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The local interactions occurring between incident and reflected shock waves in the
vicinity of rigid surfaces are investigated. Both regular and irregular — also called
von Neumann — regimes of reflection are studied, via experimental and numerical
simulations. Shock waves are produced experimentally with a 20 kV electrical spark
source which allows the generation of spherically diverging acoustic shocks. The
behaviour of the resulting weak acoustic shocks near rigid boundaries is visualized
with a Schlieren optical technique which allows the spatial structure of the shocks
to be studied. In particular, the evolution of the Mach stem forming above a flat
surface is examined, and its height is observed to be directly linked to the angle
of incidence and the pressure amplitude of the incident shock. The propagation
of an acoustic shock between two parallel rigid boundaries is also studied. It is
shown that the strong interactions between the Mach stems emerging from the two
boundaries can lead to a drastic modification of the morphology of the acoustic
field in the waveguide. Experimental results are compared to numerical results
obtained from high-order finite-difference based simulations of the 2D Navier-Stokes
equations. The good agreement between the experimental distribution of the acoustic
field and numerical results suggests that numerical simulations are promising as a
predictive tool to study nonlinear acoustic propagation of acoustic waves in com-
plex geometrical configurations with rigid boundaries. C 2016 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4940987]

I. INTRODUCTION

Ernst Mach discovered experimentally in 18781 that the point of intersection of a strong inci-
dent shock and its reflection from a rigid boundary can detach from this boundary under particular
conditions. This phenomenon leads to the formation of a third shock, called Mach stem, that ensures
the connection between the intersection of incident and reflected waves and the rigid boundary. This
kind of reflection is called irregular reflection or Mach reflection in honor of its discoverer. Since
then, an entire field of research has focused on the study of shock-wave reflection phenomena.2

In particular, in 1943, John von Neumann studied theoretically the experimental observations
of Ernst Mach and introduced a new theory, called three-shock theory,3 contrasting with the clas-
sical two-shock theory which is valid as long as the intersection of incident and reflected shocks
remains on the boundary (case of regular reflection). A number of theoretical, numerical, and exper-
imental studies ensued from these works. It has been shown that there is a good agreement between
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TABLE I. Regimes of reflection as a function of the critical parameter a

observed numerically in the case of step shock.7

Kind of reflection Regime Step shock

Classical Snell-Descartes
reflection

Linear regular regime a > 5

Generalized Snell-Descartes
reflection

Nonlinear regular
regime

√
2 < a < 5

von Neumann reflection Irregular regime 0.4 < a <
√

2
Weak von Neumann reflection Irregular regime a < 0.4

the von Neumann’s three-shock theory and experiments for strong shocks (Mach number M ≫ 1).4

In the case of weak shock reflection (M ≃ 1), three-shock theory does not predict Mach reflection
while experiments and numerical simulations have shown that irregular reflections can still exist.4,5

This discordance is called the von Neumann paradox.
In the field of acoustics for which M − 1 is of order of 10−4, this paradox was observed numer-

ically by Sparrow and Raspet6 when they investigated the reflection from a rigid boundary of a
spherical spark generated acoustic shock. This paradox was later studied numerically by Baskar
et al.7 In particular, they investigated the phenomenon of transition between regular and irregular
regimes of reflection using the KZ equation8 in the case of step shocks, plane N-waves, and of
periodic sawtooth waves. The derivation of the boundary conditions for the KZ equation leads them
to introduce a critical parameter a describing the ratio of nonlinear and diffraction effects near the
rigid boundary. This parameter is defined as

a =
sin θi

2βPmax/(ρc2) , (1)

with θi, the angle of incidence of the shock wave, Pmax, the positive peak pressure amplitude of
the incident shock, β, the nonlinear parameter, ρ, the density of fluid, and c, the adiabatic celerity
of sound. As described in Table I, four regimes have been defined for step shocks as a function
of this parameter. When a is larger than 5, the classical Snell-Descartes reflection takes place. The
regime is linear regular: the angles of incidence and reflection are equal. When this parameter lies
between

√
2 and 5, the regime of reflection become nonlinear regular. In this case a generalized

Snell-Descartes reflection is observed: the angles of incidence and reflection can be different. The
transition between regular and irregular regimes is given theoretically by a =

√
2.7 Below this value,

regular reflection cannot exist anymore. It is worth noting that this limit has also been obtained by
Brio and Hunter9 from the two-dimensional Burgers equation in the case of step shocks. For values
of a between 0.4 and

√
2, the incident and reflected shocks intersect above the rigid boundary,

giving rise to the Mach stem. The intersection between these three shocks is called the triple point
T [see Fig. 1], and this regime of reflection is called von Neumann reflection in the case of weak
acoustic shocks. Finally, when the critical parameter a is lower than 0.4, a new regime of reflection
takes place: the reflected shock tends to disappear as the angle of incidence approaches the perfectly
grazing angle. This phenomenon is introduced by Baskar et al. as weak von Neumann reflection.7 In
the case of N-waves and periodic sawtooth waves, Baskar et al. reported a similar categorization.

FIG. 1. Regimes of reflection reported by Baskar et al. in the case of step shocks.7
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Those different regimes have been observed experimentally for plane ultrasonic shock waves
in water by Marchiano et al.10 They reported a good agreement between the numerical and experi-
mental transitions from Snell-Descartes reflection to von Neumann reflection, and from the latter, to
weak von Neumann reflection. The fact is that acoustic shocks are not just limited to plane waves.
They can be focused ultrasonic shock waves which are widely used in ultrasound therapy, sonic
booms produced by aircraft, or Mach waves produced by supersonic projectiles, or blasts. For the
latter case, the shock wave has a spherical morphology and diverges spherically. As previously
mentioned, Sparrow and Raspet6 observed numerically the formation of the Mach stem during the
propagation of incident and reflected spherically diverging shock waves produced by a spark source.
Recently, Karzova et al. also reported experimentally (from schlieren measurements using a single
mirror coincident system) the arising of Mach stem from the reflection of a spherically diverging
N-wave on a rigid boundary for small angles of incidence.11,12 They found a categorization close
to that presented in Table I for the different regimes of reflection. In particular, they reported a
transition between regular and irregular regimes of reflection for a ≃ 1.1 ± 0.3 in the case of spher-
ically diverging shocks, which is close to the value reported by Baskar et al. in the case of step
shocks.

The study of acoustic shock propagation in complex environments is of great interest to several
areas of acoustics. Whether it be for medical applications such as ultrasound therapy, in aviation
where the sonic boom phenomenon is widely investigated, or for military applications involving
supersonic projectiles or explosions, the comprehension of shock wave propagation is essential, and
particularly so for spherically diverging acoustic shocks. However, to our knowledge, few studies
have focused on the propagation and reflection phenomena of spherical weak acoustic shock waves.
Such waves, usually generated by a spark source, are widely used, particularly in urban acoustics13

and laboratory scaled experiments.14,15 Hence, the aim of this paper is to study, both experimentally
and numerically, the reflection of a spherically diverging weak acoustic shock wave produced by
an electrical spark source and to complete previous experimental and numerical observations.7,11 In
particular, the experimental works of Karzova have been extended to a wider range of experimental
configurations, and an in-depth study of the evolution of the Mach stem is achieved using an optical
schlieren method. The images obtained from this method provide access to the morphology of the
acoustic shocks, and when it exists, to the reflection pattern. Experimental results are compared
to numerical simulations based on high-order finite difference solutions of the two-dimensional
Navier-Stokes equations, and a parametric study is undertaken to characterize the evolution of
the Mach stem generated by the propagation of cylindrical acoustic shocks. The propagation and
reflection of spherical shock waves between two parallel rigid boundaries constitute a final original
point of interest.

Experimental and numerical setups are presented in Sections II and III, respectively. Then, the
reflection of a spherically diverging shock wave is investigated. Spatial distributions of acoustic
pressure obtained numerically are compared to schlieren measurements in Section IV. Particular
attention is paid to the characterization of the Mach stem evolution. Section V is devoted to the
study of the propagation of a spherically diverging acoustic shock between two parallel rigid bound-
aries, and particularly to the interactions between the Mach stems arising from each of the two
boundaries.

II. EXPERIMENTAL SETUP

A diagram of the experimental setup is shown in Fig. 2. A 20 kV electrical spark source is
used to generate high amplitude pressure pulses in air. With a gap between the tungsten electrodes
adjusted to 20 mm, the generated spark gives rise to an acoustic blast wave which diverges spheri-
cally in the measurement domain. The spatial distribution of the acoustic field is measured using a
Z-type schlieren system.16–18 A continuous quartz tungsten halogen white light source (maximum
250 W) creates a light beam between two parallel parabolic mirrors (108 mm diameter, 864 mm
focal length) separated by approximately 1.7 m. Optical aberrations are reduced by limiting the
off-axis to 2α < 10◦. A spatial filtering is operated with a knife edge located in front of the CMOS



027102-4 Desjouy et al. Phys. Fluids 28, 027102 (2016)

FIG. 2. Schematic representation of the Z-type schlieren system. A light beam is created between two parabolic mirrors.
The propagation of a shock through this beam leads to variations of the light intensity which are linked to the variations of
acoustic pressure.

camera (Phantom V12), at a distance equal to the focal length f , perpendicularly to the direction of
propagation of the shock wave. Schlieren images are recorded with a resolution of 800 × 600 pixels,
a frame rate of 18 kHz and an exposure time of 1 µs. They represent the variations of light intensity
in the measurement domain which are linked to the variations of density ρ, and consequently of
acoustic pressure pa.16

Schlieren images are analyzed in order to extract the geometrical parameters of the shocks.
First, an averaged background image is calculated for each set of measurements and is subtracted
from images including the shocks. Then, a marching squares algorithm is applied to locate the
shock positions. This algorithm is a particular case of the marching cubes algorithm.19 The incident
and reflected shocks are approximated far from the boundary by a least-squares method (under the
assumption of a locally spherical wavefront) to determine the locations of the source, the source
image, the triple point, and the angles of incidence and reflection [see Fig. 1]. Due to the resolution
of the schlieren images (one pixel represents 0.17 mm) and the exposure time of 1 µs (during which
the wave propagates over around 0.34 mm), the minimum uncertainty on the determination of the
spatial characteristics of the acoustic field is of about 0.51 mm. Moreover, even if the measurements
present an acceptable signal-to-noise ratio (SNR of about 17 dB), in some image areas, the lack of
contrast can lead to additional uncertainties. In particular, in the vicinity of the triple point, there
may be strong interactions between the reflected shock front and the incident rear shock leading to
uncertainties on the determination of the height hs of the triple point that can reach 2 mm.

Therefore, schlieren photography enables the investigation of the morphology of the acoustic
pressure in the measurement domain. However, this technique does not provide direct access to
the acoustic pressure amplitude. Simultaneous measurements with classical condenser microphones
being inadequate considering the pressure magnitudes and frequency ranges close to the spark
source, preliminary characterization of the spark source has been carried out in free field conditions
using a Mach-Zehnder interferometer.20,21 These preliminary results have been used to determine
the pressure magnitude22–24 in the experimental spatial measurement domain considered in this
paper, i.e., for x ∈ [40,380] mm. Over this spatial range, the propagation distance, the wavelength
λ, and amplitude Pmax of the generated shock lie between [1 × 10−2,2 × 10−2] m, and [0.6,8] kPa,
respectively. For given atmospheric conditions, the acoustic shocks generated by the spark source
are highly reproducible (maximum variations of amplitude and wavelength of about 2%). Prelim-
inary schlieren measurements have also been conducted in free field conditions to ensure that the
acoustic shock generated by the spark source is spherical.

Experiments have been carried out for several geometrical configurations. As Fig. 3 shows, the
angle of incidence θi can be adjusted by changing the height ys of the spark source and/or the center
of the observation window located at x = x0. Experiments have been done for angles of incidence θi
from 1◦ to 18◦ and positive peak pressure amplitude Pmax of the incident shock from 0.6 to 8 kPa. In
these configurations, the values of the critical parameter a range from 0.05 to 3.
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FIG. 3. Schematic representation of the geometrical setup. A spherically diverging shock wave generated by the spark source
located at (0, ys) propagates and passes through the observation window whose center is located at the distance x0 from the
spark source.

III. NUMERICAL METHOD

The full two-dimensional Navier-Stokes equations are solved to model the propagation and
the reflection of weak shock waves. The description of the solver is detailed in Ref. 25 and
summarized hereafter. Explicit finite differences based on 11-point stencils are used to compute
the spatial derivatives involved in the Navier-Stokes equations.26 Time integration is performed
with a six-stage optimized Runge-Kutta scheme.26 Additionally, a shock-capturing filtering tech-
nique is employed in order to handle the discontinuities that appear in the vicinity of shock
waves. The shock-capturing methodology employed in this work is based on the application of a
low-order (second order) filter to flow variables in the vicinity of acoustic shocks, in addition to
the high-order selective filtering which is applied over the entire computational domain. Acoustic
shocks are identified by comparing the level of high-frequency pressure fluctuations at each grid
point to the local mean ambient pressure. High values of this ratio are indicative of a shock front.
At each time step, the second order filter is applied with a local strength dependent on the local
value of the ratio: low values lead to a filtering magnitude of zero, while values above a certain
threshold27 generate a positive filtering magnitude. Thus, away from acoustic shocks, flow vari-
ables are unchanged by the shock-capturing scheme, while near shocks, high frequency energy
is damped, leading to smoother shock fronts, of the order of four grid points in thickness, and
free from significant Gibbs oscillations. A detailed description of the methodology can be found
in Bogey et al.27 This paper briefly describes different shock-capturing techniques found in the
computational fluid dynamics literature, as well as their typical deficiencies for acoustic computa-
tions. The paper then provides a detailed spectral analysis of the adaptive filtering procedure, before
examining the effects of the methodology on several linear and nonlinear test cases.27 The general
flow features, including shock front locations, are preserved, while Gibbs oscillations are strongly
reduced.

The Navier-Stokes solver has been fully implemented in OpenCL. This solver does not account
for molecular relaxation effects which contribute to acoustic absorption and dissipation during the
propagation process. Even if these dissipative and dispersive effects can be taken into account,28 it
has been shown that, in the case of the propagation of acoustic shocks over short distances (in the
present case, of about ten wavelengths), they are negligible compared to nonlinear and absorption
effects.29

The boundary condition on the rigid wall is a non-slip condition. In the following, numerical
acoustic pressure distributions are presented for 4096 × 2048 grid meshes, with spatial and time
steps of 0.1 mm and 1.5 × 10−5 s, respectively. The source is a Gaussian-envelope injection of
energy. The adjustment of its amplitude and half-width allows a wide range of acoustic waveforms
to be established in the computation domain.

The comparison between numerical and experimental results is achieved by adjusting the initial
wavelength and peak amplitude of the source in order to obtain a numerical wave that fits the
experimental waveform in the free field at a distance x ≃ x0 (i.e., at the center of the observation
window). Examples of time waveforms obtained numerically and experimentally in the free field
are presented in Fig. 4. Weak Gibbs oscillations are visible on the numerical shock front, but the
experimental and numerical waveforms are close, in terms of rise time, duration, and also positive
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FIG. 4. Example of experimental (solid line) and numerical normalized (dashed line) waveforms in the free field at a
propagation distance of x = 90 mm from the source.

and negative peak pressures. It is worth noting that this work focuses on the study of the spatial
distribution of the acoustic field, not on the temporal waveforms. The aforementioned oscillations
could incidentally be reduced by using shorter temporal and spatial steps but at the cost of a signif-
icantly longer computation time. The numerical parameters used in the present work (temporal and
spatial steps) are a compromise allowing a parametric study for thousands of geometrical cases to
be carried out in a reasonable time.

IV. REFLECTION ON A RIGID BOUNDARY

A. Regimes of reflection

As described above, different regimes can take place when an acoustic shock is reflected from
a rigid boundary. Fig. 5 presents results of numerical simulations for different values of the critical
parameter a of the normalized acoustic pressure pa/Pmax, Pmax being the positive peak pressure
amplitude. When a is greater than

√
2 [Fig. 5(a)], the regime of reflection is regular. Incident

and reflected shocks intersect on the rigid boundary and angles of incidence and of reflection are
equal. Increasing the incident pressure amplitude and/or decreasing the angle of incidence makes
the parameter a decrease. When a becomes lower than the critical value a =

√
2 [Fig. 5(b)], the

FIG. 5. Normalized numerical distribution of acoustic pressure pa/Pmax for: (a) a = 5.01, (b) a = 1.31, (c) a = 0.37,
(d) a = 0.06. A zoom on the intersection of incident and reflected shocks is also presented in the boxes inserted in (a)–(c).
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regime of reflection evolves from regular to irregular. Then, the angles of incidence and reflection
are noticeably different, and the intersection of incident and reflected shocks starts to move away
from the rigid boundary, leading to the formation of the Mach stem. In Fig. 5, the height hs of the
Mach stem evolves from hs = 2 mm [Fig. 5(b)] to 12 mm [Fig. 5(c)]. As a decreases more, the
intersection of incident and reflected shocks continues to moves away from the boundary and then,
the reflected shock tends to merge gradually with the incident shock. When the angle of incidence
approaches the perfectly grazing angle (a tends to 0), the reflection tends to a weak von Neumann
reflection as shown in Fig. 5(d).

Fig. 6 presents the normalized maximum positive peak pressure Pmax/P∞ on the rigid boundary
obtained from the two-dimensional simulations as a function of the parameter a, P∞ being the
positive peak pressure for a = 3.5. This normalization aims at obtaining an amplification of 2 for
large values of a in order to represent the doubling of the incident pressure for large angles of inci-
dence, i.e., for a regular regime of reflection, in accordance with the linear Snell-Descartes laws. As
the parameter a decreases, the maximum pressure increases to a maximum amplification of about
2.4 for a = 1.1, i.e., for an irregular regime of reflection. It is worth noting that the non-constant
amplification exhibited for a >

√
2 is predicted by the two-shock theory. As a decreases further,

the maximum amplification decreases below 2 around a = 0.5. Then, the amplitude continues to
decrease to 1.1 for a = 0, i.e., for the perfect grazing incidence. At the same time, the regime of
reflection changed from a 2-shocks regime (classical doubling of the pressure) to a 3-shocks regime
(continuous increase, then decrease of the amplification around the critical value a =

√
2), and

finally to a 1-shock regime (no longer a doubling of pressure). The transition between the different
regimes of reflection is continuous as reported by Baskar et al.7 in the case of step shocks.

These results are close to the ones obtained previously in the literature.7,11 The categorization
reported by Baskar et al. [see Table I] remains valid except for the nonlinear regular regime. Indeed,
in the case of a cylindrical acoustic shock, the angle of reflection always matches the angle of
incidence for critical parameters a >

√
2, so that above this critical value, the regime of reflection

is governed by the classical Snell-Descartes laws. It is also worth noting that weak von Neumann
reflection occurs for values of a < 0.1 in the case of cylindrical shocks versus values of a < 0.4 in
the case of step shocks.

Comparisons with experimental measurements have been done in the case of irregular reflec-
tions. Fig. 7 reports numerical normalized distributions of acoustic pressure (top figures) and
corresponding schlieren snapshots (middle figures) for different a values lower than

√
2 (ys = 6,

11, 16, and 21 mm, for x0 ≃ 100 mm), so that the regime of reflection is irregular. There is an
excellent correlation between experimental and numerical results, whether it is for the front shock,
the rear shock, or the Mach stem shape and location. To illustrate this, the bottom plot of Fig. 7
shows the comparison between the outlined front shocks (incident, reflected, and Mach stem) seen
numerically and experimentally. Only small differences are observed on the shock patterns at the
top of the observation window, where the calculated and the measured shock locations differ only
by about one millimeter. The main source of uncertainty in the experiments comes from the random
fluctuations of the spark location, which result in an error of the same order on the estimation
of the propagation distance. The difference between the three-dimensional (experiments) and the

FIG. 6. Normalized maximum positive peak pressure Pmax/P∞ on the rigid boundary as a function of the critical parameter
a. P∞ is the maximum positive peak pressure for a = 3.5.
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FIG. 7. Comparisons of numerical normalized spatial distribution of the acoustic pressure pa/Pmax (top figures) and
schlieren images (middle figures) as a function of the critical parameter: (a) ys = 21 mm, a = 0.83, (b) ys = 16 mm, a = 0.66,
(c) ys = 11 mm, a = 0.45, and (d) ys = 6 mm, a = 0.22. The bottom figures present a comparison of the front shocks outlined
from the numerical (solid black lines) and schlieren (dashed red lines) results.

two-dimensional propagation (simulations) may also contribute to additional discrepancies between
the measured and the calculated patterns.

As shown in Fig. 7, when the critical parameter a decreases, the location of the triple point
gradually moves away from the rigid boundary, so that the height of the Mach stem hs increases as
the parameter a decreases : hs = 3 mm, 4.5 mm, and 9 mm for a = 0.88, 0.66, and 0.45, respec-
tively. As long as a is greater than approximately 0.41 [Figs. 7(a)–7(c)], the shape of the Mach stem
is a straight line. Obviously, this causes a local loss of circularity of the wavefront in the vicinity
of the Mach stem. This deformation is due to the positive peak pressure amplitude of the Mach
stem which is higher than the amplitudes of both incident and reflected waves, leading to the fact
that the Mach stem propagates faster than the incident and reflected waves. This increase of the
speed of the Mach stem contributes to counterbalance the curvature of the circular wavefront near
the rigid boundary. When a is lower than 0.41 [Fig. 7(d)], the location of the triple point is higher
than the source location (ys = 6 mm, hs = 29 mm). The differences between the peak positive
pressure of the Mach stem and the incident shock are in that case not enough to counterbalance the
differences in speeds of propagation. Accordingly, the Mach stem becomes curved, and the shape of
the wavefront (which includes the incident and Mach waves) is elliptic.

It is worth noting that a secondary pattern propagates behind the incident and reflected shocks,
at a distance equal to twice the height of the source ys. The location of this secondary pattern is
pointed out on Figs. 7(c) and 7(d) (arrow on the x-axis). It has been identified as a reflection at
the source location. The sudden increase of pressure at the spark source location goes along with
a locally large increase in temperature (several hundred Kelvin). Since the characteristic time of
establishment of a homogeneous distribution of temperature in the vicinity of the spark source is
several orders of magnitude larger than the time of propagation from the source to the bound-
ary, there still exist a strong temperature gradient at the spark source location when the reflected
shock propagates into this area. Then the reflected shock is diffracted when it hits this temperature
spot and this diffraction gives rise to new incident and reflected shocks which are observed both
experimentally and numerically.
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FIG. 8. Comparison of the numerical (lines) and experimental (markers) evolutions of the Mach stem height hs as a function
of the propagation distance x for four positions of the acoustic source : ys = 6, 11, 16, 21 mm.

B. Evolution of the Mach stem

As was shown, the height hs of the Mach stem changes as a function of the critical parameter
a as long as the regime of reflection is irregular. Fig. 8 presents numerical (lines) and experimental
(points) evolution of the height hs of the Mach stem as a function of the distance of propagation,
x, from approximately 70 to 130 mm, for four positions of the source, namely, ys = 6, 11, 16, and
21 mm. In these geometrical configurations, and as a function of the corresponding peak pressure
amplitudes, the parameter a lies between 0.26 and 1.14, so that the regime of reflection is always
irregular. It is worth noting that since the peak pressure amplitude evolves with respect to the
propagation distance, there are ranges of a values corresponding to each of the four cases presented
in Fig. 8. The Mach stem height hs evolves in a linear way as a function of the distance of propa-
gation x for the four cases. For the lower values of parameter a (ys = 6 mm), the height hs of the
Mach stem lies between 12 and 40 mm for the propagation distances considered here. Experimental
results deviate slightly from the numerical ones (up to 7.5%), probably due to the uncertainty on
the determination of the experimental height hs (of about 2 mm). When the parameter a increases,
the height of the Mach stem decreases. This leads necessarily to a larger deviation. Indeed, in the
case where ys = 11 mm, the height hs of the Mach stem lies between 5 and 16 mm with a deviation
of up to 9%. When ys = 16 mm, hs ranges from 1 to 8 mm with a maximal deviation of 22%.
Finally, when ys = 21 mm, hs lies between 1 and 4 mm with a maximal deviation of 55%. In these
two latter cases, the Mach stem is barely formed, and the order of magnitude of its height hs is
close to the measurement uncertainty. A comparison between numerical and experimental results is
also achieved considering the linear regression of the experimental results. For ys = 6, 11, 16, and
21 mm, the associated experimental and numerical slopes are 0.40, 0.20, 0.11, 0.03, and 0.39, 0.17,
0.10, 0.04, respectively. The numerical and experimental evolutions of the height of the Mach stem
are in good agreement.

To characterize more precisely the evolution of the Mach stem, a parametric numerical study
has been conducted over about 2000 configurations (different sets of source locations, propagation
distances, and incident acoustic pressures). Figs. 9(a) and 9(b) present a summary of this study
through the linear and logarithmic evolutions of the normalized height hs/ys of the Mach stem,
respectively, as a function of the critical parameter a. These results show a weak dispersion of
hs/ys values due to the uncertainty in the numerical determination of the height hs. This uncertainty
mainly comes from the numerical spatial step (i.e., 0.1 mm). Hence, as long as hs is greater than
10 mm, the error in its determination is lower than 1%. When hs is of the order one millimeter,
the error in its determination can reach 10%. Nevertheless, Fig. 9(b) highlights a clear relationship
between the ratio hs/ys and the critical parameter a that can be written as

hs

ys
=

(
ξ

a

)2

, (2)
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FIG. 9. Evolution of the normalized Mach stem height hs/ys as a function of the critical parameter a, (a) in linear scale,
and (b) in logarithmic scale.

ξ being a constant. Approximating the numerical results presented in Fig. 9(b) with Eq. (2) leads to
ξ = 0.41. Note that the meaning of this value remains to be established.

As expected, Fig. 9(a) shows that the ratio hs/ys remains nominally zero as long as a >
√

2,
so that the regime of reflection is regular, and there is no Mach stem. Then, when the parameter
a decreases below the critical value

√
2, the ratio hs/ys increases and the Mach stem starts to

emerge. The height of the Mach stem hs increases as the parameter a decreases until the singu-
lar value hs/ys = 1 for a = 0.41, for which the location of the triple point matches the location
ys of the source. As long as a is lower than 0.41, the height hs of the Mach stem exceeds the
location of the source ys. When the parameter a is lower than 0.1, the reflected shock almost
disappears. In this situation, the location of the triple point is no longer defined, likewise for the
height hs of the Mach stem. In addition to the previous results, the ratio hs/ys obtained numerically
is presented in Fig. 10 as a function of the positive peak pressure amplitude Pmax obtained from
the two-dimensional simulations and the angle of incidence θi. This map shows that the transition
between regimes of reflection is more sensitive to the angle of incidence than to the positive peak
pressure amplitude. Indeed, at a given pressure, decreasing the angle of incidence quickly leads to
irregular regimes whereas, at a given angle of incidence, increasing the peak pressure amplitudes
is not always enough to lead to irregular regimes. In the domain considered here, variations of
about 10% of the angle of incidence or of the positive peak pressure amplitude leads to variations
of about 10% or 5%, respectively, on the value of the parameter a. This is due to the transition
between regular and irregular regimes that is mostly ruled by sin θi (See Eq. (1)). It should also be
mentioned that this higher dependence on the angle of reflection can explain the good agreement
between the experiments and the two-dimensional model. Indeed, given that the numerical pressure
amplitude is adjusted to be equal to the experimental one at a distance from the source x = x0, the
differences between the two and three-dimensional variations of the pressure amplitude during the
propagation of the acoustic shock over several wavelengths (less than ten) is not sufficient to lead
to drastic modifications of the morphology of the acoustic field, and in particular of the Mach stem
behavior. Significant differences would undoubtedly appear if larger propagation distances were

FIG. 10. Numerical normalized height hs/ys of the Mach stem as a function of the positive peak pressure amplitude Pmax
and the incidence angle θi. IR: Irregular reflection; RR: Regular reflection.
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FIG. 11. Schematic representation of the geometrical setup. A spherically diverging shock wave generated by the spark
source located at (0, ys) propagates between the two parallel boundaries and passes through the observation window whose
center is located at the distance x0 from the spark source.

considered. In this case, it would be necessary to use a three-dimensional model to take into account
the spherical divergence.

V. PROPAGATION BETWEEN PARALLEL RIGID BOUNDARIES

When a second rigid boundary is set up at a distance lw from the first one [See Fig. 11], new
reflections arise from this upper wall. In such a situation, two critical parameter at and ab can be
defined, where at is associated with the first top reflection (from the boundary located at y = lw)
and ab to the first bottom reflection (from the boundary located at y = 0). As presented in Fig. 12
which reports results of numerical distributions of the normalized acoustic pressure pa/Pmax (top
figures) and schlieren measurements (bottom figures) for lw = 84 mm and ab = 0.83, 0.66, 0.45,
and 0.22, the reflection patterns on the lower boundary remain the same as the ones previously
presented [see Fig. 7]. The boundary located at y = lw gives rise to new reflections whose regimes
are governed by the parameters at = 2.13, 2.25, 2.33, and 2.34 as seen in Figs. 12(a)–12(d), respec-
tively. Experimental and numerical results are in good agreement whether it is for the locations and
shapes of the front and rear shocks of both incident and reflected waves, and for the Mach stem.

Adjusting the source location at equal distance from each of the two boundaries (ys = lw/2),
the reflection patterns become symmetrical with respect to the axis y = ys as shown in Fig. 13
presenting results of numerical distributions of the normalized acoustic pressure pa/Pmax (top fig-
ures) and schlieren measurements (bottom figures) for three propagation distances. The gap be-
tween the two boundaries is here lw = 42 mm and parameter a = at = bt is successively equal to
a = 0.71, 0.51, and 0.44 in Figs. 13(a)–13(c), respectively. When the angle of incidence decreases

FIG. 12. Comparison of the numerical spatial distributions of acoustic pressure (top figures) and schlieren images (bottom
figures) between the two parallel boundaries spaced from lw = 84 mm for (a) ab = 0.83, at = 2.13, (b) ab = 0.66, at = 2.25,
(c) ab = 0.45, at = 2.33, and (d) ab = 0.22, at = 2.34.
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FIG. 13. Comparison of the numerical spatial distributions of acoustic pressure (top figures) and schlieren images (bottom
figures) between the two parallel boundaries for lw = 42 mm and for (a) a = 0.71, (b) a = 0.51, and (c) a = 0.44.

as a function of the propagation distance, the critical parameter a associated with each of the two
reflections arising from each of the two boundaries decreases as well. Accordingly, the height hs of
the two Mach stems increases. As shown in Fig. 14 which presents the comparison of the numerical
distribution of acoustic pressure and schlieren measurement for a = 0.19, when the height of the
Mach stem is greater than the half-distance lw/2 between the two boundaries, the initial spherically
diverging acoustic shock wave loses its sphericity and a plane shock wave is created between the
two parallel boundaries. In both experimental and numerical results, the peak overpressure is con-
stant along the wavefront. The merging of the two Mach stems does not involve pressure amplitude
discontinuity in this case. It is worth noting that the Mach stems emerging from the reflections on
the two boundaries can join as long as 2hs ≥ lw. This leads to the inequality

a ≤ ξ. (3)

This condition corresponds to the case where the height hs of the Mach stem can exceed the height
of the source ys.

Fig. 14 also shows that experimental and numerical results are slightly different. Whereas
successive reflections are clearly identified in the numerical results, the experiment shows a single
plane shock followed by another plane shock of lower amplitude emerging from an overall diffuse
field. Moreover, the duration of the overpressure following the shock front is larger in the numerical
case than in the experimental one. These differences definitely originate (i) numerically, from the
three-dimensional effects that were not taken into account in the model and (ii) experimentally,
from the use of a two-dimensional optical method implying an averaging in the plane (x, y) of
the multiple reflections. These effects seem to have a significant impact on the spatial distribution
of the acoustic pressure in this particular configuration (merging of the Mach stem leading to a
strong maximum peak positive amplitude, narrow waveguide leading to low angle of incidence and
multiple reflections).

FIG. 14. Comparison of the numerical spatial distributions of acoustic pressure (top figure) and schlieren images (bottom
figure) between the two parallel boundaries for lw = 10 mm and a = 0.19.
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VI. CONCLUSIONS

The reflection on a rigid boundary of a spherically diverging shock wave produced by an
electrical spark source is investigated experimentally and numerically. The comparison of the
two-dimensional numerical spatial distributions of acoustic pressure and the schlieren measure-
ments shows good agreement. These results show that the use of DNS based on a Navier-Stokes
solver seems promising as a predictive tool to study nonlinear acoustic propagation of acoustic
waves in complex geometrical configurations with rigid boundaries. Different regimes of reflection
have been observed as a function of the critical parameter a. It has been shown that there exists a
limit for which there is a transition between the regular and irregular regimes of reflection according
to the results obtained by Baskar et al.7 in the case of plane acoustic shocks. It has also been shown
that, when the regime of reflection is irregular, a third shock called Mach stem can appear, and that
its height evolves linearly with the propagation distance. Moreover, this height is directly linked to
the critical parameter a. When a second boundary is located parallel with the first one, the reflection
patterns remain identical. When the critical parameter a is lower than ξ = 0.41, the interaction of
the Mach stems arising from each of the two boundaries can lead to the formation of a plane shock
wave in the waveguide.
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