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Abstract

In this paper we propose a new approach to nonstandard analysis without using the ultrafilters,

this method is very simple in practice. Moreover, we construct explicitly the total order relation in

the new field of the infinitesimal numbers. To illustrate the importance of this work, we suggest a

few applications of the new approach, and we propose to compare it with the previous methods.

1 Introduction

In 1961 Abraham Robinson [1] showed how infinitely large and infinitesimal numbers can be rigorously

defined and used to develop the field of non-standard analysis. To understand his theory nonconstruc-

tively, it’s necessary to use the essential proprieties given by the model theory and mathematical logic.

After the birth of this new theory, more mathematicians have found the important applications [5, 3]

of the nonstandard analysis in physic [2, 4, 6] , numerical analysis and variational methods.

In 1977 a new axiomatic representation of hyperreals is given by Edward Nelson [7], in the sense to

simplify the Robinson’s method, he proposed to add three axioms on the set theory and obtained a new

theory called internal set theory [7, 13].

Another axiomatic method was published in 2003, this method called Alpha-theory [10] is simple

compared to that of Nelson. Despite that, we thinks that we are obliged to answer a few questions about

its effectiveness in practice as an axiomatic approach.

From the construction of Robinson we can see every hyperreal as an element of RN modulo a maximal

ideal M, the ideal M is defined with a non principal ultrafilter U , the existence of U is proved by the axiom

of choice, by using the ultrafilter U we define the order relation in the field of hyperreals. Unfortunately,

we can’t determine exactly this order relation because the ultrafilter is unknown.

Our aims in this article is to give a new field which contains the infinite and infinitesimal numbers

without using the properties of model theory, without using the ultrafilters and without adding the new

axioms to ZFC (Zermelo-Frankel+Axiom of choice). To be or not to be a specialist in mathematical

logic, is not very important to understand this new theory, only the classical results of analysis and the

properties of the analytic functions are sufficient in construction. The new approach is very simple and

we can determine precisely the order relation defined on the new field.

In this article, we propose to present the plan as follow:

Firstly, we begin by some notions to define the infinite and infinitesimal numbers, after we propose to

present the previous approaches (Robinson’s approach, Internal Set Theory and Alpha-Theory). To give

the criticism of the classical approaches, we find in section 8 some examples to prove that the choice of

the ring R
N in construction of the hyperreal numbers is too broad to be effective in practice. For example,

we propose the example of an hyperreal which can be equal to zero, but it is impossible to determine his

value. In the section 9, we begin the proposed method by the construction of a proper subset ∆ of RN,

this new set is a unitary ring of RN. By using a maximal ideal of ∆, we obtain a new field called the field
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of Omicran-reals which is a totally ordered field and a extension of the set of real numbers R.

To illustrate the importance of the new approach, we propose some applications as:

• For the logarithmic function: We prove the following equalities for every real x > 0:

ln(x) = lim
α→0

xα − 1

α
,

while x 6= 1, we obtain:

x− 1

ln(x)
= lim

n→+∞
1

n

n−1∑

k=0

x
k
n .

• Prime numbers: Let P be the set of prime numbers. As x→ +∞, we get

π(x) ∼ 1

x
1
x − 1

,

where π(x) = #{p ≤ x : p ∈ P}.
In addition, we can prove that:

pn ∼ n2( n
√
n− 1), while n→ +∞,

where (pn) is the sequence of the prime numbers.

• The length of a curve: We define the length of the arc ÃB and we determine the conditions of

rectifiability from the new approach. We calculate easily the length, and we obtain:

l(ÃB) =

∫ b

a

√
1 + f ′2(x)dx,

where l(ÃB) is the length of the arc defined by the curve of the function f between A(a, f(a))
and B(b, f(b)).

• We calculate the limit by using a new notion called the exact limit.

• We calculate the finite sum by using the exact limit of a series.

• To calculate the exact limit of a series we define a new matrix called the black magic matrix, this

beautiful matrix admits twelve magical properties and we can determine the Bernoulli numbers by

using it.

• We can obtain the standard Euler-Maclaurin formula applied to the zeta function ζ(s) by using the

coefficients of the above matrix.

Finally, we determine in the last section of this paper the relationship between the hyperreal numbers and

the Omicran-reals, and we prove that Any property that is true for every hyperreal number is also true

for every Omicran.

2 Preliminary results

In this section, we find a few definitions and results that are applied in this work.

1. The binomial coefficient is defined as:

(
n

k

)
=

n!

k!(n − k)!
.
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2. The Bernoulli numbers are given below:





B0 = 1
B0 + 2B1 = 0
B0 + 3B1 + 3B2 = 0
B0 + 4B1 + 6B2 + 4B3 = 0
...

...
...

B0 +
(n
1

)
B1 + ....+

( n
n−1

)
Bn−1 = 0

We can verify that B2k+1 = 0, for every natural k ≥ 1.

3. Stirling’s formula:

n! ∼
√
2πn(

n

e
)n.

4. An important result of the Stirling’s formula is given by :

| B2n |∼ 4
√
πn(

n

πe
)2n.

5. The standard Euler-Maclaurin formula [9] applied to x→ x−s is given by:

ζ(s) =

N−1∑

n=1

1

ns
+

1

2N s
+
N1−s

s− 1
+

M∑

k=1

Tk,N(s) +E(M,N, s),

where

Tk,N (s) =
B2k

(2k)!
N1−s−2k

2k−2∏

j=0

(s+ j),

ζ is the Riemann zeta function defined as ζ(s) =
∑+∞

k=1
1
ks , and s ∈ C.

If σ = ℜ(s) > −2M − 1 the error is bounded [9] as:

| E(M,N, s) |≤| s+ 2M + 1

σ + 2M + 1
TM+1,N (s) | .

6. Let H(D(0, ε)) be the set of the holomorphic functions on the disk D(0, ε).
We can prove the following theorems [8]:

Theorem 1. If h is a holomorphic function on the disk D(0, ε), and h(0) = 0 then: h(z) = zkg(z)
on a neighborhood of 0, where k is a non-zero integer, and g ∈ H(D(0, ε)) and g(0) 6= 0.

Theorem 2. The zeros of a nonconstant analytic function are isolated.

3 The infinite and infinitesimal numbers

Definition 1. We define the following assertions:

(i) A totally ordered set (E,�) is called a ordered R−extension if

{
R ⊆ E ;

x � y ⇔ x ≤ y ∀(x, y) ∈ R
2.
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(ii) In addition if (E,+) is a commutative group, we consider |α| = max(α,−α) =
{
α, when − α � α,
−α, when α � −α.

(iii) We note x ≺ y while: x � y and x 6= y.

(iv) Let the set IE be defined as follows IE = {α ∈ E / 0 ≺| α |≺ ε ∀ε ∈ R
+∗}.

IE is a set of infinitesimals.

Remark 1. If it has not ambiguity we replace the symbol � by ≤ , and ≺ by <.

To construct the new extension of R which contains the infinite and infinitesimal numbers, it’s suffi-

cient to prove the following theorem:

Theorem 3. There exist a extension field (E,+, .) of (R,+, .), and partial order ≤ such that:

(E,≤) is a order R−extension and IE 6= ∅.

Remark 2. An element δ of IE 6= ∅ is called infinitesimal.

Notation. N = {1, 2, 3, ....}.

4 Previous methods

4.1 Robinson’s approach

From the works of Abraham Robinson, we know that the heuristic idea of infinite and infinitesimal num-

bers has obtained a formal rigor, he proved that the field of real numbers R can be considered as a proper

subset of a new field, ∗
R, which is called field of hyperreal [1] numbers and contains the infinite and

infinitesimal numbers. From the approach of Robinson we can represent every hyperreal by a sequence

of RN modulo a maximal ideal I , this ideal is defined by using an ultrafilter U . Unfortunately, the Ultra-

filter U and the order relation defined on ∗
R are unknown, only the existence can be proved by the axiom

of choice.

4.2 Nelson’s approach

In 1977, Edward Nelson expands the language of set theory by adding a new basic predicate st(x). We

obtain a new axiomatic representation of the nonstandard analysis by using the above predicate. To

explain the behavior of this unary predicate symbol st(x), Nelson proposes to add three axioms [7]:

(a) Idealization. (I)

(b) Standarization. (S)

(c) Transfer principle.(T)

4.3 Alpha-theory

This axiomatic approach published in 2003 is based on the existence of a new element called α. In this

method, we need five axioms to justify the behavior of this new mathematical object. In the following

section, we restart by the construction of the hyperreals, then, we propose to study the previous axiomatic

approaches.
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5 Construction of the hyperreal numbers

Let I be a nonempty set, and P(I) the power set of I .

Definition 2. An ultrafilter U is a proper subset of P(I), such that:

(i) Intersections: if A,B ∈ U , then A ∩B ∈ U .

(ii) Supersets: if A ⊆ B ⊆ I , then B ∈ U .

(iii) For any A ⊆ I , either A ∈ U or Ac ∈ U .

Example 1. 1. F i = {A ⊆ I : i ∈ A} is an ultrafilter, called the principal ultrafilter generated by i.

2. Fco = {A ⊆ I : I −A is finite} is the cofinite (or Frchet), filter on I . Fco is not an ultrafilter.

To construct the field of hyperreal numbers, we use the unitary ring R
N as follow:

(a) R ⊆ R
N: We can identify every sequence u = (l, l, .., l, ...) by the real number l.

(b) We define in R
N the total order relation ≤ by:

u = (u1, u2, .., un, ...) ≤ v = (v1, v2, .., vn, ...) ⇐⇒ {i : ui ≤ vi} ∈ U ,

where U is a nonprincipal ultrafilter of N.

To show the existence of the above ultrafilter, we use the axiom of choice.

(c) (RN,+, .) is a commutative ring with unity (1, 1, .., 1, ..), but it is not a field, since

(1, 0, 1, 0, ....)(0, 1, 0, 1, ...) = 0RN .

We construct the field of hyperreal numbers by using the following maximal ideal [1, 12] of RN:

I = {u ∈ R
N : {i : ui = 0} ∈ U}.

Finally, we deduce that the new field of the hyperreal numbers is given by: ∗
R = R

N/I .

Notation. For every hyperreal u defined by the sequence (ui), we note:

u =< u1, u2, ..., un, ... >, or u =< ui > .

(d) We can verify that the hyperreal δ =< 1, 12 ,
1
3 , ... > is infinitesimal.

6 Internal Set Theory

From the new theory called Internal Set Theory, Nelson’s view is different from that of Robinson. In fact,

in IST, we can find in the set of real numbers noted ∗
R the infinite and infinitesimal numbers. In addition,

the classical families of real numbers R = {st(x), x ∈ ∗
R} and natural numbers N = {st(x), x ∈ ∗

N}
are not sets in IST. To clarify this point, we propose to study the properties of a setA by using the axioms

added by Nelson. We start by the following abbreviations:

∀stx for ∀x(x standard) ⇒,∃stx for ∃x(x standard) ∧ .
We call a formula of IST internal in case it does not involve the new predicate ”standard”, otherwise

we call it external.

A set x is finite if there is no bijection of x with a proper subset of itself.

In IST, the three axioms of Nelson are defined as:
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(i) Transfer: If φ(x, u1, ..., un) is an internal formula with no other free variables than those indi-

cated, then:

∀stu1, ...,∀stun(∀stxφ(x, u1, ..., un) → ∀xφ(x, u1, ..., un)).

(ii) Idealization: For any internal formula B whose free variables include x and y

∀stz(z is finite→ ∃y∀x ∈ zB(x, y)) ↔ ∃y∀stxB(x, y).

(iii) Standarization: For every standard formula F (z) (internal or external), we have:

∀stx∃sty∀stz[z ∈ y ↔ z ∈ x ∧ F (z)].

Suppose that there exists a unique x such that A(x), where A(x) is an internal formula whose only

free variable is x. Then that x must be standard, since by transfer ∃xA(x) ⇒ ∃stxA(x). For example,

the set ∗
N of all natural numbers, the set ∗

R of all real numbers, the empty set ∅, the real number 0, 1,√
π, ... are all standard sets.

Theorem 4. Let X be a set. Then every element of X is standard if and only if X is a standard finite set.

Proof. We can apply the idealization principle for B(x, y) = [y ∈ X ∧ x 6= y] (see [7, 13] for more

details).

Corollary 1. Every infinite set has a nonstandard element.

Remark 3. From the above corollary, we deduce that there exists a nonstandard natural number ω.

Theorem 5. There is a finite set F such that for all standard x we have x ∈ F .

Proof. Just apply (I) to the formula x ∈ y ∧ y is finite (see [7, 13]).

Theorem 6. Let X be a nonempty set. If X is a standard set, then it admits a standard element.

Proof. Another version of the transfer principle is giving by:

∃xφ(x) → ∃stxφ(x),

where φ is an internal formula. We apply this version for x ∈ X.

Definition 3. 1. Elements of the ultrapower [11] of P(R) are the equivalence classes of sequences

(Ai) ∈ P(R)N, where the sequences (Ai) and (Bi) are defined to be equivalent if and only if we

have {i ∈ N : Ai = Bi} ∈ U .

2. We note< Ai > the equivalence class of (Ai). We define the relation ∗ ∈ between x =< xi >∈∗
R

and < Ai > by:

x∗ ∈< Ai >⇔ {i : xi ∈ Ai} ∈ U .

3. With each equivalence class < Ai > in the ultrapower of P(R) we associate a subset A of ∗
R as

follows:

x ∈ A ⇔ x∗ ∈< Ai > .

4. The subset A of ∗
R associated with the equivalence class < Ai > is called an internal set.
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5. The collection of all internal subsets of ∗
R is denoted ∗P(R).

We note: A =< Ai > for the internal set A defined by the equivalence class < Ai >.

Remark 4. A standard set ∗B is given by the equivalence class < B,B, ..., B, .. >, where B ∈ P(R).

Example 2. (i) ∗[0, 1] =< [0, 1], .., [0, 1], .. >, ∗R =< R,R, ... > and ∗
N are all standard sets, then

internal sets.

(ii) Let ω the infinite number defined as ω =< 1, 2, 3, .... >. The set {ω} =< {i} > is internal but it

is not standard.

(iii) For every integer i ≥ 1 we put Xi = [
1

i+ 1
,
1

i
[, and X =< Xi >.

The above set is internal and infinite, but we can’t find any standard element in X (because there

does not exists a real number x such that {i : x = xi} ∈ U for xi ∈ Xi). From the Corollary 1,

we deduce that the X is not standard.

In other hand, the set X is bounded above by 1, we can check that X has a supremum in ∗
R, and

we have supX =< 1
i >.

Remark 5. • In the collection of the internal sets [7, 13], we find the standard and the nonstandard

sets.

• Every nonempty internal set of hyperreals bounded above has a supremum in ∗
R. In fact, since the

internal set A =< Ai > is bounded above, then there exists M ∈ R such that the set J = {i :
Ai is bounded above by M} ∈ U .

We define s =< si > such that si = sup(Ai) for i ∈ J and si = 1 else. we can check easily that

the s = sup(A).

• We can prove the above result for every element of ∗P(R) by using the transfer principle, but this

property is not true for every family of hyperreals (for example, the set R is bounded above by

every positive infinitely large number L, but it does not have a least upper bound), then we deduce

that the set ∗P(R) is a proper subset of P(∗R). The elements of P(∗R)\∗P(R) are called the

external sets. For example, the sets R, N, the infinite numbers and the infinitesimal numbers are

all external sets.

7 Alpha-theory

This approach is based on the existence of a new mathematical object, namely α. Intuitively, this new

element added to N is considered as a ”very large” natural number.

The use of α is governed by the following five axioms [10].

• α1. Extension Axiom. For every sequence ϕ there is a unique element ϕ[α], called the ”ideal

value of ϕ” or the ”value of ϕ at infinity”.

• α2. Composition Axiom. If ϕ and ψ are sequences and if f is any function such that compositions

f ◦ ϕ and f ◦ ψ make sense, then

ϕ[α] = ψ[α] ⇒ (f ◦ ϕ)[α] = (f ◦ ψ)[α].

• α3. Number Axiom. If cr : n → r is the constant sequence with value r ∈ R, then cr[α] = r. If

1N : n→ n is the identity sequence on N, then 1N[α] = α /∈ N.

• α4. Pair Axiom. For all sequences ϕ, ψ and ϑ:

ϑ(n) = {ϕ(n), ψ(n)} for all n⇒ ϑ[α] = {ϕ[α], ψ[α]}.
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• α5. Internal Set Axiom. If ψ is a sequence of atoms, then ψ[α] is an atom. If c∅ : n → ∅ is the

sequence with constant value the empty set, then c∅[α] = ∅. If ψ is a sequence of nonempty sets,

then

ψ[α] = {ϕ[α] / ϕ[n] ∈ ψ[n] for all n}.

Proposition 1. 1. If ϕ(n) = ψ(n) eventually (i.e. for all but finitely many n), then ϕ[α] = ψ[α].

2. If ϕ(n) 6= ψ(n) eventually, then ϕ[α] 6= ψ[α].

Definition 4. Let A be a nonempty set. The star-transform of A is giving by:

A∗ = {ϕ[α] / ϕ : N −→ A}.

In the following proposition, we verify that the star-operator preserves all basic operations of sets

(except the powerset).

Proposition 2. For all A, B, the following hold [10]:

1. A = B ⇔ A∗ = B∗;

2. A ∈ B ⇔ A∗ ∈ B∗;

3. A ⊆ B ⇔ A∗ ⊆ B∗;

4. {A,B}∗ = {A∗, B∗};

5. (A ∪B)∗ = (A∗ ∪B∗);

6. (A ∩B)∗ = (A∗ ∩B∗);

7. (A \B)∗ = (A∗ \B∗);

8. (A×B)∗ = (A∗ ×B∗).

Definition 5. (i) The set of hyperreal numbers is the star-transform R
∗ of the set of real numbers:

R
∗ = {ϕ[α] / ϕ : N −→ R}.

(ii) The set of hypernatural numbers is the star-trasform of the set of natural numbers:

N
∗ = {ϕ[α] / ϕ : N −→ N}.

(iii) We define in R
∗ the following binary relation:

ξ < ζ ⇔ (ξ, ζ) ∈ {(x, y) ∈ R× R / x < y}∗.

Theorem 7. The hyperreal number system (R∗,+, ., 0, 1, <) is an ordered field.

Remark 6. • An example of an infinitesimal is given by 1
α , the ideal value of the sequence ( 1n )n≥1.

Other examples of infinitesimals are the following:

− sin(
1

α
),

α

3 + α2
, log(1− 1

α
).

• For the infinite numbers, we propose the following examples:

α2 + 1, 3 +
√
α, log(7α − 3).
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8 Criticism of the classical approaches to non-standard analysis

In this section we propose some examples, to see clearly the difficulties that can be encountered in

practice by working on the classical approaches of the non-standard analysis. Firstly, we begin by the

study of the Robinson’s approach, afterwards, we proceed to the study of axiomatic approaches. Finally,

we conclude with a small discussion as an introduction to the new approach.

Next, to explain our point of view about the Robinson’s approach, we propose some examples in the

following subsection:

8.1 For Robinson’s approach

• For the infinitesimal number δ =< 1, 12 ,
1
3 , ... >, we can’t imagine intuitively his nature, because

it is defined by the sequence ( 1n)n≥1 modulo the unknown ideal I .

• Let u be a hyperreal number defined as u =< −1, 1,−1, 1, ... >. Despite that the field (∗R,≤) is

totally ordered set, but we can’t determine the sign of u. In other hand, we have two cases:

1. If u ≥ 0, then there exists an element F ∈ U such that: F = {i : ui ≥ 0} = {i : ui = 1}.

In this case, we deduce that the set F ⊆ 2N ∈ U , and we find u = 1.

2. If u ≤ 0, we find 2N+ 1 ∈ U , and u = −1.

Now, to complicate this problem, we put the following question:

Where is the sign of the hyperreal number defined as:

ζ =< sin(1), sin(2), sin(3), .... > .

Since the total order in the hyperreal numbers is not defined explicitly, then we deduce that the

Robinson’s approach is very complicated to give us a simple property as the sign of an element of
∗
R. Moreover, the sign of the hyperreal u which is defined by the sequence (ui) is not sufficient to

know the sign of this sequence at infinity which can be invariant (is not stable from a certain rank).

• Let v the hyperreal defined as:

v =< 1, 101,
1

2
, 1010

2
,
1

3
, 1010

3
, ..,

1

i
, 1010

i

, ... > .

Where is the nature of this number? it is infinite or infinitesimal?

If 2N ∈ U then v is infinite else it is infinitesimal. The determination of the nature of an hyperreal

is not easy and evident in general, we can find other case very complicated than the above example.

In addition, if we put (vi) the sequence which defines the hyperreal v, and w the hyperreal defined

by the sequence (vi+1), then:

w =< 101,
1

2
, 1010

2
,
1

3
, 1010

3
, ..,

1

i
, 1010

i

, .. > .

If 2N ∈ U then v is infinite, and w is infinitesimal. Thus, we can find two hyperreals do not have

the same nature, the first is defined by a sequence (vi), the second by its subsequence (vφ(i)). In the

above example, the translation of the indices of the sequence (ui) which defines the infinitesimal

number < ui >, is sufficient to transform it to an infinite number. This is not well to be effective

in practice, for example, if < ui >= 1, (in general) we can’t know every thing about the value of

the hyperreal v =< u3i+1 >, v can be zero, infinite, infinitesimal number...

Next, we propose an example of an hyperreal number < ui > which can be zero or an integer

1 ≤ i ≤ 9, but it is impossible to determine his value.
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• For every real number x, let (xi) the sequence defined by the decimal representation of x, we have:

x = x1, x2x3x4x5x6....

Let x̃ the hyperreal defined as: x̃ =< xi >. For the number π, we get:

π = 3.1415926535897932385...

Then, π̃ =< 3, 1, 4, 1, 5, 9, 2, 6, 5, 3, .... >. We attempt to determine the value of this hyperreal,

for that, we propose to prove the following lemma:

Lemma 1. Let A be a finite subset of R.

For every element u = (ui) of AN, the hyperreal number < ui > is an element of A.

Proof. We put A = {a1, a2, ..., an}, and Fx = {i : ui = x} for every x ∈ A.

Let U the ultrafilter defined in Robinson’s approach.

If there exists 1 ≤ i0 ≤ n− 1 such that Fai0 ∈ U .

Then, < ui >= ai0 , else F ca1 , F
c
a2 , ..., F

c
an−1

∈ U .

Then: F ca1 ∩ F ca2 ∩ ... ∩ F can−1
∈ U .

We deduce that: (Fa1 ∪ Fa2 ∪ ... ∪ Fan−1)
c = Fan ∈ U .

Which implies that < ui >= an.

From the above lemma, we deduce that π̃ ∈ {0, 1, 2, .., 9} (then can be non invertible). Unfortunately,

we haven’t any way to determine his value. Let x be the natural number in {0, 1, 2, .., 9} such that π̃ = x.

Consider the hyperreal α̃ =< αi > defined as:

αi =

{ 1
i , when x = πi;

1010
i

else.

The nature of the number α̃ is not compatible with the behavior of the sequence used to define it. In

fact, the values taken by the sequence (αi) are very ”large” in an infinity of indices. The set {i : αi = 1
i }

is very small compared to {i : αi = 1010
i}. Despite that, this number α̃ is infinitesimal. In addition, we

do not have any rule to determine in general the set of indices i that gives us the nature of an hyperreal

< ui >.

8.2 For Nelson’s approach and Alpha-Theory

Despite the importance of the axiomatic methods, which allows us to give and explain rigorously the

behavior of each new defined notion, but in practice, is not very effective, especially if the notions

of the proposed theory are not defined explicitly. In this paper we propose a constructive approach to

nonstandard analysis without adding any axiom, only the properties of the classical analysis are sufficient

to construct the new field. In addition, we define an explicit total order relation in the new set called the

field of Omicran-reals.

8.3 Discussion

Abraham Robinson succeeded to show the existence of a total order relation on R
N, but the explicit

determination of this relation is very difficult. The judgment of the scientific work of Robinson begins

with the study of the choice of the R
N. To find or not to find an explicit total order is another question

that can be asked after the determination of the initial set in construction. Now, the question we might

ask is the following: why we need the ring R
N to define the field of nonstandard analysis? From the

incompatibility between his nature and the behavior of the sequence which defined it, the hyperreal like

10



α̃, π̃, < 1,−1, 1, .. >, or < sin(1), sin(2), ... > does not matter in practice, then, the choice of the ring

R
N is too broad to be effective. In the following section, we attempt to give the answer of the following

question: can we construct the field of the infinitesimal numbers by using a proper subset of RN with an

explicit total order?

9 The proposed method

9.1 The metalic map

Let D(0, 1) (resp.D′(0, 1)) the open (resp.closed ) disk of radius 1 and center 0.

Definition 6. Let u be a map from ]0, 1] to R, such that:

(i) There exists a map ũ is defined on D′(0, 1), and holomorphic in a neighborhood of 0.

(ii) There exists ε > 0, such that ∀x ∈]0, ε[ we have: ũ(x) = u(x).

The u is called a metalic map, and ũ is a metalic extension of u.

Example 3. If f is defined in an interval ]0, 1] as: f(x) =

{
2x+ 1 when x ∈]ε, 1],
1− 3x2 when x ∈]0, ε]

then a metalic extension f̃ is given by: f̃(z) = 1− 3z2 in the disk D
′

(0, 1).

Remark 7. If u is metalic, then the two metalics extension ũ and û of u are identic in a disk D(0, ε)
from the theorem 2.

Definition 7. We note ∆1 = { u, u is a metalic map }, and we have the following definitions:

• ∆1(
1
n) = { u( 1n)n≥1 , u is a metalic map }.

• H0 = the set of maps ũ defined on the disk D′(0, 1) and holomorphic in a neighborhood of 0.

• (H0,+) is a commutative group, let O0 be a subgroup of H0 containing the maps defined on the

disk D′(0, 1) and are zero in a neighborhood of 0.

• Let θ0 be a map defined as :

θ0 :
∆1(

1
n ) −→ H0/O0

u( 1n)n≥1 −→ C(ũ)

which C(ũ) is the equivalence class of ũ modulo O0. The map θ0 is a well-defined from the unicity

of C(ũ).

• We consider the surjective map θ1 defined as:

θ1 :
∆1(

1
n) −→ θ0(∆1(

1
n))

u( 1n)n≥1 −→ C(ũ)

and the set: ∆1(
1
n) = { θ−1

1 (C(ũ)) , C(ũ) ∈ θ0(∆1(
1
n)) }.

• We define on the set ∆1(
1
n) the following equivalence relation ∼:

u(
1

n
)n≥1 ∼ v(

1

n
)n≥1 ⇐⇒ ∃n0, ∀n ≥ n0 , u(

1

n
) = v(

1

n
).

• u( 1n)n≥1 is the equivalence class of u( 1n)n≥1 modulo ∼.

11



Remark 8. 1. We can check the equality: u( 1n)n≥1 = θ−1
1 (C(ũ)).

Then :

∆1(
1

n
) =

{
u(

1

n
)n≥1, u ∈ ∆1

}
.

2. The sets ∆1 and ∆1(
1
n) are commutative groups.

3. The map defined as:

θ1 :
∆1(

1
n) −→ E1 = θ0(∆1(

1
n))

u( 1n)n≥1 −→ C(ũ)

is an isomorphism between two groups.

Definition 8. • A2 =
{

1
u , u ∈ ∆1 ∀x ∈]0, 1] u(x) 6= 0 and limu( 1n) = 0

}
.

• ∆2 =
{
v / v :]0, 1] −→ R, there exists 1/u ∈ A2 and ε > 0 such that v/]0,ε] = ( 1u )/]0,ε]

}
.

• ∆2(
1
n) =

{
(v(

1

n
))n≥1, v ∈ ∆2

}
.

9.2 Construction of a unitary ring

Lemma 2. Let ∆ = ∆1 ∪∆2, (∆,+, .) is a unitary ring.

Proof.

• The stability of the sum: The set ∆ is non-empty set, because ∆1 6= ∅ and R ⊆ ∆1 (we identify

the constant functions by the real numbers ). Show that: ∀g ∈ ∆, and h ∈ ∆ then g + h ∈ ∆.

First case : If (g, h) = (u, v) ∈ ∆2
1, we verify that the function s = f + g is matalic map, and:

s̃ = ũ+ ṽ.

Second case : If (g, h) ∈ ∆2
2, there exists (u, v) ∈ ∆2

1 such that lim u( 1n) = lim v( 1n) = 0 and

u(x)v(x) 6= 0 for every x ∈]0, ε], for ε > 0 small enough, in addition: g/]0,ε] = 1
u/]0,ε]

and

h/]0,ε] =
1
v /]0,ε]

.

Since ũ and ṽ are holomorphic functions on a neighborhood of 0, there exists (m,n, l) ∈ N
3 such

that:

ũ(z) = znb1(z), ṽ(z) = zmb2(z) and ũ(z) + ṽ(z) = zlb3(z),
where b1, b2, b3 are 3 holomorphic functions on a neighborhood of 0, such that: b1(0)b2(0)b3(0) 6=
0.

Let :

ψ(x) =
u(x)v(x)

u(x) + v(x)
.

The map g + h is defined in the interval ]0, 1], for ε > 0 small enough, and b1(z)b2(z)b3(z) 6= 0

in the disk D(0, ε), we have : g(x) + h(x) = 1
u(x) +

1
v(x) = 1

ψ(x) = xl−m−n b3(x)
b1(x)b2(x)

, for every

x ∈]0, ε].

XIf l − m − n ≥ 0, The map defined as φ̃(z) =

{
zl−m−n b3(z)

b1(z)b2(z)
in D(0, ε)

1 if not
is a met-

alic extension of g + h, then g + h is a element of ∆1.

XIf m + n − l < 0, the map defined as: ψ̃(z) =

{
zm+n−l b1(z)b2(z)

b3(z)
in D(0, ε)

1 if not
is a metalic

extension of ψ, in addition limψ( 1n ) = 0, we deduce that the g + h is an element of ∆2.
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Third case: If (g, h) ∈ ∆1 ×∆2, there exists (u, v) ∈ ∆2
1, such that : g = u , h/]0,ε] =

1
v /]0,ε]

,

lim v(
1

n
) = 0.

Let k(z) =
ṽ(z)

ũ(z)ṽ(z) + 1
.

Since ṽ(0) = 0, we have k(0) = 0, and k is a holomorphic function in a disk D(0, ε), for ε > 0
small enough.

The map k is nonzero and holomorphic at z = 0, we can choose the ε so that k(x) 6= 0 for every

x ∈]0, ε].
Let φ the function defined in ]0, 1] as:

φ(x) =

{
k(x) if x ∈]0, ε]
1 if not

.

We verify that: g + h/]0,ε] = (
1

φ
)/]0,ε], φ ∈ ∆1 then g + h ∈ ∆2 ⊂ ∆.

Finally, we deduce that (∆,+) is a commutative group.

• Now, we can show the stability of the law (.) in ∆, for that, we distinguish tree cases:

1. We can easily verify that the product of two metalic functions is a metalic function.

( if g ∈ ∆1 and h ∈ ∆1 then gh ∈ ∆1 ⊆ ∆ )

2. In this case, we assume that g ∈ ∆1 and h ∈ ∆2, we can show that gh ∈ ∆, in fact, there

exists (u, v) ∈ ∆2
1, such that: g = u, h/]0,ε] =

1
v /]0,ε]

, lim v(
1

n
) = 0.

- if limu( 1n) 6= 0, then ṽ
ũ is holomorphic in the diskD(0, ε), which implies that:

u

v
∈ ∆2 ⊆ ∆.

- if lim u( 1n) = 0, then lim ũ( 1n ) = 0 and ũ(0) = 0, we deduce that: ũ(z) = zkb1(z) in

D(0, ε), and ṽ(z) = zk
′

b2(z), where bi(z) ∈ H(D(0, ε)), for i ∈ {0, 1} and bi(0) 6= 0.

We get:
ũ(z)

ṽ(z)
= zk−k

′ b1(z)

b2(z)

-First case : if k = k
′

then the function ũ
ṽ is holomorphic in D(0, ε), which implies that

u
v ∈ ∆1.

-Second case : if k > k
′

then limz→0
ũ
ṽ (z) = 0, and ũ

ṽ is a holomorphic function in the disk

D(0, ε).

Then: u
v ∈ ∆1.

-Third case : if k < k
′

then limz→0
ṽ
ũ(z) = 0, which implies that uv ∈ ∆2.

3. In the case of g ∈ ∆2 and h ∈ ∆2, we verify easily the stability of the law (.).

Finally, we deduce that (∆,+, .) is a commutative and unitary ring, where the constant func-

tion 1∆ is a multiplicative identity of ∆.

9.3 Construction of the new field

Let I0 the set defined as:

I0 = {u/]0,1] / u ∈ O0 and u(]0, 1]) ⊂ R}
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it is a set of maps defined in ]0, 1], and zero on ]0, ε] ( for 0 < ε ≤ 1 ).

Thus, we have demonstrated the following proposition.

Proposition 3. I0 is a maximal ideal of ∆.

Proof.

• We can prove easily that the I0 is a additive subgroup of ∆.

• I0 is an ideal of ∆. In fact, if θ is an element of I0, then θ/]0,ε[ = 0 for ε > 0. For every u ∈ ∆,

we have (θu)/]0,ε[ = 0 then θu ∈ I0.

• Let I be an ideal of ∆ such that I0 ⊆ I . We assume that this inclusion is strict, then there exists

u ∈ I \ I0. Since u is an element of ∆, we can distinguish two cases:

1. First case u ∈ ∆1: If u admits an infinity of zeros in ]0, ε[ for every ε > 0, then ũ = 0 and

we deduce that u ∈ I0, which is absurd. Then there exists ε > 0 such that u(x) 6= 0 for

every x ∈]0, ε[. Let v be a function defined in ]0, 1] by v(x) = 1
u(x) in ]0, ε[ and v(x) = 1

while ∈ [ε, 1]. We have u(x)v(x) = 1 in ]0, ε[, then 1− uv ∈ I0. Consider i ∈ I0 ⊆ I such

that 1− uv = i.
Then 1 = i+ uv and we deduce that 1 ∈ I which implies that I = ∆.

2. Second case u ∈ ∆2: In this case there exists ε > 0, v ∈ ∆1 such that u(x) = 1
v(x) in ]0, ε[.

Then 1− uv ∈ I0 and we deduce that I = ∆.

From (1) and (2) we deduce that the ideal I0 is an ideal maximal of ∆.

Theorem 8. The ring (∆/I0,+, .) is a field.

Proof. From the above proposition, the ideal I0 is maximal, so we deduce that the ring (∆/I0,+, .)
is a field.

9.4 The field of Omicran-reals

We consider the set defined as ∆( 1n) = { h( 1n )n≥1 , h ∈ ∆ }.

Let ∼ the equivalence relation defined on the set ∆( 1n) as:

g(
1

n
)n≥1 ∼ h(

1

n
)n≥1 ⇔ ∃n0 / ∀n ≥ n0, h(

1

n
) = g(

1

n
).

The equivalence class is given by: g( 1n )n≥1 = { h( 1n )n≥1 , for h ∈ ∆ and ∃ n0 ∈ N / ∀ n ≥
n0 , h(

1
n ) = g( 1n ) }.

The map

θ : (∆( 1n),+, .) −→ (∆/I0,+, .)
g( 1n)n≥1 −→ C(g) = g

is well defined, in addition we have:

1. (∆( 1n),+, .) is a field.

2. θ is an isomorphism.

Theorem 9. There exists a set O and a total order ≤ such that:

(i) (O,+, .) is an extension field of (R,+, .).
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(ii) (O,≤) is a ordered R−extension.

(iii) IO 6= ∅.

Proof. The set ∆/I0 is noted ∆0, we replace C(g) = g by g ( if it has not ambiguity ).

From what precedes, we deduce that the map:

θ : (∆( 1n ),+, .) −→ (∆0,+, .)

g( 1n )n≥1 −→ g

is a ring isomorphism.

Let δ be an indeterminate, and O = ∆0(δ) = { g̃(δ) , g ∈ ∆0 }.

If it has not ambiguity, we replace g̃(δ) by g(δ).

The map defined as:

δ∗ : ∆0 −→ O
g −→ g(δ)

is a ring isomorphism.

Then (O,+, .) is a field, in addition, the map ϕ = δ∗ ◦ θ defined as :

ϕ :
(∆( 1n),+, .) −→ (O,+, .)
(g( 1n ))n≥1 −→ g(δ)

is a isomorphim.

• for g = cste = l, we note l = (g( 1n ))n≥1, we identify l by the image of l by ϕ, and we find

ϕ(l) = l. by using the identification, we deduce that: R ⊆ O.

• We can define on O the following relation ≤:

g(δ) ≤ h(δ) if and only if there exists an integer n0, such that: g( 1n ) ≤ h( 1n) for every n ≥ n0.

It is easy to check that ≤ is reflexive, transitive and antisymmetric, then it is a partial order.

• To show that set (O,≤) is ordered R-extension, we must show that relation ≤ is total.

For that we consider g, h ∈ ∆0, we assume that these propositions are true ( not g(δ) ≤ h(δ)) and

( not h(δ) ≤ g(δ)).
Next, we need to find a contradiction.

If the above propositions are true, then: ∀k ∈ N, ∃nk > k and ∃n′

k > k / g( 1
nk

) > h( 1
nk

) and

g( 1

n
′

k

) < h( 1

n
′

k

).

1. We assume that g, h ∈ ∆1. From the Intermediate value theorem we deduce that there exists

βk ∈| 1
nk
, 1

n
′

k

| such that (g − h)(βk) = 0, (we can choose the βk so that the sequence (βk)

is strictly decreasing), then the holomorphic function g̃− h̃ has an infinite number of roots in

neighborhood of 0, from the theorem2, we deduce that the function g̃− h̃ is the zero function,

then g = h, which is absurd.

2. Now, we suppose that g, h ∈ ∆2. There exists (u, v) ∈ ∆2
1, such that:

u/]0,ε] = (1g )/]0,ε] and v/]0,ε] = ( 1h)/]0,ε].
from the above results, we deduce that: u(δ) ≤ v(δ) or v(δ) ≤ u(δ).
which implies that: g(δ) and h(δ) are comparable.

3. In the case of g ∈ ∆1 and h ∈ ∆2. There exists h1 ∈ ∆1 and ε > 0, such that:

h/]0,ε[ = ( 1
h1
)/]0,ε[.

Since h1 is a metalic function, then the sequence (h1(
1
n)) keeps a constant sign from a certain
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rank, in fact:

if it’s not the case, then ∀k ∈ N there exists nk > k et n
′

k > k such that: h1(
1
nk

) > 0 and

h1(
1

n
′

k

) < 0.

From the Intermediate value theorem we deduce that there exists βk ∈| 1
nk
, 1

n
′

k

| and (h1)(βk) =

0, (we can choose the βk such that the sequence (βk) is strictly decreasing), from the theo-

rem2, h1 is the zero function on the neighborhood of 0, which absurd( because we suppose

(h1(
1
n)) does not keep a constant sign from a certain rank)

Finally, we deduce that the sequence (h1(
1
n)) keeps a constant sign, since lim h1(

1
n ) = 0,

then lim 1
h1(

1
n
)

exists, and lim 1
h1(

1
n
)
= ±∞, which implies limh( 1n ) = ±∞.

- if limh( 1n ) = +∞, then g(δ) ≤ h(δ) ( because g( 1n ) ≤ h( 1n ), from a certain rank ).

- if limh( 1n ) = −∞, then h(δ) ≤ g(δ) ( because h( 1n ) ≤ g( 1n ), from a certain rank ).

• Now, it remains to show that: IO 6= ∅.

For that, it is necessary to find a element δ ∈ O which infinitesimal.

for u : x −→ x, we have u ∈ ∆ (more precisely ∆1) and δ = u(δ) = u( 1n)n≥1.

In addition, we have: 0 < δ < ε for every real strictly positive ε, because there exists p ∈ N such

that: 0 < u( 1n) < ε, for every integer n > p. Then δ is infinitesimal.

Conclusions 1. Finally, we deduce that:

(i) (O,+, .) is a extension field of (R,+, .).

(ii) (O,≤) is a ordered R−extension, which contains the infinitesimal element δ.
The field (O,+, .) is called the field of Omicran-reals.

An element of O is called an Omicran (or an Omicran-real).

10 The applications of the field of Omicran-reals

10.1 The exact limit

Proposition 4. The map ϕ defined as :

ϕ :
(∆( 1n),+, .) −→ (O,+, .)
(g( 1n ))n≥1 −→ g(δ)

is isomorphism.

If we want to define a new concept more precise than the limit that allows to give the value taken

by the sequence (f( 1n))n≥1 on ad infinitum, then this concept (called exact limit) is dependent on the

values taken by (f( 1n))n≥1 from a certain rank n0. Intuitively, the equivalence class (f( 1n))n≥1 is a only

concept can give these values independently n0. On other hand, if f is an element of ∆, then we can

identify the equivalence class (f( 1n))n≥1 by f(δ) from the above proposition, so, we deduce that we can

define the new concept as follow:

Definition 9. Let f ∈ ∆.

The Omicran ϕ(f( 1n)n≥1) = f(δ) is called the exact limit of the sequence (f( 1n))n≥1.

We note:

lim
exact

f(
1

n
) = f(δ).
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Remark 9. We remark that lim
exact

= ϕ ◦ s, where s is a canonical surjection defined as:

s :
(∆( 1n),+, .) −→ (∆( 1n ),+, .)

(f( 1n))n≥1 −→ (f( 1n))n≥1

.

Example 4. • lim
exact

1

n
= δ.

• lim
exact

sin(
1

n
) = sin(δ).

• lim
exact

1

n+ 1
=

δ

δ + 1
.

• lim
exact

sin(2πn) = 0, the writing sin(2πδ ) doesn’t make sense, because the function z −→ sin(2πz )

is not element of ∆.

• We can verify that there does not exist an element f ∈ ∆, such that f( 1n) = (−1)n from a certain

rank, then we can’t define the exact limit lim
exact

(−1)n.

• Generally, from the proprieties of the elements of ∆, we can show that if (xn) does not keep a

constant sign from a certain rank, then this sequence not admits a exact limit, for example, if

xn = (−1)n

n , then limxn = 0, but we can’t define the exact limit of (xn).

10.2 The projection of an element of O
Definition 10. Let f be a metalic function, and x ∈ O such that x = f(δ).
If we find an element x∗ ∈ R such that | x − x∗ | ≤ | x − y |, ∀y ∈ R, then the real x∗ is called the

projection of x onto R.

Remark 10. The distance from x to R is dR(x) = infy∈R | x− y |=| x− x∗ |.
Example 5. • δ∗ = 0.

• (
1

δ 2 + 1
)∗ = 1.

Theorem 10. Let f be a metalic function, and x ∈ O / x = f(δ).

The projection x∗ of x onto R exist and unique, in addition, we have: x∗ = lim
n→+∞

f(
1

n
).

Proof. Let x0 = lim f( 1n).
Then: ∀ε > 0 ∃n ≥ n0, | f( 1n)− x0 |≤ ε.
⇔ for every n ≥ n0, we have: −ε ≤ f( 1n)− x0 ≤ ε.

⇔ lim
exact

f(
1

n
)− x0 ≤ ε and −ε ≤ lim

exact
f(

1

n
)− x0.

⇔ f(δ)− x0 ≤ ε and −ε ≤ f(δ)− x0.

⇔ | f(δ)− x0 |≤ ε (1)

Next, we can show that: ∀y ∈ R we have | f(δ)− x0 | ≤ | f(δ)− y |.
If ∃y ∈ R and | f(δ)− y | ≤ | f(δ)− x0 |≤ ε ( ∀ε ∈ R

+ )

Then, we deduce that | y − x0 | ≤ 2ε ( ∀ε ∈ R
+ )

Then y = x0 = x∗.

Finally, we deduce the existence and the unicity of x∗ ∈ R such that:

∀y ∈ R , | f(δ)− x∗ | ≤ | f(δ)− y | .

In addition x∗ = lim f( 1n).
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Theorem 11. Let f be a metalic map, and x = f(δ).
Then for every real ε > 0 we have:

| x− x∗ |≤ ε

x∗ is a unique element of R which verify this property.

Proof. For every n ≥ n0 we have:

| f( 1
n
)− x∗ | ≤ ε,

then ∀n ≥ n0 :

x∗ − ε ≤ f(
1

n
) ≤ x∗ + ε,

which implies:

x∗ − ε ≤ f(δ) ≤ x∗ + ε.

We deduce that:

| x− x∗ |≤ ε.

To show the unicity of x∗, we assume that there exists an other element y ∈ R such that: | x− y |≤ ε.
Then: | x∗ − y |≤ 2ε, finally we get y = x∗.

Theorem 12. (of the exact limit)

If f ∈ ∆1, then the real lim f( 1n) is the projection of lim
exact

f(
1

n
) onto R, so we get:

( lim
exact

f(
1

n
))∗ = lim f(

1

n
).

10.3 Necessary conditions for the existence of the exact limit

• Let (xn)n≥1 be a sequence of real numbers, we assume that the exact limit of (xn)n≥1 exists, then

there exists a function f ∈ ∆ such that lim
exact

xn = f(δ).

If f ∈ ∆1, then f is a metalic function, let f̃ be a metalic extension of f , we have f( 1n) = f̃( 1n) =

xn from a certain rank, since f̃ is holomorphic at 0, then the limit of (xn) exists and we have

limxn = f̃(0), finally, we deduce that the existence of the exact limit implies the existence of the

limit, and limxn = f̃(0). Generally, we get :

lim
exact

xn = f(δ) =⇒ lim xn =

{
f̃(0), while f ∈ ∆1;

±∞, while f ∈ ∆2.

• The reciprocal of the above implication is not true, we can find a convergent sequence which does

not have an exact limit (for example: xn = (−1)n

n ).

• If a sequence (xn) has an exact limit, then (xn) keeps a constant sign from a certain rank.

In addition, if xn > 0 from a certain rank, then lim
exact

xn > 0.

• If a sequence (xn) has a exact limit, from the properties of the elements of ∆, we can show that

the sequence (xn+1 − xn) keeps a constant sign from a certain rank.

Theorem 13. Let (an) be a real sequence, and f is a holomorphic function on D(0, ε) \ {0} such that:

• f(]0, ε[) ⊆ R.
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• f( 1n) = an from a certain rank.

• f is bounded on D(0, ε) \ {0}.

Then the sequence (an) has an exact limit, and we have: lim
exact

an = f(δ).

Proof. 0 is an artificial singularity of f .

10.4 The exact derivative

Definition 11. Let f be a function that is differentiable at the point x0 ∈ R.

If the function h −→ f(x0+h)−f(x0)
h is metalic, then the exact limit of (

f(x0+
1
n
)−f(x0)
1
n

) exist.

We note :

f̂(x0) = lim
exact

f(x0 +
1
n)− f(x0)
1
n

=
f(x0 + δ)− f(x0)

δ
.

The Omicran f̂(x0) is called the exact derivative of the function f at a point x0.

Example 6. Consider the following function defined as: f : x −→ x2.

The exact derivative of f in x0 is given by: f̂(x0) = 2x0 + δ.

Theorem 14. Let f be a function that is differentiable at the point x0 ∈ R.

If the function h −→ f(x0+h)−f(x0)
h is metalic, then:

(f̂(x0))
∗ = f ′(x0)

Proof. We can apply the theorem of the exact limit.

Example 7. For f : x −→ x2, the exact derivative at x0 is f̂(x0) = 2x0 + δ, and the derivative at x0 is

f ′(x0) = 2x0.

We verify easily that : (2x0 + δ)∗ = 2x0.

Lemma 3. Let f be a metalic function such that for every integer k ∈ N, the function t −→ f(x0 + kt)
is metalic, then :

f(x0 +Nδ) = f(x0) + δ(f̂ (x0) + f̂(x0 + δ) + f̂(x0 + 2δ) + ...+ f̂(x0 + (N − 1)δ).

Proof. From the definition of f̂ , we have:

f(x0 + δ) = f(x0) + δf̂(x0)

f(x0 + 2δ) = f(x0 + δ) + δf̂(x0 + δ)
.............................................................

..................................................................
........................................................................

f(x0 +Nδ) = f(x0 + (N − 1)δ) + δf̂(x0 + (N − 1)δ).

Summing these equalities, and we find the desired result .

Application 1. (Calculate the sum of Σkn)

• For n = 1, if f(x) = x2, then f̂(x) = 2x+ δ.
From the above proposition in the case of x0 = 0, we find :

N2δ2 = (δ(f̂ (0) + f̂(δ) + f̂(2δ) + ...+ f̂((N − 1)δ)).

Which implies that : N2δ2 = δ.(
∑N−1

k=0 2kδ + δ).

Then : N2 =
∑N−1

k=0 (2k + 1) = 2
∑N−1

k=0 k +N ⇒ N2−N
2 =

∑N−1
k=0 k.
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• In the case of n = 2, we choose f(x) = x3, then f̂(x) = 3x2 + 3xδ + δ2, by using the above

proposition for x0 = 0, we find:

N3δ3 = δ.(f̂(0) + f̂(δ) + f̂(2δ) + ....+ f̂((N − 1)δ))

= δ.
N−1∑

k=0

(3k2δ2 + 3kδ.δ + δ2) = δ3.(
N−1∑

k=0

3k2 + 3k + 1).

Then: N3 = 3
N−1∑

k=0

k2 + 3
N−1∑

k=0

k +N .

We deduce that:

N−1∑

k=0

k2 =
N3 −N − 3

∑N−1
k=0 k

3
.

Finally, we get:
∑N−1

k=0 k
2 = N(N−1)(2N−1)

6 .

Similarly, we can calculate
∑N−1

k=0 k
3,
∑N−1

k=0 k
4 , .....

Application 2. (The Riemann sum)

Let f , g be a two metalic functions, such that: f(δ) = g(δ), then f( 1n) = g( 1n ) from a certain rank.

Consider the function defined as follows:

fn(x) =
f(x+ 1

n)− f(x)
1
n

.

From the above lemma, we deduce that there exists a natural number n0 such that ∀n ≥ n0, we have:

f(x0 +
N

n
) = f(x0) +

1

n
(fn(x0) + fn(x0 +

1

n
) + fn(x0 +

2

n
) + ...+ fn(x0 +

(N − 1)

n
).

If f is differentiable on R, then fn(a+
k

n
) = f ′(a+

k

n
) + o(

1

n
).

Then

f(a+
N

n
) = f(a) +

1

n
.

N−1∑

k=0

fn(a+
k

n
) = f(a) +

1

n
.

N−1∑

k=0

(f ′(a+
k

n
) + o(

1

n
)).

We assume that b > a, we can choose N = E[(b− a)n], then we get:

f(a+
N

n
)− f(a) =

1

n
.
N−1∑

k=0

f ′(a+
k

n
) +

1

n

N−1∑

k=0

o(
1

n
)

=
1

n
.
N−1∑

k=0

f ′(a+
k

n
) +

N

n
o(

1

n
).

Since N = ⌊(b− a)n⌋, then b− a− 1
n <

N
n ≤ b− a.

We deduce that lim f(a+ N
n ) = f(b), we pass to the limit and we find:

f(b)− f(a) = lim
1

n
.

⌊(b−a)n⌋−1∑

k=0

f ′(a+
k

n
).

For b = 1 and a = 0, we get:

f(1)− f(0) =

∫ 1

0
f ′(t)dt = lim

1

n

n−1∑

k=0

f ′(
k

n
).
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10.5 The logarithmic function

We know that: ∀x ∈ R, lim
n→+∞

(1 +
x

n
)n = ex.

Let x be a real number, the function f : z −→ (1 + xz)
1
z = e

1
z
ln(1+zx) is a holomorphic function on

D(0, ε) \ {0}.

In addition, ln(1+zx) = zx− z2x2

2 +o(z2x2) ( for | z |<< 1), we deduce that: limz→0
ln(1+zx)

z = x, and

limz→0 f(z) = ex, then the function f can be extended to a holomorphic function on a neighborhood of

0, which implies that lim
exact

(1 +
x

n
)n exists and we have: lim

exact
(1 +

x

n
)n = (1 + xδ)

1
δ , and ((1+xδ)

1
δ )∗ =

ex.

From the above results we deduce that ex is an infinitesimal approximate value of (1 + δx)
1
δ .

Consider the function ξ(x) = (1 + δx)
1
δ , if this function x −→ ξ(x) has an inverse function, then the

calculation gives us the function ξ−1 which is defined as : ξ−1(x) = xδ−1
δ (if it exists !!!).

We can justify the existence of this function, for that, we consider the real number x ∈ R
∗+.

The map defined as g : z −→ xz−1
z = ez ln(x)−1

z is a holomorphic function on D(0, ε) \ {0}, and

limz→0 g(z) = ln(x), then 0 is an artificial singularity of g, we deduce that there exists the exact limit of

the sequence (n(x
1
n − 1))n≥1, and his value is equal to lim

exact
n(x

1
n − 1) =

xδ − 1

δ
.

We define the the original logarithm by:

lno : x −→ xδ − 1

δ
.

The function ξ is called the function of the the original exponential, we note:

ξ(x) = expo(x) = (1 + δx)
1
δ ,

and we deduce that:

(lno(x))
∗ = ln(x).

Then:

ln(x) = lim
α→0

xα − 1

α
.

Application 3. From the above results, we can show the following equality:

ln(x) = lim
α→0

xα − x−α

2α
.

Remark 11.
ln(x)

ln(y)
= lim

α→0

xα − 1

yα − 1
= lim

α→0

xα − x−α

yα − y−α
.

Application 4. By using the above results we can show the following theorem.

Theorem 15. For every 0 < x and x 6= 1, we have :

x− 1

ln(x)
= lim

n→+∞
1

n

n−1∑

k=0

x
k
n .

Proof. We have:

(x
1
n − 1)(

n−1∑

k=0

x
k
n ) = x− 1.
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Then:

n(x
1
n − 1)(

1

n

n−1∑

k=0

x
k
n ) = x− 1.

Since limα→0
xα−1
α = limn(x

1
n − 1) = ln(x), then :

x− 1

ln(x)
= lim

n→+∞
1

n

n−1∑

k=0

x
k
n .

Application 5. Consider P the set of the prime numbers.

We define the prime-counting function [14] at real values of x by:

π(x) = #{p ≤ x : p ∈ P}.

Theorem 16. (Hadamard and de la Valle Poussin). As x→ +∞,

π(x) ∼ x

ln(x)
.

.

Proof. See [14].�

By using the above theorem, and the formula ln(x) ≈ xδ−1
δ , we can show the following theorem:

Theorem 17. As x→ +∞,

π(x) ∼ 1

x
1
x − 1

.

.

Proof. We approach ln(x) by xδ−1
δ , and δ by 1

x , and we deduce that an approximate value of x
ln(x) is

1

x
1
x−1

.

Next, we can verify that x
ln(x) ∼ 1

x
1
x−1

, in fact: As x→ +∞, we have:

1

x
1
x − 1

∼ 1

e
ln(x)

x − 1
=

1

e
ln(x)
x −1
ln(x)
x

x

ln(x)
.

Since, lim
x→+∞

e
ln(x)
x − 1
ln(x)
x

= 1, then: 1

x
1
x−1

∼ x
ln(x) .

Finally, we obtain:

π(x) ∼ 1

x
1
x − 1

.

Application 6. Let (pn) be the sequence of the prime numbers, we have:

Theorem 18.

pn ∼ n ln(n), while n→ +∞
Proof. See [14].�

By using the above theorem and the approximations ln(n) ≈ nδ−1
δ and δ ≃ 1

n , we get the following

theorem:

Theorem 19.

pn ∼ n2( n
√
n− 1), while n→ +∞

Proof. We can verify that lim n( n
√
n−1)

ln(n) = 1.
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10.6 The Omicran-reals in geometry

10.6.1 The geometric point

If f is a metalic function, and f̃(δ) is an infinitesimal number, the function f is metalic then the sequence

(f( 1n)) keeps a constant sign from a certain rank. Assume that the above sequence is positive from a

certain rank n0. Since ϕ(f̃ (δ)) = f( 1n)n≥1, then we can represent f̃(δ) by the the family of segments

(In)n≥1, where In =]0, f( 1n )].

Definition 12. Let f and g be two metalic functions. Assume that the number f̃(δ)− g̃(δ) is infinitesimal

and f̃(δ) < g̃(δ).
An elementary Geometric point of O is a segment of the type : [xA, xA + δ[, where [x, y[= {z/ x ≤ z <
y}.

10.6.2 The length of a curve Cf
We define the length of an elementary geometric point by:

l([xA, xA + δ[) = δ,

where xA = g(δ), and g is a metalic function.

Let f be a function such that: x −→ f(x∗A + x) is metalic, and f̃ the metalic extension of f on a

neighborhood of x∗A, consider A(xA, f(xA)) and A′(xA + δ, f(xA + δ)) two ordered pairs of O2, let φ
be a function defined as:

φ : z −→ z

√

1 + (
f̃(g̃(z) + z)− f̃(g̃(z))

z
)2.

The map θ : z → f̃(g̃(z)+z)−f̃(g̃(z))
z is holomorphic on D(0, ε) \ {0}, and we have:

θ(z) =
f̃(g̃(z) + z)− f̃(x∗A)

z
− f̃(g̃(z))− f̃(x∗A)

z
,

where limz→0 g̃(z) = x∗A (the projection of xA onto R).

Then the limz→0 θ(z) exists, and we have:

lim
z→0

θ(z) = (g′(0) + 1)f ′(x∗A)− g′(0)f ′(x∗A) = f ′(x∗A) ∈ R

We deduce that limz→0 φ(z) = 0, and φ is continuously extendable over 0, then the function φ is

holomorphically extendable over 0, which justify the existence of the exact limit of the sequence (φ( 1n)),
and we have

lim
exact

(φ(
1

n
)) = φ(δ) = δ

√
1 + (

f(xA + δ)− f(xA)

δ
)2 ∈ O,

which is infinitesimal. We define the length of the segment [A,A′[ by:

l([A,A′[) = δ

√
1 + (

f(xA + δ)− f(xA)

δ
)2.

We note :

ψ(xA) = δ

√
1 + (

f(xA + δ)− f(xA)

δ
)2 = δ

√
1 + f̂(xA)2.
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If f is a metalic function defined on the interval [0, 1], Let A(0, f(0)) and B(1, f(1)) two points of the

plane which define with f the arcÃB, if the exact limit of the series
1

n

n−1∑

k=0

√
1 + f̂(

k

n
)2 exists, we note:

lim
exact

1

n

n−1∑

k=0

√
1 + f̂(

k

n
)2 = δ

1
δ
−1∑

k=0

√
1 + f̂(kδ)2.

We define the exact length of the arc ÃB by :

l(ÃB) = δ

1
δ
−1∑

k=0

√
1 + f̂(kδ)2.

The length of the arc ÃB is the real denoted by l∗(ÃB) and defined by :

l∗(ÃB) = (δ

1
δ
−1∑

k=0

√
1 + f̂(kδ)2)∗ = lim

n→+∞
1

n

n−1∑

k=0

√
1 + fn(

k

n
)2,

where fn(x) =
f(x+ 1

n)− f(x)
1
n

.

Since f is a metalic function, then it can be extended to a function twice differentiable at 0.

Assume that the function is twice differentiable on ]0, 1[.
Then:

fn(
k

n
) =

f(k+1
n )− f( kn)

1
n

= f ′(
k

n
) +

1

2n
f ′′(ξk),

where 1 ≤ k ≤ n− 1, and ξk ∈] kn , k+1
n [.

Consider M1 = sup]0,1[(| f ′(x) |) and M2 = sup]0,1[(| f ′′(x) |).
We have :

f2n(
k

n
) = (f ′(

k

n
) +

1

2n
f ′′(ξk))

2 = f ′2(
k

n
) + εn,k,

where εn,k = f ′( kn)
1
nf

′′(ξk) + 1
4n2 f

′′2(ξk).
If M1 < +∞ and M2 < +∞, we obtain:

| εn,k |≤
M1M2 +M2

2

n
.

Then, lim
n→+∞

sup
k

| εn,k |= 0, and we have:

√
1 + f2n(

k

n
) =

√
1 + f ′2(

k

n
) + εn,k

=

√
1 + f ′2(

k

n
) +

εn,k

2
√
βn,k

,

where βn,k ∈| 1 + f ′2( kn), 1 + f ′2( kn) + εn,k |.
Then:

1

n

n−1∑

k=0

√
1 + f2n(

k

n
) =

1

n

√
1 + f2n(0) +

1

n

n−1∑

k=1

√
1 + f ′2(

k

n
) +

1

2n

n−1∑

k=1

εn,k√
βn,k

.
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Since lim
n→+∞

sup
k

| εn,k |= 0, then we can verify that the βn,k >
1
2 from a certain rank n0, and we have:

| 1

2n

n−1∑

k=1

εn,k√
βn,k

|≤
√
2

2n

n−1∑

k=1

| εn,k |≤
√
2(M1M2 +M2

2 )

2n
.

Then: lim
n→+∞

1

n

n−1∑

k=0

√
1 + f2n(

k

n
) = lim

n→+∞
1

n

n−1∑

k=0

√
1 + f ′2(

k

n
).

By using the Riemann sum, we deduce the length of the arc ÃB :

l∗(ÃB) =

∫ 1

0

√
1 + f ′2(x)dx.

10.7 The exact limit of the series

Let sn =
∑n

k=1 ak be a convergent series, where (ak) is a sequence of real numbers.

To calculate the exact limit of (sn) it’s sufficient to find a holomorphic function f̃ in a neighborhood of

0 such that: 



f̃( 1
n0
) = sn0 = a1 + a2 + ...+ an0

f̃( 1
n1
) = sn1 = a1 + a2 + ...+ an0 + an1

f̃( 1
n2
) = sn2 = a1 + a2 + ...+ an0 + an1 + an2

...
...

...

f̃( 1n) = sn = a1 + a2 + a3 + ............................ + an,

where n0 ∈ N. Consider the real α =
∑n0−1

k=1 ak, we get:

(S)





f̃( 1
n0
) = sn0 = α+ an0

f̃( 1
n1
) = sn1 = α+ an0 + an1

f̃( 1
n2
) = sn2 = α+ an0 + an1 + an2

...
...

...

f̃( 1n) = sn = α+ an0 + .................................. + an.

On other hand lim
exact

sn = f̃(δ), we note: f̃(δ) = lim
exact

n∑

k=1

ak =

1
δ∑

k=1

ak =

ℵ0∑

k=1

ak.

The system (S) is equivalent to:




f̃( 1
n0
)

f̃( 1
n0+1)

.

.

.

f̃( 1n )




=




α
α
.
.
.
α




+




1 0 0 . . 0
1 1 0 . . .
. . . 0 . .
. . . . . 0
1 . . . 1 0
1 1 . . 1 1







an0

an0+1

.

.

.
an




Let T be a matrix defined as:

T =




1 0 0 . . 0
1 1 0 . . .
. . . 0 . .
. . . . . 0
1 . . . 1 0
1 1 . . 1 1



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Then T is invertible, and we have:

T−1 =




1 0 0 . . 0
−1 1 0 . . .
0 −1 . 0 . .
. . . . . 0
0 . . −1 1 0
0 0 . 0 −1 1




Then: 


an0

an0+1

.

.

.
an




=




f̃( 1
n0
)

−f̃( 1
n0
) + f̃( 1

n0+1)

.

.

.

−f̃( 1
n−1) + f̃( 1n)




−




α
0
.
.
.
0




We deduce that:

an = f̃(
1

n
)− f̃(

1

n− 1
), from a certain rank n0

We assume that lim
exact

an exists, in addition the sequence (sn) is convergent, then (an) converges to 0. We

can find a holomorphic function on a neighborhood of 0 such that an = g( 1n) from a certain rank, in this

case we have lim
exact

an = g(δ). Then g(0) = 0 and there exists p such that ∀n ≥ p, we have:

g(
1

n
) = f̃(

1

n
)− f̃(

1

n − 1
).

Since f and g are a holomorphic functions on a neighborhood of 0, then there exists ε > 0 such that:

g(z) = f̃(z) − f̃(
z

1− z
),∀z ∈ D(0, ε).

On other hand, we have f̃( 1
n0
) = α =

∑n0−1
k=1 ak.

The above result is true for every p ≥ n0, then f̃(0) =
∑+∞

k=1 ak. Finally, we deduce the following

theorem :

Theorem 20. Let g be a metalic function, and (sn)n≥1 the convergent series defined as sn =

n∑

k=1

g(
1

k
).

If the exact limit of (sn)n≥1 exists, then there exists a function f̃ holomorphic at 0 such that f̃(δ) = lim
exact

n∑

k=1

g(
1

k
).

This function is given by :
{
f̃(0) =

∑+∞
k=1 g(

1
k ),

g(z) = f̃(z)− f̃( z
1−z ), on a neighborhood of 0.

Remark 12. (Calculating of the finite sum)

If f̃(δ) = lim
exact

n∑

k=1

ak, then f̃(
1

n
) =

n∑

k=1

ak from a certain rank n0.

Example 8. We have lim
exact

n∑

k=1

1

k(k + 1)
=

1

1 + δ
.

Then we deduce ∀n ≥ 1,

n∑

k=1

1

k(k + 1)
=

1

1 + 1
n

.
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10.8 The calculation of the exact limit of
∑
ak

Let (sn) be a series defined as sn =
∑n

k=1 g(
1
k ), we assume that the series is convergent, and g is metalic

function, then holomorphic on a neighborhood of 0. The existence of the exact limit of (sn) implies that

there exists a holomorphic function f̃ on a neighborhood of 0 which verify :

g(z) = f̃(z)− f̃(
z

1− z
), on the disk D(0, ε).

Let g(z) =
∑+∞

n=0 βnz
n and f̃(z) =

∑+∞
n=0 αnz

n, where (αn) and (β)n are a real sequences.

We have:

f̃(z) = α0 + α1z + α2z
2 + ..... + αnz

n + o(zn).

Then:

f̃( z
1−z ) = f̃(z + z2 + ....+ zn + o(zn))

= α0 + α1(z + ...+ zn + o(zn)) + ....+ αn(z + ...+ zn + o(zn))n + o(zn)
= α0 + α1z + (α1 + α2)z

2 + (α1 + 2α2 + α3)z
3 + (α1 + 3α2 + 3α3 + α4)z

4

+(α1 + 4α2 + 6α3 + 4α4 + α5)z
5 + (α1 + 5α2 + 10α3 + 10α4 + 5α5 + α6)z

6

+...+ (α1 +
(n−1

1

)
α2 +

(n−1
2

)
α3 + ...+

(n−1
n−2

)
αn−1 + αn)z

n + o(zn).

.

Since: g(z) = f̃(z)− f̃( z
1−z ), we deduce that :

{
β0 = β1 = 0

βk = −α1 −
(k−1

1

)
α2 −

(k−1
2

)
α3 − .... −

(k−1
k−2

)
αk−1, ∀2 ≤ k ≤ n.

Remark 13. Since β0 = β1 = 0 then g(z) = z2g1(z), where g1 is a holomorphic function on a

neighborhood of 0.

Now, from the above results, we deduce that:




β0 = β1 = 0
β2 = −α1

β3 = −α1 − 2α2

β4 = −α1 − 3α2 − 3α3

..........................................

................................................

βn = −α1 − (n− 1)α2 − ...−
(n−1
k

)
αk+1 − ...−

(n−1
n−2

)
αn−1.

Then: 


β2
β3
β4
.
.
.
.
βn




=




−1 0 0 . 0
−1 −2 0 . 0
−1 −3 −3 . .
. . . 0 . .
. . . . .
. . 0 .
. . . . 0

−1 −(n− 1) . . . . −(n− 1)







α1

α2

α3

.

.

.

.
αn−1




.

Consider the matrix defined as:

Mn =




−1 0 0 . 0
−1 −2 0 . 0
−1 −3 −3 . .
. . . 0 . .
. . . . .
. . 0 .
. . . . 0
−1 −n . . . . −n



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We have: det(Mn) = (−1)nn!, then Mn is invertible, and we have:




β2
β3
β4
.
.
.
.
βn




=Mn−1




α1

α2

α3

.

.

.

.
αn−1




.

Then, the above system admits a unique solution (α1, α2, ..., αn−1).

If lim sup n
√

| αn | = 1

R
> 0, then the function f̃(z) =

∑+∞
n=0 αnz

n is holomorphic on the diskD(0, R),

and the exact limit lim
exact

n∑

k=1

g(
1

k
) exists, in addition, we have:

f̃(δ) = lim
exact

n∑

k=1

g(
1

k
) = lim

exact

n∑

k=1

ak,

we get :

( lim
exact

n∑

k=1

ak)
∗ =

+∞∑

k=1

ak.

We note: lim
exact

∑
an =

∑
αnδ

n.

Then:

( lim
exact

∑
an)

∗ =
+∞∑

n=1

an,

(
∑

αnδ
n )∗ =

+∞∑

n=1

an.

11 The black magic matrix

11.1 The calculation of the exact limit with the black magic matrix

Let g be a metalic function and f a holomorphic function in a neighborhood of 0.

We assume that the series
∑n

k=1 g(
1
k ) admits the exact limit f̃(δ).

Let (αn) and (βn) be the real sequences such that f̃(z) = α0 +
∑+∞

k=1 αkz
k and g(z) =

∑+∞
k=0 βkz

k.

We have:

lim
exact

n∑

k=1

g(
1

k
) = f̃(δ).

And: 


β2
β3
β4
.
.
.
.
βn




=Mn−1




α1

α2

α3

.

.

.

.
αn−1




.
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Definition 13. The black magic matrix of order n is defined as ψ(n) =M−1
n .

We obtain: 


α1

α2

α3

.

.

.

.
αn−1




= ψ(n−1)




β2
β3
β4
.
.
.
.
βn




.

The real α0 is given by α0 = f̃(0) =
∑+∞

k=1 g(
1
k ).

Remark 14. We can verify that:

m∑

k=1

g(
1

k
) = α0 + lim

n→+∞

(
1
m

1
m2

1
m3 ... 1

mn−1

)
ψ(n−1)




β2
β3
β4
...

βn



,

from a certain rank m0.

11.2 The magical properties of ψ(n)

Property 1. The matrix ψ(n) is given byψ(n) =M−1
n , whereMn[i, j] =

{ −
( i
j−1

)
, if 1 ≤ j − 1 ≤ i ≤ n,

0, else.

We deduce that the matrix ψ(n) is invertible and lower triangular.

Property 2. We have ψ
(n)
i,i =

−1

i
, then tr(ψ(n)) = −H(n) and det(ψ(n)) = (−1)n

n! , where (H(n))n≥1

is the harmonic series which defined as H(n) =
n∑

i=1

1

i
.

Proof. The matrix Mn is lower triangular and Sp(Mn) = {−i, for 1 ≤ i ≤ n}.

Then : ψ(n) is lower triangular and we get Sp(ψ(n)) = {−1
i , for 1 ≤ i ≤ n}.

Property 3. For every 1 ≤ i ≤ n− 1, we have:

ψ
(n)
i+1,i =

1

2
.

Proof. We have:

δi+1,i =

n∑

k=1

Mn[i+ 1, k]ψnk,i.

Then:
i+1∑

k=i

Mn[i+ 1, k]ψ
(n)
k,i = 0.

We deduce that:

ψ
(n)
i+1,i = −

Mn[i+ 1, i]ψ
(n)
i,i

Mn[i+ 1, i+ 1]
,
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ψ
(n)
i+1,i = −

(i+1
i−1

)
ψ
(n)
i,i(i+1

i

) ,

finally, we obtain:

ψ
(n)
i+1,i =

1

2
.

Property 4. For every (m, p) ∈ N
2, such that:2 ≤ m, and 2m+ p ≤ n, we have:

ψ
(n)
2m+p,1+p = 0.

In particular, for every 2 ≤ m ≤ n
2 , we get:

ψ
(n)
n,n−2m+1 = 0.

Proof. We can see the demonstration in the following pages.

Property 5. For every 1 ≤ m ≤ n− 1, we have:

ψ(n)
m,mψ

(n)
m+1,m−1 =

1

12
.

Then:

ψ
(n)
m+1,m−1 =

−m
12

.

Proof. We have:

ψ(n)Mn = In.

Then:
n∑

k=1

ψ
(n)
i,kMn[k, j] = δij .

In particular:
n∑

k=1

ψ
(n)
m+1,kMn[k,m− 1] = δm+1,m−1.

Then:
m+1∑

k=m−1

ψ
(n)
m+1,kMn[k,m− 1] = 0.

Which implies:

ψ
(n)
m+1,m−1Mn[m− 1,m− 1] + ψ

(n)
m+1,mMn[m,m− 1] + ψ

(n)
m+1,m+1Mn[m+ 1,m− 1] = 0.

Then:

−(m− 1)ψ
(n)
m+1,m−1 −

m(m− 1)

4
+
m(m− 1)

6
= 0.

Finally, we get:

ψ
(n)
m+1,m−1 =

−m
12

.

Property 6. For every (i, j) ∈ N
2, such that 1 ≤ i, j ≤ n, we have:

ψ
(n+1)
i,j = ψ

(n)
i,j .
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Proof. From the definition of Mn, we have:

Mn+1 =




0

Mn
...

0
Xn −(n+ 1)


 ,

where Xn = −(
(
n+1
0

)
,
(
n+1
1

)
, ...,

(
n+1
n−1

)
).

To prove that ψ
(n+1)
i,j = ψ

(n)
i,j , it is sufficient to show that there exists a row vector Yn such that:

ψ(n+1) =




0

ψ(n) ...

0
Yn −1/(n+ 1)


 .

On other hand, we have:

Mn+1ψ
(n+1) = In+1,

then: 


0

Mn
...

0
Xn −(n+ 1)







0

ψ(n) ...

0
Yn −1/(n + 1)


 = In+1,

which implies: 


0

Mnψ
(n) ...

0

Xnψ
(n) − (n+ 1)Yn 1


 = In+1.

Finally, we deduce that: Xnψ
(n) − (n+ 1)Yn = 0n.

Then, we can choose Yn as a form Yn =
Xnψ

(n)

n+ 1
, and we get:

ψ(n+1) =




0

ψ(n) ...

0
1

n+ 1
Xnψn − 1

n+1



.

Finally, we deduce that: ψ
(n+1)

i,j = ψ
(n)
i,j , for every 1 ≤ i, j ≤ n.

Remark 15. From the above result, we deduce that ψ
(i)
i,j = ψ

(n)
i,j , for every 1 ≤ i, j ≤ n.

We note ψ
(n)
i,j = ψi,j .

Property 7. For every 1 < i ≤ n, we have:

n∑

k=1

ψi,k = 0, and
n∑

k=1

ψ1,k = −1.
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Then:

n∑

i=1

Ci = C1 + C2 + ...+Cn =




−1
0
...

0


 .

Where C1, C2, ..., Cn are the column vectors of the matrix ψ(n).

Proof. We know that: ψnMn = In, then

n∑

k=1

ψn[i, k]Mn[k, 1] = δi1.

We deduce that: 



∑n
k=1 ψ1,kMn[k, 1] = 1,

∑n
k=1 ψi,kMn[k, 1] = 0, if i 6= 1

Then: 



∑n
k=1 ψ1,k = −1,

∑n
k=1 ψi,k = 0, if i 6= 1.

Property 8. For every 1 ≤ i ≤ n, we have:

n∑

k=1

(−1)kψi,k = (−1)i+1.

Which implies:

n∑

i=1

(−1)i−1Ci = C1 − C2 + ...+ (−1)n−1Cn =




−1
1
...

(−1)n


 .

Where C1, C2, ..., Cn are the column vectors of the matrix ψ(n).

Proof. From the example 3, we have lim
exact

n∑

k=1

−1

k(k + 1)
=

−1

1 + δ
.

Then : lim
exact

n∑

k=1

g(
1

k
) = f̃(δ), for g(z) =

−z2
1 + z

=

+∞∑

k=2

(−1)kzk and f̃(z) =
−1

1 + z
=

+∞∑

k=0

(−1)k+1zk.

By using the Property 9, we deduce that:




1
−1
1
.
.
.
.

(−1)n+1




= ψ(n)




−1
1
−1
.
.
.
.

(−1)n




,

finally, we deduce that:
n∑

k=1

(−1)kψi,k = (−1)i+1.
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Property 9. Let g be a metalic function, such that g(z) =
∑+∞

k=0 βkz
k on a neighborhood of 0, we

assume that the series
∑n

k=1 g(
1
k ) is convergent and admits a exact limit, then there exists a holomorphic

function on a neighborhood of 0 f̃ and a real sequence (αn), such that lim
exact

n∑

k=1

g(
1

k
) = f̃(δ) and f̃(z) =

∑+∞
k=0 αkz

k on a neighborhood of 0, the real sequence (αn) is given by:

α0 =

+∞∑

k=1

g(
1

k
) and




α1

α2

α3

.

.

.

.
αn−1




= ψ(n−1)




β2
β3
β4
.
.
.
.
βn




,

and we have: β0 = β1 = 0.

Example 9.

(n = 2) ψ(2) =

(
−1 0
1/2 −1/2

)

(n = 3) ψ(3) =




−1 0 0
1/2 −1/2 0
−1/6 1/2 −1/3




(n = 5) ψ(5) =




−1 0 0 0 0
1/2 −1/2 0 0 0
−1/6 1/2 −1/3 0 0
0 −1/4 1/2 −1/4 0

1/30 0 −1/3 1/2 −1/5




(n = 8) ψ(8) =




−1 0 0 0 0 0 0 0
1/2 −1/2 0 0 0 0 0 0
−1/6 1/2 −1/3 0 0 0 0 0
0 −1/4 1/2 −1/4 0 0 0 0

1/30 0 −1/3 1/2 −1/5 0 0 0
0 1/12 0 −5/12 1/2 −1/6 0 0

−1/42 0 1/6 0 −1/2 1/2 −1/7 0
0 −1/12 0 7/24 0 −7/12 1/2 −1/8




(n = 12)
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ψ(12) =




−1 0 0 0 0 0 0 0 0 0 0 0
1/2 −1/2 0 0 0 0 0 0 0 0 0 0
−1/6 1/2 −1/3 0 0 0 0 0 0 0 0 0
0 −1/4 1/2 −1/4 0 0 0 0 0 0 0 0

1/30 0 −1/3 1/2 −1/5 0 0 0 0 0 0 0
0 1/12 0 −5/12 1/2 −1/6 0 0 0 0 0 0

−1/42 0 1/6 0 −1/2 1/2 −1/7 0 0 0 0 0
0 −1/12 0 7/24 0 −7/12 1/2 −1/8 0 0 0 0

1/30 0 −2/9 0 7/15 0 −2/3 1/2 −1/9 0 0 0
0 3/20 0 −1/2 0 7/10 0 −3/4 1/2 −1/10 0 0

−5/66 0 1/2 0 −1 0 1 0 −5/6 1/2 −1/11 0
0 −5/12 0 11/8 0 −11/6 0 11/8 0 −11/12 1/2 −1/12




Theorem 21. (To calculate the coefficients of (ψi,j) by induction)

For every 1 ≤ j ≤ n, we have:

ψn+1,j =
Xn

n+ 1




ψ1,j

ψ2,j
...

ψn,j


 ,

where Xn = −
((n+1

0

)
,
(n+1

1

)
, ...,

(n+1
n−1

))
, and we have ψn+1,n+1 =

−1

n+ 1
.

Proof. There exists a row vector Yn = (y1, y2, ..., yn), such that :

ψ(n+1) =




0

ψ(n)
...

0
Yn − 1

n+1


 .

On other hand, Yn = Xnψ(n)

n+1 , then:

yj = ψn+1,j = Ynej =
Xn

n+ 1
ψ(n)ej =

Xn

n+ 1




ψ1,j

ψ2,j
...

ψn,j


 ,

where (e1, e2, ..., en) is a canonical base of Rn.

Remark 16. For every n ≥ 1, we have :

Xn = (0,Xn−1) + (Xn−1,−n).
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11.3 The relationship between ψi,j and the Bernoulli numbers

The Bernoulli numbers are defined as:



B0 = 1
B0 + 2B1 = 0
B0 + 3B1 + 3B2 = 0
B0 + 4B1 + 6B2 + 4B3 = 0
...

...
...

B0 +
(n
1

)
B1 + ....+

( n
n−1

)
Bn−1 = 0

Then:

Mn




B0

B1
...

Bn−1


 =




−1
0
...

0


 .

We deduce that:

ψ(n)




−1
0
...

0


 =




B0

B1
...

Bn−1


 .

Finally, we get the following theorem:

Property 10. For every natural number k ≥ 1, we have:

ψk,1 = −Bk−1.

Then, the first column of ψ(n) is given by:



ψ1,1

ψ2,1
...

ψn,1


 = −




B0

B1
...

Bn−1


 .

Remark 17. From the above theorem, we deduce that ψ2k+2,1 = 0, for every natural number k ≥ 1,

because B2k+1 = 0.

Property 11. For every k ∈ N, and s ∈ N
∗, we have:

ψk+s,s = −Bk
k!

k−1∏

i=1

(s+ i).

Proof. Let




0
...

xs
...

xn




be a sth column of the matrix ψ(n). To find this column it’s sufficient to

determine the values of the real numbers (xi) which verify:

−
((

j

0

)
,

(
j

1

)
,

(
j

j − 1

)
, 0, ..., 0

)




0
...

xs
...

xn




= δs,j.

35



On other hand, we know that B2k+1 = 0 for every natural number k ≥ 1, then to prove that ψs+2k+1,s =
0 it’s sufficient to show that the above column has the following form :




0
...

xs
xs+1

...

xn




=




0
...

αsB0

αs+1B1
...

αnBn−s




,

where αs, αs+1, ..., αn are a real numbers. Then:

((
j

0

)
,

(
j

1

)
,

(
j

j − 1

)
, 0, ..., 0

)




0
...

αsB0
...

αnBn−s




= −δs,j.

If s 6= j, and s > j, this product is zero.

If s < j, we find : αsB0

( j
s−1

)
+ αs+1B1

(j
s

)
+ ....+ αjBj−s

( j
j−1

)
= 0.

From the property 10, we know that :
(
j − s+ 1

0

)
B0 +

(
j − s+ 1

1

)
B1 + .... +

(
j − s+ 1

j − s

)
Bj−s = 0.

To find the real numbers (αi), it’s sufficient to find λ ∈ R, such that:

αs+kBk

(
j

s+ k − 1

)
= λ

(
j − s+ 1

k

)
Bk, for s+ k ≤ j.

Then:

αs+k = λ

(j−s+1
k

)
( j
s+k−1

) ,

αs+k =
λ

k!

(s+ k − 1)!(j − s+ 1)!

j!
.

In the case of k = 0, we get:

αs = λ
(s− 1)!(j − s+ 1)!

j!
.

Then:

λ =
j!αs

(s − 1)!(j − s+ 1)!
.

On other hand, we know that B0 = 1, then αs =
−1
s , and we get:

λ = − j!

s!(j − s+ 1)!
.

We replace λ by his value, and we define the real (αi) as:

αs+k = −(s+ k − 1)!

s!k!
= − 1

k!
(s+ 1)(s + 2)...(s + k − 1).

Finally, we deduce that :

ψk+s,s = −Bk
k!

(s+ 1)(s + 2)...(s + k − 1).
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Corollary 2. For every (l,m) ∈ N
2 such that m ≥ 2 et 2m ≤ l, we have:

ψl,l−2m+1 = 0.

Remark 18. From the above results, we deduce that the Property 4 is true, and we can show the following

theorem.

Theorem 22. The matrix of the black magic ψ(n) = (ψi,j)1≤i,j≤n is given by :

ψi,j =

{
−(ij)Bi−j

i , if i ≥ j
0, else.

11.4 The black magic matrix with the Riemann zeta function

11.4.1 Important lemma

Lemma 4. The radius of convergence of the series

+∞∑

k=1

ψk,s−1z
k,

is zero.

Proof. The radius of convergence of the series
∑+∞

k=1 ψk,s−1z
k, is given by:

1

R
= limk→+∞ k

√
| ψk,s−1 |.

We have:

ψk,s−1 = − Bk−s+1

(k − s+ 1)!
s(s+ 1)(s + 2)...(k − 1) = − Bk−s+1

(k − s+ 1)!

(k − 1)!

(s− 1)!
.

For k = 2m+ s− 1, we get:

ψ2m+s−1,s−1 = − B2m

(s− 1)!

(2m+ s− 2)!

(2m)!
.

Since 2m! ∼
√
4πm(2me )2m and | B2m |∼ 4

√
πm(mπe)

2m, then:

| B2m |
2m!

∼ 2(
1

2π
)2m.

We deduce that:

2m+s−1

√
| B2m |
2m!

∼ 1

2π
.

On other hand, we have:

(2m+ s− 1)! ∼
√

2π(2m+ s− 1)(
2m+ s− 1

e
)2m+s−1.

Then:
(2m+ s− 1)!

(s− 1)!
∼

√
2π(2m+ s− 1)

(s− 1)!
(
2m+ s− 1

e
)2m+s−1.

We deduce that:

2m+s−1

√
(2m+ s− 1)!

(s− 1)!
∼ (2m+ s− 1)

1
4m+2s−2 (

2m+ s− 1

e
),
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2m+s−1

√
(2m+ s− 1)!

(s− 1)!
∼ e

1
4m+2s−2

ln(2m+s−1)(
2m+ s− 1

e
).

Finally, we get:

2m+s−1

√
| ψ2m+s−1,s−1 | ∼

1

2π
e

1
4m+2s−2

ln(2m+s−1)(
2m+ s− 1

e
),

2m+s−1

√
| ψ2m+s−1,s−1 | ∼

m

πe
.

Then: lim
m→+∞

2m+s−1

√
| ψ2m+s−1,s−1 | = +∞.

Which implies that: limk→+∞ k
√

| ψk,s−1 | = +∞.

We deduce that the radius of convergence of the series
∑+∞

k=1 ψk,s−1z
k, is zero. �

11.4.2 The Riemann zeta function

This section will be concerned with the Euler zeta series, which is the function

ζ(s) =
+∞∑

n=1

1

ns
,

where s is a real number greater than 1.

If s ∈ N \ {0, 1}, consider the real function g : x −→ xs, and the series sN =
∑N

k=1 g(
1
k ).

Theorem 23. The series sN =
N∑

k=1

1

ks
does not admits an exact limit.

Proof. We assume that the series (sn) admits an exact limit, then there exists a holomorphic function

f̃ on a neighborhood of 0 such that: f̃( 1
N ) = sN , from a certain rank.

If f̃(z) =
∑+∞

k=0 αkz
k, then:




α1

α2

.

.

...

αn




= ψ(n)




0
...

1
0
...

0




= ψ(n)es−1.

Then: 


α1

α2

.

.

...

αn




=




ψ1,s−1

ψ2,s−1

.

.

...

ψn,s−1




,

and α0 =

+∞∑

k=1

1

ks
= ζ(s).

Then: f̃(z) = ζ(s) +
∑+∞

k=1 ψk,s−1z
k.

38



Since lim
exact

N∑

n=1

1

ns
= f̃(δ), then:

f̃(
1

N
) =

N∑

n=1

1

ns
= ζ(s) +

+∞∑

k=1

ψk,s−1

Nk
,

from a certain rank N .

Then:

ζ(s) =

N∑

n=1

1

ns
−

+∞∑

k=1

ψk,s−1

Nk
.

Unfortunately, this result is not true, because the function f̃ is not holomorphic on a neighborhood of

0, from the lemma 1, then we obtain a contradiction and we deduce that the series (sn) does not admits

an exact limit.

11.5 The twelfth property of the matrix ψ(n)

From the above results, the formula ζ(s) =
∑N

n=1
1
ns −

∑+∞
k=1

ψk,s−1

Nk is false, despite this, we can correct

this equality by using a new term E(M,N, s) which is defined as:

E(M,N, s) = ζ(s)−
N∑

n=1

1

ns
+

2M+s−1∑

k=1

ψk,s−1

Nk
.

Then:

ζ(s) =

N∑

n=1

1

ns
−

2M+s−1∑

k=1

ψk,s−1

Nk
+ E(M,N, s).

Which implies:

ζ(s) =

N∑

n=1

1

ns
−

2M+s−1∑

k=s−1

ψk,s−1

Nk
+ E(M,N, s).

ζ(s) =
N∑

n=1

1

ns
− ψs−1,s−1

N s−1
− ψs,s−1

N s
− ψs+1,s−1

N s+1
−

2M+s−1∑

k=s+2

ψk,s−1

Nk
+ E(M,N, s).

We deduce that:

ζ(s) =

N∑

n=1

1

ns
+

1

s− 1

1

N s−1
− 1

2

1

N s
−

2M+s−1∑

k=s+1

ψk,s−1

Nk
+ E(M,N, s).

ζ(s) =

N−1∑

n=1

1

ns
+

1

s− 1

1

N s−1
+

1

2

1

N s
−

2M+s−1∑

k=s+1

ψk,s−1

Nk
+ E(M,N, s).

For r = k − s, we obtain:

ζ(s) =

N−1∑

n=1

1

ns
+

1

s− 1

1

N s−1
+

1

2

1

N s
−

2M−1∑

r=1

ψr+s,s−1

N r+s
+E(M,N, s).

Then:

ζ(s) =

N−1∑

n=1

1

ns
+

1

s− 1

1

N s−1
+

1

2

1

N s
+

2M−1∑

r=1

(
r+s
s−1

)
Br+1

(r + s)N r+s
+ E(M,N, s).
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On other hand, we have B2k+1 = 0 for every natural k ≥ 1, then:

ζ(s) =

N−1∑

n=1

1

ns
+

1

s− 1

1

N s−1
+

1

2

1

N s
+

M∑

m=1

(2m+s−1
s−1

)
B2m

(2m+ s− 1)N2m+s−1
+E(M,N, s).

We get:

ζ(s) =
N−1∑

n=1

1

ns
+

1

s− 1

1

N s−1
+

1

2

1

N s
+

M∑

m=1

2m−1∏

i=0

(s+ i)
B2m

(2m)!N2m+s−1
+ E(M,N, s).

Finally, we find the standard Euler-Maclaurin [9]. formula applied to the zeta function ζ(s), where s
is a natural number and s ≥ 2, then we deduce that the matrix of the black magic ψ(n) has a beautiful

twelfth property which given as:

Property 12. By using the black magic matrix, we can represent the Euler-maclaurin formula as:

ζ(s) =
N∑

n=1

1

ns
− < Cs−1, X̃M,N,s > +E(M,N, s),

where:

- < ., . > is the scalar product < x, y >=
∑
xiyi.

- Cs−1 = ψ(2M+s)es−1 is the (s-1)-th column of the matrix ψ(2M+s).

- X̃M,N,s is the column vector defined as : X̃M,N,s =




1
N
1
N2

...
1

N2M+s


.

Example 10.

ζ(2) ζ(3) ζ(5) ζ(9) ζ(11)

ψ(10) =




−1 0 0 0 0 0 0 0 0 0
1/2 −1/2 0 0 0 0 0 0 0 0
−1/6 1/2 −1/3 0 0 0 0 0 0 0
0 −1/4 1/2 −1/4 0 0 0 0 0 0

1/30 0 −1/3 1/2 −1/5 0 0 0 0 0
0 1/12 0 −5/12 1/2 −1/6 0 0 0 0

−1/42 0 1/6 0 −1/2 1/2 −1/7 0 0 0
0 −1/12 0 7/24 0 −7/12 1/2 −1/8 0 0

1/30 0 −2/9 0 7/15 0 −2/3 1/2 −1/9 0
0 3/20 0 −1/2 0 7/10 0 −3/4 1/2 −1/10




.

We have:

ζ(s) =

N∑

n=1

1

ns
−

2M+s−1∑

k=1

ψk,s−1

Nk
+ E(M,N, s).

The coefficients of the first column of ψ(10) are −1, 1/2,−1/6, 0, 1/30, 0,−1/42, 0, 1/30, 0 then :

ζ(2) =
N∑

n=1

1

n2
+

1

N
− 1

2

1

N2
+

1

6

1

N3
− 1

30

1

N5
+

1

42

1

N7
− 1

30

1

N9
+ E(4, N, 2).
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Similarly, we deduce the following formulas :

ζ(3) =

N∑

n=1

1

n3
+

1

2

1

N2
− 1

2

1

N3
+

1

4

1

N4
− 1

12

1

N6
+

1

12

1

N8
− 3

20

1

N10
+ E(4, N, 3).

ζ(5) =
N∑

n=1

1

n5
+

1

4

1

N4
− 1

2

1

N5
+

5

12

1

N6
− 7

24

1

N8
+

1

2

1

N10
+ E(3, N, 5).

ζ(9) =

N∑

n=1

1

n9
+

1

8

1

N8
− 1

2

1

N9
+

3

4

1

N10
+E(1, N, 9).

12 The relationship between the hyperreal numbers and the Omicran-

reals

Let u be an element of ∆, ∗
R the field of hyperreal numbers and u(δ) the Omicran defined by the

sequence u( 1n)n≥1. < u(1i ) > represents the hyperreal defined by the sequence u( 1n)n≥1.

The map defined as:

ι :
O −→ ∗

R

u(δ) −→< u(1i ) >

is a ring homomorphism. In addition, we prove the following results:

• The map ι is injective, in fact: if ι(u(δ)) = 0 then < u(1i ) >= 0. We deduce that {i : u(1i ) =
0} ∈ F . Then u(1i ) is zero for an infinity of indices i, from the properties of u as an element of

∆, we deduce that ũ = 0. Finally u(δ) = 0.

• From the above result, we deduce that the field O is isomorphic to a subfield of ∗
R.

More precisely, we have:

O ≈ ι(O) ⊆∗
R.

• The total order relation defined on ∗
R extends the total order defined on O. In fact:

1. If u(δ) ≤ v(δ) then there exists n0 such that u(1i ) ≤ v(1i ), which implies that {i : u(1i ) ≤
v(1i )} ∈ U ( because, the finite sets are not elements of U ). Finally, we deduce that <
u(1i ) > ≤ < v(1i ) >.

2. Conversely, if < u(1i ) > ≤ < v(1i ) >, then {i : u(1i ) ≤ v(1i )} ∈ U . From the properties of

the elements of ∆, we deduce that there exists n0 such that u(1i ) ≤ v(1i ) for every i ≥ n0.

Finally, we get:

u(δ) ≤ v(δ) ⇐⇒ {i : u(1
i
) ≤ v(

1

i
)} ∈ U .

From the above results, we can justify the identification of the field of Omicran-reals O by a strict subset

of the field of hyperreals, and we deduce that:

”Any property that is true for every hyperreal number is also true for every Omicran.”
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13 Concluding remark

From the work of Robinson, the construction of the hyperreal numbers is related to the existence of an

ultrafilter with special properties. We can find in this ultrafilter the element A which is very ”small”

compared to Ac. Unfortunately, this property is not good for giving a very effective approach in practice.

In this work we propose an explicit approach without using the ultrafilters, without adding any axiom,

we can find the new notions used to obtain more applications thanks to this new method. Finally, we

think that the new method becomes more usable for many researchers in all fields of mathematics not

only for the specialists in mathematical logic.
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