

of Y(n=1) 2 WEZ:BWEZ:B , which provides oY,

complexities are the same due to the computation of Y1 this choice can save

much time in practice, because of the reduced size of the decomposition problem.

On the other hand, if I,,_y > H,_1, then after computing the SVD of WEZ:B, one

Although the asymptotic

can obtain W™ by taking the first R,_1 right singular vectors multiplied by their

)HW(n—l) .

corresponding singular values; this is cheaper than calculating ﬁ(n_l (n—1)

This manuscript is for review purposes only.



Algorithm 2 projdomsp(W, R): projects W onto its R-dimensional dominant col-
umn subspace.

Inputs: W € C'*M  target dimension R < I
Outputs: W and U, where U = arg Minyes(r,r) |[W—-UU#W/||p and W = T'w
1: if I < M then
2: Y « WWH
3: compute the EVD: Y = W fj} A W U
where U € C'*® and A = Diag(\1,..., A7), with Ay > Xy > -+ > )\f
W T'w
5: else s o .
6: compute the SVD: W = [U U] E 2} W V] ,

where U € C'*F, S € REXE and V ¢ CM*E
7 Wex V!
8 end if R
9: return <W,ﬁ)

1

>

Remark 3. When I,_1 < H,_1, it is actually more appropriate to first compute

H
the decomposition WE::B = QR, with Q € S(H,,_1,I,_1) and R € Cln-1xIn—1
via a modified Gram-Schmidt orthogonalization. Then, the SVD of R is computed,
providing the right singular vectors of R, which are premultiplied by Q to yield those
of WEZ:R, and also its singular values, which equal those of WEZ:R Finally, w)
is calculated from the obtained right singular vectors and singular values of WEZ:R
This procedure requires less flops than projdomsp (though their order-wise complex-
ities are the same) and is more accurate. However, Algorithm 2 runs faster in MAT-
H

LAB, because the computation of Y~ = WEZ:RWEZ:R is highly optimized.
Therefore, we have adopted it in our MATLAB implementation of SeLRAP.*

3.2. Computational complexity. In practice, Algorithm 1 performs (18) with
the aid of an orthonormal basis for the row space of Z(Z;rl), obtained thanks to a QR

decomposition. One could also use an SVD. In any case, the constructed projector
(n+1
(n)

replacing the inverse matrix of (18) by the Moore-Penrose pseudo-inverse. Computing
the orthonormal basis costs O(H,, R2) flops (assuming H,, > R,), since ZEZ;D

dimensions R,, x H,,, while performing the projection costs O(H,R,1I,). SeLRAP
thus has the overall complexity

must have the same rank as Z ) Ifits rank is smaller than R,,, then this amounts to

has

N N-1
CSeLRAP = Z [CSVD(I’I’U Hn) + O(HanIn)]+O(HNRNIN)+Z C'proj (Hna Rn7 In)a
n=1 n=1

4For a fair comparison, our SeMP implementation also uses Algorithm 2 for dimensionality
reduction and our THOSVD implementation computes the EVD of X<,L>X<h;> to obtain the dominant

subspace of X<n> when I, < I,.
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TABLE 1
Operations involved in non-iterative LMA algorithms and their costs.

THOSVD
(I) Comput. projectors|(II) Comput. truncated core (IIT) LMA construction
N N N
> Csvp(In, In) > O(HnRuln) > O(JnRnln)
n=1 n=1 n=1
SeMP
(I) Comput. projectors| (II) Dimension reduction (IIT) LMA construction
N N N
ZCSVD(Ian”L) ZO(HanIn) ZO(JanIn)
n=1 n=1 n=1
SeLRAP
(I) Comput. projectors| (II) Dimension reduction (I1T) Backward projections
N N N-1
ZCSVD(Ian”L) ZO(HanIn) O(HNRNIN)+ Z Cproj(Hn:Rn’In)
n=1 n=1 n=1

where Cproj(H,R,I) = O(HR?) + O(HRI). The term O(HyRyIy) outside the
brackets corresponds to step 5 of Algorithm 1, while the second term of the first
summand comprehends the cost of the dimension-reducing contractions. Yet, as dis-
cussed in subsection 3.1, when I, > H,, then the nth term is O(H,R,,) rather than

O(H,R,I,), because one uses the right singular vectors of WEZ:B to form W),
Note that projdomsp can be employed also in SeMP, and so the same remark applies
to the second summation of (14). On the other hand, THOSVD can only partially
benefit from the strategy followed in projdomsp, by computing the eigenvectors of
X<n>X<n>H when I, < jn

The same heuristic described in subsection 2.2, of processing the modes in as-
cending order of dimensions, usually yields a significant economy of computing time
when applying SeLRAP. This economy is all the more relevant when the ratios R,, /I,
are small and approximately equal.

Table 1 summarizes the operations involved in THOSVD, SeMP and SeLRAP.
Though the operations (I) and (II) are sequentially performed in THOSVD while
they are interleaved in SeLRAP and SeMP, there is a clear parallel among equally
numbered operations of different algorithms.

3.3. Analysis.

3.3.1. Fulfillment of rank constraint. We now show that the approximation
delivered by SeLRAP actually meets the desired mrank constraint.

LEMMA 4. Let X € @ _, CK and define the tensor P € (®nm;11 (CK"’) ®CHE @
(®N (CKm) , for some n € Ny. If mrank(P) = (Ry,...,Rn), then

m=n+1
H H \—1

is the mode-n unfolding of a tensoryY € ®g=1 CHEm  with mrank(Y) < (Ry,..., Ry).

Proof. Since mrank(P) = (Ry,...,Ry), there exist G € ®Z:1 Cfim and UM ¢
CHKm>EBm for m € Ny\{n} such that U™ has orthonormal columns and

T
Py = Gy (UM R BUCDRUC IR, mu®)

Ayt
10
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b))

Hence, Y<n> = X(MU*G&)(G(n)Ggw)*lG(mUT, which implies rank(Y<n>) < R,.
Defining € € ®Z:1 CHm such that Cy,y = X<n>U*GgL> (G<n>GgL>)_1G<n>7 it follows
that Y = Ce,p sy U™ implying rank(Y ) < Ry, for all m € Ny \{n}. O

3.3.2. Comparison with SeMP. In the following, we analytically compare
the quadratic errors incurred by SeMP and SeLRAP for third-order tensors. Let

m = (R1, Ry, R3) and denote by XSCMP =8e_, ﬁ(") the approximation delivered

—(n >\ H
by SeMP, where U( ) is as defined in subsection 2.2. Because 8 = X o3 _, U( ) , the
resulting quadratic error can be written as
. 3 —mH|?
esemp = || X = Xsempl7 = [X[F — || X e U
n= F
2 |0ty (m® mm@n |
= X3 — [T X (TV mT?)
F
Since ﬁ(l) holds the first Ry left singular vectors of Xy,
2 e (@ @@ |
(19) E%MP|XHFH2 v (T mT?)
F
where the columns of V(l) are the first R, singular vectors of Xy = Wg;, while

@ contains the corresponding singular values in its diagonal. This is a direct gen-
eralization of the expression derived in [3] for the case m = (1,1,1).

A similar expression can be derived for SeLRAP. First, define the orthogonal
projector

—1
s @ (L@ @ (2)
(20) P =2 @m@n) Ly

Using this definition along with (18) and the identities (stCLRAp)(1> = ZEB and

Xy = WER, we derive
~ 2
(21) sotrar 2 X = Xseunarllf = [X0F - |[WHP| -

—(n)=(n)==(n)H
Writing WEZ? gy +E™), the second norm in (21) can be rewritten as

wop[® = n{pw wopl - [lsv0 [ | lpwp?
[wie], - W WwE (T o [EVe,.
Plugging the result into (21), we have
——mH | 2
eseLraP = || X[% — HE(l)V(l) P| - HE(”PHF
F

<M |7
< Jxi - [=9 e

F
11
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Thus, a sufficient condition for having eserrap < €semp 1S

IPNITY : e 2
HEu)V(l) (Uw) T2 )

2
(22) Hz“v“ P| >
F

F

In turns out, though, that a general explicit expression for P is quite complicated.
We thus focus on the case where R; = 1, which implies R = R3 = L. (This can
be easily seen from the mode-2 and mode-3 unfoldings of an rank-(1, Ry, R3) Tucker
model.) For this case, the following result holds.

THEOREM 5. Let X € ®i:1 C'» and denote by §C56LRAP and steMp the rank-
(1, L, L) approximations of X produced by SeLRAP and SeMP, respectively, by pro-
cessing the modes in the natural order (1,2,3). Then,

. 2 . 2
(23) Hx - fxseLRAPH < fo - 'xseMPH
F F
Proof. First, SeSLRAP computes the SVDs
ngg — gy L g0 ¢ chxhk
H
Wgzg U(2)E(2)V(2) +E® ¢ Clgxlg’

where W§2§ is such that Wg ; (I)V(l)H. Observe that, for Ry =1,

(24) vec (ngg) =7W¥M" = vec (W§2§) = vec (U( v " + E(2)>

T__
and W(3) W(3) - w2 U(2) Hence, the SVD of W) comes “for free,” being

3) (2 (2) (3)
given by W3 = vO'5? g9 e, TP = VP and V¥ = 1,. Now, in
the prOJectlon stage,

(25) 2 =W =TV e cloxr,

T
because rank(ngg) < L. Furthermore, Zg; = Zg; . Thus, plugging Zgg into (18)

for n = 2 we obtain
)H

( )

. o (oY (o H
(26) 7! RAVAREN iS00 5100 vAS N o CRY O

2 _ w@v
o) =W3V

) (2)
Since ZE g = vec (ZE%) using the property vec(ABCT) = (CX A) vec(B) we have
22 = vee (37) (U9 mT?)" e coin,
which implies P = [&®|;* U*&® E(Q)TUT, where 7% £ vec (E(Z)) and U £

Y ru?. Applying these definitions to (24), we have also

(27) 7O = UF® + vec (E<2>) .
12
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In view of the derived expressions, computing the left-hand side of (22) for m =
(1,L, L) yields

— W p|? _ (=) s po) _ (=0 5@ -2 =@ TyT<m [*
(28) g v P , c v PV ] |95 e U'v .

Due to (27), UuTvh) = (E(l))_l {5(2) + U7 vec (E(Q))*}. But, by definition of the

SVD, the column space of E() is orthogonal to ﬁ(z) while its row space is orthogonal

to VP = g®. Thus, it turns out that U7 vec (E(z))* = 0, leading to UT¥(}) =
(E(l))_l ). Substituting this expression into (28) yields HEU)V(UHPHQ = ||d?]3.
2
On the other hand, for Ry = 1 the right-hand side of (22) is given by
2
(7o) oo

Therefore, (22) holds with equality, implying (23). d

2
=Ie® 3

Theorem 5 generalizes Theorem 2. Furthermore, together with Theorem 1, it
implies the following.

COROLLARY 6. Let X € ®i:1 CI and denote the rank-(1,L, L) approzimations
of X produced by SeLRAP, SeMP and THOSVD by Xserrapr, Xsemp and Xrgosvp,

respectively. Suppose that the modes are processed in the natural order (1,2,8) by both
SeLRAP and SeMP. Then,

o 2 N 2 R 2
HX*XSeLRAPH < Hx*xSeMPH < Hx*xTHOSVDH .
F F F

The same results evidently apply to the cases m = (L,1,L) and m = (L, L, 1),
as long as the mode associated with the component R, = 1 be the first one to be
processed. Another consequence of Theorem 5 is that SeLRAP also satisfies the bound
(13) in the rank-(1, L, L) case.

COROLLARY 7. Let X € ®i:1 Cln.  For any solution X* of (1) with m =
(1, L, L), the rank-(1, L, L) approximation of X produced by SeLRAP satisfies

. 2
Hx - fxseLRAPHF < N|IX = X%

3.3.3. The general case m = (Ry, R, R3). For arbitrary m, ng is the mode-
2 unfolding of an Ry x Is x I5 tensor whose best rank-(R;, Ro, R3) approximation is
sought. Therefore, unlike the previous case, an explicit expression for this approxi-
mation is not available, and a proof of superiority of SeLRAP is harder to undertake.
We sketch below one possible way of writing the resulting projector P in this case, in

order to give an idea of the increased complexity. Consider the matrix
ey ey H
(29) z{) =TSV e ol
obtained at the end of the dimension reduction stage. Here, we introduce the notation

—(3)—(3)H 7
Ggg 2 OO ¢ CRaxR2By | which allows writing 2@ = G® o3 T®). Hence,

3
(30) Z,

el <ﬁ<3> ®1R1>T ¢ CRaxIsRy

) (2
13
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457
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Now,

—1
O (33 (3) _
(31) Zp, <Z<2>Z<2> ) Zpy) =

7 * H H\ 1 f T
(0 ) 63" (o) e (07 ) e

Next, we define

32 G ewd

2 (2)

-1
—(3) * L 3)H 3) ~(3)H 3
(0¥ m1,,) G (GgQ;GgQg) G(Y) € clexmat,

Since its rank is bounded by Rs, it can be decomposed as Gg; = G(Q)Ggg, where

U® e C2%f2 has orthonormal columns (one can take, e.g., its QR decomposition).

Moreover, Ggg can be thought of as the mode-2 unfolding of a Ry x Ry X R3 tensor
G®? . Thus,
-1
@) _ w@g®" (56,8 G _ g@a® (f@ )T LxIsR
Zy = W2y <Z<2>Z<2> ) 2y =UTGH (U " Klg, ) € Crom,

_ _N\T
leading to Z\% = G(?) (U(S) X U(2)> € CfixI3l2 The projector P thus reads

1 — 7

=) o2\ (@ (@ @H) T @
P:(U xU@))G (G G ) G

T mu@)" IsIyx I3l
(1 (1) (1) (1) (U X Ul )> e ClalzxIsl2

2

holds or not is
F

o H |2 N nH ok
Clearly, whether |SVY p|| > Hz(”v‘” (U(?’)&U(Q))

F

now a more complicated matter.

4. Decomposition in rank-(1, L, L) terms via deflation. We propose in this
section a deflationary algorithm whose purpose is to compute the low-mrank blocks
constituting a BTD-(1, L, L) of a tensor X.

4.1. Algorithm. The proposed deflationary block-term decomposition (DBTD)
algorithm is described by Algorithm 3. We have employed the symbol %y, to denote
an approximate projection onto Ly = {Y : mrank(Y) < m} which can be computed,
e.g., by SeLRAP, SeMP or THOSVD. The resulting DBTD algorithm has a very
simple form: at each iteration, one sequentially obtains a new estimate of each block,
X, i, by computing an mrank-m(") approximation of the current residue tensor Erlik
plus the current block estimate DACT, k—1. The new residue tensor &, j, then corresponds
to the resulting approximation error. Because f)ACr,o = O for all r and the initial residue
tensor equals X, the first iteration amounts to extracting the R blocks from X in a
greedy fashion. In general, this first iteration does not provide the sought blocks.
Thus, DBTD refines these estimates from the second iteration onwards.

An appropriate stopping criterion for Algorithm 3 consists in checking whether
|ER.k||F is sufficiently small or the ratio 1y = |ErkllF |Er k1] is close to 1. To
avoid a premature stop, one can verify whether the average 1, among the K most
recent iterations approximately equals 1, which yields the stopping criteria

1 K.—1
- 12_; Vi1

S

(33) [ErkllF < e or < e,

14

This manuscript is for review purposes only.



467
468
469
470

472
473

474

175
476
477
A78
179
480
481
482
483
484
485
486
487
188

189

192
193

Algorithm 3 Deflationary block-term decomposition (DBTD) algorithm.

Inputs: X € ®7]j:1 C!», number of blocks R and mranks m(") = (RY), ol RS\T,))
Output: Estimates of the blocks X, € Loam,r=1,...,R

L X0, forr=1,...,R

2: 80,1 +— X

3: k<0

4: while k < K and (33) is not satisfied do
5: k<« k+1

6: forr=1,...,Rdo

T Er,k — Er—l,k + xr,k—l
8: :xnk — @m(r) (?,-Jg)

9: gr,k — Sr,k - xr,k:
10: end for
11: Eokt+1 < ERk
12: end while
13: X, <—§Cr,k, forr=1,...,R

for two sufficiently small constants €1, €. (In practice, one usually imposes also a
maximum number of iterations, K).

The cost of a DBTD iteration equals that of two additions of two Iy X --- X Iy
tensors plus R applications of &, - with the R specified block mranks:

(34) Cperp = O(1) + Y02, Co_ )

where Cg - denotes the cost of the LMA method. In particular, if m =m =
(1,L,L) and SeLRAP is used, we have

Co,, = Csyp (11, I213) + O(I11213) + Csyp (12, I3) + O(LIz13) + Cproj(I213,1,I1),

with Cproj(I213,1,11) = O(I2l3) + O(I11213). To derive this expression, we have
taken into account the simplifications which apply to SeLRAP when m = (1, L, L),
as described in subsection 3.3.2.

4.2. Discussion on convergence. The partial convergence analysis presented
in [2] can be straightforwardly extended to our present case. In the following, we
briefly discuss the main implication of such an extension and the assumption which
underlies it. Namely, if we assume that the best rank-m(") approximation is achieved
by P when updating the rth block, then the following result holds.

PROPOSITION 8. If P delivers the best rank-m ™) approzimation of Eq1p+
Xy i1 for allr and k, then ||Erk|lr < [|ERk—1|| for all k.

Proof. Let P

X, k-1, i.e., onto ®f:7:1 span((X; k—1)(ny)- Since mrank(%Px, , , (Y)) < m(") for any
Y, from the optimality of P, ) we have

..x_: denote the orthogonal projection onto the modal subspaces of

(35) [[(Erc1 e +Xrp—1) = P (Erip + X)) |7
<N (Ercip +Xrg—1) — P,y (Ermi ks + X 1) | P
But, by definition of %P, _,, the right-hand side cannot be larger than [|€,_1 x|/ r.
Since I)ACNC =P (Er1x + Xy k1) by construction, then the left-hand side of the
15
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TABLE 2
Statistics of A for third-order tensors

Scenario A(THOSVD) A(SeMP)

i r mean |std. dev.| mean |std. dev.
(40,80,200) (1,2,2) [8.61e-04|1.58e-05 |2.86e-05| 4.55e-06
(40,80,200) (2,4,8) |2.55e-03|2.98e-05 |5.36e-05| 6.17e-06
(40,80,200) {(10,20,50)|1.38e-02| 1.22e-04 |5.63e-04| 1.55e-05
(200,80,40) | (2,2,1) |6.33e-04|2.23¢-05 |4.27e-042.44e-05
(
(

200,80,40) | (8,4,2) |1.88¢-03|3.98¢-05 |1.41e-03|3.80e-05

200,80,40) |(50,20,10)|9.24e-03| 1.26e-04 |5.81e-03| 6.16-05
(40,200,200) | (1,5,5) |1.20e-03|1.15¢-05|1.11e-05| 1.78¢-06
(40,200,200) | (2,10,10) |2.24e-03 | 2.01e-05 | 2.50e-04| 6.78¢-06
(40,200,200) |(10,50,50) | 1.11e-02 | 7.40e-05 | 1.26¢-03 | 1.46¢-05
(200,200,200)| (5,5,5) |3.10e-043.87¢-06 | 1.07e-04| 2.48¢-06
(200,200,200 | (10,10,10) | 6.73¢-04 | 6.18¢-06 | 2.15¢-04 | 3.50e-06
(200,200,200) | (50,50,50) | 4.44e-03 | 2.95¢-05 | 7.47e-04| 6.14e-06

= =
M,_.ocooo\lo:cn.nww»—l:ﬁ:

above inequality is precisely the norm of the residue €, ;. Therefore, at the end of
the kth iteration, one has ||[Egi||r < [|Er—1kl|lF < < |[EokllF = |ERk—1]|F- O

Under optimality of &P, the above result implies ||Egk|lr — C for some
C > 0, since the sequence ||Eg k|| F is non-negative and decreases monotonically with
k. (Consequently, the second criterion of (33) is eventually satisfied.) However, in
practice one can only resort to sub-optimal approximation schemes such as SeLRAP.
Nonetheless, note that P,,» doesn’t have to be optimal, but only at least as accurate
as P, ,_,. Whilst it is currently unclear whether such a weaker condition can be
proven, our numerical results suggest that it indeed holds in practice (at least with
high probability), as a strictly monotonic decrease of ||E||  is generally observed. We
point out that there is some similarity between this discussion and that concerning
the convergence of THT schemes employing suboptimal LMAs for low-rank tensor
recovery [21, 14].

5. Numerical results. In the following experiments, the modes are always pro-
cessed in the natural order in SeLRAP and SeMP, for simplicity. The reported com-
puting times were measured in MATLAB R2013a running on a Intel Xeon ES-2630v2
2.60 GHz with 32 GB RAM 1866 MHz. For conciseness, the notation i = (I1,...,Iy)
specifies the tensor dimensions in each scenario.

5.1. Non-iterative low-mrank approximation. First, we compare the per-
formance of SeLRAP with respect to those of THOSVD and SeMP in the task of
LMA. To do so, similarly to [3] we measure

1% = XseLrarllr
1 — Xargll

A(Alg) =1

with Alg € {THOSVD, SeMP}, for 10* realizations of third- and fourth-order complex
tensors having entries whose real and imaginary parts are drawn from (—1,1). We
have varied the dimensions and target mranks, yielding 12 different scenarios whose
results are reported in Table 2. In all these scenarios, A was strictly positive for
all realizations, meaning SeLRAP always found a better approximation. Note that
Corollary 6 only guarantees that for scenarios 1 and 7. However, inspecting Table 2
we see that the average improvement in accuracy is generally small. This is similar to
the conclusions reached by [25] concerning the comparison of SeMP with THOSVD.

16
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Figure 1 displays, for six selected scenarios, the empirical cumulative distribution
function (ECDF) of the time spent by each algorithm at each operation specified
by Table 1. When the target mrank is quite small, SeMP and SeLRAP have much
smaller overall computing time than THOSVD, as seen in Figure 1{(a),(c),(e)}. In
Figure 1{(a),(c)}, this is mainly due to the fact that only two SVDs are required
by SeMP and SeLRAP. In Figure 1(e), the gain comes from the dimension-reducing
contractions which alleviate the cost of the SVDs. This observation also applies to
the second SVD computed in Figure 1{(a),(c)}. Moreover, note that in thee cases the
projection stage of SeLRAP is faster than the operations which construct the LMA in
THOSVD and SeMP. The gap between THOSVD and the other algorithms is greatly
reduced when mrank components are increased, cf. Figure 1{(b),(d),(f)}, since the
ratio H, /I, is increased. Furthermore, the backward projections of SeLRAP now
take longer than operations (III) of THOSVD and SeMP, causing its overall time to
overcome that of SeMP.

Note that the dimensions increase with the mode number in all scenarios of Fig-
ure 1. As we process them in the natural order, this choice is consistent with the
heuristic mentioned in subsection 3.2. For reference, the average overall times of
SeLRAP in scenarios 1 and 3 of Table 2 are 0.0228 sec and 0.1497 sec, respectively,
while in scenarios 4 and 6 (where X has the same dimensions but in reverse order)
these times are 0.1255 sec and 0.1688 sec, respectively. The advantage of adopting
the heuristic is thus more pronounced for smaller ratios R,,/I,,.

[GLEENTN

3

O N N NN

)
R =S D

S BTSNV

B R R R W W W W W W W W W W
B WD = O © 0O

U Ot Ot Ut Ot Ot Ut Ot Ot Ot Ot Ot Ut Ot Ot Ot Ot Ot Ot Ot Ot

Yy Ot

5.2. Decomposition in rank-(1,L,L) terms. In this section, we compare
DBTD with existing BTD-(1, L, L) computation algorithms. Three variants of DBTD
are considered, depending on the choice of Py,: DBTD-SeLRAP, DBTD-SeMP and
DBTD-THOSVD. The other included algorithms are ALS-ELS [18] and the Gauss-
Newton algorithm with dogleg trust region (GN-DL) of Tensorlab [26]. Among the
algorithms provided by Tensorlab, the latter has been chosen for its superior perfor-
mance in our simulations, consonantly with the findings of [23].

Our simulation scenarios encompass various levels of average correlation among
the rank-(1, L, L) blocks. To this end, given a target correlation coefficient p € [0, 1),
the blocks are given by

(36) X, =%z X, X, =a,® (B,C]),

=~
= O © e o

[ SIS, SN2 BN BTSN
[\

(SN, G, BN, BIG] BING) BEG) BN G SN |

n
Y

at
ot &

ot

ot

where a € C'', B € C2*L and C € C3*L, are generated as [a; ... ag| =
QuJ, [vec(B1) ... vec(Bg)] = QuJ and [vec(C1) ... vec(Cg)| = Q.J, with
Q. € S(I1,R), Qp € S(LI3, R) and Q¢ € S(LI3, R) denoting random column-wise
orthonormal matrices and

v Ot Ot Ot
S Ot G G
%

Re)

1 p1/3 p1/3
1/3 1 1/3
p P
560 (37) J'J =

1/3 p1/3 1

p
561 Since (X,,X,) = (a,,a,) (B,CI,B,Cl) = (a,,a,) Tr {CTC; BIB, }, for r = s we
562 have || X, |2 = Tr {CTC: BYB,} and, for r # s,

563 (X, Xy )| = pt* (Tr {CTC;: BIB, } Tr {CTC: Bst})’% |Tr {C}C:BIB, }|.

64 If Qa, Qp and Q. are generated by orthogonalizing random matrices having standard
5 circularly symmetric Gaussian (SCSG) entries, then (xr, f)CS) is normally distributed

17
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FIGURE 1. Empirical CDF's of the times spent by each LMA algorithm at each stage.
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FIGURE 2. Histogram of measured correlation among blocks generated with p = 0.2. The red
dashed line indicates the sample mean.

around E {<mes>} = p with a small standard deviation, which decays with the
tensor dimensions. The histograms in Figure 2 illustrate this behavior for p = 0.2 in
two cases: 1) i = (10,75,75), L = 30 and 2) i = (20, 150,150), L = 60.

We consider tensors of dimensions i = (20,150, 150) composed by three rank-
(1,60,60) blocks. For this choice of L, the uniqueness theorems of [4] do not hold. In
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particular, the algebraic solution via generalized eigenvalue decomposition (GEVD)
of [4, Theorem 4.1] does not apply. Nevertheless, with blocks generated as above, the
decomposition is almost surely unique [5, Theorem 2.4]. The complete model reads

(38) X =57 AX, +0oN,

where N has SCSG entries and o is adjusted to impose a desired signal-to-noise ratio
2

(39) SNR = [0, A X, i

In the first scenario, for each realization of X we draw the weights A, independently
from N (1,0.2) and take p € {0,0.2,0.4}. In ALS-ELS and GN-DL, THOSVD is
initially applied to compress X for reducing cost. Then, after a compressed solution
is found, it is decompressed and refined. The stopping criteria of all algorithms were
adjusted for accurately recovering the blocks while keeping computing time reasonably
low.

The results for 200 realizations with SNR = 50 dB are shown in Figure 3. Specif-
ically, we plot the ECDFs of the average normalized squared error (ANSE) over the
blocks, defined as

(40) ANSE = 1320 A2 A X, — Xy,

and of the time spent by each algorithm. The superiority of DBTD for small p is clear.
However, as p is increased, the amount of iterations required by DBTD quickly grows.
For p = 0.4, the established maximum number of iterations K = 400 causes an early
stop of all DBTD variants, which explains its minimum achieved ANSE of around -50
dB. Nonetheless, the mean ANSE of DBTD-SeLRAP is lower (-38.8 dB) than that
of ALS-ELS (-35.3 dB). For even larger values of p, a higher K is required, and thus
DBTD is not recommended due to the added computing cost. Among the DBTD
variants, DBTD-SeLRAP attains the best compromise between cost and estimation
accuracy, as its iterations are the least costly. Perhaps somewhat surprisingly, the
estimation performance of ALS-ELS and GN-DL is poorer for p = 0 than for p = 0.2.
This is due to the larger proportion of realizations for which these algorithms enter
into some region of very slow convergence and are unable to achieve sufficient progress
within reasonable time, despite the fact that their convergence is faster for the other
realizations.

Figure 4 shows the results of a similar scenario, still with SNR = 50 dB, but this
time the weights A, are drawn from A/(1,0.1). The better conditioning due to the
less disparate block norms explains the better performances in comparison with the
previous scenario, especially for the ALS-ELS and GN-DL algorithms. The DBTD
algorithm, on the other hand, seems less sensitive in this regard. Overall, DBTD-
SeLRAP still provides the best performance.

In Figure 5, we fix p = 0.2 and vary L and SNR separately, with A, ~ N(1,0.1).
With L = 30 (and SNR = 50 dB), it becomes possible to algebraically compute an
approximate solution via a GEVD, because RL = 90 < min{I, I3} = 150 [4, Theorem
4.1]. We therefore initialize all algorithms with this solution. As seen in Figure 5,
they are all able to satisfactorily refine it withing a few iterations, with ALS-ELS and
GN-DL achieving the best overall performance due to their low computing times. For
L = 90 and same SNR, the results of ALS-ELS and GN-DL are considerably degraded
with respect to the L = 60 case. By contrast, DBTD is still able to accurately
estimate the factors in the vast majority of realizations, though it typically needs
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FIGURE 3. Performance of BTD-(1,L, L) algorithms for i = (20,150,150), R = 3, L = 60,
SNR =50 dB, p € {0,0.2,0.4} and A ~ N(1,0.2).

more iterations (here, we have set K = 500, against K = 200 in the case L = 60).
Finally, if we fix L = 60 and take SNR € {20,80} dB, the conclusions are similar to
the case where SNR = 50 dB; the most perceptible difference is perhaps the increased
computing time of ALS-ELS when SNR = 20 dB.

6. Conclusion. We have proposed a novel non-iterative low-multilinear-rank
approximation algorithm, SeLRAP, which generalizes the recently proposed rank-one
approximation algorithm SeROAP. As we have demonstrated, this algorithm always
performs at least as well as the truncated HOSVD and SeMP (also known as se-
quentially truncated HOSVD) for rank-(1, L, L) approximation. In our numerical
experiments with third-order random tensors, SeLRAP’s backward projection stage
was actually able to improve upon SeMP’s solution for all employed target mranks,
though generally by a small margin. Moreover, for small mranks it requires less
computing effort.

As a second contribution, we have proposed an iterative deflationary algorithm
named DBTD for decomposing a tensor in mrank-reduced block terms. This algorithm
is in effect a generalization of the deflationary solution proposed for computing the
canonical polyadic decomposition, DCPD. Despite the generality of DBTD, we have
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FIGURE 4. Performance of BTD-(1,L, L) algorithms for i = (20,150,150), R = 3, L = 60,
SNR =50 dB, p € {0.2,0.4,0.6} and A, ~ N (1,0.1).

kept our focus on the computation of rank-(1, L, L) blocks. Our simulations show that,
outside the regime where an approximate algebraic solution can be computed, DBTD
is much more effective than existing algorithms whenever the correlation among blocks
is low. Interestingly, under these conditions it was much less sensitive than other
alternatives with respect to the discrepancy among the norms of the different blocks.

At the theoretical level, future research should attempt to establish convergence
results for DBTD, perhaps imposing conditions for ensuring that (35) is met by SeL-
RAP. The more general BTD-(1, L,, L,), where blocks have different mranks, is also
left for future consideration. In this case, additional measures could possibly be taken
to avoid local minima corresponding to wrong mrank matchings.
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