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ABSTRACT 
 

The “Species Accumulation Curve” accounts for the rate of increase of the number of recorded 
species during progressive sampling of an assemblage of species. Due to the usual 
incompleteness of samplings, the accurate extrapolation of the Species Accumulation Curve has 
become an essential tool to estimate the total species richness of a sampled assemblage and to 
predict the additional sampling effort required to obtain a given increase of sample completeness. 
In this perspective, important efforts have been devoted to improve the accuracy of the 
extrapolation of the Species Accumulation Curves. Substantial progress in this respect was 
achieved recently by considering a general mathematical relationship that constrains the theoretical 
expression of any kind of Species Accumulation Curves. Moreover, this general relationship proves 
having interesting corollaries applying specifically to the detailed process of species accumulation 
during progressive sampling.  

Method Article 



 
 
 
 

Béguinot; AIR, 8(5): 1-17, 2016; Article no.AIR.31791 
 
 

 
2 
 

Hereafter, I first derive these correlative relationships and then I show how they link together the 
variations of the numbers of species respectively recorded 1-, 2-, 3- …, x- times and their 
cumulative contributions to the Species Accumulation Curve. This, in turn, provides suggestive 
insights regarding the remarkably regulated mechanism of species discovery and accumulation 
during progressive sampling effort. 

 
 
Keywords: Species diversity; collector curve; extrapolation; estimation; species richness; incomplete 

sampling; regulation; Jackknife estimator. 
 

1. INTRODUCTION 
 
The process of continuous discovery of new 
species during progressive sampling of an 
assemblage of species is expressed graphically 
in term of the so called “Species Accumulation 
Curve”, also formerly designed as “Discovery 
Curve” or “Collector Curve” [1,2].  The Species 
Accumulation Curve is the basic tool which is 
systematically referred to when dealing with 
inventories of biodiversity [2-8]. 
 
Species Accumulation Curves are quite 
polymorphic, apart from some common basic 

and intuitive traits shared by all of them 
(monotonic increase of the number of recorded 
species with sampling size, at consistently 
decreasing rate, see Fig. 1 for an example).This 
polymorphism of the detailed shape of the 
Species Accumulation Curves results from its 
narrow dependence upon the particular species 
abundance distribution within the sampled 
assemblage of species under consideration. 
Accordingly, there are virtually as many different 
shapes of Species Accumulation Curves as there 
are species assemblages differing from each 
other by either their species richness and/or their 
particular distribution of species abundances. 

 

 
 

Fig. 1. Typical shape of a Species Accumulation Curve (S.A.C.), showing the basic common 
features pertaining to any kind of S.A.C.: monotonic increase of the number of recorded 

species R(N) with sampling size N, while the rate of growth is monotonically decreasing. Here 
is plotted the S.A.C for a partial inventory of land snails fauna in a xerothermic grassland at 

‘Cersot’, south Burgundy (France) [from BÉGUINOT, unpublished data]. Sampling size is 
expressed in % of the size of the actually achieved sampling. Extrapolation is predicted 
according to Jackknife-5 estimator, selected as being the less biased estimator for this 

particular inventory (see reference [9]) 
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In spite of these causes of polymorphism, the 
theoretical expressions of all Species 
Accumulation Curves are compelled to satisfy a 
common constraining mathematical relationship 
which applies to the whole series of its 
successive derivatives. This constraining 
relationship explicitly determines the boundaries 
of the yet wide range of polymorphism mentioned 
above for the Species Accumulation Curves. On 
a more practical point of view, accounting for this 
constraining relationship also has major 
importance to improve the accuracy of 
extrapolations of the species accumulation 
process beyond actually achieved sampling. 
Thereby, more precise estimations of total 
species richness and more reliable predictions of 
the additional sampling effort needed to achieve 
a given increase in sample completeness are 
made possible (details in reference [9]). 
 
Now, coming back to more theoretical ground, 
several corollaries which can be derived from this 
fundamental relationship also provide useful 
insights into the details of the complex process of 
species discovery during progressive sampling.  
 
Let R(N) be the number of recorded species after 
sampling of N individuals (N thus quantifies the 
sampling size). Obviously, R(N) results from the 
additive contributions of the numbers f1(N), f2(N), 
f3(N),…, fx(N),… of those species respectively 
recorded 1, 2, 3, .., x-times at the end of this 
sampling of size N: 
 

R(N) = Σx fx(N)                                            (1) 
 

Thereby, the Species Accumulation Curve 
reveals its “composite” dependence upon the 
whole series of the fx(N). A composite 
dependence which is made still more complex by 
the fact that each function fx(N) has its own 
dependence upon N. Yet, this mutual 
independence of the fx(N) is not total: a kind of 
regulation links, step by step, the respective 
variations of the successive functions fx(N), as 
will be shown later. This regulation, indeed, is at 
the hearth of the mechanism of species 
progressive discovery and accumulation, which 
plays, of course, a decisive role in shaping the 
Species Accumulation Curve.  
 

The main purpose of this article is precisely to 
highlight the mathematics underlying this 
regulation by mutual linkage between the 
successive fx(N). This, in turn, will provide a more 
deep understanding of the fundamentals of 
Species Accumulation process during 
progressive sampling.  

Indeed, deriving the mathematical constraints 
that actually regulate the theoretical expression 
of any Species Accumulation Curves along 
progressive sampling is, obviously, of prime 
importance, not only at the theoretical level but 
also at more practical points of view. In 
particular, accounting for these mathematical 
constraints is necessary to reliably extrapolate 
the Species Accumulation Curve beyond the 
actually achieved sampling size of uncomplete 
species inventories. Extrapolation makes it 
possible to accurately estimate the total species 
richness of only partially-sampled species 
assemblages and, also, to properly predict the 
level of additional sampling effort needed to 
improve the degree of sampling completeness. 
And this is all the more important, in practice, 
that dealing with incomplete inventories is now 
fast becoming a fairly general issue for an 
increasing part of local or regional biodiversity 
surveys worldwide, as more and more speciose 
and complex taxonomic groups are progressively 
addressed. 
 

2. METHODOLOGICAL APPROACH 
 
2.1 The Fundamental Mathematical 

Relationship Constraining the 
Theoretical Expression of all Species 
Accumulation Curves 

 
The successive derivatives ∂xR(N)/∂Nx, of the 
Species Accumulation Curve R(N) satisfy the 
following equation: 
 

 [∂
x 
R(N)/∂Nx

] = (-1)
x-1 

fx (N)/CN, x                     (2)  
 
where fx (N) is the number of species recorded                      
x-times in the sample of size N and                                 
CN,x = N!/x!/(N-x)! is the number of                
combinations of x items among N.  A detailed 
proof of this general theorem is provided in 
Appendix.

 

 
Leaving aside the very beginning of sampling (of 
no practical relevance here), the sampling size N 
rapidly widely exceeds the numbers x of practical 
concern, so that, in practice, the preceding 
equation simplifies as: 
 

[∂
x 
R(N)/∂N

x
]  = (– 1)

x-1 
(x!/N

x
) fx (N)               (3) 

 
This relation has a general relevance because its 
derivation does not require any specific 
assumption relative to the particular shape of the 
distribution of species abundances in the 
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sampled assemblage of species. Accordingly, 
equations (2), (3) actually constrain the 
theoretical expression of any kind of Species 
Accumulation Curves. 
 
One particular consequence of this relationship          
is that the successive derivatives of the                
Species Accumulation Curve have alternating 
signs, since the numbers fx(N) of species    
recorded x-times are necessarily positive or                
nil. More precisely, the derivatives of even and 
odd orders are respectively negative and 
positive. 
 

3. THE MATHEMATICS UNDERLYING 
THE REGULATION PROCESS 
APPLYING TO THE NUMBERS fx OF 
SPECIES RECORDED x-TIMES 

 
From equation (3) it comes: 
 

fx (N)  = (– 1)
x-1 

(N
x
/x!) [∂

x 
R(N)/∂Nx

]                (4) 
 

The derivation of equation (4) according to 
sample size N then gives: 
 

[∂fx (N)/∂N] = (– 1)
x-1

/x! {x.N
x-1

.[∂
x 
R(N)/∂Nx

] + 
Nx.[∂x+1R(N)/∂Nx+1]} 

 
Accounting for the expression (3), applied to  
[∂

x 
R(N)/∂Nx

] and to [∂
x+1

R(N)/∂Nx+1
], it comes:    

       
[∂fx (N)/∂N] = (1/N) [ x.fx (N) – (x+1).fx+1 (N) ]    (5) 

 
which may be written as well as: 
 

x.fx (N) – N.[∂fx (N)/∂N]   = (x+1).fx+1 (N)           (6) 
 

Note that an alternative, independent 
demonstration of equation (6) is provided at 
Appendix A.2, equation A2.1. 
 
Being a corollary of relationship (3) above, 
equation (6) thus benefits from the same general 
relevance and, thus, is valid for all kinds of 
Species Accumulation Curves. 
 
Equation (6) establishes a mathematical linkage 
between the variations of fx+1 (N) with N and                  
the variations of fx (N) with N. Thereby, all the                  
fx(N) are ultimately linked together by this “iterative 
chaining”.  In other words, although each function 
fx (N) has its own dependence upon sampling size 
N, the series of fx (N) nevertheless admits a kind 
of connection which, one may say, “propagates” 
from each fx (N) to the next one, fx+1 (N). 
 

3.1 Mathematical “Chaining” between the 
Successive Numbers fx (N) 

 
The consequence of this regulation may be more 
easily grasped graphically, by considering how 
the maximum of each fx (N) is linked to the value 
taken by fx+1 (N) at the same sample size N. When 
fx(N) reaches its maximum value, its first 
derivative, ∂fx(N)/∂N, falls to zero and, accordingly, 
from equation (6), it comes: 
 

fx+1 (N)  =  [x/(x+1)].fx (N)                                (7) 
 

Thus, when fx(N) reaches its maximum, in the 
course of progressive sampling, the 
corresponding value taken by fx+1 (N) is then 
exactly [x/(x+1)] times the (maximum) value 
taken by fx (N). By reiteration of this relationship, a 
kind of “linkage pattern” is generated, that 
constrains the relative locations of the 
successive curves fx(N). Fig. 2 exemplifies 
graphically this “chaining” linkage, propagating 
successively, step by step, from f1 (N) to f2 (N), to 
f3(N), to f4 (N), to f5 (N), etc… 
 
As a consequence, the respective maxima of f1 

(N), of f2 (N), of f3 (N), of f4 (N), of f5 (N),... succeed 
each other sequentially, as shown in Fig. 2. The 
corresponding positions of these succeeding 
maxima are located along the Species 
Accumulation Curve at Fig. 3, and it is worth 
noting (and even remarkable) that the regulating 
linkage between the successive fx (N) is such that 
no peculiarity is affecting the Species 
Accumulation Curve at any of these locations (in 
spite of the series of bumps constituted by the 
successive maxima of f1 (N), f2 (N), f3 (N), f4 (N), f5 (N), 
…). 
 

3.2 Mathematical “Chaining” between the 
Successive Numbers x.fx (N) 

 
Alternatively, equation (7) may be written 
equivalently as: 
 

x.fx (N)  =  (x+1).fx+1 (N)                                  (8) 
 
Equation (8), as equation (7), stands for ∂fx (N)/∂N 
= 0, and thus stands as well for ∂(x.fx (N))/∂N = 0. 
It follows that the curve (x+1).fx+1 (N) intersects the 
curve x.fx (N) exactly when the latter reaches its 
maximum value (i.e. when ∂(x.fx (N))/∂N = 0) : Fig. 
4. Keeping in mind the significance of x.fx (N), 
which is the total number of recorded individuals 
belonging to any one of those species recorded 
x-times.  
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Fig. 2. Extrapolations of the five first numbers fx (N)  ( f1 (N), f2 (N), f3 (N), f4 (N), f5 (N) ) along increasing 
sampling size N, beyond the size of the actually achieved sampling (sampling size N is 

expressed in % of the size of the actually achieved sampling). Here, the maxima of f1 (N), f2 (N), 
f3(N), f4 (N), f5 (N), happen to be located at sample sizes ≈ 200%, 360%, 510%, 680%, 810%, 

respectively.Same inventory as in Fig. 1; extrapolations according to Jackknife-5 estimator, 
selected as being the less biased for this particular inventory (see reference [9]). This figure 

highlights the “linkage pattern” between the successive curves fx (N), imposed by the 
constraining relationship (7) ( i.e.: fx+1 (N)  =  [x/(x+1)].fx (N)). That is when fx (N) reaches its 

maximum, the corresponding value taken by fx+1 (N) is then exactly [x/(x+1)] times the value                 
of fx (N) 

 

 
 

Fig. 3. The locations, along the species accumulation curve, of the successive maximum of 
f1(N), f2 (N), f3 (N), f4 (N), f5 (N), according to Fig. 2. Same inventory as in Fig. 1 
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Fig. 4. The computed variations, with increasing sampling size N, of the five first numbers 
x.fx(N) of recorded individuals belonging to any one of species recorded x-times (1.f1 (N), 2.f2 (N), 

3.f3 (N), 4.f4 (N), 5.f5 (N)). As prescribed by the constraining equation (8), for any value of x, the 
curve (x+1).fx+1 (N) intersects the curve x.fx (N) exactly when the latter reaches its maximum 

value. Sampling size is expressed in % of the size of the actually achieved sampling. Same 
inventory as in Fig. 1 

 
The regularly repetitive shift from any one curve, 
x.fx (N), to the next one, (x+1).fx+1 (N), resulting from 
this regulating process (Fig. 4) is particularly 
demonstrative. This, indeed, likely offers the best 
visual evidence of the sequential linkage                
existing between each of the numbers fx(N) 
successively. 
 
Note, incidentally, that while the cumulative 
addition of all the fx (N) leads to the number R(N) 
of recorded species (cf. equation (1)) ; on the 
other hand the addition of  all the x.fx(N) leads 
“symmetrically” to the number N of recorded 
individuals: 
 

Σx [ fx(N) ]  =  R(N) and Σx [ x.fx(N) ]  =  N   (9) 
 

3.3 Mathematical “Chaining” between 
Each fx (N) and the Series of the First 
Derivatives of All the Preceding fx (N) 

 
This is a third alternative way to express                 
the inter-relationship within the series of the      
fx(N). Referring once more to equation (6),                 
that is: 
 

x.fx (N) – N.[∂fx (N)/∂N]   =   (x+1).fx+1 (N) 

 

Let now consider the successive forms taken by 
this equation for increasing values of x. 
  
It comes: 
 

0.f0 (N) – N.[∂f0 (N)/∂N]   =   1.f1 (N) 
1.f1 (N) – N.[∂f1 (N)/∂N]   =   2.f2 (N) 
2.f2 (N) – N.[∂f2 (N)/∂N]   =   3.f3 (N) 

…………………………….……………. 
(x – 1).fx-1 (N) – N.[∂fx-1 (N)/∂N]   =   x.fx (N) 

 

By summing these equations, the following 
relationship is immediately derived: 
 

fx (N)   =  – (N/x).Σi [∂fi (N)/∂N]                      (10) 
 

with the summation Σi extended from i = 0 to i = 
(x – 1). 
 

That is, namely, the number fx(N) of                        
species recorded x-times in a sampling of size                     
N is proportional [via the factor – (N/x)] to the      
sum of the first derivatives (with respect to N)                   
of the series of all the preceding fi (N). In more 
practical terms, this means that the number fx (N) 
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of species recorded x-times, in a sample               
of size N, is proportional to the sum of the 
variations of the preceding fx(N) when                
sampling size increases of one observation (N  
N+1). 
 

Another way to understand relation (10) results 
from re-writing it as follows: 
 

(x.fx(N))/N = – Σi [∂fi (N)/∂N]                          (11) 
 

with the summation  Σi extended from i = 0 to i = 
(x – 1).   
 
This means that the proportion, among all the 
sampled individuals, of those ones that belong to 
anyone species recorded x-times [ = (x.fx (N))/N ] 
is equal to minus the sum of the variations of all 
the preceding fx(N), when sampling size increases 
of one observation.  
 
Accordingly, relationships (10) or (11) both 
express, once again but in another way,                  
the continuous linkage that exists between each 
fx (N) and the whole series of its predecessors,                    
thereby highlighting still more clearly the                  
strong “chaining” between the successive 
numbers fx (N), which together rule the kinetics of 
species accumulation during progressive 
sampling. 
 
Still another remarkable relationship may                       
be derived from equation (10), which only 
involves, this time, the first derivatives of all the 
fx(N). 
 
Let X be the recorded number of individuals 
belonging to the species most frequently met in 
the sample under consideration. In other words, 
X is the largest value of x for which fx (N) ≠ 0 in 
this particular sample. The sum of the numbers 
of sampled individuals that belong to anyone of 
those species recorded x-times [ = (x.fx (N))], for x 
up to its maximum value X, is equal to N. 
Accordingly, the summation of equation (11) for x 
up to its maximum value X yields: 
 

Σx [(x.fx (N))/N] = N/N = 1 = Σx [– Σi (∂fi (N)/∂N)] 
 
with the summation  Σx  extended from x = 1 to x 
= X and the summation  Σi  extended from i = 0 to 
i = (x – 1).  This finally leads to: 
 

1  =  – Σi [(∂fi (N)/∂N).(X – i)]                       (12) 

with the summation Σi extended from i = 0 to i = 
(X – 1). 
 

4. COMPLEMENTARY ILLUSTRATIVE 
EXAMPLES OF THE REGULATION 
PROCESS GOVERNING THE 
NUMBERS OF SPECIES RECORDED  
1-, 2-, 3-, 4-, 5-, …TIMES 

 
The same trends demonstrated above on a 
theoretical basis, and illustrated by a first 
example at Figs. 2 to 4, are illustrated again in 
the following complementary examples. I shall 
only consider, hereafter, the variations of x.fx (N) 
(i.e. the number of recorded individuals 
belonging to any one of species recorded x-
times) as they provide the more graphically 
speaking feature, highlighting at best the specific 
“chaining” linkage, step by step, between the 
successive numbers f1 (N), f2 (N), f3 (N), f4 (N), f5 (N). 

 

4.1 Butterfly Inventory on the Slopes of 
Mount Gariwang-san (S-Korea) 

 
Field data from reference [10]. Fig. 5 relates to 
an inventory carried out during year 2015.                     
The realised sampling size was N0 = 181 
individuals; the number of recorded species was 
R(N0) = 39 species and the values of the fx, were: 
f1 = 17.0, f2 = 8.0, f3 = 3.7, f4 = 2.0, f5 = 1.4 (values 
obtained after regression applied to the crude 
values of the fx, in order to reduce the 
consequences of stochastic dispersion, as 
prescribed in reference  [9]. 

 

4.2 Butterfly Inventories at Bifeng Valley 
(Ghansu, China) 

 
Field data from reference [11]. Fig. 6 relates                   
to an inventory conducted at site ‘1’, in                       
the upper part of the valley of Bifeng                   
(province of Ghansu), where species richness        
of butterfly fauna proves to be the highest in                    
the valley, with R(N0) = 28 recorded species                   
for N0 = 68 recorded individuals. The                     
values of the fx, were: f1 = 14.0, f2 = 6.0,                             
f3 = 2.6, f4 = 1.5, f5 = 1.2 (values obtained                        
after regression applied to the crude                        
values of the fx, in order to reduce the 
consequences of stochastic dispersion, as 
prescribed in reference [9]. 
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Fig. 5. The computed variations, with increasing sampling size N, of the five first numbers 
x.fx(N) of recorded individuals belonging to anyone species recorded x-times (1.f1 (N), 2.f2 (N), 

3.f3(N), 4.f4 (N), 5.f5 (N)). Butterfly inventory on the slopes of Mount Gariwang-san (field data from 
reference [10]). As prescribed by the constraining equation (8), for all values of x, the curve 
(x+1).fx+1 (N) intersects the curve x.fx (N) exactly when the latter reaches its maximum value. 

Sampling size is expressed in % of the size of the actually achieved sampling 
 

 
 

Fig. 6. The computed variations, with increasing sampling size N, of the five first numbers 
x.fx(N) of recorded individuals belonging to any one species recorded x-times (1.f1 (N), 2.f2 (N), 

3.f3(N), 4.f4 (N), 5.f5 (N)). Butterfly inventory at Bifeng valley, site ‘1’ (field data from reference [11]). 
As prescribed by the constraining equation (8), for all values of x, the curve (x+1).fx+1 (N) 

intersects the curve x.fx (N) exactly when the latter reaches its maximum value.  
Sampling size is expressed in % of the size of the actually achieved sampling 
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5. THE GENERAL RELATIONSHIP 
GOVERNING THE DECREASING 
PROPORTION OF OBSERVATIONS 
PROVIDING NEWLY RECORDED 
SPECIES, WITH INCREASING 
SAMPLING SIZE 

 
So far, we have approached the Species 
Accumulation Curve, R(N), in a deliberately 
analytical manner: Each new observation                     
was considered as equally informative, whether 
or not it gives rise to the detection of a new 
species. Indeed, in any case, each individual 
observation actually plays the same kind of role: 
it determines a transition of the kind fx(N)  
fx+1(N +1). 
 
Now, let consider, alternatively, a more usual                    
and pragmatic approach, now paying attention                 
to those observations only giving rise to                          
the detection of a new species and                   
neglecting, accordingly, all the other 
observations (in spite of their equal role in the 
analytical approach considered above). In this 
purely “accounting” approach, the focus is put on 
the proportion p(N) = R (N)/N of those 
observations exclusively, which have provided 

positive records of new species. In other                   
words, instead of paying attention to R(N) = Σx 

fx(N), as was the case previously, the focus is 
now placed upon: 
 

R(N) = N.p(N)                                           (13) 
 

This proportion p(N) is pragmatically interesting 
in that it quantifies the gradual weakening of 
sampling efficiency, i.e. the ever-slowing rate of 
detection of newly recorded species, as sampling 
is going on further. 
 

As for the Species Accumulation Curve, the 
proportion p(N) of those observations providing 
positive records of new species is highly 
polymorphic and this polymorphism, here also, is 
limited by a constraining relationship applying to 
the expression of p(N). 
 
I derive below this general relationship which 
constrains the proportion p(N).  
 
The derivation of R(N) yields, accounting for 
equation (13) and then equation (3): 
 
[∂R(N)/∂N] = p(N) + N.[∂p(N)/∂N] = (1/N).f1 (N)    (14) 
 

 

 
 

Fig. 7. Typical shape of the proportion p(N) = R (N)/N of those observations providing positive 
records of new species. Same inventory as in Fig. 1 
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Further derivations yield successively: 
 
[∂2R(N)/∂N2]  = 2.[∂p(N)/∂N] + N.[∂2p(N)/∂N2] =  
–(2/N

2
).f2(N)                                                                                   (15) 

 
[∂

3
R(N)/∂N3

]  = 3.[∂
2
p(N)/∂N2

] + N.[∂
3
p(N)/∂N3

] =   
+(6/N

3
).f3 (N)                                                     (16) 

 
and more generally: 
 
[∂

x
R(N)/∂Nx

]  =  x.[∂
x-1

p(N)/∂Nx-1
] + N.[∂

x
p(N)/∂Nx

]  
=  (– 1)

x-1
.(x!/N

x
).fx (N)                                                            (17) 

 
Now, from equations (14) and (15), it follows: 
 
[∂

2
p(N)/∂N2

]  =  
        (2/N

2
).p(N) – (2/N

3
).(f1 (N) + f2 (N))             (18) 
 

Similarly, from equations (16) and (18): 
 
[∂

3
p(N)/∂N3

]  =  – (6/N
3
).p(N) + (6/N

4
).(f1 (N) + f2 (N) 

+ f3 (N))                                                             (19) 
 

and more generally: 
 
[∂

x
p(N)/∂Nx

]  =  (– 1)
x 
.(x!/N

x
).p(N) + (– 1)

x-1 
. 

(x!/Nx+1).Σi=1to x [fi(N)]                                        (20)          
      

At last, from equations (1) and (11), it follows: 
 
[∂

x
p(N)/∂Nx

]  = (– 1)
x
.(x!/N

x+1
).Σi> x [fi(N)]        (21) 

 
Note that there is part of a formal similarity 
between (i) the general relationship (21) 
constraining the proportion p(N) of those 
individual observations providing positive records 
of new species and (ii) the general relationship 
(3) constraining the Species Accumulation Curve 
R(N). Among the differences, however, the main 
one is that all the fi(N) with i > x are involved in 
the  relationship (21) constraining the proportion 
p(N), while it is only fi(N) for i = x which 
contributes in the  relationship (3) constraining 
the Species Accumulation Curve R(N). 
 
One particular consequence of relationship (21) 
is that the successive derivatives of the the 
proportion p(N) of observations providing positive 
records of new species have alternating signs, 
(as for the Species Accumulation Curve) since 
the numbers fx (N) of species recorded x-times are 
necessarily positive or nil. More precisely, for the 
proportion p(N), the derivatives of even and odd 
orders are respectively positive and negative 
(that is the inverse of what stands for the Species 
Accumulation Curves). 
 

6. DISCUSSION 

 
Five main features are emerging from the 
theoretical treatment (and the corresponding 
illustrative examples), regarding the variations, 
with sampling size N, of the numbers fx(N) of 
species respectively recorded x-times during 
sampling. It should be well understood that these 
features, all derived on a theoretical basis, are 
focal tendencies, towards which the empirical 
data, obtained from real samplings, actually 
converges (but may yet more or less slightly 
deviate, due to sampling stochasticity). 

 

Two of these trends were expected, being in 
accordance with intuition: 

 

1)  All the numbers fx (N) of species recorded x-
times are first increasing, then pass by a 
maximum and finally decrease to zero. 
Also, in addition, the curves describing the 
variations of each fx (N) (and the positions of 
their respective maxima) are regularly 
shifted towards higher values of sampling 
size N, when x takes increasing values 
(Fig. 2); 

2)  The same holds true, mutatis mutandis, for 
the numbers x.fx(N) of those individuals 
belonging to anyone species recorded x-
times, whatever the value of x.  

Now, three other trends, by no                     
means intuitive, were newly derived above, 
as a consequence of the general 
mathematical relationship (6) which 
constrains the expressions and shapes of 
the fx (N): 

3) When fx(N) reaches its maximum, in the 
course of progressive sampling, the 
corresponding value taken by fx+1 (N) is then 
exactly [x/(x+1)] times the maximum value 
taken by fx (N) (see Fig. 2); 

4)  Regarding now the number x.fx(N) of 
individuals belonging to anyone of those 
species recorded x-times, it consistently 
happens that the curve describing the 
variations of (x+1).fx+1(N) intersects the 
curve of x.fx(N) exactly when the latter 
reaches its maximum value (see Figs. 4,  
5, 6); 

5)  At last, the number fx(N) of species 
recorded x-times in a sample of size N is 
proportional to the sum of the variations of 
the preceding fx(N), when sampling size 
increases by one observation. 
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The three latter trends have major importance in 
that they determine the “chaining linkage” 
between the successive numbers fx (N) of species 
recorded x-times. And this is of importance 
because the successive numbers fx (N) actually 
regulate the process of cumulative species 
discovery during progressive sampling. 
 
As already stressed, the general mathematical 
relationship (6)  
 

x.fx (N) – N.[∂fx (N)/∂N]   =   (x+1).fx+1 (N) 

 
which constrains the expressions of the fx (N), is a 
corollary of the general relationship (A2.1), 
derived in Appendix A.2, which, in turn, 
constrains the theoretical expressions of all 
Species Accumulation Curves R(N).Thus, to get 
a full understanding of the underlying process of 
species accumulation during sampling, it is 
advisable to refer to the detailed demonstration 
leading to equation (A2.1) in Appendix. 
 
7. CONCLUSION 
 
The increasing number of newly recorded 
species (i.e. the “species accumulation”) during 
progressive sampling gives rise to a rather 
simply shaped “Species Accumulation Curve”. 
Paradoxically, this apparent simplicity does not 

lead to imagine the underlying complexity of the 
detailed process of species discovery and 
accumulation, as detailed above. In fact, each 
new individual observation may alternatively 
result in one or the other of a series of different 
consequences. More precisely, each observation 
of a new individual (i.e. N  N + 1) will contribute 
to increase by one unity either f1 (N), or f2 (N), f3 (N), 
…,fx (N), … 
 
Now, although each of the numbers fx (N) of 
species recorded x-times varies with N at its own 
pace and out of phase with the others (Fig. 2), 
the process of species accumulation proves to 
be regulated, however, due to the above 
mentioned “chaining linkage” between the 
successive fx (N) (Figs. 4, 5, 6). And this, indeed, 
is at the very heart of the detailed process of 
species discovery and accumulation during 
progressive sampling. A process of major 
practical importance since it is involved in all 
biodiversity surveys and, more specifically, it is 
involved in the accurate extrapolation of the 
Species Accumulation Curve. Accurate 
extrapolation which, in turn, determines the 
precise estimate of the total species richness of a 
partially sampled assemblage of species and 
allows the reliable prediction of the additional 
sampling effort required to obtain a given 
increase in sample completeness. 

 
The constraining mathematical relationships highlighted above are summarized as follows: 

 
* relationship applying to the Species Accumulation Curve, R(N), itself: 

 equations (2) & (3): 
[∂x R(N)/∂Nx] = (-1)x-1 fx (N)/CN, x≈  (– 1)x-1 (x!/Nx) fx (N) 

 
* relationship applying to the proportion of efficient observations, p(N) = R (N)/N: 

 equation (21): 
[∂xp(N)/∂Nx]  =  (– 1)x (x!/Nx+1).Σi> x [fi(N)] 

 
* relationship applying to the numbers f1(N), f2(N), f3(N),…, fx(N),… 

of those species respectively recorded 1, 2, 3, .., x-times during sampling: 
 equation (6): 

x.fx (N)  – N.[∂fx (N)/∂N]   =   (x+1).fx+1 (N) 

 

* and its three corollaries: 
 equations (7), (10) and (12): 

fx+1 (N)  = [x/(x+1)].fx (N) which is valid  when ∂fx (N)/∂N = 0 
fx (N)   =  – (N/x).Σi [∂fi (N)/∂N] 

with the sum Σi extended from i = 0 to i = (x – 1) 
and, at last: 

– Σi [(∂fi (N)/∂N).(X – i)]  =  1 
with X as the larger value of x for which fX (N) ≠ 0 
and the sum Σi extended from i = 0 to i = (X – 1) 
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APPENDICES 
 

A.1 - Derivation of the constraining relationship between ∂xR(N)/∂Nx and fx(N) 

 
The shape of the theoretical Species Accumulation Curve is directly dependent upon the particular 
Species Abundance Distribution (the “S.A.D.”) within the sampled assemblage of species. That 
means that beyond the common general traits shared by all Species Accumulation Curves, each 
particular species assemblage give rise to a specific Species Accumulation Curve with its own, unique 
shape, considered in detail. Now, it turns out that, in spite of this diversity of particular shapes, all the 
Species Accumulation Curves are, nevertheless, constrained by a same mathematical relationship 
that rules their successive derivatives (and, thereby, rules the details of the curve shape since the 
successive derivatives altogether define the local shape of the curve in any details). Moreover, it turns 
out that this general mathematical constraint relates bi-univocally each derivative at order x,  
[∂

x
R(N)/∂Nx

 ], to the number, fx(N), of species recorded x-times in the considered sample of size N. And, 
as the series of the fx(N) are obviously directly dependent upon the particular Distribution of Species 
Abundance within the sampled assemblage of species, it follows that this mathematical relationship 
between ∂

x
R(N)/∂Nx

 and fx(N), ultimately reflects the indirect but strict dependence of the shape of the 
Species Accumulation Curve upon the particular Distribution of the Species Abundances (the so 
called S.A.D.) within the assemblage of species under consideration. In this respect, this constraining 
relationship is central to the process of species accumulation during progressive sampling, and is 
therefore at the heart of any reasoned approach to the extrapolation of any kind of Species 
Accumulation Curves. 
 
This fundamental relationship may be derived as follows. 
 
Let consider an assemblage of species containing an unknown total number 'S' of species. Let R be 
the number of recorded species in a partial sampling of this assemblage comprising N individuals. Let 
pi be the probability of occurrence of species 'i' in the sample This probability is assimilated to the 
relative abundance of species ‘i' within this assemblage or to the relative incidence of species ‘i' (its 
proportion of occurrences) within a set of sampled sites. The number Δ of missed species 
(unrecorded in the sample) is Δ = S – R. 
 
The estimated number Δ of those species that escape recording during sampling of the assemblage is 
a decreasing function Δ(N) of the sample of size N, which depends on the particular distribution of 
species abundances pi: 
 

Δ(N)  = Σi (1-pi)
N                                                                                                                                                                                 (A1.1) 

 
with Σi as the operation summation extended to the totality of the 'S' species 'i' in the sampled 
assemblage (either recorded or not) 
 
The expected number fx of species recorded x times in the sample, is then, according to the binomial 
distribution: 
 

fx  =  [N!/X!/(N-x)!] Σi [(1-pi)
N-xpi

x]   = CN, x  Σi (1-pi)
N-x pi

x                                                       (A1.2)  
 
with CN, x  = N!/X!/(N-x)! 

 
We shall now derive the relationship between the successive derivatives of R(N), the theoretical 
Species Accumulation Curve and the expected values for the series of ‘fx’.  
 
According to equation (A1.2): 
 
►    f1 = N Σi [(1-pi)

N-1 pi] = N Σi [(1-pi)
N-1 (1- (1-pi))]= N Σi [(1-pi)

N-1] - N Σi [(1-pi)
N-1(1-pi))]  = N Σi [(1-pi)

N-1] 
- N Σi [(1-pi)

N].      
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Then, according to equation (A1) it comes: f1 = N (Δ(N-1) - Δ(N))  = - N (Δ(N) - Δ(N-1))   
= - N (∂ Δ(N)/∂N) = - N Δ'(N) 

 
where Δ'(N) is the first derivative of  Δ(N) with respect to N.     
 
Thus:    
 

f1  =  - N Δ'(N)     ( = - CN,1 Δ'(N)  )                                                                                           (A1.3) 
 

Similarly: 
 
►   f2 = CN, 2Σi[(1-pi)

N-2
 pi²]    according to equation (A1.2) 

 
= CN, 2Σi [(1-pi)

N-2
 (1- (1-pi²))]   = CN, 2  [Σi [(1-pi)

N-2
] - Σi [(1-pi)

N-2
(1- pi²)]] 

 
= CN, 2 [Σi [(1-pi)

N-2
] - Σi [(1-pi)

N-2
(1- pi)(1+ pi)]]  = CN, 2 [ Σi [(1-pi)

N-2
] - Σi [(1-pi)

N-1
(1+ pi)]] 

 
= CN, 2 [(Δ(N-2) - Δ(N-1)) - f1/N ]according to equations (A2.1) and  (A1.2) 
 
= CN, 2 [- Δ'(N-1) - f1/N]  = CN, 2  [ - Δ'(N-1) + Δ'(N)]   since  f1 = - N Δ'(N)     (cf. equation (A1.3)). 
 
= CN, 2 [(∂ Δ'(N)/∂N)] = [N(N-1)/2] (∂² Δ(N)/∂N²) = [N(N-1)/2] Δ''(N) 
 
where Δ''(N) is the second derivative of  Δ(N) with respect to N.     
 
Thus: 
 

f2  =  [N(N-1)/2]  Δ''(N)     =  CN, 2 Δ''(N)                                                                                     (A1.4) 
 

►  f3 = CN, 3Σi [(1-pi)
N-3 pi

3]   which, by the same process, yields: 
 
= CN, 3 [Σi (1-pi)

N-3 - Σi(1-pi)
N-2 - Σi [(1-pi)

N-2 pi] - Σi [(1-pi)
N-2 pi

2 )]]   
 
= CN, 3 [(Δ(N-3) - Δ(N-2)) - f1*/(N-1) - 2 f2/(N(N-1))] according to equations (A2.1) and  (A1.2) 
 
where f1* is the number of singletons that would be recorded in a sample of size (N - 1) instead of N.   
 
According to equations (A1.3) & (A1.4):   
 

f1*  =  - (N-1) Δ'(N-1)  =  - CN-1, 1 Δ'(N-1)    and    f2  =  [N(N-1)/2] Δ''(N)   = CN-1, 2 Δ''(N)               (A1.5) 
 

where Δ'(N-1)  is the first derivate of  Δ(N) with respect to N, at point (N-1).   Then,   
 
f3  = CN, 3 [(Δ(N-3) - Δ(N-2)) + Δ'(N-1) - Δ''(N) ]   =  CN, 3 [ -Δ'(N-2) + Δ'(N-1) - Δ''(N) ]   
 
=  CN, 3 [ Δ''(N-1) - Δ''(N) ]  = CN,3 [ - ∂ Δ''(N)/∂N ] =  CN, 3 [ - ∂

3
Δ(N)/∂N3

] = CN, 3Δ'''(N) 

 

where Δ'''(N) is the third derivative of  Δ(N) with respect to N.  Thus: 
 

f3=  - CN, 3Δ'''(N)                                                                                                                     (A1.6) 
 

Now, generalising for the number fx of species recorded x times in the sample: 
 

►fx = CN, xΣi [(1-pi)
N-x

pi
x
]    according to equation (A1.2), 

 
= CN, xΣi [(1-pi)

N-x (1 - (1 - pi
x)) ]  = CN, x [Σi (1-pi)

N-x - Σi [(1-pi)
N-x (1 - pi

x)]]   
 

= CN, x [Σi (1-pi)
N-x

 - Σi [(1-pi)
N-x

 (1 - pi)( Σj pi
j
)]]    
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with Σj  as the summation from j = 0 to  j = x-1. It comes: 
 

fx  = CN, x [Σi (1-pi)
N-x - Σi [(1-pi)

N-x+1 ( Σj pi
j)]]   

 
= CN, x [Σi (1-pi)

N-x - Σi (1-pi)
 N-x+1 - Σk [(Σi (1-pi)

 N-x+1pi
k)]] 

 
with Σk  as the summation from k = 1 to k = x-1 ; that is: 
 
fx  = CN, x [(Δ(N-x) - Δ(N-x+1)) - Σk (fk*/C(N-x+1+k), k )]  according to equations (A1.1) and  (A1.2)) 
 
where C(N-x+1+k), k = (N-x+1+k)!/k!/(N-x+1)! and fk* is the expected number of species  recorded k times 
during a sampling of size (N-x+1+k)  (instead of size N). 
   
The same demonstration, which yields previously the expression of f1* above (equation (A1.5)), 
applies for the fk* (with k up to x-1) and gives:    
 

fk* = (-1)
k
 (C(N-x+1+k), k ) Δ

(k)
(N-x+1+k)                                                                                         (A1.7) 

 
where Δ

 (k)
(N-x+1+k)  is the k

th 
derivate of  Δ(N) with respect to N, at point (N-x+1+k).   Then,   

 
fx  = CN, x [(Δ(N-x) - Δ(N-x+1)) - Σk ((-1)

k
Δ

(k)
(N-x+1+k) )] , 

 
which finally yields : 
  
fx  = CN, x [(-1)x (∂Δ(x-1)

(N)/∂N) ] = CN, x [(-1)x (∂xΔ(N)/∂Nx)].   That is:  
 

fx = (-1)x CN, x Δ
(x)

(N)  = (-1)x CN, x [∂
xΔ (N)/∂Nx]                                                                       (A1.8)  

 
where  [∂

x
Δ (N)/∂Nx

] is the x
th

 derivative of  Δ(N) with respect to N, at point N.    
 
Conversely: 
 

[∂
x 
Δ(N)/∂Nx

] = (-1)
x 
fx/CN, x                                                                                                    (A1.9)  

 
Note that, in practice, leaving aside the beginning of sampling, N rapidly increases much greater than 
x, so that the preceding equation simplifies as: 
 

[∂
x 
Δ(N)/∂Nx

] = (– 1)
x  

(x!/N
x
) fx(N)                                                                                         (A1.10) 

 
In particular: 
 

[∂Δ(N)/∂N] = f1(N)/N                                                                                                             (A1.11) 
 

[∂2 Δ(N)/∂N2] = 2 f2(N)/N
2                                                                                                      (A1.12)     

            
This relation (A1.9) has general relevance since it does not involve any specific assumption relative to 
either (i) the particular shape of the distribution of species abundances in the sampled assemblage of 
species or (ii) the particular shape of the species accumulation rate. Accordingly, this relation 
constrains any theoretical form of species accumulation curves. As already mentioned, the shape of 
the species accumulation curve is entirely defined (at any value of sample size N) by the series of the 
successive derivatives [∂

x
R(N)/∂Nx

] of the predicted number R(N) of recorded species for a sample of 
size N: 
 

[∂xR(N)/∂Nx] = (-1)(x-1) fx/CN, x                                                                                               (A1.13)  
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with [∂xR(N)/∂Nx] as the xth derivative of  R(N) with respect to N, at point N and CN, x = N!/(N-x)!/x! (since 
the number of recorded species R(N) is equal to the total species richness S minus the expected 
number of missed species Δ(N)).  
 
As above, equation (A1.13) simplifies in practice as: 
 

∂
x
R(N)/∂Nx

  =  (– 1)
(x-1) 

(x!/N
x
) fx(N)                                                                                       (A1.14) 

 
Equation (A1.13) makes quantitatively explicit the dependence of the shape of the species 
accumulation curve (expressed by the series of the successive derivatives [∂xR(N)/∂Nx] of R(N)) upon 
the shape of the distribution of species abundances in the sampled assemblage of species. 
 
A.2 - An alternative derivation of the relationship between ∂xR(N)/∂Nx and fx(N) 

 
Consider a sample of size N (N individuals collected) extracted from an assemblage of S species and 
let Gi be the group comprising those species collected i-times and fi(N) their number in Gi. The number 
of collected individuals in group Gi is thus i.fi(N), that is a proportion i.fi(N)/N of all individuals collected in 
the sample. Now, each newly collected individual will either belong to a new species (probability 1.f1/N 
= f1/N) or to an already collected species (probability 1– f1/N), according to reference [12]. In the latter 
case, the proportion i.fi(N)/N of individuals within the group Gi accounts for the probability that the 
newly collected individual will contribute to increase by one the number of species that belong to the 
group Gi (that is will generate a transition [ i-1 → i ] under which the species to which it belongs leaves 
the group Gi-1 to join the group Gi). Likewise, the probability that the newly collected individual will 
contribute to reduce by one the number of species that belong to the group Gi (that is will generate a 
transition [ i → i+1 ] under which the species leaves the group Gi to join the group Gi+1) is (i+1).fi+1(N)/N. 
Accordingly, for i> 1: 
 

∂fi(N)/∂N  =  [i.fi(N)/N – (i+1).fi+1(N)/N](1 – f1/N)                                                             (A.2.0) 
 

Leaving aside the very beginning of sampling, and thus considering values of sample size N 
substantially higher than f1, it comes: 
 

∂fi(N)/∂N  =i.fi(N)/N – (i+1).fi+1(N)/N                                                                                          (A2.1) 
 

Let consider now the Species Accumulation Curve R(N), that is the number R(N) of species that have 
been recorded in a sample of size N. The probability that a newly collected individual belongs to a still 
unrecorded species corresponds to the probability of the transition [0 → 1], equal to i.fi(N)/N with i = 1, 
that is: f1(N)/N (as already mentioned).  
 
Accordingly, the first derivative of the Species Accumulation Curve R(N) at point N is   
 

∂R(N)/∂N = f1(N)/N                                                                                                                 (A2.2) 
 

In turn, as f1(N) = N.∂R(N)/∂N (from equation (A2.2)) it comes:    
                           

∂f1(N)/∂N = ∂[N(∂R(N)/∂N)]/∂N = N(∂
2
R(N)/∂N2

) + ∂R(N)/∂N 
 

On the other hand, according to equation (A2.1):  
 

∂f1(N)/∂N = 1.f1(N)/N – 2.f2(N)/N  =  f1(N)/N – 2f2(N)/N, and therefore: 
 

N(∂2R(N)/∂N2) + ∂R(N)/∂N =  f1(N)/N – 2f2(N)/N 
 

And as ∂R(N)/∂N = f1(N)/N according to equation (A2.2): 
 

∂
2
R(N)/∂N

2
  =  – 2f2(N)/N

2
                                                                                                      (A2.3) 
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Likewise, as f2(N) = –N2/2.(∂2R(N)/∂N2), it comes: 
 

∂f2(N)/∂N  =  ∂[–N2/2.(∂2R(N)/∂N2)]/∂N  =  – N(∂2R(N)/∂N2) – N2/2.(∂3R(N)/∂N3) 
 

As ∂f2(N)/∂N = 2f2(N)/N – 3f3(N)/N,  according to equation (A2.1), it comes: 
 

– N(∂
2
R(N) /∂N2

) – N
2
/2.(∂

3
R(N)/∂N3

) = 2f2(N)/N – 3f3(N)/N 
 

and as ∂
2
R(N)/∂N2

 = – 2f2(N)/N
2
, according to equation (A2.3), it comes: 

 
∂

3
R(N)/∂N3

  =  + 6f3(N)/N
3
                                                                                                      (A2.4) 

 
More generally: 
 

∂xR(N)/∂Nx  =  (– 1)(x-1) (x!/Nx) fx(N)                                                                                         (A2.5) 
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