Mohammed Haddad

Colette Johnen

Sven Köhler

Polynomial Silent Self-Stabilizing Maximal p-Star Decomposition

Keywords: algorithmique distribuée, auto-stabilisation, décomposition de graphe, p-étoile, temps de convergence

.

Introduction

Fault-tolerance is among the most important requirements for distributed systems. Self-stabilization is a fault-tolerance technique that deals with transient faults. Starting in an arbitrary configuration, a selfstabilizing distributed system converges to a legitimate configuration in finite time without any external intervention. This makes self-stabilization an elegant approach for non-masking fault-tolerance.

An H-decomposition of a graph G subdivides a graph into disjoint components which are isomorphic to H. A p-star is a complete bipartite graph with a set containing a single node (called the center) and the other set containing p nodes (the leaves).

One of the famous and well studied graph decompositions in literature is star decomposition. A decomposition of a graph into stars is a way of expressing the graph as the union of disjoint stars [START_REF] Bryant | Star factorizations of graph products[END_REF]. The problem of star decomposition has several applications including scientific computing, scheduling, load balancing, parallel computing [START_REF] Andreev | Balanced graph partitioning[END_REF], and important nodes detection in social networks [START_REF] Lemmouchi | Robustness study of emerged communities from exchanges in peer-to-peer networks[END_REF]. Decomposing a graph into stars is also used in parallel computing and programming.

Observe that the maximal node-disjoint p-star decomposition problem when restricted to p = 1 is equivalent to the maximal matching problem in graphs. Thus the general problem when p ≥ 1 is NP-complete since generalized matching is proved to be NP-complete in [START_REF] Kirkpatrick | On the completeness of a generalized matching problem[END_REF]. The maximal matching problem has received much interest due the abundant number of applications in fields as diverse as transversal theory, assignment problems, network flows, and scheduling. Many studies have addressed this problem even in the field of self-stabilization ; the best known move complexity for maximal matching problem is O(m) and was obtained by [START_REF] Manne | A new self-stabilizing maximal matching algorithm[END_REF] where m is the number of edges.

The first self-stabilizing algorithm for the maximal node-disjoint p-star decomposition problem was proposed in [START_REF] Neggazi | A self-stabilizing algorithm for maximal p-star decomposition of general graphs[END_REF]. This algorithm converges in 2 n p+1 + 2 rounds under any scheduler. However, the algorithm proposed in [START_REF] Neggazi | A self-stabilizing algorithm for maximal p-star decomposition of general graphs[END_REF] always converges to a unique legitimate configuration according to the input graph and does not guarantee a polynomial move complexity. Another algorithm was proposed in [START_REF] Neggazi | A new self-stabilizing algorithm for maximal p-star decomposition of general graphs[END_REF] where authors dealt with the uniqueness of legitimate state and proved their algorithm to converge within O(∆ 2 m) moves under the unfair distributed scheduler where ∆ is maximum node degree in the graph. A bound on the round complexity of the algorithm in [START_REF] Neggazi | A new self-stabilizing algorithm for maximal p-star decomposition of general graphs[END_REF] is not given.

Our Results. In this paper, we propose the first algorithm on which an upper bound on the round and move complexity are given. Our algorithm matchs the round complexity of the algorithm of [START_REF] Neggazi | A self-stabilizing algorithm for maximal p-star decomposition of general graphs[END_REF] : our algorithm converges in at most 5 n p+1 + 5 moves. Moreover, our algorithm improve the move complexity of the algorithm of [START_REF] Neggazi | A new self-stabilizing algorithm for maximal p-star decomposition of general graphs[END_REF] to 12∆m + O(m + n).

Our algorithm does not converge to an unique legitimate configuration. In fact, there is a legitimate configuration for any valid maximal p-star decomposition. The above results hold with respect to the unfair distributed scheduler, the most powerful adversary. For the definition of the computational model, we direct the reader at [START_REF] Haddad | Polynomial silent self-stabilizing p-star decomposition[END_REF].

Silent self-stabilizing maximal node-disjoint p-Star Decomposition Algorithm

Algorithm 1 contains the code of our silent self-stabilizing maximal node-disjoint p-Star decomposition. The algorithm is presented as a set of of rules, each of the form guard(v) → action. In this section, we give a rough overview of how the algorithm works. in which Node v is the center of a well formed p-star if and only if v verifies correctCenter(v) ; the nodes of leaves(u) are the leaves of the p-star centered at v. We denote star(v) the set of nodes in the p-star centered in v ; the formal definition being if correctCenter(v), star(v) = {v}∪leaves(v) and star(v) = / 0 otherwise. Every node in star(v) verifies the predicate correctLeaf or correctCenter.

Each node v indicates to their neighbors whether they are a member of a star or not via the shared Boolean variable inStar(v). The values of the shared variables center and leaves in its neighborhood are enough to allow a node v to determine the value of the predicates correctCenter(v) and correctLeaf (v) ; so they suffice to compute the value of isInStar(v).

In addition, each node indicates whether it may be a viable center of a new star using the shared Boolean variable viableCenter(v). That is the case only if the node itself and p of its neighbors are not a member of a star, yet. The values of the shared variables inStar(v) in its neighborhood are enough to allow a node v to determine the value of viableCenter(v).

The rule RU is responsible for correcting initial inconsistencies such as invalid identifiers in leaves(v) and for the updating of the variables inStar(v) and viableCenter(v) if the other rules are not enabled. So if the value of inStar(v) or viableCenter(v) are not accurate, then v is enabled (all rule actions update the value of inStar(v) and viableCenter(v)).

Each node v keeps track of the viable centers within its closed neighborhood N[v] = N(v) ∪ {v} where N(v) are node at distance 1 of v. Unless v is a member of a star, it invites the viable center having the minimum identifier (c.f. the macro bestCenter(v)) to form new p-star by setting center(v) to the viable center's identifier (rule RI). The invitation is updated as needed if the set of viable centers within the closed neighborhood changes (rule RI and RGI).

Directing the invitation at the viable center with the minimum identifier makes sure that no deadlocks or livedeadlocks occur. Eventually, some viable center u is invited by itself and at least p neighbors. Then u picks p neighbors as the leaves of the star and assigns them to the set leaves(u) (rule RA).

To mitigate the potential issue that an invitation is withdrawn concurrently to the execution of rule RA, the shared Boolean variable lockedCenter(v) is used. If lockedCenter(v) is true, then node v cannot change center(v) during the next step.

Before center(v) can be changed by rule RI, rule RGI must be executed to set lockedCenter(v) to false.

Upper bound on the number of moves. The execution of rule RA by a node u creates a new p-star, this p-star is centered at u. Note that at this point, every node v of this p-star (i.e., a node of star(u)) will perform at most one move (rule RU) during the end of the execution. So v satisfies center(v) = u forever. We conclude that correctCenter(u) ∨ correctLeaf (v) stays satisfied along the end of the execution. Therefore, each node v changes the value of isInStar(v) at most 2 times.

The variable inStar(v) is updated at most 3 times. So the value of predicate isViableCenter(v) on v changes at most 3 |N(v)| + 3 times.

When the algorithm assigns true to lockedCenter(v) (rule RI), then it also assigns bestCenter(v) to center(v). So center(v) = bestCenter(v) and lockedCenter(v) = true is either due to initial inconsistencies or due to the fact that bestCenter(v) has changed. Therefore, the rule RGI is executed by node v at most nb BC (v) + 1 times and the rule RI is executed by node v at most nb BC (v) + 2 times.

Theorem 1 The algorithm terminates after at most 12∆m + O(m + n) moves under the unfair distributed scheduler. These moves happen within at most 5 n p+1 + 5 (asynchronous) rounds.

Correctness of the algorithm. The algorithm is silent, i.e., it eventually reaches a terminal configuration under any schedule. In a terminal configuration, the guards of all rules evaluate to false for every node. So, in a terminal configuration, if leaves(v) = / 0 then v is the center of a well formed p-star containing the nodes of star(v) (v does not verify incorrectCenter(v)). So a node that does not belong to any p-star (i.e., v ∈ V -v∈V star(v)) verifies leaves(v) = / 0 and inStar(v) = f alse. It can be concluded that in a terminal configuration, no viable centers exist and thus the decomposition is maximal.

Memory space. The memore space required by our algorithm on each node is (p+1)log(n)+3 bits. Notice this requirement is similar at the memory space requirement by the algorithm of [START_REF] Neggazi | A self-stabilizing algorithm for maximal p-star decomposition of general graphs[END_REF] (i.e., p • log(n) bits) and at the memory space requirement by the algorithm of [START_REF] Neggazi | A new self-stabilizing algorithm for maximal p-star decomposition of general graphs[END_REF] (i.e., p • log(n) + 3 bits).

Conclusion.

We revisited the problem of decomposing a graph into node-disjoint p-stars from a selfstabilization point of view. This problem is a generalization of maximal matching. The proposed algorithm performs better than both previously proposed algorithms. In fact, we improved the move complexity while also solving the uniqueness legitimate configuration problem that [START_REF] Neggazi | A self-stabilizing algorithm for maximal p-star decomposition of general graphs[END_REF] suffered from, without losing linearity of round complexity. As future work, we aim to generalize the proposed algorithm to the weighted p-star decomposition problem.

The complet presentation of the algorithm with the proofs of correctness under the unfair scheduler and the computation of the upper bound on the number of rounds and moves can be found in the technical report [START_REF] Haddad | Polynomial silent self-stabilizing p-star decomposition[END_REF].

R éf érences

† This study has been partially supported by the ANR projects DESCARTES (ANR-16-CE40-0023), ESTATE (ANR-16-CE25-0009) ‡ This study has been partially supported by Sustainability Center Freiburg, Germany

Algorithm 1 : Rules of each node v ∈ V Shared variables of each node v ∈ V center(v) -a node identifier or ⊥ -The center of the p-star that v belongs to or the viable center that v invites to form new p-star. The value ⊥ is used if v is not a member of a p-star and is not inviting any node. -leaves(v) -a set of up to p node identifiers -The set is empty if v is not the center of a pIt finds a maximal decomposition into node-disjoint p-stars.-star. Otherwise it contains the leaves of the p-star. -inStar(v) ∈ Boolean -Indicates whether v is a member of a p-star.

-viableCenter(v) ∈ Boolean -Indicates whether v is a viable center for a new p-star.

-lockedCenter(v) ∈ Boolean -Indicates whether the value of center(v) is locked or not.

The first execution of rule RU may be triggered by initial inconsistencies. All further executions of RU are caused by changes of isInStar(v) and isViableCenter(v).