N

N

Experimental evidence of nonlinear mode coupling
between spherical and nonspherical oscillations of
microbubbles
Matthieu Guédra, Claude Inserra, Cyril Mauger, Bruno Gilles

» To cite this version:

Matthieu Guédra, Claude Inserra, Cyril Mauger, Bruno Gilles. Experimental evidence of nonlinear
mode coupling between spherical and nonspherical oscillations of microbubbles. Physical Review E |
2016, 94 (5), pp.053115. 10.1103/PhysRevE.94.053115 . hal-01516115

HAL Id: hal-01516115
https://hal.science/hal-01516115
Submitted on 7 Mar 2018

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-01516115
https://hal.archives-ouvertes.fr

PHYSICAL REVIEW E 94, 053115 (2016)

Experimental evidence of nonlinear mode coupling between spherical and nonspherical
oscillations of microbubbles

Matthieu Guédra,"" Claude Inserra,! Cyril Mauger,? and Bruno Gilles'
YUniversité Claude Bernard Lyon 1, INSERM, LabTAU, F-69003, Lyon, France
2Université Claude Bernard Lyon 1, INSA de Lyon, CNRS, LMFA UMR 5509, F-69622 Villeurbanne CEDEX, France
(Received 7 July 2016; published 18 November 2016)

We report observations of strong nonlinear interactions between the spherical, translational, and shape
oscillations of micrometer-size bubbles. This is achieved through high-speed recordings of single bubble dynamics
driven by amplitude-modulated ultrasound. The features of mode coupling are highlighted through (i) the
exponential growth of the parametrically excited mode (n = 3) triggered by the spherical oscillations followed
by a saturation due to energy transfer towards the translation and even modes, (ii) the excitation of modes well
below their parametric pressure threshold, and (iii) clear modification of the breathing mode R(¢). These results
are compared to recent theories accounting for nonlinear mode coupling, providing predictions in agreement

with the observed bubble dynamics.

DOLI: 10.1103/PhysRevE.94.053115

I. INTRODUCTION

When submitted to a sufficiently strong acoustic field,
gas bubbles can undergo shape deformations and no longer
oscillate upon a purely spherical mode. Such nonspherical
surface deformations are excited by instabilities including
Rayleigh-Taylor instability (acting on a very fast time scale)
and Faraday (parametric) instability, which is a cumulative
effect over many acoustic cycles (typically 1073 s for um-size
bubbles) [1]. For the latter, the energy transfer from the
acoustically driven volume mode to the surface shape modes
can be resonant either with the driving frequency or with
respect to afterbounces occurring during large oscillations,
with a particular interest in sonoluminescence studies [1-3].
Less appreciated than uncoupled surface instabilities induced
by volume oscillations is the possibility of nonlinear coupling
between spherical, translational, and surface modes [4-6].
Theoretical investigations have been devoted first to surface-
to-volume transfer in the context of sound emission by
bubbles as a source of underwater sound [7,8] and second to
surface-to-translation transfer to explain the dancing bubble
phenomenon [9]. Indirect observation of nonlinear mode
coupling was performed by acoustic noise measurement of
released asymmetrical bubbles [10] and evidence of multiple
surface mode generation in an acoustic field has been given
on millimetric bubbles [11]. Only a few studies have been
done to investigate nonlinear mode coupling of micrometer-
size bubbles, while the enhancement of spherical oscillations
induced by shape distortions is of interest in the context
of medical imaging by ultrasound contrast agents [12] and
microstreaming generation by tethered microbubbles [13-16].
Recently, direct observations of nonlinear mode coupling
on ultrasound contrast agents have been attributed to the
shell elasticity [12], while uncoated microbubbles in a strong
acoustic field did not reveal such behavior [17]. In this paper,
we describe a set of controlled experiments on uncoated
micrometer-size bubbles in a sufficiently strong acoustic field
that exhibit nonlinear mode coupling. We give evidence of
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shape-to-volume mode modification, and highlight the validity
of the most recent theoretical developments [ 18—20] in the field
for moderate energy transfer between modes.

II. EXPERIMENTAL SETUP AND OBSERVATIONS

Single air bubbles of size ranging from 30 to 80 um are
nucleated by a focused laser pulse (A = 532 nm, pulse duration
5 ns) in a closed 12-cm-edge cubic water tank. Distilled
undergassed water is used, avoiding the rapid dissolution of
the bubbles. An ultrasonic plane transducer (SinapTec, active
area @35 mm) located on the top of the tank allows one
to trap the bubble in an acoustic field of frequency f, =
33.20 kHz. Similarly to previous works investigating shape
deformations of drops [21-24] and bubbles [11,25,26], bubbles
are insonified by a slowly varying amplitude-modulated signal
of modulation frequency fy < f,, which allows one to
generate the shape modes periodically. This point will be
further discussed. Shadowgraphic images of the bubble are
obtained using a continuous light source (LED) and high-speed
recordings of the bubble dynamics are achieved using a
CCD camera (Vision Research, Phantom V12.1) and a 12x
objective lens (Navitar, 12x zoom), with an acquisition rate of
180 x 103 frames per second (180 kfps). Movies are captured
with a frame size of 128 x 128 pixels. Typical examples of
the recorded series of pictures are shown in Fig. 1 for bubbles
of radii 48 um [Fig. 1(a)], 68 um [Fig. 1(b)], and 57 um
[Fig. 1(c)], revealing the onset and extinction of the surface
modes n = 2,3,4, respectively. Each series of 18 pictures
corresponds to instantaneous snapshots of the bubble on one
half period of the low-frequency modulation. The modal
amplitudes are obtained from the movies through an image
processing procedure illustrated in Fig. 2. The bubble contour
and weight center are extracted from the recorded pictures
[Fig. 2(a)], and discrete values of the radial coordinate r(6,t)
of the bubble surface are determined [Fig. 2(b)]. A proper
expansion of r¢(6,t) as a Legendre polynomial series,

N
r(0,0) =) ay(t)Py(cos 6), )

n=0
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FIG. 1. Snapshot series during one half period of the low-frequency modulation, for bubbles of radii (a) 48, (b) 68, and (c) 57 um (see
Supplemental Material [27]). The modulation frequency is different for each series: (a) f); = 200, (b) f) = 100, and (c) f = 50 Hz.

directly leads to the computation of the modal coefficients
ay(t) [Fig. 2(c)] by projecting ry on the P, polynomial basis,
so that

2n +1
n(l) =
a(t) >

1
/ ry Py(x)dx withx =cos6. (2)
-1
Note that a reference angle s might be chosen for the
correct definition of 8 [Fig. 2(a)]: its value fulfills an objective
criterion minimizing (in a least-square sense) the difference
between the rough data for r; and the rebuilt contour after
computation of the modal coefficients [namely, the ability of
the modal expansion to correctly fit the contour; see Fig. 2(b)].
We must also emphasize that o, is nearly constant on the
whole duration of the acquisition, with typical variations of
less than 1 degree (except when the bubble is in a spherical
shape, where its value is obviously irrelevant).

It is worth noting that according to Eq. (1), ag corresponds to
the breathing mode of the bubble [noted R(¢) in the following]
and a; can be related to its translational motion [noted x(t)
in the following]. According to this modal expansion, the
temporal variations of the five first modes (including R and x)
are given in Fig. 3 for a bubble of radius 67 um. The spherical
oscillations of the bubble are modulated in amplitude around
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FIG. 2. Illustration of the procedure for the computation of the
modal coefficients at a given time. (a) An instantaneous snapshot
of the distorted bubble, together with the extracted contour and the
definitions of the reference angle os and the polar angle 6. (b) The
radial coordinate r, as a function of cos 6, obtained from the contour
(black curve) and from the modal expansion (magenta curve) after
computation of (c) the nine first coefficients a,,.

the static radius, with a period f 1;1] = 10 ms. All of the higher-
order modes appear almost simultaneously when the amplitude
of the breathing mode is the highest. This phenomenon is
highly repeatable and the modulation of the bubble response
leads to the periodic onset and extinction of the unstable
modes. Particular attention is now given to one half period of
the modulation in Fig. 4(a), which corresponds to a zoom-in
of Fig. 3 over the first five milliseconds. During this time, the
bubble, initially in a spherical shape, begins to develop some
shape instabilities as its oscillations become larger, and then
turns back into a spherical shape at the end of the period. The
most unstable mode (n = 3) is parametrically excited by the
breathing mode and reaches the largest amplitude of around
20 pm (the bubble is mostly in a triangular shape). This mode
oscillates at half the driving frequency [see Fig. 5(a)], which
corresponds to the first resonance of the parametrically excited
system. This is consistent with the classical linear theory

0 5 10 20 25 30

15
t (ms)

FIG. 3. Temporal evolution of the amplitudes of the radial mode
(R), translational mode (x), and surface modes (a;) for a bubble
of radius 67 um. All quantities are given in micrometers. The
modulation frequency is fj) = 100 Hz.
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FIG. 4. Temporal evolution of the amplitudes of the radial mode (R), translational mode (x), and surface modes (a;) for a bubble of radius
67 um. All quantities are given in micrometers. (a) Experimental results (zoom-in of Fig. 3). (b) Theoretical results from the coupled (main

graphs) and uncoupled (inset graphs) theories. See Sec. I11.

which predicts its natural frequency to be f;3 ~ 15.6 kHz for
a bubble of radius 67 um [28]. Moreover, far from large
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FIG. 5. (a) Fourier transform of the modal coefficients. The
frequency axis is normalized by the driving frequency f, =
33.20 kHz. (b) Modal coefficients in logarithmic scale. Zoom-in of
Fig. 4(a). The y-axis scales are in arbitrary units.

bubble amplitudes, the linearized Rayleigh-Plesset equation
allows us to infer that the driving pressure amplitude is
Pa == 14 kPa, above the parametric threshold ps =~ 8 kPa
calculated at the driving frequency of 33.20 kHz [29]. Once
as has reached its largest amplitude, it is strongly saturated
and slowly decreases until its disappearance. Such a saturation
is due to the energy transfer from a3 towards the translation
mode (x) and the even shape modes. The first indication of this
process is the time delay between the onset of a3 and the other
modes, which is easily observed when the temporal curves are
plotted on a logarithmic scale [see Fig. 5(b)]. Furthermore,
the even shape modes a, and a4 are not driven at f,/2 [see
Fig. 5(a)], which is far from their natural frequencies f, =~ 8.5
and f4 ~ 23.4 kHz. For the present bubble size and driving
frequency, the corresponding pressure thresholds p; gq =~ 38
and p4 g =~ 40 kPa are much higher than the experimental
acoustic pressure. Thus the oscillations of the even modes do
not come from the parametric excitation of the breathing mode,
but from the nonlinear coupling between nonspherical modes.
A final evidence of such a nonlinear behavior is the nonzero
mean value of a, and a4, which is due to a nonlinear drift
effect.

III. COMPARISON WITH THEORY

The time-resolved dynamics in Fig. 4(a) allow us to
support the most recent theoretical models which consider the
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nonlinear interactions between volume oscillations,
translation, and shape deformations of the bubble [18-20].
These models are based on a set of coupled second-order
differential equations governing R(t), x(¢), and a,(¢), obtained
from a perturbative approach around the small parameter €
(e~x/R~a,/R < 1). The set of equations, reduced to the
second order for € in the present study, can be written in a

condensed form as
Y Y ATE
20 T\ TR IR

Poo +p(t) 20 R
S LI S BY Y
P PR
+ézho(xz,aiz,diz,aidi,aidi), 3)

e[Rje +3RE+ 18v%i| = Enyaaj.aiag.aia;), (@)
€ldy + Buay — Apay) = €°hy(a? a7 a;di,a:a7,a;d), (5)

where p and v are the liquid density and kinematic viscosity,
o is the surface tension, y is the gas polytropic index, Ry is
the bubble static radius, p., and p(¢) are the static part and the
acoustic part of the liquid pressure, and the functions A, and
B, are those involved in the uncoupled parametric equations
problem and are given by [1]

o g_ (n+Dn+20
A, () = (n 1)[R — R (n+2)
2n8\ 2vR
X (1 + ?)F} (6)
R 2n872v
B”(I)ZSE+(n+2)|:(2n+1)_(n+2)?i|ﬁ’ (7

where § denotes the viscous boundary layer thickness. In
Egs. (3)—(5), the functions h; take into account the nonlinear
interactions between the different modes; their mathematical
expressions are not derived here but they can be found
in Ref. [19]. Equations (3)—(5) also account for viscous
dissipation, which is significant for micrometer-size bubbles
and is expected to increase for higher-order modes [17,30].
Assuming that the viscous layer thickness § is much smaller
than the bubble radius, the boundary layer approximation
allows one to consider the viscous damping terms in Egs.
(3)~(7) [proportional to (8/R)*> <« 1] as perturbations,
just as the nonlinear coupling terms are. Therefore,
viscous dissipation is only introduced at the lowest
order in €, while the dependence of the functions
h; on viscosity can be discarded. Note that
8§ ~22 pum at the ultrasonic frequency used in our
experiments, thus validating the boundary layer approximation
for bubbles of a few tens of micrometers in radius.

Equations (3)—(5) are solved with standard numerical
integration methods using a PYTHON programming language
code. Figure 4(b) gives the results obtained for an acoustic
driving pressure of the form

p(t) = pasin27 fi1) sin(27 fo1), ®)
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with p, = 14 kPa, fi; = 100 Hz, and f, = 33.20 kHz corre-
sponding to the experimental conditions of Fig. 4(a), and initial
conditions R =67 um, a, = a3 =as = 1 nm (~107*Ry),
and R=x%=a = as = a4 = 0. A remarkable agreement is
found both on temporal dynamics and order of magnitude
[particularly for R(¢) and a3(¢)]. The model well captures
the amplification of the most unstable mode (a3) and its
saturation due to nonlinear coupling, with the appearance of
the translation mode (x) and the even shape modes (a, and
ay). These modes cannot be predicted by the theory when
the nonlinear interactions between modes are not taken into
account, i.e., if we discard the ; functions in Egs. (3)—(5) [see
the inset graphs in Fig. 4(b)]. In this case, the even shape modes
simply decay as they are driven well below their unstable
growth threshold, while the a3 mode is exponentially amplified
until arbitrarily large values since no physical mechanisms can
lead to its saturation.

IV. BREATHING MODE MODIFICATION

A slight modification of the breathing mode (R) is predicted
by the theory when the higher-order modes reach their largest
amplitudes, as observed in Fig. 4(b). In this case, the nonlinear
terms involved in the function h( in Eq. (3) (especially a%
and a3 here) become sufficiently large to act on the temporal
dynamics of R(¢). This effect can hardly be observed in the
experimental results shown in Fig. 4(a), and any conclusion
regarding the modification of the breathing mode by shape
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FIG. 6. Temporal evolution of the amplitudes of the radial mode
(R), translational mode (x), and surface modes (a;) for a bubble of
radius 68.5 um. All quantities are given in micrometers.
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modes would be purely speculative at this point. However, a
significant modification of R(¢) is demonstrated for a similar
size bubble (Ry = 68.5 um) driven at larger amplitude (p, =~
15.3 kPa; see Fig. 6). For this case, both the third shape mode
a; and the translation mode x exponentially grow until large
amplitudes and are heavily saturated. Note that a comparison
with numerical simulations is not provided for the results of
Fig. 6 because too large amplitudes reached by x(¢) and as(t)
render the calculations unstable. In that case, the function A
in Eq. (3) is no longer a perturbation of the Rayleigh-Plesset
equation and the asymptotic expansion fails.

V. CONCLUSIONS

We reported time-resolved dynamics of nonspherical mi-
crobubbles obtained from high-speed recordings. Suitable
image processing and modal expansion of the bubble con-
tour allowed us to determine the temporal evolution of the
modes, including the breathing mode (n = 0), the translational
mode (n = 1), and the shape modes (n > 2). Analyzing the
experimental results revealed that the excitation of several
nonspherical modes does not come from the classical para-
metric resonance phenomenon, but from nonlinear coupling.
Successful comparisons with numerical simulations confirmed
our assertions, providing at the same time an experimental
validation of recent theoretical developments [18-20] in
the case of micrometer-size bubbles. Finally, we concluded

PHYSICAL REVIEW E 94, 053115 (2016)

our analysis by focusing on the shape-to-volume mode
modification effect, which is of particular interest for the
enhancement of ultrasound contrast agents’ echogenicity [12]
as well as for the manipulation of micrometric objects by
bubble-induced streaming [16]. We reported such an effect
for a 68.5-um-size bubble undergoing both significant trans-
lational oscillations and triangular shape deformations. Our
experimental results thus confirm the ability of higher-order
modes to significantly alter the spherical mode of micro-
metric bubbles, although decisive conclusions supporting the
aforementioned applications would require studies on even
smaller bubbles and measurements of the scattered acoustic
field and streaming flow induced by the bubble. The results
presented in Fig. 6 also illustrate the limitations of the most
recent models [18-20] which, because they are based on
an asymptotic approach and on the assumption of small
perturbations around the spherical mode, are currently unable
to reproduce the complicated dynamics obtained here when
several shape modes simultaneously reach amplitudes of
oscillations at an order of magnitude equivalent to the spherical
mode itself.
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