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A New Approach to Nonstandard Analysis

Abdeljalil Saghe

Abstract. In this paper, we propose a new approach to nonstan-
dard analysis without using the ultrafilters. This method is very
simple in practice. Moreover, we construct explicitly the total order
relation in the new field of the infinitesimal numbers. To illustrate
the importance of this work, we suggest comparing a few applica-
tions of this approach with the former methods.

1. Introduction

In 1961 Abraham Robinson [14] showed how infinitely large and in-
finitesimal numbers can be rigorously defined and used to develop the
field of non-standard analysis. To better understand his theory, noncon-
structively, it is necessary to use the essential proprieties deduced from
the model theory and mathematical logic.

After the birth of this theory, more mathematicians have discovered
the importance of its applications [7, 1] in physics [3, 2, 9], numerical
analysis and variational methods.

In 1977 a new axiomatic representation of hyperreals put forward by
Edward Nelson [13], in an attempt to simplify Robinson’s method. He
proposed to add three axioms on the set theory and obtained a new
theory called Internal Set Theory [13, 8].

Another axiomatic method, Alpha-Theory [4], was published in 2003.
This theory is more simple compared to that of Nelson. However, it
raises a few questions concerning its effectiveness in practice as an ax-
iomatic approach.

According to Robinson’s construction, we can see every hyperreal as
an element of RN modulo a maximal ideal M. The ideal M is defined with
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196 A. SAGHE

a non-principal ultrafilter U , whose existence is proved by the axiom of
choice. By using the ultrafilter U , we define the order relation in the
field of hyperreals. Unfortunately, we cannot determine exactly this
order relation because the ultrafilter is unknown.

Our aim, in this article, is to give a new field which contains the
infinite and infinitesimal numbers without using the properties of the
model theory as well as the ultrafilters, and without adding the new
axioms to ZFC (Zermelo-Frankel+Axiom of choice). To understand this
theory, it does not require to be a mathematical logic specialist. Only the
classical results of analysis and the properties of the analytic functions
are sufficient in construction. The new approach is very simple in the
sense that we can determine precisely the order relation defined in the
new field.

The suggested outline for the current article, therefore, is the follow-
ing:
Firstly, we shall provide some definitions of the infinite and infinitesimal
numbers. Then, we shall present the preceding approaches (Robinson’s
approach, Internal Set Theory and Alpha-Theory), all of which shall be
discussed in Section 8 through studying some concrete examples of each
one of them. The purpose of this study is to prove that the choice of
the ring RN in construction of the hyperreal numbers is too broad to be
effective in practice. For instance, we will try to show that in spite of the
fact that a hyperreal can be equal to zero, it is impossible to predicate
its value. In the subsequent section, we will study the proposed method
through presenting the construction of a proper subset ∆(RN) of RN.
This set is a unitary ring of RN. By using a maximal ideal of a new ring
denoted by ∆, we obtain a new field called the field of Omicran-reals
which is a totally ordered field and an extension of the set of real num-
bers R.
To illustrate the importance of the new approach, we suggest the fol-
lowing applications:

• For the logarithmic function: We prove the following equalities
for every real x > 0:

ln(x) = lim
α→0

xα − 1

α
,

while x ̸= 1, we obtain:

x− 1

ln(x)
= lim

n→+∞

1

n

n−1∑
k=0

x
k
n .
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• Prime numbers: Let P be the set of prime numbers.
As x→ +∞, we get

π(x) ∼ 1

x
1
x − 1

,

where π(x) = #{p ≤ x : p ∈ P}.
In addition, we prove that:

pn ∼ n2( n
√
n− 1), while n→ +∞,

where (pn) is the sequence of prime numbers.

• The length of a curve: We define the length of the arc ÃB
and we determine the conditions of rectifiability from the new
approach. We calculate easily the length, and we obtain:

l(ÃB) =

∫ b

a

√
1 + f ′2(x)dx,

where l(ÃB) is the length of the arc defined by the curve of the
function f between A(a, f(a)) and B(b, f(b)).

• We calculate the limit by using a new notion called the exact
limit.

• We show that it is possible to obtain the finite sum by using
the exact limit of a series.

• To calculate the exact limit of a series, we define a new ma-
trix called the black magic matrix, this beautiful matrix admits
twelve magical properties and we can determine the Bernoulli
numbers by using it.

• We can obtain the standard Euler-Maclaurin formula applied
to the zeta function ζ(s) by using the coefficients of the above
matrix.

Finally, we determine in the last section of this paper the relationship
between the hyperreal numbers and the Omicran-reals, and we prove
that any property which is true for every hyperreal number is also true
for every Omicran.

2. Preliminary Results

In this section, we find a few definitions and results that are applied
in this work.

(i) The binomial coefficient is defined as:(
n

k

)
=

n!

k!(n− k)!
.
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(ii) The Bernoulli numbers are given below:

B0 = 1,
B0 + 2B1 = 0,
B0 + 3B1 + 3B2 = 0,
B0 + 4B1 + 6B2 + 4B3 = 0,
...
B0 +

(
n
1

)
B1 + · · ·+

(
n
n−1

)
Bn−1 = 0.

We can verify that B2k+1 = 0, for every natural k ≥ 1.
(iii) Stirling’s formula:

n! ∼
√
2πn

(n
e

)n
.

(iv) An important result of the Stirling’s formula is given by:

| B2n |∼ 4
√
πn
( n
πe

)2n
.

(v) The standard Euler-Maclaurin formula [6] applied to x → x−s

is given by:

ζ(s) =
N−1∑
n=1

1

ns
+

1

2N s
+
N1−s

s− 1
+

M∑
k=1

Tk,N (s) + E(M,N, s),

where

Tk,N (s) =
B2k

(2k)!
N1−s−2k

2k−2∏
j=0

(s+ j),

ζ is the Riemann zeta function defined as

ζ(s) =
+∞∑
k=1

1

ks
,

and s ∈ C.
If σ = ℜ(s) > −2M − 1, the error is bounded [6] as:

|E(M,N, s)| ≤
∣∣∣∣ s+ 2M + 1

σ + 2M + 1
TM+1,N (s)

∣∣∣∣ .
(vi) Let H(D(0, ε)) be the set of the holomorphic functions on the

disk D(0, ε).

We can prove the following theorems [15]:

Theorem 2.1. If h is a holomorphic function on the disk D(0, ε), and
h(0) = 0 then: h(z) = zkg(z) on a neighborhood of 0, where k is a
non-zero integer, and g ∈ H(D(0, ε)) and g(0) ̸= 0.
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Theorem 2.2. The zeros of a nonconstant analytic function are iso-
lated.

3. The Infinite and Infinitesimal Numbers

Definition 3.1. We define the following assertions:

(i) A totally ordered set (E,⪯) is called an ordered R−extension if{
R ⊆ E;
x ⪯ y ⇔ x ≤ y ∀(x, y) ∈ R2.

(ii) In addition if (E,+) is a commutative group, we define

|α| = max(α,−α)

=

{
α, when − α ⪯ α,
−α, when α ⪯ −α.

(iii) We write x ≺ y while x ⪯ y and x ̸= y.
(iv) Let IE be the set defined as follows:

IE = {α ∈ E / 0 ≺| α |≺ ε ∀ε ∈ R+∗}.
IE is a set of infinitesimal numbers.

Remark 3.2. If it has not the ambiguity, we replace the symbol ⪯ by
≤ , and ≺ by <.

To construct the new extension of R which contains the infinite and
infinitesimal numbers, it is sufficient to prove the following theorem:

Theorem 3.3. There exists an extension field (E,+, .) of (R,+, .), and
partial order ≤ such that: (E,≤) is an order R−extension and IE ̸= ∅.
Remark 3.4. An element δ of IE ̸= ∅ is called infinitesimal.

Notation 1. N = {1, 2, 3, . . .}.

4. Previous Methods

4.1. Robinson’s Approach. From the works of Abraham Robinson,
we know that the heuristic idea of infinite and infinitesimal numbers has
obtained a formal rigor. He proved that the field of real numbers R can
be considered as a proper subset of a new field, ∗R, which is called the
field of hyperreal [14] numbers and contains the infinite and infinitesi-
mal numbers. From the approach of Robinson, we can represent every
hyperreal by a sequence of RN modulo a maximal ideal I. This ideal is
defined by using an ultrafilter U . Unfortunately, the Ultrafilter U and
the order relation defined on ∗R are unknown. Only the existence can
be proved by the axiom of choice.



200 A. SAGHE

4.2. Nelson’s Approach. In 1977, Edward Nelson expands the lan-
guage of set theory by adding a new basic predicate st(x). We obtain a
new axiomatic representation of the nonstandard analysis by using the
above predicate. To explain the behavior of this unary predicate symbol
st(x), Nelson proposes to add three axioms [13]:

(a) Idealization. (I)
(b) Standardization. (S)
(c) Transfer principle. (T)

4.3. Alpha-Theory. This axiomatic approach published in 2003 is based
on the existence of a new element namely α. In this method, we need
five axioms to justify the behavior of this new mathematical object.

In the following section, we begin with the construction of the hy-
perreals by Robinson. After, we pass to the study of the axiomatic
approaches.

5. Construction of the Hyperreal Numbers

Let I be a nonempty set, and P(I) the power set of I.

Definition 5.1. An ultrafilter U is a proper subset of P(I), such that:

(i) Intersections: if A,B ∈ U , then A ∩B ∈ U .
(ii) Supersets: if A ⊆ B ⊆ I, then B ∈ U .
(iii) For any A ⊆ I, either A ∈ U or Ac ∈ U .

Example 5.2. (i) F i = {A ⊆ I : i ∈ A} is an ultrafilter, called
the principal ultrafilter generated by i.

(ii) Fco = {A ⊆ I : I−A is finite} is the cofinite (or Frechet), filter
on I. Fco is not an ultrafilter.

To construct the field of hyperreal numbers, we use the unitary ring
RN as follow:

(a) R ⊆ RN: We can identify every sequence u = (l, l, . . . , l, . . .) by
the real number l.

(b) We define in RN the total order relation ≤ by:

u = (u1, u2, . . . , un, . . .) ≤ v = (v1, v2, . . . , vn, . . .) ⇔ {i : ui ≤ vi} ∈ U ,

where U is a nonprincipal ultrafilter of N.
To show the existence of the above ultrafilter, we use the axiom
of choice.

(c) (RN,+, .) is a commutative ring with unity (1, 1, . . . , 1, . . .), but
it is not a field, since

(1, 0, 1, 0, . . .)(0, 1, 0, 1, . . .) = 0RN .
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We construct the field of hyperreal numbers by using the fol-
lowing maximal ideal [14, 11] of RN:

I =
{
u ∈ RN : {i : ui = 0} ∈ U

}
.

Finally, we deduce that the new field of the hyperreal numbers
is given by: ∗R = RN/I.

Remark 5.3. For every hyperreal u defined by the sequence
(ui), we set

u = ⟨u1, u2, . . . , un, . . .⟩ , or u = ⟨ui⟩ .

(d) We can verify that the hyperreal δ =
⟨
1, 12 ,

1
3 , . . .

⟩
is an infini-

tesimal number.

6. Internal Set Theory

Edward Nelson developed a new theory, Internal Set Theory, which is
different from that of Robinson. According to Nelson’s view, we can find
both the infinite and infinitesimal numbers in the set of real numbers
denoted by ∗R. In addition, the classical families of real numbers R =
{st(x), x ∈ ∗R} and natural numbers N = {st(x), x ∈ ∗N} are not seen
as sets in IST. To clarify this point, we propose to study the properties of
a set A by using the axioms added by Nelson. We start by the following
abbreviations:

(i) ∀stxϕ(x) to mean ∀x(x standard ⇒ ϕ(x)).
(ii) ∃stxϕ(x) to mean ∃x(x standard ∧ ϕ(x)).

We call a formula of IST internal in case it does not involve the new
predicate “standard”, otherwise we call it external.

A set x is finite if there is no bijection of x with a proper subset of
itself.

In IST, the three axioms of Nelson are defined as:

(i) Transfer: If ϕ(x, u1, . . . , un) is an internal formula with no
other free variables than those indicated, then:

∀stu1, . . . , ∀stun
(
∀stxϕ(x, u1, . . . , un) → ∀xϕ(x, u1, . . . , un)

)
.

(ii) Idealization: For any internal formula B whose free variables
include x and y

∀stz (z is finite → ∃y∀x ∈ zB(x, y)) ↔ ∃y∀stxB(x, y).

(iii) Standardization: For every standard formula F (z) (internal
or external), we have:

∀stx∃sty∀stz[z ∈ y ↔ z ∈ x ∧ F (z)].
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Suppose that there exists a unique x such that A(x) is true, where
A(x) is an internal formula whose only its free variable is x. Then that x
must be standard, since by transfer ∃xA(x) ⇒ ∃stxA(x). For example,
the set ∗N of all natural numbers, the set ∗R of all real numbers, the
empty set ∅, and the real number 0, 1,

√
π, . . . are all standard sets.

Theorem 6.1. Let X be a set. Then every element of X is standard if
and only if X is a standard finite set.

Proof. We can apply the idealization principle for B(x, y) = [y ∈ X ∧
x ̸= y] (see [13, 8] for more details). □

Corollary 6.2. Every infinite set has a nonstandard element.

Remark 6.3. From the Corollary 6.2, we deduce that there exists a
nonstandard natural number ω.

Theorem 6.4. There is a finite set F such that for any standard x we
have x ∈ F .

Proof. Just apply (I) to the formula [(x ∈ y) ∧ (y is finite)] (see [13,
8]). □

Theorem 6.5. Let X be a nonempty set. If X is a standard set, then
it admits a standard element.

Proof. Another version of the transfer principle is giving by:

∃xϕ(x) → ∃stxϕ(x),

where ϕ is an internal formula. We apply this version for x ∈ X. □

Definition 6.6. (i) Elements of the ultrapower [10] of P(R) are
the equivalence classes of sequences (Ai) ∈ P(R)N, where the
sequences (Ai) and (Bi) are defined to be equivalent if and only
if we have {i ∈ N : Ai = Bi} ∈ U .

(ii) We denote by ⟨Ai⟩ the equivalence class of (Ai). We define the
relation ∗ ∈ between x = ⟨xi⟩ ∈∗ R and ⟨Ai⟩ by:

x∗ ∈ ⟨Ai⟩ ⇔ {i : xi ∈ Ai} ∈ U .

(iii) With each equivalence class ⟨Ai⟩ in the ultrapower of P(R) we
associate a subset A of ∗R as follows:

x ∈ A ⇔ x∗ ∈ ⟨Ai⟩ .

(iv) The subset A of ∗R associated with the equivalence class ⟨Ai⟩
is called an internal set.
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(v) The collection of all internal subsets of ∗R is denoted by ∗P(R).
We denote by A the internal set defined by the equivalence class ⟨Ai⟩.

Remark 6.7. A standard set ∗B is given by the equivalence class

⟨B,B, . . . , B, . . .⟩ ,
where B ∈ P(R).
Example 6.8. (i) ∗[0, 1] = ⟨[0, 1], . . . , [0, 1], . . .⟩, ∗R = ⟨R,R, . . .⟩

and ∗N are all standard sets, and then are internal sets.
(ii) Let ω be the infinite number defined as ω = ⟨1, 2, 3, . . .⟩. The

set {ω} = ⟨{i}⟩ is internal but it is not standard.

(iii) For every integer i ≥ 1 we put Xi =

[
1

i+ 1
,
1

i

[
and X = ⟨Xi⟩.

The above set is internal and infinite, but we cannot find any
standard element in X (because there does not exist a real num-
ber x such that {i : x = xi} ∈ U for xi ∈ Xi). From the
Corollary 6.2, we deduce that X is a nonstandard element.
On the other hand, the set X is bounded from above by 1,
we can check that X has a supremum in ∗R, and we have
supX =

⟨
1
i

⟩
.

Remark 6.9. • In the collection of the internal sets [13, 8], we
find the standard and the nonstandard sets.

• Every nonempty internal set of hyperreals bounded from above
has a supremum in ∗R. In fact, since the internal set A = ⟨Ai⟩
is bounded from above, then there exists M ∈ R such that
J = {i : Ai is bounded from above by M} ∈ U .
We define s = ⟨si⟩ such that si = sup(Ai) for i ∈ J and si = 1
else. We can check easily that s = sup(A).

• We can prove the above result for every element of ∗P(R) by
using the transfer principle, but this property is not true for
every family of hyperreals (for example, the set R is bounded
from above by every positive infinitely large number L, but
it does not have a least upper bound), then we deduce that
the set ∗P(R) is a proper subset of P(∗R). The elements of
P(∗R)\∗P(R) are called the external sets. For example, the
sets R, N, the infinite numbers and the infinitesimal numbers
are all external sets.

7. Alpha-Theory

This approach is based on the existence of a new mathematical object,
namely α. Intuitively, this new element, added to N, is considered as a
“very large” natural number.

The use of α is governed by the following five axioms [4].
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• α1. Extension Axiom. For every sequence, φ, there exists a
unique element φ[α], called the “ideal value of φ” or the “value
of φ at infinity”.

• α2. Composition Axiom. If φ and ψ be two sequences and
if f is any function such that compositions f ◦φ and f ◦ψ make
sense, then

φ[α] = ψ[α] ⇒ (f ◦ φ)[α] = (f ◦ ψ)[α].

• α3. Number Axiom. Let cr : n→ r be the constant sequence
with value r ∈ R, then cr[α] = r. If 1N : n → n is the identity
sequence on N, then 1N[α] = α /∈ N.

• α4. Pair Axiom. For all sequences φ, ψ and ϑ:

ϑ(n) = {φ(n), ψ(n)} for all n ⇒ ϑ[α] = {φ[α], ψ[α]}.

• α5. Internal Set Axiom. Let ψ be a sequence of atoms, and
c∅ be the sequence defined as c∅ : n→ ∅, then ψ[α] is an atom,
and c∅[α] = ∅. If ψ is a sequence of nonempty sets, then

ψ[α] = {φ[α] / φ[n] ∈ ψ[n] for all n}.

Proposition 7.1. (i) If φ(n) = ψ(n) eventually (i.e. for all but
finitely many n), then φ[α] = ψ[α].

(ii) If φ(n) ̸= ψ(n) eventually, then φ[α] ̸= ψ[α].

Definition 7.2. Let A be a nonempty set. The star-transform of A is
giving by:

A∗ = {φ[α] / φ : N −→ A}.

In the following proposition, we verify that the star-operator preserves
all basic operations of sets (except the power set).

Proposition 7.3. For all A, B, we have [4]

(i) A = B ⇔ A∗ = B∗;
(ii) A ∈ B ⇔ A∗ ∈ B∗;
(iii) A ⊆ B ⇔ A∗ ⊆ B∗;
(iv) {A,B}∗ = {A∗, B∗};
(v) (A ∪B)∗ = (A∗ ∪B∗);
(vi) (A ∩B)∗ = (A∗ ∩B∗);
(vii) (A \B)∗ = (A∗ \B∗);
(viii) (A×B)∗ = (A∗ ×B∗).

Definition 7.4. (i) The set of hyperreal numbers is the star-transform
R∗ of the set of real numbers:

R∗ = {φ[α] / φ : N −→ R}.
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(ii) The set of hypernatural numbers is the star-trasform of the set
of natural numbers:

N∗ = {φ[α] / φ : N −→ N}.

(iii) We define in R∗ the following binary relation:

ξ < ζ ⇔ (ξ, ζ) ∈ {(x, y) ∈ R× R / x < y}∗.

Theorem 7.5. The hyperreal number system (R∗,+, ., 0, 1, <) is an or-
dered field.

Remark 7.6. • An example of an infinitesimal is given by 1
α , the

ideal value of the sequence
(
1
n

)
n≥1

. Other examples of infinites-

imals are the following:

− sin

(
1

α

)
,

α

3 + α2
, log

(
1− 1

α

)
.

• For the infinite numbers, we propose the following examples:

α2 + 1, 3 +
√
α, log(7α− 3).

8. A Few Remarks About the Previous Approaches

In this section, we shall study some examples to see clearly the dif-
ficulties that can be encountered in practice while using the classical
approaches of the non-standard analysis. Firstly, we begin with the
study of Robinson’s approach, afterwards, we proceed to the study of
axiomatic approaches. Finally, we conclude with a small discussion as
an introduction to the new approach.

To explain our point of view about Robinson’s approach, we propose
some examples in the following subsection.

8.1. Robinson’s Approach.

(1) For the infinitesimal number δ =
⟨
1, 12 ,

1
3 , . . .

⟩
, we can not imag-

ine intuitively its nature, because it is defined by the sequence(
1
n

)
n≥1

modulo the unknown ideal I.

(2) Let u be a hyperreal number defined as u = ⟨−1, 1,−1, 1, . . .⟩.
Despite that the field (∗R,≤) is a totally ordered set, but we
cannot determine the sign of u. On the other hand, we have
two cases:
(i) If u ≥ 0, then there exists an element F ∈ U such that:

F = {i : ui ≥ 0} = {i : ui = 1}.
In this case, we deduce that F ⊆ 2N ∈ U , and we find
u = 1.

(ii) If u ≤ 0, we find 2N+ 1 ∈ U , and u = −1.
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Now, to complicate this problem, we put the following question:
where is the sign of the hyperreal number defined as

ζ = ⟨sin(1), sin(2), sin(3), . . .⟩?

Since the total ordering in the hyperreal numbers is not explic-
itly defined, then we deduce that the Robinson’s approach is
very complicated to give us a simple property as the sign of an
element of ∗R. Moreover, the sign of the hyperreal u, which is
defined by the sequence (ui), is not sufficient to know the sign
of this sequence at infinity which can be invariant (is not stable
from a certain rank).

(3) Let v be the hyperreal defined as:

v =

⟨
1, 101,

1

2
, 1010

2
,
1

3
, 1010

3
, . . . ,

1

i
, 1010

i
, . . .

⟩
.

Where is the nature of this number? Is it infinite or infinitesi-
mal?

If 2N ∈ U , then v is infinite and otherwise it is infinitesimal.
The determination of the nature of an hyperreal is not easy
and evident in cases which are general, and we can find other
cases which are very complicated than the above example. In
addition, if we put (vi) the sequence which defines the hyperreal
v, and w the hyperreal defined by the sequence (vi+1), then:

w =

⟨
101,

1

2
, 1010

2
,
1

3
, 1010

3
, . . . ,

1

i
, 1010

i
, . . .

⟩
.

If 2N ∈ U then v is infinite, and w is infinitesimal. Thus, we
can find two hyperreals do not have the same nature; the first
is defined by a sequence (vi), the second by its subsequence
(vϕ(i)). In the above example, the translation of the indices of
the sequence (ui) which defines the infinitesimal number ⟨ui⟩, is
sufficient to transform it to an infinite number. This is not well
to be effective in practice, for example, if ⟨ui⟩ = 1, (in general)
we can not know anything about the value of the hyperreal
v = ⟨u3i+1⟩, v can be zero, infinite, infinitesimal number, etc..
Next, we propose an example of an hyperreal number ⟨ui⟩ which
can be zero or an integer 1 ≤ i ≤ 9, but it is impossible to
determine its value.

(4) For every real number x, let (xi) be the sequence defined by the
decimal representation of x as:

x = x1, x2x3x4x5x6 . . . .
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Let x̃ be the hyperreal defined as x̃ = ⟨xi⟩. For the number π,
we get:

π = 3.1415926535897932385 . . . .

Then, π̃ = ⟨3, 1, 4, 1, 5, 9, 2, 6, 5, 3, . . .⟩. We attempt to deter-
mine the value of this hyperreal, for that, we propose to prove
the following lemma.

Lemma 8.1. Let A be a finite subset of R. For every element u = (ui)
of AN, the hyperreal number ⟨ui⟩ is an element of A.

Proof. We put A = {a1, a2, . . . , an}, and Fx = {i : ui = x} for every
x ∈ A. Let U be the ultrafilter defined in Robinson’s approach. If there
exists 1 ≤ i0 ≤ n− 1 such that Fai0 ∈ U , then, ⟨ui⟩ = ai0 , and otherwise
F ca1 , F

c
a2 , . . . , F

c
an−1

∈ U . Then F ca1 ∩ F ca2 ∩ . . . ∩ F can−1
∈ U , and we

deduce that (Fa1 ∪ Fa2 ∪ . . . ∪ Fan−1)
c = Fan ∈ U , which implies that

⟨ui⟩ = an. □

From the Lemma 8.1, we deduce that π̃ ∈ {0, 1, 2, . . . , 9} (then can be
non invertible). Unfortunately, we do not have any way to determine its
value. Let x be the natural number in {0, 1, 2, . . . , 9} such that π̃ = x.
Consider the hyperreal α̃ = ⟨αi⟩ defined as:

αi =

{ 1
i , when x = πi,

1010
i
, otherwise.

The nature of the number α̃ is not compatible with the behavior of
the sequence used to define it. In fact, the values taken by the sequence
(αi) are very “large” in an infinity of indices. In addition, we can predict
the following plausible conjecture:

“The cardinal of the set
{
i : αi =

1
i

}
∩{1, 2, . . . , n} is very small com-

pared to the cardinal of
{
i : αi = 1010

i
}
∩ {1, 2, . . . , n}, from a certain

rank n0.”
However, this number α̃ is infinitesimal. Then, we have an incom-

patibility between the nature of the hyperreal ⟨αi⟩ as an infinitesimal
number and the value taken by the sequence (αi). In addition, we do
not have any rule to determine in general the set of indices i that gives
us the nature of an hyperreal ⟨ui⟩ defined by the sequence (ui).

8.2. Nelson’s Approach and Alpha-Theory. The axiomatic meth-
ods allow us to give and explain rigorously the behavior of any new
defined notion. Yet, they are not effective enough in practice, especially
if the notions of the proposed theory are not explicitly defined. For in-
stance, according to Alpha-Theory, we should define a new mathematical
object α. By using the Extension Axiom we justify the existence of the
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new object. In the same way, the ideal value of every sequence φ de-
noted by φ[α] is defined by the above axiom. Intuitively, φ[α] represents
the value of φ at infinity. Like Robinson’s approach, this ideal value is
not explicitly determined in general. Vieri Benci and Mauro Di Nasso
confirmed (see [4], p.359):

“Suppose φ is a two-valued sequence, say φ : N → {−1, 1}. Then its
ideal value makes no surprise, i.e. either φ[α] = −1 or φ[α] = 1 (but in
general it cannot be decided which is the case).”

In order to find an acceptable solution to this problem, the authors
proposed to take (−1)α = 1. They justified this choice as the following
(see [4], p.367):

“. . . For instance, we could consistently postulate that the infinite
hypernatural α is even. In this case, the alternating sequence ((−1)n)n≥1

takes the value (−1)α = 1 at infinity”.
Unfortunately, this choice is not convincing and is not sufficient to

determine the ideal value in general. If we choose another sequence
ψ defined as 1,2,3,1,2,3,1,2,3,1,2,3,. . . . from the solution proposed by
the authors, we need a new postulate for taking ψ[α] = 2. On the
other hand, the same problem could be raised by Internal Set Theory.
To determine the value of a sequence φ at infinity, we are obliged to
find an explicit approach to nonstandard analysis. Historically, Inter-
nal Set Theory was introduced by Edward Nelson in order to simplify
Robinson’s approach. However, this approach is not accessible for those
mathematicians who lack enough knowledge in logic. For example, if
we study the transfer principle in general, it can not be easily and cor-
rectly applied without checking some particular conditions. To clarify
this point, we propose the following example.

Recall the following property of N: “Every nonempty subset of N has
a least element”.

By applying the transfer principle to this formulation, we would get
that “Every nonempty subset of ∗N has a least element”. But this is
clearly false (the collection ∗N \ N has no least element). Here, the
transfer principle can not be applied, because the above sentence is not
elementary (see [5]). For that, we think that the Nelson’s approach is
inaccessible for the non-specialist in mathematical logic.

In this paper, we propose a constructive approach to nonstandard
analysis without adding any axiom. Only the properties of the classical
analysis are sufficient to construct the new field. In addition, we define
an explicit total order relation in the new set called the field of Omicran-
reals.

8.3. Discussion. Abraham Robinson succeeded to show the existence
of a total order relation on RN, but the explicit determination of this
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relation is very difficult. The judgment of the scientific work of Robin-
son begins with the study of the choice of RN. To find or not to find
an explicit total order is another question that can be asked after the
determination of the initial set in construction. Now, the question we
might ask is the following: why we need the ring RN to define the field
of nonstandard analysis? According to the incompatibility between its
nature and the behavior of the sequence which defined it, the hyperreals
like α̃, π̃, ⟨1,−1, 1, . . .⟩, or ⟨sin(1), sin(2), . . .⟩ do not matter in practice.
Then, the choice of the ring RN is too broad to be effective. In the fol-
lowing section, we attempt to give the answer of the following question:
can we construct the field of the infinitesimal numbers by using a proper
subset of RN with an explicit total order?

9. The Proposed Method

9.1. The Metalic Map. Let D(0, 1) (resp. D′(0, 1)) be the open (resp.
closed) disk of radius 1 and center 0.

Definition 9.1. Let u be a map from ]0, 1] to R, such that:

(i) There exists a map ũ defined on D′(0, 1), and holomorphic in a
neighborhood of 0.

(ii) There exists ε > 0, such that ∀x ∈]0, ε[ we have ũ(x) = u(x).

The map u is called a metalic map, and ũ is a metalic extension of u.

Example 9.2. If f is defined in the interval ]0, 1] as:

f(x) =

{
2x+ 1, when x ∈]ε, 1],
1− 3x2, when x ∈]0, ε],

then a metalic extension f̃ is given by: f̃(z) = 1−3z2 in the diskD
′
(0, 1).

Remark 9.3. If u is metalic, then the two metalic extensions ũ and û
of u are identic in a disk D(0, ε) by Theorem 2.2.

Definition 9.4. We set ∆1 = { u, u is a metalic map}, and we have the
following definitions:

(1). ∆1(RN) = {
(
u
(
1
n

))
n≥1

, u is a metalic map}.
(2). H0 = the set of maps ũ defined on the disk D′(0, 1) and holo-

morphic in a neighborhood of 0.
(3). Let (O0,+) be a subgroup of (H0,+) containing the maps de-

fined on the disk D′(0, 1) which vanish in a neighborhood of
0.

(4). Let θ0 be a map defined as

θ0 : ∆1(RN) −→ H0/O0,(
u
(
1
n

))
n≥1

7−→ C(ũ),
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which C(ũ) is the equivalence class of ũ modulo O0. The map
θ0 is well-defined from the unicity of C(ũ).

(5). We consider the surjective map θ1 defined as:

θ1 : ∆1(RN) −→ θ0(∆1(RN)),(
u
(
1
n

))
n≥1

7−→ C(ũ),

and the set ∆1(RN) =
{
θ−1
1 (C(ũ)), C(ũ) ∈ θ0(∆1(RN))

}
.

(6). We define on the set ∆1(RN) the following equivalence relation
∼:(

u

(
1

n

))
n≥1

∼
(
v

(
1

n

))
n≥1

⇔ ∃n0, ∀n ≥ n0, u

(
1

n

)
= v

(
1

n

)
.

(7).
(
u
(
1
n

))
n≥1

is the equivalence class of
(
u
(
1
n

))
n≥1

modulo ∼.

Remark 9.5. (a) We can check the equality
(
u
(
1
n

))
n≥1

= θ−1
1 (C (ũ)).

Then :

∆1(RN) =

{(
u

(
1

n

))
n≥1

, u ∈ ∆1

}
.

(b) The sets ∆1 and ∆1(RN) are commutative groups.
(c) The map defined as:

θ1 : ∆1(RN) −→ E1 = θ0
(
∆1

(
RN)) ,(

u
(
1
n

))
n≥1

7−→ C(ũ),

is an isomorphism between two groups.

Definition 9.6. Consider the following definitions:

• A2 =

{
1

u
, u ∈ ∆1 ∀x ∈]0, 1] u(x) ̸= 0 and lim

n→+∞
u

(
1

n

)
= 0

}
.

• ∆2 =
{
v :]0, 1] −→ R | v/]0,ε] =

(
1
u

)
/]0,ε]

for 1
u ∈ A2 and ε > 0

}
.

• ∆2(RN) =

{ (
v

(
1

n

))
n≥1

, v ∈ ∆2

}
.

9.2. Construction of a Unitary Ring.

Lemma 9.7. Let ∆ = ∆1 ∪∆2. Then (∆,+, .) is a unitary ring.

Proof. • The stability of the sum: the set ∆ is a non-empty set,
because ∆1 ̸= ∅ and R ⊆ ∆1 (we identify the constant functions
by the real numbers). We show that for all g ∈ ∆, and h ∈ ∆,
we have g + h ∈ ∆.
First case: If (g, h) = (u, v) ∈ ∆2

1, we verify easily that the
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function s = f + g is a matalic map, in addition, we have
s̃ = ũ+ ṽ.
Second case: If (g, h) ∈ ∆2

2, there exists a strictly positive
real number ε and (u, v) ∈ ∆2

1 such that u(x)v(x) ̸= 0 for ev-

ery x ∈]0, ε], lim
n→+∞

u

(
1

n

)
= lim

n→+∞
v

(
1

n

)
= 0, and we have

g/]0,ε] = 1
u/]0,ε]

and h/]0,ε] = 1
v /]0,ε]

. Since ũ and ṽ are holo-

morphic functions on a neighborhood of 0, then there exists
(m,n, l) ∈ N3 such that ũ(z) = znb1(z), ṽ(z) = zmb2(z) and
ũ(z) + ṽ(z) = zlb3(z), where b1, b2, b3 are three holomorphic
functions on a neighborhood of 0 and b1(0)b2(0)b3(0) ̸= 0.
Let

ψ(x) =
u(x)v(x)

u(x) + v(x)
.

The map g + h is defined in the interval ]0, 1]. We can choose
the small enough real ε such that b1(z)b2(z)b3(z) ̸= 0 in the disk
D(0, ε). Then we have

g(x) + h(x) =
1

u(x)
+

1

v(x)

=
1

ψ(x)

=
xl−m−nb3(x)

b1(x)b2(x)
,

for every x ∈]0, ε].

✓If l −m− n ≥ 0, the map ϕ̃ defined as

ϕ̃(z) =

{
zl−m−n b3(z)

b1(z)b2(z)
, in D(0, ε),

1, if not,

is a metalic extension of g + h, then g + h is an element of ∆1.
✓If l −m− n < 0, the map defined as

ψ̃(z) =

{
zm+n−l b1(z)b2(z)

b3(z)
, in D(0, ε),

1, if not,

is a metalic extension of ψ, in addition lim
n→+∞

ψ

(
1

n

)
= 0, we

deduce that g + h is an element of ∆2.
Third case: If (g, h) ∈ ∆1 ×∆2, there exists (u, v) ∈ ∆2

1 such
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that g = u, h/]0,ε] =
1
v /]0,ε]

and lim
n→+∞

v

(
1

n

)
= 0. Let

k(z) =
ṽ(z)

ũ(z)ṽ(z) + 1
.

Since ṽ(0) = 0, we have k(0) = 0, and k is a holomorphic
function in a disk D(0, ε), for a small enough ε > 0. Since the
map k is nonzero, then we can choose the ε so that k(x) ̸= 0
for every x ∈]0, ε]. Let ϕ be the function defined on ]0, 1] as:

ϕ(x) =

{
k(x), if x ∈]0, ε],
1, if not.

We can verify that g + h/]0,ε] = (
1

ϕ
)/]0,ε], ϕ ∈ ∆1 then g + h ∈

∆2 ⊂ ∆.
Finally, we deduce that (∆,+) is a commutative group.

• Now, we can show the stability of the law (.) in ∆, for that, we
distinguish three cases:

(i) We can easily verify that the product of two metalic func-
tions is a metalic function (if g ∈ ∆1 and h ∈ ∆1 then
gh ∈ ∆1 ⊆ ∆).

(ii) In this case, we assume that g ∈ ∆1 and h ∈ ∆2, we can
show that gh ∈ ∆, in fact, there exists (u, v) ∈ ∆2

1, such

that g = u, h/]0,ε] =
1
v /]0,ε]

, lim
n→+∞

v

(
1

n

)
= 0.

(a) If lim
n→+∞

u

(
1

n

)
̸= 0, then ṽ

ũ is holomorphic in the

disk D(0, ε), which implies that
u

v
∈ ∆2 ⊆ ∆.

(b) If lim
n→+∞

u

(
1

n

)
= 0, then lim

n→+∞
ũ

(
1

n

)
= 0 and we

obtain ũ(0) = 0. We deduce that ũ(z) = zkb1(z) in

D(0, ε), and ṽ(z) = zk
′
b2(z), where bi(z) ∈ H(D(0, ε)),

for i ∈ {0, 1} and bi(0) ̸= 0. We get

ũ(z)

ṽ(z)
= zk−k

′ b1(z)

b2(z)
.

b1. First case: if k = k
′
then the function ũ

ṽ is holo-
morphic in D(0, ε), which implies that u

v ∈ ∆1.
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b2. Second case: if k > k
′
, then lim

z→0

ũ

ṽ
(z) = 0, and

ũ
ṽ is a holomorphic function in the disk D(0, ε).
Then u

v ∈ ∆1.

b3. Third case: if k < k
′
, then lim

z→0

ṽ

ũ
(z) = 0, which

implies that u
v ∈ ∆2.

(iii) In the case of g ∈ ∆2 and h ∈ ∆2, we verify easily the
stability of the law (.).
Finally, we deduce that (∆,+, .) is a commutative and uni-
tary ring, where the constant function 1∆ is a multiplica-
tive identity of ∆.

□
9.3. Construction of the New Field. Let I0 be the set defined as:

I0 =
{
u/]0,1] / u ∈ O0 and u(]0, 1]) ⊂ R

}
.

Then, it is a set of maps defined on ]0, 1] which vanish on ]0, ε] (for
0 < ε ≤ 1).

Now, we can deduce the following proposition.

Proposition 9.8. I0 is a maximal ideal of ∆.

Proof. • We can prove easily that I0 is an additive subgroup of
∆.

• I0 is an ideal of ∆. In fact, if θ is an element of I0, then θ/]0,ε[ =
0 for some ε > 0. For every u ∈ ∆, we have (θu)/]0,ε[ = 0, then
θu ∈ I0.

• Let I be an ideal of ∆ such that I0 ⊆ I. We assume that this
inclusion is strict, then there exists u ∈ I \ I0. Since u is an
element of ∆, we can distinguish the following two cases:
(i) First case: u ∈ ∆1. If u admits infinitely many zeros in

]0, ε[ for every ε > 0, then ũ = 0 and we deduce that
u ∈ I0, which is absurd. Then there exists ε > 0 such that
u(x) ̸= 0 for every x ∈]0, ε[. Let v be a function defined
in ]0, 1] by v(x) = 1

u(x) in ]0, ε[ and v(x) = 1 while ∈ [ε, 1].

We have u(x)v(x) = 1 in ]0, ε[, then 1− uv ∈ I0. Consider
i ∈ I0 ⊆ I such that 1− uv = i.
Then 1 = i + uv and we deduce that 1 ∈ I which implies
that I = ∆.

(ii) Second case: u ∈ ∆2. In this case there exist ε > 0 and
v ∈ ∆1 such that u(x) = 1

v(x) in ]0, ε[. Then 1 − uv ∈ I0
and we deduce that I = ∆.

Finally, we deduce that the ideal I0 is a maximal ideal of ∆. □
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Theorem 9.9. The ring (∆/I0,+, .) is a field.

Proof. From the Proposition 9.8, the ideal I0 is maximal, so we deduce
that the ring (∆/I0,+, .) is a field. □

9.4. The Field of Omicran-reals. Consider the set defined as

∆(RN) =

{(
h

(
1

n

))
n≥1

: h ∈ ∆

}
.

Let ∼ be the equivalence relation defined on the set ∆(RN) as:(
g

(
1

n

))
n≥1

∼
(
h

(
1

n

))
n≥1

⇔ ∃n0 | ∀n ≥ n0, h

(
1

n

)
= g

(
1

n

)
.

The equivalence class is given by:(
g

(
1

n

))
n≥1

=

{(
h

(
1

n

))
n≥1

: h ∈ ∆ and n0 ∈ N | ∀n ≥ n0, h

(
1

n

)
= g

(
1

n

)}
.

The map

θ : (∆(RN),+, .) −→ (∆/I0,+, .),
(g
(
1
n

)
)n≥1 7−→ C(g) = g,

is well-defined, and in addition, we have:

(i) (∆(RN),+, .) is a field.
(ii) θ is an isomorphism.

Lemma 9.10. Let g be an element of ∆. There exists a positive real
number ε such that

∀x ∈]0, ε[ we have : g(x) =
1

xm

+∞∑
i=0

aix
i,

where m is a naturel number, and s =
+∞∑
i=0

aiz
i is a power series with a

non zero radius of convergence.

Proof. • If g ∈ ∆1 then g̃ is holomorphic in a neighborhood of 0,
and we have g̃(z) =

∑
aiz

i in D(0, ε).

Since g̃/]0,ε[ = g/]0,ε[, then g(x) =
+∞∑
i=0

aix
i for every x in ]0, ε[.

• If g is an element of ∆2, then there exist an element u in ∆1, and
a real number ε > 0 such that g(x) = 1

u(x) for every x in ]0, ε[.

We can find ε′ > 0 and a holomorphic function b in D(0, ε′)
such that ũ(z) = zmb(z) and b(0) ̸= 0. Since b is holomorphic
and b(0) ̸= 0, then there exists ε1 > 0 such that b(z) ̸= 0 in
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D(0, ε1), we deduce that the map 1
b is a holomorphic function

in D(0, ε1). Then there exists a power series
+∞∑
i=0

aiz
i such that

1

b(z)
=

+∞∑
i=0

aiz
i in D(0, ε1).

Finally, we deduce that

1

ũ(z)
=

1

zmb(z)

=
1

zm

+∞∑
i=0

aiz
i, in D(0, ε1),

for an small enough ε1 (we choose ε1 < ε′). Now, for an small
enough ε we have g/]0,ε[ = ( 1u)/]0,ε[, and ũ/]0,ε[ = u/]0,ε[. We

choose ε2 = min(ε, ε1), and we obtain g(x) = 1
ũ(x) for every

x ∈]0, ε2[, which implies that

g(x) =
1

xm

+∞∑
i=0

aix
i,

in ]0, ε2[. On the other hand, since z →
+∞∑
i=0

aiz
i is a holomorphic

function on a neighborhood of zero, then the power series s =
+∞∑
i=0

aiz
i has a non zero radius of convergence.

□

Definition 9.11. Consider the following definitions:

d1. The set of formal power series[16] in the indeterminate X with
coefficients in R is denoted by R[[X]], and is defined as follows.
The elements of R[[X]] are infinite expressions of the form

+∞∑
i=0

aiX
i = a0 + a1X + a2X

2 + · · ·+ anX
n + · · · ,

where ai ∈ R for every i ∈ N.
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d2. To obtain the structure of a ring, we define in R[[X]] the addi-
tion and the multiplication as follows:

+∞∑
i=0

aiX
i +

+∞∑
i=0

biX
i =

+∞∑
i=0

(ai + bi)X
i,(

+∞∑
i=0

aiX
i

)(
+∞∑
i=0

biX
i

)
=

+∞∑
i=0

(
i∑

k=0

akbi−k

)
Xi.

d3. The field of fractions of R[[X]] is denoted by R((X)) and called
the field of formal Laurent series[16].

Example 9.12. For the elements of R[[X]], we propose the following
examples:

(i) f(X) =
+∞∑
k=0

k!Xk.

(ii)
1

1−X
=

+∞∑
k=0

Xk.

(iii) exp(X) =

+∞∑
k=0

Xk

k!
.

Theorem 9.13. The elements of the field of formal Laurent series
R((X)) are infinite expressions of the form

g(X) =
1

Xm

+∞∑
i=0

aiX
i,

where m is a naturel number, and ai ∈ R.

Proof. See [16]. □

Let g be an element of ∆, from the Lemma 9.10 and the Theorem 9.13
there exist a real number ε > 0 and an element g∗ of the field of formal
Laurent series R((X)) such that

g∗ =
1

Xm

+∞∑
i=0

aiX
i,

and we have

g(x) =
1

xm

+∞∑
i=0

aix
i,

for every x ∈]0, ε[.
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Notation 2. Let ε be a strictly positive real number, for every element

g∗ =
1

Xm

+∞∑
i=0

aiX
i

of R((X)), we denote by g∗/]0,ε[ the real function defined in ]0, ε[ as:

g∗/]0,ε[ : x −→ 1

xm

+∞∑
i=0

aix
i.

We can prove that g∗ is unique for every element g of ∆. For that,
consider two elements of R((X)) as

g∗ =
1

Xm

+∞∑
i=0

aiX
i, g◦ =

1

Xn

+∞∑
i=0

biX
i,

such that g∗/]0,ε[ = g◦/]0,ε[ = g/]0,ε[. Assume that m ≥ n. For every

x ∈]0, ε[ we have

g∗(x) = g◦(x) ⇒ 1

xm

+∞∑
i=0

aix
i =

1

xn

+∞∑
i=0

bix
i

=
1

xm

+∞∑
i=0

bix
i+m−n.

Then

+∞∑
i=0

aix
i =

+∞∑
i=0

bix
i+m−n.

From the properties of analytic functions, we deduce that:

{
ai = 0, when i < m− n,
ai = bi−m+n, else.
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Then

g∗ =
1

Xm

+∞∑
i=0

aiX
i

=
1

Xm

+∞∑
i=m−n

bi−m+nX
i

=
1

Xm

+∞∑
i=0

biX
i+m−n

=
1

Xn

+∞∑
i=0

biX
i

= g◦.

We set δ = X and g(δ) = g∗ and define the following map:

ϑ : (∆,+, .) −→ (R((δ)),+, .),
g 7−→ g(δ),

which satisfies the following properties:

(i) ϑ is a ring homomorphism: let f and g be two elements of
∆. Then we have ϑ(f + g) = (f + g)∗. Since f∗ + g∗ is an
element of R((δ)), and (f∗ + g∗)/]0,ε[ = (f + g)/]0,ε[ then (f +
g)∗ = f∗ + g∗ from the uniqueness of (f + g)∗ in R((δ)) which
satisfies (f + g)∗)/]0,ε[ = (f + g)/]0,ε[. Then, we deduce that
ϑ(f + g) = ϑ(f) + ϑ(g). In the same way, one can prove that
ϑ(f.g) = ϑ(f)ϑ(g).

(ii) ker(ϑ) = I0: if g∗ = 0, then there exists a real number ε > 0
such that g/]0,ε[ = 0, we deduce that g ∈ I0.

From the properties of ϑ, we deduce that the following ring homomor-
phism

ϑ : (∆/I0,+, .) −→ (R((δ)),+, .),
g 7−→ g(δ),

is injective.

Theorem 9.14. There exists a set O and a total order ≤ such that:

(i) (O,+, .) is an extension field of (R,+, .).
(ii) (O,≤) is an ordered R−extension.
(iii) IO ̸= ∅.

Proof. Let O be the set defined as O = ϑ(∆/I0) = ϑ(∆). We denote

by R

(
+∞∑
i=0

aiz
i

)
the radius of convergence of

+∞∑
i=0

aiz
i and we can verify
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easily that:

O = {g(δ) : g ∈ ∆}

=

{
1

δm

+∞∑
i=0

aiδ
i : where m ∈ N and R

(
+∞∑
i=0

aiz
i

)
̸= 0

}
.

From what precedes, the map

ϑ∗ : (∆/I0,+, .) −→ (O,+, .),
g 7−→ g(δ),

is a ring isomorphism. Since (∆/I0,+, .) is a field, then (O,+, .) is a
subfield of R((δ)).
The map φ = ϑ∗ ◦ θ defined as:

φ : (∆(RN),+, .) −→ (O,+, .),
g(
(
1
n

)
)n≥1 7−→ g(δ),

is a ring isomorphism.

c1. Let l be a real number. If g is a constant element of ∆ such

that g = l, then we can identify l by the image of l = (g
(
1
n

)
)n≥1

by φ, and we find φ(l) = l. Using this identification, we deduce
that R ⊆ O.

c2. We can define on O the following relation ≤:
g(δ) ≤ h(δ) if and only if there exists a natural number n0, such
that g

(
1
n

)
≤ h

(
1
n

)
for every n ≥ n0. It is easy to check that ≤

is reflexive, transitive and antisymmetric. Then it is an partial
order.

c3. To show that the set (O,≤) is an ordered R-extension, we need
to show that the relation ≤ is total.
Consider g, h ∈ ∆0. Assume that these propositions (not g(δ) ≤
h(δ)) and (not h(δ) ≤ g(δ)) are true. To conclude, we need to
find a contradiction. Since the above propositions are true,
then:
for every k ∈ N, there exists nk > k and n

′
k > k such that

g

(
1

nk

)
> h

(
1

nk

)
, g

(
1

n
′
k

)
< h

(
1

n
′
k

)
.

(i) We assume that g, h ∈ ∆1. From the intermediate value

theorem we deduce that there exists βk ∈
∣∣∣∣ 1
nk
, 1

n
′
k

∣∣∣∣ such
that (g−h)(βk) = 0 (we can choose βk so that the sequence
(βk) is strictly decreasing). Then the holomorphic function

g̃− h̃ has an infinite number of roots in a neighborhood of
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0. From the Theorem 2.2, we deduce that the function

g̃ − h̃ is the zero function. Then g = h, which is absurd.
(ii) Now, suppose that g, h ∈ ∆2. Then, there exists (u, v) ∈

∆2
1, such that u/]0,ε] = (1g )/]0,ε] and v/]0,ε] = ( 1h)/]0,ε]. Since

u and v are two elements of ∆1, then, u(δ) ≤ v(δ) or v(δ) ≤
u(δ). Finally, we deduce that g(δ) and h(δ) are comparable.

(iii) In the case of g ∈ ∆1 and h ∈ ∆2, there exists h1 ∈ ∆1 and
ε > 0, such that h/]0,ε[ = ( 1

h1
)/]0,ε[. Since h1 is a metalic

function, then the sequence (h1
(
1
n

)
)n≥1 admits a constant

sign from a certain rank. In fact, if it is not the case, then,
for every k ∈ N there exist nk > k and n

′
k > k such that

h1(
1
nk

) > 0 and h1(
1

n
′
k

) < 0. From the intermediate value

theorem, there exists βk ∈
∣∣∣∣ 1
nk
, 1

n
′
k

∣∣∣∣ such that (h1)(βk) = 0

(we can choose βk such that the sequence (βk) is strictly
decreasing). From the Theorem 2.2, h1 is the zero func-
tion on a neighborhood of 0, which is absurd. Then, we
deduce that the sequence (h1

(
1
n

)
)n≥1 admits a constant

sign. Since lim
n→+∞

h1

(
1

n

)
= 0, then lim

n→+∞

1

h1
(
1
n

) exists

and we have lim
n→+∞

1

h1
(
1
n

) = ±∞, which implies that

lim
n→+∞

h

(
1

n

)
= ±∞.

(a) If we have lim
n→+∞

h

(
1

n

)
= +∞, then g(δ) ≤ h(δ)

(because g
(
1
n

)
≤ h

(
1
n

)
from a certain rank).

(b) In other case, we have lim
n→+∞

h

(
1

n

)
= −∞, then we

find h(δ) ≤ g(δ) (because h
(
1
n

)
≤ g

(
1
n

)
from a cer-

tain rank).
c4. Now, it remains to show that IO ̸= ∅. For that, it is necessary

to find an element δ ∈ O which is infinitesimal. For u : x −→ x,
we have u ∈ ∆ (more precisely ∆1) and δ = u(δ). In addition,
we have 0 < δ < ε for every real strictly positive ε, because
there exists p ∈ N such that 0 < u

(
1
n

)
< ε for every integer

n > p. Then δ is an infinitesimal number.

□

Conclusions 1. Finally, we deduce that:
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(1) (O,+, .) is an extension field of (R,+, .).
(2) (O,≤) is an ordered R−extension, which contains the infinites-

imal element δ.
The field (O,+, .) is called the field of Omicran-reals and an
element of O is called an Omicran (or an Omicran-real).

10. Applications of the Field of Omicran-reals

10.1. The Exact Limit.

Proposition 10.1. The map φ defined as:

φ : (∆(RN),+, .) −→ (O,+, .),
(g
(
1
n

)
)n≥1 7−→ g(δ),

is an isomorphism.

If we want to define a new concept more precise than the limit that
allows to give the value taken by the sequence

(
f
(
1
n

))
n≥1

at infinity,

then this concept (called exact limit) is dependent to the values taken
by
(
f
(
1
n

))
n≥1

from a certain rank n0. Intuitively, the equivalence class(
f
(
1
n

))
n≥1

is the only concept can give these values independently from

n0. On the other hand, if f is an element of ∆, then we can identify the

equivalence class
(
f
(
1
n

))
n≥1

by f(δ) from the Proposition 10.1, so we

deduce that we can define the new concept as follows.

Definition 10.2. Let f ∈ ∆. The Omicran f(δ) = φ
((
f
(
1
n

))
n≥1

)
is

called the exact limit of the sequence
(
f
(
1
n

))
n≥1

.

We set

lim
exact

f

(
1

n

)
= f(δ).

Remark 10.3. We remark that lim
exact

= φ ◦ s, where s is a canonical

surjection defined as:

s : (∆(RN),+, .) −→ (∆(RN),+, .),(
f
(
1
n

))
n≥1

7−→
(
f
(
1
n

))
n≥1

.

Example 10.4. We propose the following examples:

(1) lim
exact

1

n
= δ.

(2) lim
exact

sin

(
1

n

)
= sin(δ).

(3) lim
exact

1

n+ 1
=

δ

δ + 1
.
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(4) We can verify that there does not exist an element f ∈ ∆, such
that f

(
1
n

)
= (−1)n from a certain rank. Then we can not define

the exact limit lim
exact

(−1)n.

(5) Generally, from the proprieties of the elements of ∆, we can
show that if (xn)n≥1 does not admit a constant sign from a
certain rank, then this sequence does not admit an exact limit,

for instance, if xn = (−1)n

n , then lim
n→+∞

xn = 0, but we can not

define the exact limit of (xn)n≥1.

10.2. The Projection of an Element of O.

Definition 10.5. Let f be a metalic function, and x ∈ O such that
x = f(δ). If we find an element x∗ ∈ R such that | x− x∗ | ≤ | x− y |,
∀y ∈ R, then, the real x∗ is called the projection of x in R.

Remark 10.6. The distance from x to R is given by

dR(x) = inf
y∈R

| x− y |=| x− x∗ | .

Example 10.7. For example, we have:

• δ∗ = 0.

•
(

1

δ 2 + 1

)∗
= 1.

Theorem 10.8. Let f be a metalic function, and x ∈ O such that
x = f(δ). The projection x∗ of x onto R exists and it is unique. In
addition, we have:

x∗ = lim
n→+∞

f

(
1

n

)
.

Proof. Let x0 = lim f
(
1
n

)
. Then: ∀ε > 0 ∃n0 | ∀n ≥ n0, | f

(
1
n

)
−x0 |≤ ε

⇔ for every n ≥ n0, we have −ε ≤ f
(
1
n

)
− x0 ≤ ε

⇔ lim
exact

f

(
1

n

)
− x0 ≤ ε and −ε ≤ lim

exact
f

(
1

n

)
− x0

⇔ f(δ)− x0 ≤ ε and −ε ≤ f(δ)− x0
⇔ | f(δ)− x0 |≤ ε.

Next, we can show that | f(δ)− x0 | ≤ | f(δ)− y | for any y ∈ R.
Assume that there exists y ∈ R such that | f(δ)− y | ≤ | f(δ)− x0 |≤ ε
for all ε ∈ R+. This | y − x0 | ≤ 2ε for any ε ∈ R+, which implies that
y = x0 = x∗. Finally, we deduce the existence and uniqueness of x∗ ∈ R
such that

| f(δ)− x∗ |≤| f(δ)− y |, ∀y ∈ R.

In addition, we have x∗ = lim
n→+∞

f

(
1

n

)
. □
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Theorem 10.9. Let f be a metalic map, and x = f(δ). Then we have:

| x− x∗ |≤ ε, ∀ε > 0,

where x∗ is the unique element of R which verifies this property.

Proof. There exists n0 such that

| f
(
1

n

)
− x∗ | ≤ ε, ∀n ≥ n0.

Then

x∗ − ε ≤ f

(
1

n

)
≤ x∗ + ε, ∀n ≥ n0.

Then, we deduce that

x∗ − ε ≤ f(δ) ≤ x∗ + ε,

| x− x∗ |≤ ε.

To show the uniqueness of x∗, we assume that there exists another ele-
ment y ∈ R such that | x− y |≤ ε. Then: | x∗ − y |≤ 2ε, finally we get
y = x∗. □

Theorem 10.10. If f ∈ ∆1, then the real lim
n→+∞

f

(
1

n

)
is the projection

of lim
exact

f

(
1

n

)
onto R, so we get:(

lim
exact

f

(
1

n

))∗
= lim

n→+∞
f

(
1

n

)
.

10.3. Necessary Conditions for the Existence of the Exact Limit.

Definition 10.11. Let (xn)n≥1 be a real sequence. We say that (xn)n≥1

has an exact limit, if there exists f ∈ ∆ such that xn = f
(
1
n

)
from a

certain rank n0 ∈ N. In this case, we have

lim
exact

xn = f(δ).

In this subsection, we propose the following remarks concerning the
existence of the exact limit of a real sequence (xn)n≥1:

(1) Let (xn)n≥1 be a sequence of real numbers. Assume that the
exact limit of (xn)n≥1 exists. Then, there exists a function
f ∈ ∆ such that lim

exact
xn = f(δ).

If f ∈ ∆1, then f is a metalic function. Let f̃ be a metalic

extension of f , then we have f
(
1
n

)
= f̃

(
1
n

)
= xn from a certain

rank. Since f̃ is holomorphic at 0, then the limit of (xn)n≥1

exists and we have lim
n→+∞

xn = f̃(0). Finally, we conclude that
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the existence of the exact limit implies the existence of the limit.

In addition, we have lim
n→+∞

xn = f̃(0). Generally, we get

lim
exact

xn = f(δ) ⇒ lim
n→+∞

xn =

{
f̃(0), while f ∈ ∆1;
±∞, while f ∈ ∆2.

(2) The reciprocal of the above implication is not true. We can find
a convergent sequence which does not have an exact limit (for

example, xn = (−1)n

n ).
(3) If a sequence (xn)n≥1 has the exact limit, then (xn)n≥1 admits

a constant sign from a certain rank.
In addition, if xn > 0 from a certain rank, then, we have
lim
exact

xn > 0.

(4) If the sequence (xn)n≥1 has the exact limit, from the prop-
erties of the elements of ∆, we can show that the sequence
(xn+1 − xn)n≥1 admits a constant sign from a certain rank.

Theorem 10.12. Let (an)n≥1 be a real sequence, and f be a holomorphic
function on D(0, ε) \ {0} such that

(i) f(]0, ε[) ⊆ R,
(ii) f

(
1
n

)
= an from a certain rank,

(iii) f is bounded on D(0, ε) \ {0}.
Then the sequence (an)n≥1 has an exact limit, and we have lim

exact
an = f(δ).

Proof. 0 is an artificial singularity of f . □

10.4. The Exact Derivative.

Definition 10.13. Let f be a real function that is differentiable at a

point x0 ∈ R. If the function h −→ f(x0+h)−f(x0)
h is metalic, then the

exact limit of

(
f(x0+ 1

n
)−f(x0)
1
n

)
n≥1

exists. We put

f̂(x0) = lim
exact

f(x0 +
1
n)− f(x0)
1
n

=
f(x0 + δ)− f(x0)

δ
.

The Omicran f̂(x0) is called the exact derivative of the function f at x0.

Example 10.14. Consider the function f defined as f : x −→ x2. The

exact derivative of f at x0 is given by f̂(x0) = 2x0 + δ.
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Theorem 10.15. Let f be a real function that is differentiable at a point

x0 ∈ R. If the function h −→ f(x0+h)−f(x0)
h is metalic, then

(f̂(x0))
∗ = f ′(x0)

Proof. We can apply the Theorem 10.10. □

Example 10.16. For f : x −→ x2, the exact derivative of f at x0 is

f̂(x0) = 2x0+ δ, and the derivative at x0 is f ′(x0) = 2x0. We can verify
easily that (2x0 + δ)∗ = 2x0.

Lemma 10.17. Let f be a metalic function such that for every integer
k ∈ N, the function t −→ f(x0 + kt) is metalic. Then

f(x0+Nδ) = f(x0)+δ(f̂(x0)+f̂(x0+δ)+f̂(x0+2δ)+· · ·+f̂(x0+(N−1)δ).

Proof. From the definition of f̂ , we have

f(x0 + δ) = f(x0) + δf̂(x0),

f(x0 + 2δ) = f(x0 + δ) + δf̂(x0 + δ),
...

f(x0 +Nδ) = f(x0 + (N − 1)δ) + δf̂(x0 + (N − 1)δ).

By summing these equalities, we find the desired result. □

Application 1. (Calculation of the sum Σkn)

(1) For n = 1, if f(x) = x2, then f̂(x) = 2x+ δ.
From the Lemma 10.17 in the case of x0 = 0, we find

N2δ2 = (δ(f̂(0) + f̂(δ) + f̂(2δ) + · · ·+ f̂((N − 1)δ)),

which implies that N2δ2 = δ.(
N−1∑
k=0

2kδ + δ). Then

N2 =

N−1∑
k=0

(2k + 1)

= 2
N−1∑
k=0

k +N,

and we deduce that

N2 −N

2
=

N−1∑
k=0

k.
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(2) In the case of n = 2, we choose f(x) = x3 and we obtain

f̂(x) = 3x2 + 3xδ + δ2. By using the Lemma 10.17 for x0 = 0,
we find here

N3δ3 = δ.(f̂(0) + f̂(δ) + f̂(2δ) + · · ·+ f̂((N − 1)δ)),

= δ.

N−1∑
k=0

(3k2δ2 + 3kδ.δ + δ2),

= δ3.(

N−1∑
k=0

3k2 + 3k + 1).

Then N3 = 3
N−1∑
k=0

k2 + 3
N−1∑
k=0

k +N ,

and we deduce that

N−1∑
k=0

k2 =

N3 −N − 3
N−1∑
k=0

k

3
.

Finally, we get:
N−1∑
k=0

k2 = N(N−1)(2N−1)
6 .

Similarly, we can calculate
N−1∑
k=0

k3,
N−1∑
k=0

k4, . . . .

Application 2. (The Riemann sum)
Let f and g be two metalic functions such that: f(δ) = g(δ). Then

f
(
1
n

)
= g

(
1
n

)
from a certain rank.

Consider the function defined as follows:

fn(x) =
f(x+ 1

n)− f(x)
1
n

.

From the Lemma 10.17, we deduce that there exists a natural number
n0 such that we have:

f

(
x0 +

N

n

)
= f(x0) +

1

n

(
fn(x0) + fn

(
x0 +

1

n

)
+ fn

(
x0 +

2

n

)
+ · · ·+ fn

(
x0 +

N − 1

n

))
, ∀n ≥ n0.

Assume that f is twice differentiable on R, and f ′′ is continuous on R.
By using the Taylor’s formula with Lagrangian Remainder, we obtain:

fn

(
a+

k

n

)
= f ′

(
a+

k

n

)
+

1

2n
f ′′(ξk,n),
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where ξk,n ∈]a, a+ N
n [. Then

f

(
a+

N

n

)
= f(a) +

1

n
.

N−1∑
k=0

fn

(
a+

k

n

)

= f(a) +
1

n
.

N−1∑
k=0

(
f ′
(
a+

k

n

)
+

1

2n
f ′′(ξk,n)

)
.

Assume that b > a. We can choose N = ⌊(b− a)n⌋, and then we get

f

(
a+

N

n

)
− f(a) =

1

n
.

N−1∑
k=0

f ′
(
a+

k

n

)
+

1

2n2

N−1∑
k=0

f ′′(ξk,n).

Since N = ⌊(b− a)n⌋, then b− a− 1
n <

N
n ≤ b− a.

Let M = sup
[a,b]

∣∣f ′′(x)∣∣ < +∞. We have

∣∣∣∣∣ 1

2n2

N−1∑
k=0

f ′′(ξk,n)

∣∣∣∣∣ ≤ MN

2n2

≤ M(b− a)

2n
−→ 0 (n→ +∞).

In addition, we have lim
n→+∞

f

(
a+

N

n

)
= f(b). We pass to the limit

and we find

f(b)− f(a) = lim
n→+∞

1

n

⌊(b−a)n⌋−1∑
k=0

f ′
(
a+

k

n

)
.

For b = 1 and a = 0, we get

f(1)− f(0) =

∫ 1

0
f ′(t)dt = lim

n→+∞

1

n

n−1∑
k=0

f ′
(
k

n

)
.

10.5. The Logarithmic Function. We know that

lim
n→+∞

(
1 +

x

n

)n
= ex, ∀x ∈ R.

Let x be a real number. The function

f : z −→ (1 + xz)
1
z = e

1
z
ln(1+zx),

is a holomorphic function on D(0, ε) \ {0}. In addition, we have

ln(1 + zx) = zx− z2x2

2
+ o(z2x2), (for | z |<< 1).
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So we deduce that lim
z→0

ln(1 + zx)

z
= x, and lim

z→0
f(z) = ex. Then, the

function f can be extended to a holomorphic function on a neigh-

borhood of 0, which implies that lim
exact

(
1 +

x

n

)n
exists and we have

lim
exact

(
1 +

x

n

)n
= (1 + xδ)

1
δ and ((1 + xδ)

1
δ )∗ = ex. Then, the real num-

ber ex is an infinitesimal approximation of (1 + δx)
1
δ .

We put ξα(x) = (1+αx)
1
α , for every α > 0. If the function x −→ ξα(x)

has an inverse, then, we have ξ−1
α (x) = xα−1

α .

We attempt to prove that the omicran xδ−1
δ exists for every x > 0, and

it represents an infinitesimal approximation of the real number ln(x).
Let x be a real number in R∗+. The map defined as

g : z −→ xz − 1

z
=
ez ln(x) − 1

z
,

is a holomorphic function on D(0, ε) \ {0}, and lim
z→0

g(z) = ln(x). Then

0 is an artificial singularity of g, and we deduce that the exact limit of the

sequence
(
n
(
x

1
n − 1

))
n≥1

exists and we have lim
exact

n
(
x

1
n − 1

)
=
xδ − 1

δ
.

We define the original logarithm by

lno : x −→ xδ − 1

δ
.

The function ξ is called the function of original exponential. We set

ξ(x) = expo(x) = (1 + δx)
1
δ ,

and we deduce that
(lno(x))

∗ = ln(x).

Then

ln(x) = lim
α→0

xα − 1

α
.

Application 3. From the above results, we can show the following
equality:

ln(x) = lim
α→0

xα − x−α

2α
.

Remark 10.18. We have

ln(x)

ln(y)
= lim

α→0

xα − 1

yα − 1

= lim
α→0

xα − x−α

yα − y−α
.

Application 4. By using the above results, we can show the following
theorem.
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Theorem 10.19. For all x > 0 and x ̸= 1, we have

x− 1

ln(x)
= lim

n→+∞

1

n

n−1∑
k=0

x
k
n .

Proof. We have (
x

1
n − 1

)(n−1∑
k=0

x
k
n

)
= x− 1.

Then,

n
(
x

1
n − 1

)( 1

n

n−1∑
k=0

x
k
n

)
= x− 1.

Since lim
α→0

xα − 1

α
= lim

n→∞
n(x

1
n − 1) = ln(x), then

x− 1

ln(x)
= lim

n→+∞

1

n

n−1∑
k=0

x
k
n .

□
Application 5. Consider P as the set of prime numbers. We define the
prime-counting function [12] at real values of x by

π(x) = #{p ≤ x : p ∈ P}.

Theorem 10.20. (Hadamard and de la Valle Poussin)
As x→ +∞, we have

π(x) ∼ x

ln(x)
.

Proof. See [12]. □
Theorem 10.21. As x→ +∞, we have

π(x) ∼ 1

x
1
x − 1

.

Proof. We can verify that x
ln(x) ∼

1

x
1
x−1

. In fact, as x→ +∞, we have

1

x
1
x − 1

∼ 1

e
ln(x)
x − 1

=
1

e
ln(x)
x −1
ln(x)
x

x

ln(x)
.

Since, lim
x→+∞

e
ln(x)
x − 1
ln(x)
x

= 1, then 1

x
1
x−1

∼ x
ln(x) .

Finally, we obtain

π(x) ∼ 1

x
1
x − 1

.
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□

Application 6. Let (pn) be the sequence of prime numbers. Then we
have the following theorems.

Theorem 10.22. We have

pn ∼ n ln(n), while n→ +∞.

Proof. See [12].
□

Theorem 10.23. We have

pn ∼ n2( n
√
n− 1), while n→ +∞.

Proof. We can verify that lim
n→∞

n( n
√
n− 1)

ln(n)
= 1. Let n be a natural num-

ber greater than 2. We have

n
√
n− 1 = e

1
n
ln(n) − 1.

Then

n
√
n− 1 =

(
e

1
n
ln(n) − 1
ln(n)
n

)(
ln(n)

n

)
.

On the other hand, we have lim
n→∞

ln(n)

n
= 0, then lim

n→∞

e
1
n
ln(n) − 1
ln(n)
n

= 1.

So, we obtain

n
√
n− 1 ∼ ln(n)

n
, while n→ +∞.

Then

n2( n
√
n− 1) ∼ n ln(n), while n→ +∞.

From the Theorem 10.22, we deduce that

n2( n
√
n− 1) ∼ pn, while n→ +∞.

Finally, we obtain the desired result. □

10.6. The Omicran-reals in Geometry.

10.6.1. The Geometric Point. Let f be a metalic function, and f̃(δ) be
an infinitesimal number. The sequence

(
f
(
1
n

))
n≥1

admits a constant

sign from a certain rank. Assume that the above sequence is positive

from a certain rank n0. Since φ(f̃(δ)) =
(
f
(
1
n

))
n≥1

, then we can repre-

sent f̃(δ) by the family of segments (In)n≥1, where In =]0, f
(
1
n

)
].
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Definition 10.24. Let xA be an Omicran of O. An elementary geo-
metric point of O is a segment of the type [xA, xA + δ[, where [x, y[=
{z ∈ O, x ≤ z < y}.

10.6.2. The Length of a Curve Cf . We define the length of an elementary
geometric point by

l([xA, xA + δ[) = δ,

where xA = g(δ), and g is a metalic function. The real x∗A represents
the projection of xA onto R.

Let f̃ be a holomorphic function on an open set U such thatD′(0, 1) ⊂
U . Assume that f̃([0, 1]) ⊂ R. We set f̃/[0,1] = f . The map f is a

metalic function and f̃ is a metalic extension of f . Assume that x∗A is
an element of [0, 1]. The map x −→ f(x∗A + x) is metalic. Its metalic

extension is given by x −→ f̃(x∗A + x). Consider A(xA, f(xA)) and
A′(xA + δ, f(xA + δ)) which are two ordered pairs of O2. Let ϕ be the
function defined as

ϕ : z −→ z

√√√√1 +

(
f̃(g̃(z) + z)− f̃(g̃(z))

z

)2

.

The map θ : z → f̃(g̃(z)+z)−f̃(g̃(z))
z is holomorphic on D(0, ε) \ {0}, and

we have

θ(z) =
f̃(g̃(z) + z)− f̃(x∗A)

z
−
f̃(g̃(z))− f̃(x∗A)

z
,

where lim
z→0

g̃(z) = g̃(0) = x∗A (the projection of xA onto R). Then lim
z→0

θ(z)

exists, and we have

lim
z→0

θ(z) = (g̃′(0) + 1)f ′(x∗A)− g̃′(0)f ′(x∗A) = f ′(x∗A) ∈ R.

So, we deduce that lim
z→0

ϕ(z) = 0, and ϕ is continuously extendable at 0.

Then the function ϕ is holomorphically extendable at 0, which justifies
the existence of the exact limit of the sequence (ϕ

(
1
n

)
)n≥1, and we have

lim
exact

(ϕ

(
1

n

)
) = ϕ(δ)

= δ

√
1 +

(
f(xA + δ)− f(xA)

δ

)2

∈ O.

We define the length of the segment [A,A′[ by

l([A,A′[) = δ

√
1 +

(
f(xA + δ)− f(xA)

δ

)2

.
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We put

ψ(xA) = δ

√
1 +

(
f(xA + δ)− f(xA)

δ

)2

= δ

√
1 + f̂(xA)2.

Let f be a metalic function defined on [0, 1], and let A(0, f(0)) and

B(1, f(1)) be two points of the plane which define with f the arc ÃB. If

the exact limit of the series
1

n

n−1∑
k=0

√
1 + f̂

(
k

n

)2

exists, then we define

the exact length of the arc ÃB by

l(ÃB) = lim
exact

1

n

n−1∑
k=0

√
1 + f̂

(
k

n

)2

.

The length of the arc ÃB is the real denoted by l∗(ÃB) and is defined
by

l∗(ÃB) =

 1

n

n−1∑
k=0

√
1 + f̂

(
k

n

)2
∗

= lim
n→+∞

1

n

n−1∑
k=0

√
1 + fn

(
k

n

)2

,

where fn(x) =
f(x+ 1

n)− f(x)
1
n

. Since f is a metalic function, then it

can be extended to a function which is twice differentiable at 0.
Assume that the function f is twice differentiable on ]0, 1[. Then

fn

(
k

n

)
=
f
(
k+1
n

)
− f

(
k
n

)
1
n

= f ′
(
k

n

)
+

1

2n
f ′′(ξk),

where 1 ≤ k ≤ n− 1, and ξk ∈] kn ,
k+1
n [.

Consider M1 = sup]0,1[(| f ′(x) |) and M2 = sup]0,1[(| f ′′(x) |). We
have

f2n

(
k

n

)
=

(
f ′
(
k

n

)
+

1

2n
f ′′(ξk)

)2

= f ′2
(
k

n

)
+ εn,k,
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where

εn,k = f ′
(
k

n

)
1

n
f ′′(ξk) +

1

4n2
f ′′2(ξk).

If M1 < +∞ and M2 < +∞, we obtain

| εn,k |≤
M1M2 +M2

2

n
.

Then, lim
n→+∞

sup
k

| εn,k |= 0, and we have

√
1 + f2n

(
k

n

)
=

√
1 + f ′2

(
k

n

)
+ εn,k

=

√
1 + f ′2

(
k

n

)
+

εn,k

2
√
βn,k

,

where βn,k ∈
∣∣1 + f ′2( kn), 1 + f ′2( kn) + εn,k

∣∣. Then
1

n

n−1∑
k=0

√
1 + f2n

(
k

n

)
=

1

n

√
1 + f2n(0) +

1

n

n−1∑
k=1

√
1 + f ′2

(
k

n

)

+
1

2n

n−1∑
k=1

εn,k√
βn,k

.

Since lim
n→+∞

sup
k

| εn,k |= 0, then we can verify that βn,k > 1
2 from a

certain rank n0, and we have∣∣∣∣∣ 12n
n−1∑
k=1

εn,k√
βn,k

∣∣∣∣∣ ≤
√
2

2n

n−1∑
k=1

|εn,k|

≤
√
2(M1M2 +M2

2 )

2n
.

Then:

lim
n→+∞

1

n

n−1∑
k=0

√
1 + f2n

(
k

n

)
= lim

n→+∞

1

n

n−1∑
k=0

√
1 + f ′2

(
k

n

)
.

By using the Riemann sum, we deduce that the length of the arc ÃB is

l∗(ÃB) =

∫ 1

0

√
1 + f ′2(x)dx.
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10.7. The Exact Limit of the Series. Let sn =
n∑
k=1

ak be a convergent

series, where (ak)k≥1 is a sequence of real numbers. Assume that the
series (sn)n≥1 has the exact limit. Then, there exists a holomorphic

function f̃ on a neighborhood of zero such that lim
exact

sn = f̃(δ). Then:

f̃(δ) = lim
exact

n∑
k=1

ak,

which implies that
n∑
k=1

ak = f̃

(
1

n

)
, from a certain rank n0 ∈ N.

Since an = sn − sn−1, we deduce that

an = f̃

(
1

n

)
− f̃

(
1

n− 1

)
, from a certain rank.

If (an)n≥1 has the exact limit lim
exact

an, then, we can find a holomorphic

function g on a neighborhood of 0 such that an = g
(
1
n

)
from a certain

rank. In this case we have lim
exact

an = g(δ). Since lim
n→∞

an = 0, then g(0) =

0 and there exists p such that

g

(
1

n

)
= f̃

(
1

n

)
− f̃

(
1

n− 1

)
, ∀n ≥ p.

Since f and g are holomorphic functions on a neighborhood of 0, then
there exists ε > 0 such that

g(z) = f̃(z)− f̃

(
z

1− z

)
, ∀z ∈ D(0, ε).

On the other hand, we have f̃(0) = lim
n→+∞

f̃

(
1

n

)
=

+∞∑
k=1

ak. Then, we

deduce the following theorem.

Theorem 10.25. Let g be a metalic function, and (sn)n≥1 be the con-

vergent series defined as sn =

n∑
k=1

g

(
1

k

)
. If the exact limit of (sn)n≥1

exists, then there exists a function f̃ which is holomorphic at 0 such that

f̃(δ) = lim
exact

n∑
k=1

g

(
1

k

)
. This function is given by


f̃(0) =

+∞∑
k=1

g
(
1
k

)
,

g(z) = f̃(z)− f̃
(

z
1−z

)
, in a neighborhood of 0.
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Remark 10.26. (Calculating of a finite sum)

If f̃(δ) = lim
exact

n∑
k=1

ak, then f̃

(
1

n

)
=

n∑
k=1

ak from a certain rank n0.

Example 10.27. We have lim
exact

n∑
k=1

1

k(k + 1)
=

1

1 + δ
. Then, we deduce

that
n∑
k=1

1

k(k + 1)
=

1

1 + 1
n

, ∀n ≥ 1.

10.8. The Calculation of the Exact Limit of
∑
ak. Let (sn) be the

series defined as sn =
n∑
k=1

g
(
1
k

)
. Assume that this series is convergent,

and g is a metalic function. Then g is holomorphic on a neighborhood
of 0. The existence of the exact limit of (sn) implies that there exists a

holomorphic function f̃ on a neighborhood of 0 and we have

g(z) = f̃(z)− f̃

(
z

1− z

)
, on the disk D(0, ε).

Let g(z) =
+∞∑
n=0

βnz
n and f̃(z) =

+∞∑
n=0

αnz
n, where (αn)n≥0 and (βn)n≥0

are real sequences.
We have

f̃(z) = α0 + α1z + α2z
2 + · · ·+ αnz

n + o(zn).

Then,

f̃

(
z

1− z

)
= f̃(z + z2 + · · ·+ zn + o(zn))

= α0 + α1(z + · · ·+ zn + o(zn)) + · · ·
+ αn(z + · · ·+ zn + o(zn))n + o(zn)

= α0 + α1z + (α1 + α2)z
2 + (α1 + 2α2 + α3)z

3

+ (α1 + 3α2 + 3α3 + α4)z
4 + (α1 + 4α2 + 6α3 + 4α4 + α5)z

5

+ (α1 + 5α2 + 10α3 + 10α4 + 5α5 + α6)z
6 + · · ·

+

(
α1 +

(
n− 1

1

)
α2 +

(
n− 1

2

)
α3 + · · ·

+

(
n− 1

n− 2

)
αn−1 + αn

)
zn + o(zn).
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Since g(z) = f̃(z)− f̃
(

z
1−z

)
, we deduce that{

β0 = β1 = 0,

βk = −α1 −
(
k−1
1

)
α2 −

(
k−1
2

)
α3 − · · · −

(
k−1
k−2

)
αk−1, ∀2 ≤ k ≤ n.

Remark 10.28. Since β0 = β1 = 0, then g(z) = z2g1(z), where g1 is a
holomorphic function on a neighborhood of 0.

Now, from the above results, we deduce that

β0 = β1 = 0,
β2 = −α1,
β3 = −α1 − 2α2,
β4 = −α1 − 3α2 − 3α3,

...

βn = −α1 − (n− 1)α2 − · · · −
(
n−1
k

)
αk+1 − · · · −

(
n−1
n−2

)
αn−1.

Then,
β2
β3
β4
...
βn

 =



−1 0 . . . . . . 0

−1 −2
. . .

...

−1 −3 −3
. . .

...
...

...
...

. . . 0
−1 −(n− 1) . . . . . . −(n− 1)




α1

α2

α3
...

αn−1

.

Consider the matrix defined as

Mn =



−1 0 . . . . . . 0

−1 −2
. . .

...

−1 −3 −3
. . .

...
...

...
...

. . . 0
−1 −n . . . . . . −n

.

We have det(Mn) = (−1)nn!, then Mn is invertible and we have:
β2
β3
β4
...
βn

 =Mn−1


α1

α2

α3
...

αn−1

 .

So, the above system admits a unique solution (α1, α2, . . . , αn−1).

If lim sup n
√

| αn | = 1

R
> 0, then the function f̃(z) =

+∞∑
n=0

αnz
n is holo-

morphic on the disk D(0, R).
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In this case, the exact limit lim
exact

n∑
k=1

g

(
1

k

)
exists. In addition, we have

f̃(δ) = lim
exact

n∑
k=1

g

(
1

k

)
= lim

exact

n∑
k=1

ak,

and we get

f̃(0) =

(
lim
exact

n∑
k=1

ak

)∗

=

+∞∑
k=1

ak.

11. The Black Magic Matrix

11.1. The Calculation of the Exact Limit Using the Black Magic

Matrix. Let g be a metalic function and f̃ be a holomorphic function in

a neighborhood of 0. Assume that the series
n∑
k=1

g( 1k ) admits the exact

limit f̃(δ). Let (αn)n≥0 and (βn)n≥0 be two real sequences such that

f̃(z) = α0 +
+∞∑
k=1

αkz
k, g(z) =

+∞∑
k=0

βkz
k.

We have

lim
exact

n∑
k=1

g

(
1

k

)
= f̃(δ).

Then, 
β2
β3
β4
...
βn

 =Mn−1


α1

α2

α3
...

αn−1

 .

Definition 11.1. The black magic matrix of order n is defined as ψ(n) =
M−1
n .

We obtain 
α1

α2

α3
...

αn−1

 = ψ(n−1)


β2
β3
β4
...
βn

 .

The real α0 is given by α0 = f̃(0) =

+∞∑
k=1

g

(
1

k

)
.
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Remark 11.2. We can verify that

m∑
k=1

g

(
1

k

)
= α0 + lim

n→+∞

(
1
m

1
m2

1
m3 · · · 1

mn−1

)
ψ(n−1)


β2
β3
β4
...
βn

,
from a certain rank m0.

11.2. The Magical Properties of ψ(n).

Property 11.3. The matrix ψ(n) is given by ψ(n) =M−1
n ,

where Mn[i, j] =

{
−
(
i

j−1

)
, if 1 ≤ j − 1 ≤ i ≤ n,

0, otherwise.

We deduce that the matrix ψ(n) is invertible and it is a lower triangular
matrix.

Property 11.4. We have ψ
(n)
i,i =

−1

i
. Then, the determinant of ψ(n)

is given by det(ψ(n)) = (−1)n

n! and we have tr(ψ(n)) = −H(n), where

(H(n))n≥1 is the harmonic series which is defined as H(n) =

n∑
i=1

1

i
.

Proof. The matrix Mn is lower triangular and we have

Sp(Mn) = {−i, for 1 ≤ i ≤ n}.
Then, ψ(n) is lower triangular, and we get

Sp(ψ(n)) =

{
−1

i
, for 1 ≤ i ≤ n

}
.

□

Property 11.5. For every 1 ≤ i ≤ n− 1, we have

ψ
(n)
i+1,i =

1

2
.

Proof. We have

δi+1,i =
n∑
k=1

Mn[i+ 1, k]ψnk,i.

Then,
i+1∑
k=i

Mn[i+ 1, k]ψ
(n)
k,i = 0.
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So, we deduce that

ψ
(n)
i+1,i = −

Mn[i+ 1, i]ψ
(n)
i,i

Mn[i+ 1, i+ 1]
,

ψ
(n)
i+1,i = −

(
i+1
i−1

)
ψ
(n)
i,i(

i+1
i

) .

Finally, we obtain

ψ
(n)
i+1,i =

1

2
.

□

Property 11.6. For every (m, p) ∈ N2, such that 2 ≤ m, and 2m+p ≤
n, we have

ψ
(n)
2m+p,1+p = 0.

In particular, for every 2 ≤ m ≤ n
2 , we get

ψ
(n)
n,n−2m+1 = 0.

Proof. We can see the demonstration in the following. □

Property 11.7. For every 1 ≤ m ≤ n− 1, we have

ψ(n)
m,mψ

(n)
m+1,m−1 =

1

12
.

Then,

ψ
(n)
m+1,m−1 =

−m
12

.

Proof. We have ψ(n)Mn = In. Then,

n∑
k=1

ψ
(n)
i,kMn[k, j] = δij .

In particular,

n∑
k=1

ψ
(n)
m+1,kMn[k,m− 1] = δm+1,m−1.

Then,
m+1∑

k=m−1

ψ
(n)
m+1,kMn[k,m− 1] = 0,

which implies that

ψ
(n)
m+1,m−1Mn[m−1,m−1]+ψ

(n)
m+1,mMn[m,m−1]+ψ

(n)
m+1,m+1Mn[m+1,m−1] = 0.
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Then,

−(m− 1)ψ
(n)
m+1,m−1 −

m(m− 1)

4
+
m(m− 1)

6
= 0.

Finally, we get

ψ
(n)
m+1,m−1 =

−m
12

.

□
Property 11.8. For every (i, j) ∈ N2 such that 1 ≤ i, j ≤ n, we have

ψ
(n+1)
i,j = ψ

(n)
i,j .

Proof. From the definition of Mn, we have

Mn+1 =

(
Mn 0
Xn −n− 1

)
,

where Xn = −
((

n+1
0

)
,
(
n+1
1

)
, . . . ,

(
n+1
n−1

))
. To prove ψ

(n+1)
i,j = ψ

(n)
i,j , it is

sufficient to show that there exists a row vector Yn such that

ψ(n+1) =

(
ψ(n) 0
Yn

−1
n+1

)
.

On the other hand, we have

Mn+1ψ
(n+1) = In+1,

then, (
Mn 0
Xn −n− 1

)(
ψ(n) 0
Yn

−1
n+1

)
= In+1,

which implies that,(
Mnψ

(n) 0

Xnψ
(n) − (n+ 1)Yn 1

)
= In+1.

Finally, we deduce that Xnψ
(n) − (n + 1)Yn = 0. Then, we can choose

Yn as the form Yn =
Xnψ

(n)

n+ 1
, and we get

ψ(n+1) =

 ψ(n) 0
1

n+ 1
Xnψn − 1

n+1

 .

Finally, we deduce that ψ
(n+1)

i,j = ψ
(n)
i,j , for every 1 ≤ i, j ≤ n.

□
Remark 11.9. From Property 11.8, we deduce that ψ

(i)
i,j = ψ

(n)
i,j , for

every 1 ≤ i, j ≤ n. We set ψ
(n)
i,j = ψi,j .
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Property 11.10. For every 1 < i ≤ n, we have

n∑
k=1

ψi,k = 0,

n∑
k=1

ψ1,k = −1.

Then,

n∑
i=1

Ci = C1 + C2 + · · ·+ Cn =


−1
0
...
0

 ,

where C1, C2, . . . , Cn are the column vectors of the matrix ψ(n).

Proof. We know that ψnMn = In, then
n∑
k=1

ψn[i, k]Mn[k, 1] = δi1.

So, we deduce that

n∑
k=1

ψ1,kMn[k, 1] = 1,

n∑
k=1

ψi,kMn[k, 1] = 0, if i ̸= 1.

Then, 

n∑
k=1

ψ1,k = −1,

n∑
k=1

ψi,k = 0, if i ̸= 1.

□

Property 11.11. For every 1 ≤ i ≤ n, we have

n∑
k=1

(−1)kψi,k = (−1)i+1,

which implies,

n∑
i=1

(−1)i−1Ci = C1 − C2 + · · ·+ (−1)n−1Cn =


−1
1
...

(−1)n

 ,

where C1, C2, . . . , Cn are the column vectors of the matrix ψ(n).
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Proof. From Example 10.27, we have

lim
exact

n∑
k=1

−1

k(k + 1)
=

−1

1 + δ
.

Then lim
exact

n∑
k=1

g(
1

k
) = f̃(δ) for g(z) =

−z2

1 + z
=

+∞∑
k=2

(−1)kzk and we have

f̃(z) =
−1

1 + z
=

+∞∑
k=0

(−1)k+1zk.

By using Property 11.12, we deduce that
1
−1
1
...

(−1)n+1

 = ψ(n)


−1
1
−1
...

(−1)n

 ,

finally, we deduce that

n∑
k=1

(−1)kψi,k = (−1)i+1.

□

Property 11.12. Let g be a metalic function such that g(z) =
+∞∑
k=0

βkz
k

on a neighborhood of 0. Assume that the series
n∑
k=1

g( 1k ) is conver-

gent and admits the exact limit. Then, there exist a holomorphic func-

tion f̃ on a neighborhood of 0 and a real sequence (αn)n≥0 such that

lim
exact

n∑
k=1

g

(
1

k

)
= f̃(δ) and f̃(z) =

+∞∑
k=0

αkz
k on a neighborhood of 0. The

real sequence (αn)n≥0 is given by

α0 =
+∞∑
k=1

g

(
1

k

)
,


α1

α2

α3
...

αn−1

 = ψ(n−1)


β2
β3
β4
...
βn

 ,

and we have β0 = β1 = 0.
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Example 11.13. We have

(n = 2) ψ(2) =

(
−1 0
1/2 −1/2

)
,

(n = 3) ψ(3) =

 −1 0 0
1/2 −1/2 0
−1/6 1/2 −1/3

 ,

(n = 5) ψ(5) =


−1 0 0 0 0
1/2 −1/2 0 0 0
−1/6 1/2 −1/3 0 0
0 −1/4 1/2 −1/4 0

1/30 0 −1/3 1/2 −1/5

 ,

(n = 8) ψ(8) =



−1 0 0 0 0 0 0 0
1/2 −1/2 0 0 0 0 0 0
−1/6 1/2 −1/3 0 0 0 0 0
0 −1/4 1/2 −1/4 0 0 0 0

1/30 0 −1/3 1/2 −1/5 0 0 0
0 1/12 0 −5/12 1/2 −1/6 0 0

−1/42 0 1/6 0 −1/2 1/2 −1/7 0
0 −1/12 0 7/24 0 −7/12 1/2 −1/8


.

Finally, for (n = 11), ψ(11) is given by



−1 0 0 0 0 0 0 0 0 0 0
1/2 −1/2 0 0 0 0 0 0 0 0 0
−1/6 1/2 −1/3 0 0 0 0 0 0 0 0

0 −1/4 1/2 −1/4 0 0 0 0 0 0 0
1/30 0 −1/3 1/2 −1/5 0 0 0 0 0 0
0 1/12 0 −5/12 1/2 −1/6 0 0 0 0 0

−1/42 0 1/6 0 −1/2 1/2 −1/7 0 0 0 0
0 −1/12 0 7/24 0 −7/12 1/2 −1/8 0 0 0

1/30 0 −2/9 0 7/15 0 −2/3 1/2 −1/9 0 0
0 3/20 0 −1/2 0 7/10 0 −3/4 1/2 −1/10 0

−5/66 0 1/2 0 −1 0 1 0 −5/6 1/2 −1/11


.

Theorem 11.14. (Calculation of the coefficients of (ψi,j) by induction)
For every 1 ≤ j ≤ n, we have

ψn+1,j =
Xn

n+ 1


ψ1,j

ψ2,j
...

ψn,j

 ,

where Xn = −
((

n+1
0

)
,
(
n+1
1

)
, . . . ,

(
n+1
n−1

))
, and we have ψn+1,n+1 =

−1

n+ 1
.
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Proof. There exists a row vector Yn = (y1, y2, . . . , yn), such that

ψ(n+1) =

(
ψ(n) 0
Yn − 1

n+1

)
.

On the other hand, Yn = Xnψ(n)

n+1 , then

yj = ψn+1,j = Ynej =
Xn

n+ 1
ψ(n)ej =

Xn

n+ 1


ψ1,j

ψ2,j
...

ψn,j

 ,

where (e1, e2, . . . , en) is the canonical base of Rn.
□

Remark 11.15. For every n ≥ 1, we have

Xn = (0, Xn−1) + (Xn−1,−n).

11.3. The Relationship Between ψi,j and the Bernoulli Num-
bers. The Bernoulli numbers are defined as

B0 = 1,
B0 + 2B1 = 0,
B0 + 3B1 + 3B2 = 0,
B0 + 4B1 + 6B2 + 4B3 = 0,
...
B0 +

(
n
1

)
B1 + · · ·+

(
n
n−1

)
Bn−1 = 0.

Then,

Mn


B0

B1
...

Bn−1

 =


−1
0
...
0

 .

So, we deduce that

ψ(n)


−1
0
...
0

 =


B0

B1
...

Bn−1

 .

Finally, we get the following result.

Property 11.16. For every natural number k ≥ 1, we have

ψk,1 = −Bk−1.
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Then, the first column of ψ(n) is given by
ψ1,1

ψ2,1
...

ψn,1

 = −


B0

B1
...

Bn−1

 .

Remark 11.17. We deduce from Property 11.6 that ψ2k+2,1 = 0 for
every natural number k ≥ 1, because B2k+1 = 0.

Property 11.18. For every k ∈ N and s ∈ N∗, we have

ψk+s,s = −Bk
k!

k−1∏
i=1

(s+ i).

Proof. Let


0
...
xs
...
xn

 be the sth column of the matrix ψ(n). To find this

column it is sufficient to determine the values of the real numbers (xi)
which verify

−
((

j

0

)
,

(
j

1

)
,

(
j

j − 1

)
, 0, . . . , 0

)


0
...
xs
...
xn

 = δs,j .

On the other hand, we know that B2k+1 = 0 for every natural number
k ≥ 1. To prove ψs+2k+1,s = 0, it is sufficient to show that the above
column has the following form

0
...
xs
xs+1
...
xn


=



0
...

αsB0

αs+1B1
...

αnBn−s


,
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where αs, αs+1, . . . , αn are real numbers. Then

((
j

0

)
,

(
j

1

)
,

(
j

j − 1

)
, 0, . . . , 0

)


0
...

αsB0
...

αnBn−s

 = −δs,j .

If s ̸= j and s > j, then this product is zero. If s < j, we find
αsB0

(
j
s−1

)
+ αs+1B1

(
j
s

)
+ · · ·+ αjBj−s

(
j
j−1

)
= 0.

From Property 11.16, we know that(
j − s+ 1

0

)
B0 +

(
j − s+ 1

1

)
B1 + · · ·+

(
j − s+ 1

j − s

)
Bj−s = 0.

To find the sequence of the real numbers (αi)i≥0, it is sufficient to de-
termine λ ∈ R, such that

αs+kBk

(
j

s+ k − 1

)
= λ

(
j − s+ 1

k

)
Bk, for s+ k ≤ j.

Then,

αs+k = λ

(
j−s+1
k

)(
j

s+k−1

) ,
αs+k =

λ

k!

(s+ k − 1)!(j − s+ 1)!

j!
.

In the case of k = 0, we get

αs = λ
(s− 1)!(j − s+ 1)!

j!
.

Then,

λ =
j!αs

(s− 1)!(j − s+ 1)!
.

On the other hand, we know that B0 = 1, then αs =
−1
s and we get

λ = − j!

s!(j − s+ 1)!
.

We replace λ by its value, and define the real αs+k as

αs+k = −(s+ k − 1)!

s!k!

= − 1

k!
(s+ 1)(s+ 2) · · · (s+ k − 1).

Finally, we deduce that

ψk+s,s = −Bk
k!

(s+ 1)(s+ 2) · · · (s+ k − 1).
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□

Corollary 11.19. For every (l,m) ∈ N2 such that m ≥ 2 and 2m ≤ l,
we have

ψl,l−2m+1 = 0.

Remark 11.20. From the above results, we deduce that the Prop-
erty 11.6 is true, and we can show the following theorem.

Theorem 11.21. The coefficients ψ(n) = (ψi,j)1≤i,j≤n are given by

ψi,j =

{
−(ij)Bi−j

i , if i ≥ j,
0, otherwise.

11.4. The Black Magic Matrix with the Riemann Zeta Func-
tion.

11.4.1. The Radius of Convergence of

+∞∑
k=1

ψk,s−1z
k.

Lemma 11.22. The radius of convergence of the series

+∞∑
k=1

ψk,s−1z
k,

is zero.

Proof. The radius of convergence of the series
+∞∑
k=1

ψk,s−1z
k is given by

1

R
= lim sup

k→+∞

k

√
| ψk,s−1 |.

We have,

ψk,s−1 = − Bk−s+1

(k − s+ 1)!
s(s+ 1)(s+ 2) · · · (k − 1)

= − Bk−s+1

(k − s+ 1)!

(k − 1)!

(s− 1)!
.

For k = 2m+ s− 1, we get

ψ2m+s−1,s−1 = − B2m

(s− 1)!

(2m+ s− 2)!

(2m)!
.

Since 2m! ∼
√
4πm(2me )2m and | B2m |∼ 4

√
πm(mπe)

2m, then

| B2m |
2m!

∼ 2(
1

2π
)2m.
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So, we deduce that

2m+s−1

√
| B2m |
2m!

∼ 1

2π
.

On the other hand, we have

(2m+ s− 1)! ∼
√

2π(2m+ s− 1)

(
2m+ s− 1

e

)2m+s−1

.

Then,

(2m+ s− 1)!

(s− 1)!
∼
√

2π(2m+ s− 1)

(s− 1)!

(
2m+ s− 1

e

)2m+s−1

.

So, we deduce that

2m+s−1

√
(2m+ s− 1)!

(s− 1)!
∼ (2m+ s− 1)

1
4m+2s−2

(
2m+ s− 1

e

)
,

and

2m+s−1

√
(2m+ s− 1)!

(s− 1)!
∼ e

1
4m+2s−2

ln(2m+s−1)

(
2m+ s− 1

e

)
.

Finally, we get

2m+s−1

√
| ψ2m+s−1,s−1 | ∼

1

2π
e

1
4m+2s−2

ln(2m+s−1)

(
2m+ s− 1

e

)
,

2m+s−1

√
| ψ2m+s−1,s−1 | ∼

m

πe
.

Then lim
m→+∞

2m+s−1

√
| ψ2m+s−1,s−1 | = +∞, which implies that

lim sup
k→+∞

k

√
| ψk,s−1 | = +∞.

So, we deduce that the radius of convergence of the series

+∞∑
k=1

ψk,s−1z
k,

is zero. □

11.4.2. The Riemann Zeta Function. This section is concerned the Euler
zeta series, which is the function

ζ(s) =

+∞∑
n=1

1

ns
,
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where s is a real number greater than 1.
For s ∈ N \ {0, 1}, consider the real function g : x −→ xs, and the series

sN =

N∑
k=1

g

(
1

k

)
.

Theorem 11.23. The series sN =

N∑
k=1

1

ks
does not admit a exact limit.

Proof. We assume that the series (sn) admits the exact limit, then

there exists a holomorphic function f̃ on a neighborhood of 0 such that

f̃
(
1
N

)
= sN from a certain rank.

If f̃(z) =
+∞∑
k=0

αkz
k, then


α1

α2
...
...
αn

 = ψ(n)



0
...
1
0
...
0


= ψ(n)es−1.

Then, 
α1

α2
...
αn

 =


ψ1,s−1

ψ2,s−1
...

ψn,s−1

 ,

and α0 =

+∞∑
k=1

1

ks
= ζ(s). Then,

f̃(z) = ζ(s) +

+∞∑
k=1

ψk,s−1z
k.

Since lim
exact

N∑
n=1

1

ns
= f̃(δ), then,

f̃

(
1

N

)
=

N∑
n=1

1

ns

= ζ(s) +
+∞∑
k=1

ψk,s−1

Nk
,
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from a certain rank N . Then,

ζ(s) =
N∑
n=1

1

ns
−

+∞∑
k=1

ψk,s−1

Nk
.

The above result is not true, since the function f̃ is not holomorphic
on a neighborhood of 0 by Lemma 11.22. Then, we reached to obtain
a contradiction and we deduce that the series (sn) does not admit an
exact limit.

□

11.5. The Twelfth Property of the Matrix ψ(n). From the above

results, the formula ζ(s) =
N∑
n=1

1
ns −

+∞∑
k=1

ψk,s−1

Nk is false, but we can correct

this equality by adding a new term E(M,N, s) which is defined as

E(M,N, s) = ζ(s)−
N∑
n=1

1

ns
+

2M+s−1∑
k=1

ψk,s−1

Nk
.

In fact, we have

ζ(s) =

N∑
n=1

1

ns
−

2M+s−1∑
k=1

ψk,s−1

Nk
+ E(M,N, s),

which implies that

ζ(s) =

N∑
n=1

1

ns
−

2M+s−1∑
k=s−1

ψk,s−1

Nk
+E(M,N, s)

=
N∑
n=1

1

ns
− ψs−1,s−1

N s−1
− ψs,s−1

N s

− ψs+1,s−1

N s+1
−

2M+s−1∑
k=s+2

ψk,s−1

Nk
+ E(M,N, s).

So, we deduce that

ζ(s) =

N∑
n=1

1

ns
+

1

s− 1

1

N s−1
− 1

2

1

N s
−

2M+s−1∑
k=s+1

ψk,s−1

Nk
+E(M,N, s)

=
N−1∑
n=1

1

ns
+

1

s− 1

1

N s−1
+

1

2

1

N s
−

2M+s−1∑
k=s+1

ψk,s−1

Nk
+ E(M,N, s).
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For r = k − s, we obtain

ζ(s) =

N−1∑
n=1

1

ns
+

1

s− 1

1

N s−1
+

1

2

1

N s
−

2M−1∑
r=1

ψr+s,s−1

N r+s
+ E(M,N, s).

Then,

ζ(s) =

N−1∑
n=1

1

ns
+

1

s− 1

1

N s−1
+

1

2

1

N s
+

2M−1∑
r=1

(
r+s
s−1

)
Br+1

(r + s)N r+s
+ E(M,N, s).

On the other hand, we have B2k+1 = 0 for every natural k ≥ 1, then

ζ(s) =
N−1∑
n=1

1

ns
+

1

s− 1

1

Ns−1
+
1

2

1

Ns
+

M∑
m=1

(
2m+s−1

s−1

)
B2m

(2m+ s− 1)N2m+s−1
+E(M,N, s).

So, we get

ζ(s) =

N−1∑
n=1

1

ns
+

1

s− 1

1

Ns−1
+
1

2

1

Ns
+

M∑
m=1

2m−1∏
i=0

(s+i)
B2m

(2m)!N2m+s−1
+E(M,N, s).

Finally, we find the standard Euler-Maclaurin formula [6] applied to
the zeta function ζ(s), where s is a natural number and s ≥ 2. Then we

deduce that the matrix of the black magic ψ(n) has a beautiful twelfth
property which is given as follows.

Property 11.24. By using the black magic matrix, we can represent
the Euler-maclaurin formula as

ζ(s) =
N∑
n=1

1

ns
−
⟨
Cs−1, X̃M,N,s

⟩
+ E(M,N, s),

where

• ⟨., .⟩ is the scalar product ⟨x, y⟩ =
∑
xiyi.

• Cs−1 = ψ(2M+s)es−1 is the (s-1)-th column of the matrix ψ(2M+s).

• X̃M,N,s is the column vector defined as

X̃M,N,s =


1
N
1
N2

...
1

N2M+s

.
Example 11.25. We have
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ζ(2) ζ(3) ζ(5) ζ(9) ζ(11)

ψ(10) =



−1 0 0 0 0 0 0 0 0 0
1/2 −1/2 0 0 0 0 0 0 0 0
−1/6 1/2 −1/3 0 0 0 0 0 0 0
0 −1/4 1/2 −1/4 0 0 0 0 0 0

1/30 0 −1/3 1/2 −1/5 0 0 0 0 0
0 1/12 0 −5/12 1/2 −1/6 0 0 0 0

−1/42 0 1/6 0 −1/2 1/2 −1/7 0 0 0
0 −1/12 0 7/24 0 −7/12 1/2 −1/8 0 0

1/30 0 −2/9 0 7/15 0 −2/3 1/2 −1/9 0
0 3/20 0 −1/2 0 7/10 0 −3/4 1/2 −1/10


.

We have

ζ(s) =

N∑
n=1

1

ns
−

2M+s−1∑
k=1

ψk,s−1

Nk
+ E(M,N, s).

The coefficients of the first column of ψ(10) are

−1, 1/2,−1/6, 0, 1/30, 0,−1/42, 0, 1/30, 0,

then,

ζ(2) =
N∑
n=1

1

n2
+

1

N
− 1

2

1

N2
+
1

6

1

N3
− 1

30

1

N5
+

1

42

1

N7
− 1

30

1

N9
+E(4, N, 2).

Similarly, we deduce the following formulas

ζ(3) =

N∑
n=1

1

n3
+

1

2

1

N2
− 1

2

1

N3
+

1

4

1

N4
− 1

12

1

N6
+

1

12

1

N8
− 3

20

1

N10
+ E(4, N, 3),

ζ(5) =
N∑
n=1

1

n5
+

1

4

1

N4
− 1

2

1

N5
+

5

12

1

N6
− 7

24

1

N8
+

1

2

1

N10
+ E(3, N, 5),

ζ(9) =

N∑
n=1

1

n9
+

1

8

1

N8
− 1

2

1

N9
+

3

4

1

N10
+ E(1, N, 9).

12. The Relationship Between the Hyperreal Numbers and
the Omicran-reals

Let u be an element of ∆, ∗R be the field of hyperreal numbers
and u(δ) be the Omicran defined by the sequence

(
u
(
1
n

))
n≥1

. We use

the symbol
⟨
u(1i )

⟩
to represent the hyperreal defined by the sequence(

u
(
1
n

))
n≥1

.
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The map defined as

ι : O −→ ∗R,
u(δ) 7−→

⟨
u(1i )

⟩
,

is a ring homomorphism. In addition, we have the following results:

• The map ι is injective, in fact, if ι(u(δ)) = 0 then
⟨
u(1i )

⟩
= 0.

We deduce that
{
i : u(1i ) = 0

}
∈ U . Then u(1i ) is zero for an

infinity of indices i. From the properties of u as an element of
∆, we deduce that ũ = 0. Finally u(δ) = 0.

• From the above result, we deduce that the field O is isomorphic
to a subfield of ∗R. More precisely, we have

O ≈ ι(O) ⊆∗ R.
• The total order relation defined on ∗R extends the total order
relation defined on O. In fact,
(i) if u(δ) ≤ v(δ) then there exists n0 such that u(1i ) ≤ v(1i ),

which implies that
{
i : u(1i ) ≤ v(1i )

}
∈ U (because, the

finite sets are not elements of U).
Finally, we deduce that

⟨
u
(
1
i

)⟩
≤
⟨
v
(
1
i

)⟩
.

(ii) conversely, if
⟨
u
(
1
i

)⟩
≤
⟨
v
(
1
i

)⟩
, then

{
i : u(1i ) ≤ v(1i )

}
∈

U . From the properties of the elements of ∆, we deduce
that there exists n0 such that u

(
1
i

)
≤ v

(
1
i

)
for every i ≥

n0. Finally, we get

u(δ) ≤ v(δ) ⇔
{
i : u

(
1

i

)
≤ v

(
1

i

)}
∈ U .

From the above results, we can justify the identification of the field of
Omicran-reals O by a strict subset of the field of hyperreals, and we
deduce that:

“Any property that is true for every hyperreal number is also true for
every Omicran.”

13. Concluding Remark

According to Robinson’s approach, the construction of the hyperreal
numbers is related to the existence of an ultrafilter with special prop-
erties. Within this ultrafilter we can find the element A such that the
cardinal of the set A ∩ {1, 2, . . . , n} is very small compared to the car-
dinal of Ac ∩ {1, 2, . . . , n}, from a certain rank n0. Unfortunately, this
property is not useful enough to obtain an effective approach in practice.
In this work, we have proposed an explicit approach without using the
ultrafilters and without adding any axiom. We have come up with new
notions used to obtain more applications thanks to this new method.
Finally, we believe that the new method becomes more usable for many
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researchers in all fields of mathematics not only for the specialists in
model theory and mathematical logic.
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