
HAL Id: hal-01516163
https://hal.science/hal-01516163v1

Submitted on 28 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Polynomial Silent Self-Stabilizing Maximal p-Star
Decomposition

Mohammed Haddad, Colette Johnen, Sven Köhler

To cite this version:
Mohammed Haddad, Colette Johnen, Sven Köhler. Polynomial Silent Self-Stabilizing Maximal p-Star
Decomposition. ALGOTEL 2017 - 19èmes Rencontres Francophones sur les Aspects Algorithmiques
des Télécommunications, May 2017, Quiberon, France. �hal-01516163�

https://hal.science/hal-01516163v1
https://hal.archives-ouvertes.fr

Polynomial Silent Self-Stabilizing Maximal
p-Star Decomposition

Mohammed Haddad1 et Colette Johnen2 † et Sven Köhler3 ‡

1Université Claude Bernard Lyon 1, Villeurbanne, France
2Université of Bordeaux, Talence Cedex, France
3University of Freiburg, Freiburg, Germany

Une p-étoile est un arbre de hauteur 1 avec exactement p feuilles. Une décomposition maximale d’un graphe en p-
étoiles disjointes est une partition des noeuds du graphe telle que toutes les parties sauf au plus une sont des p-étoiles.
L’unique partie n’étant pas une p-étoile, ne contient pas de p-étoile.
Nous présentons un algorithme auto-stabilisant silencieux qui réalise une décomposition maximale du graphe en en p-
étoiles disjointes quel que soit l’ordonnancement des actions. Le nombre maximum d’actions nécessaire à la construc-
tion des p-étoiles est : 12∆.m+O(m). De plus, nous avons établi un borne sur le nombre de rounds : 5b n

p+1 c+ 5. Ce
travail a été publié (en version courte) dans [4].

Mots-clefs : algorithmique distribuée, auto-stabilisation, décomposition de graphe, p-étoile, temps de convergence

Introduction

Fault-tolerance is among the most important requirements for distributed systems. Self-stabilization is
a fault-tolerance technique that deals with transient faults. Starting in an arbitrary configuration, a self-
stabilizing distributed system converges to a legitimate configuration in finite time without any external
intervention. This makes self-stabilization an elegant approach for non-masking fault-tolerance.

An H-decomposition of a graph G subdivides a graph into disjoint components which are isomorphic to
H. A p-star is a complete bipartite graph with a set containing a single node (called the center) and the other
set containing p nodes (the leaves).

One of the famous and well studied graph decompositions in literature is star decomposition. A decom-
position of a graph into stars is a way of expressing the graph as the union of disjoint stars [2]. The problem
of star decomposition has several applications including scientific computing, scheduling, load balancing,
parallel computing [1], and important nodes detection in social networks [6]. Decomposing a graph into
stars is also used in parallel computing and programming.

Observe that the maximal node-disjoint p-star decomposition problem when restricted to p = 1 is equi-
valent to the maximal matching problem in graphs. Thus the general problem when p ≥ 1 is NP-complete
since generalized matching is proved to be NP-complete in [5]. The maximal matching problem has re-
ceived much interest due the abundant number of applications in fields as diverse as transversal theory,
assignment problems, network flows, and scheduling. Many studies have addressed this problem even in
the field of self-stabilization ; the best known move complexity for maximal matching problem is O(m) and
was obtained by [7] where m is the number of edges.

The first self-stabilizing algorithm for the maximal node-disjoint p-star decomposition problem was pro-
posed in [9]. This algorithm converges in 2b n

p+1c+2 rounds under any scheduler. However, the algorithm
proposed in [9] always converges to a unique legitimate configuration according to the input graph and
does not guarantee a polynomial move complexity. Another algorithm was proposed in [8] where authors
dealt with the uniqueness of legitimate state and proved their algorithm to converge within O(∆2m) moves

†This study has been partially supported by the ANR projects DESCARTES (ANR-16-CE40-0023), ESTATE (ANR-16-CE25-0009)
‡This study has been partially supported by Sustainability Center Freiburg, Germany

Mohammed Haddad et Colette Johnen et Sven Köhler

under the unfair distributed scheduler where ∆ is maximum node degree in the graph. A bound on the round
complexity of the algorithm in [8] is not given.

Our Results. In this paper, we propose the first algorithm on which an upper bound on the round and move
complexity are given. Our algorithm matchs the round complexity of the algorithm of [9] : our algorithm
converges in at most 5b n

p+1c+ 5 moves. Moreover, our algorithm improve the move complexity of the
algorithm of [8] to 12∆m+O(m+n).

Our algorithm does not converge to an unique legitimate configuration. In fact, there is a legitimate
configuration for any valid maximal p-star decomposition. The above results hold with respect to the unfair
distributed scheduler, the most powerful adversary. For the definition of the computational model, we direct
the reader at [3].

Silent self-stabilizing maximal node-disjoint p-Star Decomposition Algorithm

Algorithm 1 contains the code of our silent self-stabilizing maximal node-disjoint p-Star decomposition.
The algorithm is presented as a set of of rules, each of the form guard(v)→ action. In this section, we give
a rough overview of how the algorithm works. in which Node v is the center of a well formed p-star if and
only if v verifies correctCenter(v) ; the nodes of leaves(u) are the leaves of the p-star centered at v. We
denote star(v) the set of nodes in the p-star centered in v ; the formal definition being if correctCenter(v),
star(v) = {v}∪ leaves(v) and star(v) = /0 otherwise. Every node in star(v) verifies the predicate correctLeaf
or correctCenter.

Each node v indicates to their neighbors whether they are a member of a star or not via the shared Boolean
variable inStar(v). The values of the shared variables center and leaves in its neighborhood are enough to
allow a node v to determine the value of the predicates correctCenter(v) and correctLeaf (v) ; so they suffice
to compute the value of isInStar(v).

In addition, each node indicates whether it may be a viable center of a new star using the shared Boolean
variable viableCenter(v). That is the case only if the node itself and p of its neighbors are not a member of
a star, yet. The values of the shared variables inStar(v) in its neighborhood are enough to allow a node v to
determine the value of viableCenter(v).

The rule RU is responsible for correcting initial inconsistencies such as invalid identifiers in leaves(v)
and for the updating of the variables inStar(v) and viableCenter(v) if the other rules are not enabled. So
if the value of inStar(v) or viableCenter(v) are not accurate, then v is enabled (all rule actions update the
value of inStar(v) and viableCenter(v)).

Each node v keeps track of the viable centers within its closed neighborhood N[v] = N(v)∪{v} where
N(v) are node at distance 1 of v. Unless v is a member of a star, it invites the viable center having the
minimum identifier (c.f. the macro bestCenter(v)) to form new p-star by setting center(v) to the viable
center’s identifier (rule RI). The invitation is updated as needed if the set of viable centers within the closed
neighborhood changes (rule RI and RGI).

Directing the invitation at the viable center with the minimum identifier makes sure that no deadlocks or
livedeadlocks occur. Eventually, some viable center u is invited by itself and at least p neighbors. Then u
picks p neighbors as the leaves of the star and assigns them to the set leaves(u) (rule RA).

To mitigate the potential issue that an invitation is withdrawn concurrently to the execution of rule RA,
the shared Boolean variable lockedCenter(v) is used. If lockedCenter(v) is true, then node v cannot change
center(v) during the next step.

Before center(v) can be changed by rule RI, rule RGI must be executed to set lockedCenter(v) to false.

Upper bound on the number of moves. The execution of rule RA by a node u creates a new p-star, this
p-star is centered at u. Note that at this point, every node v of this p-star (i.e., a node of star(u)) will perform
at most one move (rule RU) during the end of the execution. So v satisfies center(v) = u forever.

We conclude that correctCenter(u) ∨ correctLeaf (v) stays satisfied along the end of the execution.
Therefore, each node v changes the value of isInStar(v) at most 2 times.

The variable inStar(v) is updated at most 3 times. So the value of predicate isViableCenter(v) on v
changes at most 3 |N(v)|+3 times.

SSS maximal p-star decomposition

Algorithm 1 : Rules of each node v ∈V

Shared variables of each node v ∈V
— center(v) — a node identifier or ⊥ - The center of the p-star that v belongs to or the viable center that v

invites to form new p-star. The value ⊥ is used if v is not a member of a p-star and is not inviting any
node.

— leaves(v) — a set of up to p node identifiers - The set is empty if v is not the center of a pIt finds a
maximal decomposition into node-disjoint p-stars.-star. Otherwise it contains the leaves of the p-star.

— inStar(v) ∈ Boolean - Indicates whether v is a member of a p-star.
— viableCenter(v) ∈ Boolean - Indicates whether v is a viable center for a new p-star.
— lockedCenter(v) ∈ Boolean - Indicates whether the value of center(v) is locked or not.

Predicates
— isCenter(v)≡ |leaves(v)|= p
— incorrectCenter(v)≡ (leaves(v) 6= /0) ∧

((center(v) 6= v) ∨ (∃u ∈ leaves(v) : center(u) 6= v) ∨ ¬isCenter(v) ∨ (leaves(v) 6⊆ N(v)))
— correctLeaf (v)≡ (center(v) ∈ N(v)) ∧ isCenter(center(v)) ∧ (v ∈ leaves(center(v))
— correctCenter(v)≡ isCenter(v)∧¬incorrectCenter(v)
— isInStar(v)≡ correctLeaf (v)∨ correctCenter(v)
— isViableCenter(v)≡ ¬isInStar(v) ∧ (|{ u ∈ N(v) | ¬inStar(u) }| ≥ p)

Macros
— bestCenter(v) is the element of {u ∈ N[v] | viableCenter(u)∧ leaves(u) = /0}

having the smallest identifier or ⊥ if the set is empty
— potentialLeaves(v) is the set {u ∈ N(v) | center(u) = v∧ lockedCenter(u)}

Guard Predicates
— starToUpdate(v)≡ ¬isInStar(v) ∧ (|potentialLeaves(v)| ≥ p) ∧ (v = center(v))
— centerToUpdate(v)≡ ¬isInStar(v) ∧ (center(v) 6= bestCenter(v) ∨ ¬lockedCenter(v))
— variablesToUpdate(v)≡ (inStar(v) 6= isInStar(v)) ∨ (viableCenter(v) 6= isViableCenter(v)) ∨

incorrectCenter(v)

Procedures
— updateBooleans(v) : inStar(v) := isInStar(v) ; viableCenter(v) := isViableCenter(v) ;
— updateVariables(v) : if incorrectCenter(v) then leaves(v) := /0 ; updateBooleans(v) ;
Rules

RA(v) : starToUpdate(v) −→
leaves(v) := subset of potentialLeaves(v) with exactly p elements ; updateBooleans(v) ;

RI(v) : ¬starToUpdate(v) ∧ centerToUpdate(v) ∧ ¬lockedCenter(v) −→
lockedCenter(v) := true ; center(v) := bestCenter(v) ; updateVariables(v) ;

RGI(v) : ¬starToUpdate(v) ∧ centerToUpdate(v) ∧ lockedCenter(v) −→
lockedCenter(v) := false ; updateVariables(v) ;

RU(v) : ¬starToUpdate(v) ∧ ¬centerToUpdate(v) ∧ variablesToUpdate(v) −→ updateVariables(v) ;

The first execution of rule RU may be triggered by initial inconsistencies. All further executions of RU
are caused by changes of isInStar(v) and isViableCenter(v). The latter can occur at most 3 |N(u)|+ 2+ 2
times. We conclude that a node v executes the rule RU at most 3 |N(v)|+5 times.

bestCenter(v) changes only if setBC(v) changes. setBC(v) is the set of nodes of N[v] satisfying (i)
viableCenter(u)∧ leaves(u) = /0. The value of leaves(u) changes at most two times during any execution.
So, the condition (i) on node u changes its value at most 3 |N(u)|+3+2≤ 3∆+5 times on any execution.
So, setBC(v) changes at most nbBC(v) = |N[v]|(3∆+5) times.

Mohammed Haddad et Colette Johnen et Sven Köhler

When the algorithm assigns true to lockedCenter(v) (rule RI), then it also assigns bestCenter(v) to
center(v). So center(v) 6= bestCenter(v) and lockedCenter(v) = true is either due to initial inconsisten-
cies or due to the fact that bestCenter(v) has changed. Therefore, the rule RGI is executed by node v at most
nbBC(v)+1 times and the rule RI is executed by node v at most nbBC(v)+2 times.

Theorem 1 The algorithm terminates after at most 12∆m+O(m+ n) moves under the unfair distributed

scheduler. These moves happen within at most 5
⌊

n
p+1

⌋
+5 (asynchronous) rounds.

Correctness of the algorithm. The algorithm is silent, i.e., it eventually reaches a terminal configuration
under any schedule. In a terminal configuration, the guards of all rules evaluate to false for every node.
So, in a terminal configuration, if leaves(v) 6= /0 then v is the center of a well formed p-star containing the
nodes of star(v) (v does not verify incorrectCenter(v)). So a node that does not belong to any p-star (i.e.,
v ∈ V −

⋃
v∈V star(v)) verifies leaves(v) = /0 and inStar(v) = f alse. It can be concluded that in a terminal

configuration, no viable centers exist and thus the decomposition is maximal.

Memory space. The memore space required by our algorithm on each node is (p+1)log(n)+3 bits. Notice
this requirement is similar at the memory space requirement by the algorithm of [9] (i.e., p · log(n) bits) and
at the memory space requirement by the algorithm of [8] (i.e., p · log(n)+3 bits).

Conclusion. We revisited the problem of decomposing a graph into node-disjoint p-stars from a self-
stabilization point of view. This problem is a generalization of maximal matching. The proposed algorithm
performs better than both previously proposed algorithms. In fact, we improved the move complexity while
also solving the uniqueness legitimate configuration problem that [9] suffered from, without losing linearity
of round complexity. As future work, we aim to generalize the proposed algorithm to the weighted p-star
decomposition problem.

The complet presentation of the algorithm with the proofs of correctness under the unfair scheduler and
the computation of the upper bound on the number of rounds and moves can be found in the technical report
[3].

Références
[1] Konstantin Andreev and Harald Räcke. Balanced graph partitioning. In SPAA, pages 120–124, 2004.

[2] Darryn E. Bryant, Saad I. El-Zanati, and Charles Vanden Eynden. Star factorizations of graph products.
J. Graph Theory, 36(2) :59–66, 2001.

[3] Mohammed Haddad, Colette Johnen, and Sven Köhler. Polynomial silent self-stabilizing p-star decom-
position. Research report, hal-01514323, 2016.

[4] Mohammed Haddad, Colette Johnen, and Sven Köhler. Polynomial silent self-stabilizing p-star decom-
position (short paper). In SSS, LNCS 10083, Springer, pages 185–189, 2016.

[5] David G. Kirkpatrick and Pavol Hell. On the completeness of a generalized matching problem. In
STOC, pages 240–245, 1978.

[6] Slimane Lemmouchi, Mohammed Haddad, and Hamamache Kheddouci. Robustness study of emerged
communities from exchanges in peer-to-peer networks. Computer Communications, 36(10-11) :1145–
1158, 2013.

[7] Fredrik Manne, Morten Mjelde, Laurence Pilard, and Sébastien Tixeuil. A new self-stabilizing maximal
matching algorithm. Theoretical Computer Science, 410(14) :1336–1345, 2009.

[8] Brahim Neggazi, Mohammed Haddad, and Hamamache Kheddouci. A new self-stabilizing algorithm
for maximal p-star decomposition of general graphs. Information Processing Letters, 115(11) :892–
898, 2015.

[9] Brahim Neggazi, Volker Turau, Mohammed Haddad, and Hamamache Kheddouci. A self-stabilizing
algorithm for maximal p-star decomposition of general graphs. In SSS, LNCS 8255, Springer, pages
74–85, 2013.

