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2LMFA UMR 5509 CNRS–site de Saint-Étienne, Université de Lyon,

Université Jean Monnet de Saint-Étienne, France
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The comparison of the results of direct numerical simulations of isotropic turbulence
of Newtonian and viscoelastic fluid provides evidence that viscoelasticity modifies
qualitatively the behavior of the smallest scales: we observe a power law in the far dissipation
range of the fluid kinetic energy spectrum and we show that it is a robust feature, roughly
independent of the large scale dynamics. A detailed analysis of the energy transfer shows
that at these scales energy is injected into the fluid flow through polymer relaxation. It
is further shown that a part of the total energy is transferred among scales through an
interaction of the velocity field with the polymer field.
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I. INTRODUCTION

The presence of a small quantity of polymer in a Newtonian solvent can create spectacular changes
in the drag experienced in channels or pipes. Indeed, adding only a few parts per million of polymer
molecules in a Newtonian fluid can reduce the drag by 80% (see Refs. [1–3]). This phenomenon,
discovered in 1948, has obviously attracted the attention of a large number of researchers, trying
to understand the fundamental interaction between the polymer and its solvent (see Ref. [4] for
a review). A first theory proposed by Lumley [5] in 1969 explained part of the phenomenon
by considering the interaction of the polymer with the boundary layer of a flow, neglecting the
polymer-solvent interaction farther away from the wall. Later theoretical work of de Gennes [6–8]
around the 1990s suggested that, under some circumstances, the polymer even at low concentration
may affect the behavior of the turbulent energy cascade. In some sense, this theory revived the debate
on the importance of polymer effects on homogeneous turbulence and to date no comprehensive
understanding of polymer-modified isotropic turbulence seems to exist.

Even if the majority of works on drag reduction focus on pipe, turbulent channel, or boundary layer
flow, it seems worthwhile to continue the investigation of statistically homogeneous and isotropic
turbulence (HIT) since it is the simplest statistical realization of turbulent flow. Indeed, it seems
illusive to propose a universal theory of drag reduction by polymers in turbulent flows if the simplest
possible flow is not understood. The essential question of how the momentum flux to the wall is
modified by the presence of polymers cannot be addressed in this framework, but the interaction
between the polymers and the eddies of different sizes can be addressed in such setting without
introducing the complexity caused by spatial inhomogeneity and anisotropy.

However, due to the enormous separation of scale between the polymer size and the large scales of
a turbulent flow, obtaining detailed information on the fluid-polymer interaction remains a challenge
for both experimentalists and numerical simulations even in such an academic setting. In particular,
experimentally the difficulties are severe: the polymer will break after some time in high Reynolds
number turbulent flow, and most of the important data is in the microscopic scales, inaccessible to
most experimental techniques. The situation seems less dramatic for numerical simulations. The
increasing computational power available for numerical simulations allows an access to all different
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flow scales of moderate Reynolds number turbulent flow. The limitation is the correct modeling of
the polymers in such flow and we will come back to this in the next section.

Despite these difficulties, a consensus about several features of the interaction of polymer and
turbulent fluid flow seems to exist: when a small amount of polymer is added to a fluid, the large scales
of the flow are significantly affected and the small scale structures’ activity is reduced. This seems
to be the case in wall-bounded turbulence [9–11], in shear-driven turbulence [12], and in isotropic
turbulence [13–16]. In two-dimensional HIT, it was established [17] that polymer stretching is driven
by strain dominated regions as also observed in three-dimensional (3D) channel flows [18]. Results
based on shell-model simulations of HIT [19,20] show that globally, the transfer of energy goes
from flow’s kinetic energy towards the polymer. Nevertheless, the opposite is observed in some
situations, where the energy is transferred from the polymers to the fluid, in particular at small
scales. Indeed, a particular mechanism of drag reduction seems to be quite robust: polymers remove
energy from vortices [10] when the torque due to the polymer stress is opposed to the rotation of
the vortices [21] and polymers release some of their energy close to the wall [10]. Other results
from DNS of homogeneous turbulent shear flow [22] were compared to experimental measurements
in channel flow and pipe flow [23,24] where it was shown that the average Reynolds shear stress
(nonexistent in HIT) and velocity fluctuations perpendicular to the wall are increasingly suppressed
when the drag reduction increases.

Further studies on isotropic turbulence at high Reynolds number are reported in Refs. [14,25–29].
In particular, relevant for this study is the investigation of De Angelis et al. [26], who established the
complete scale-by-scale equation of the interaction between polymers and fluid. The experimental
results of Xi et al. [29] try to translate the “energy balance theory ” of de Gennes and Tabor [6–8]
into an “energy flux balance theory” by analysis of the kinetic energy transfer. Further progress was
recently made by Valente et al. [28], who investigated the scale-by-scale kinetic energy flux using
high resolution direct numerical simulation (DNS) and showed that the polymers remove energy
from large scales which is returned to the fine-scale turbulence, where it is dissipated.

Most of these results are observed at relatively high Reynolds numbers. Another interesting
flow regime is observed at very low Reynolds number but high elasticity, where the polymer
solution flow is characterized by chaotic fluctuations in space and time. This regime, called elastic
turbulence [30–32] is characterized by a kinetic energy spectrum following a power-law decay
EK (k) ∼ k−α with α � 3.5 and k the spatial wave number. This law persists for other configurations,
for example, in a two-dimensional Kolmogorov flow [33] α � 3.8. These scaling exponents are in
agreement with the theory of Fouxon et al. [34] who predict that α > 3. It can be argued that in
the far dissipation range, at scales where inertia is negligible with respect to viscous effects, such
turbulent-elastic effects should be observable as well. This is corroborated by some recent numerical
studies of moderate Reynolds number decaying isotropic turbulence. At moderate Reynolds number
and high elasticity, such a coexistence of inertial turbulence and elastic turbulence was also observed
in channel flow and pipe flow and was called elastoinertial turbulence (EIT) [35–37]. This type
of flow is peculiar because it is found both at subcritical Reynolds numbers and well beyond the
critical Reynolds number. Since EIT exists already at subcritical Reynolds numbers, it demonstrates
the existence of a significant flow of energy from the polymers towards the fluid flow. The energy
spectra of EIT [36] show a power law with an exponent α roughly in-between 11/3 and 14/3. In
turbulent channel flow, the streamwise spectra of the turbulent fluctuations were found to have a
power-law exponent around α = 14/3 near the wall [38] at high Reynolds number. In the studies of
HIT by Watanabe and Gotoh [39,40] the scaling exponent in the viscous-elastic range is increasing
with decreasing elasticity in the approximate interval 4.1–4.6. In other numerical simulations, both
for three dimensions (Pelerkar et al. [13]) and two dimensions (Gupta et al. [17]), a spectrum
proportional to k−6 can be inferred from the energy spectra (for instance in Fig. 12 in Ref. [13] and
Fig. 2 in Ref. [17]). This scaling is observed for scales smaller than the Kolmogorov scale, and for
even smaller scales the elastic-turbulence scaling k−3.5 is recovered in the 3D case [13]. However,
these results are obtained for moderate Reynolds but with weak elasticity contrarily to EIT and ET.
It seems that small structures are already active with very weak elasticity, in contradiction with the
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consensus that polymers decrease the small scale activity, as observed in channel flow. Even though
this range contains a negligible amount of kinetic energy compared to the rest of the scales, it clearly
displays the effect of polymer on the solvent flow.

We think that it is important to further investigate this dissipation range behavior in order to better
understand the interaction between polymer and fluid. It will be shown in this work that at these very
small scales an equilibrium exists between the energy input from the polymers towards the solvent,
and the solvent viscous dissipation. We will further investigate the flux of polymer energy through
scales using a unique decomposition of the conformation tensor [41], similar to the decomposition
introduced by Casciola et al. [26]. The observed results help to characterize the intricate interaction
of turbulent motions at different scales and the deformation and stretching of the polymer field.

In the following we will first, in Sec. II, introduce the model we used to describe the turbulent
polymer flow. We will discuss the square root formulation, numerical method, and the flow
parameters. In Sec. III, we will discuss the energy budget and the dependence of the polymer
energy on the Weissenberg number. In Sec. IV, we will present the energy spectra we measured
in the simulated flows and we will propose scaling arguments to describe the dependence of the
spectra on the different flow parameters. In particular, we will focus on the spectra of the polymer
energy and on the modification of the dissipation range through the presence of polymers. Finally,
in Sec. V, the different contributions to the evolution equation of the energy spectra are evaluated.
We further show that there exists a particular type of cascade of the total energy (defined here by the
sum of kinetic energy of fluid and elastic energy of polymer) passing from the velocity field to the
polymer field at small wave numbers and being reinjected in the flow field at large wave numbers.

II. MODEL DESCRIPTION AND NUMERICAL IMPLEMENTATION

A. Macroscopic model for dilute polymer solutions

In order to study the turbulent dynamics of the polymer solution, we consider a macroscopic
continuum description of the fluid-polymer interaction. The widely used FENE-P model is
considered (finite extension nonlinear elastic model with Peterlin approximation). In this model,
the end to end vectors of polymer chains in a flow are represented by a statistical field [42]. More
sophisticated models (e.g., [40]), representing the microscopic details of the polymer chains could
be considered, but would considerably limit the parameter range in this study, due to the large
computational cost.

All instantaneous quantities we consider depend on space and time variables. These dependencies
will be omitted whenever this does not introduce any confusion. We will also consider Fourier spectra,
dependent on the wave number k. We will keep the dependence on k in the notation to clearly show
when a quantity is a wave number spectrum.

In the macroscopic description we use, the statistics of the end-to-end vector R correspond to the
average of the end-to-end vectors of a large number of polymers contained in a fluid particle. The
important statistical quantity in the description of the polymer-fluid interaction is the second order
correlation of the orientation vector R, called the conformation tensor C∗:

C∗ = C∗
ij = 〈RiRj 〉P , (1)

where the operator 〈. . .〉P represents a statistical average over a fluid particle. When the polymer
is at rest, there is no preferential direction, so that the conformation tensor takes its isotropic form
C∗ = C∗

0 where

C∗
0 = R2

0 I (2)

with R0 the root mean square (rms) of one component of all the end-to-end vectors inside a fluid
particle at rest, I the identity matrix. In the following, we will use the normalized value of the
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conformation tensor

C = C∗

R2
0

. (3)

Two classical, widely used models based on this type of description are the FENE-P and Oldroyd-B
models (e.g., [25,43]). These models contain the Navier-Stokes equations coupled with a dynamic
equation for the polymer conformation tensor. Those models are given by

∂t u + (u · ∇u) = −∇p + νf �u +
{

νp

τp

∇ · [P(C)C]

}
+ f , (4)

∇ · u = 0, (5)

∂t C + u · ∇C = C · ∇u + (∇u)T · C − 1

τp

[P(C)C − I], (6)

where u is the velocity, p the pressure divided by the fluid density, νf the solvent viscosity, τp

the typical relaxation time of the polymers, and f a forcing term. The quantity νp is an additional
viscosity due to the presence of polymers in the fluid, depending on the polymer concentration. It
corresponds to the difference between the asymptotic viscosity at zero shear of the polymer solution
and the viscosity of pure solvent (νf ). The Peterlin function P(C) takes into account the finite length
of the the polymer molecules. Indeed, physically, the quantity C should have an upper bound when
all polymer molecules in a fluid particle are stretched. At this point, the polymer field cannot absorb
more energy from the flow. The explicit form of the Peterlin function is [44]

P(C) = (Lmax)2

(Lmax)2 − tr(C)
, (7)

where Lmax is the upper limit of the normalized polymer extension length. The Oldroyd-B model
differs from the FENE-P model by not taking into account the maximum extension. In other words,
the value of Lmax is taken equal to infinity and thereby P(C) = 1. From a physical point of view,
for many applications of dilute polymer solution, this simplification does not significantly change
the dynamics. Since the Peterlin’s function is a hyperbolic function it only acts significantly when
the polymers are stretched near the limit. In our simulations, we use a value Lmax = 15, which is
realistic (see Balci et al. [41]), but still high enough to neglect its influence in the interpretation of
most of the results: we stay in the linear zone of the polymer deformation where we can assume that
the stretching is weak (as in Refs. [26,34,43]) and P(C) ≈ 1. This approximation will simplify the
scale by scale analysis of transfer in Sec. V A. In the following, most considerations will be done
under the assumption of mild stretching and in those cases the Peterlin function will be omitted from
the equations.

A difference with respect to Newtonian fluid turbulence is that the total energy is now partly
contained in the polymers. Indeed, the average (the bracket 〈. . .〉 is the average over the spatial
domain when applied to quantities depending on spatial variable) of kinetic energy of the fluid is

eK = 1
2 〈||u||2〉 = 1

2 〈uiui〉 (8)

that can be converted into polymer energy through the stretching of the polymer chains. On average,
this last energy is given by the trace of the conformation tensor

ep = Kp〈Cii〉, (9)

where Kp = νp

2τp
. The total energy dissipation can also be divided into two different parts. First, the

viscous energy dissipation which writes (for a statistically homogeneous flow)

εf = νf

〈
∂ui

∂xj

∂ui

∂xj

〉
, (10)
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and second, the dissipation of the polymer field

εp = Kp

τp

〈Cii − 3〉. (11)

A further discussion of the energy budget of the flow will be given in Sec. III.

B. Square-root formulation for the conformation tensor

Physically, the matrix C must always remain positive definite by construction [44]. But, Eq. (6)
is hyperbolic and there are no terms or mechanisms that prevent this matrix from losing its positive
definite character. Instead of solving Eq. (6), Balci and co-workers [41] reformulated the models in
terms of the unique positive symmetric square root of C . Indeed, since C is positive definite, we can
write C as the square of a unique symmetric matrix

C = B · B. (12)

Such a decomposition is called square-root formulation (SRF). Instead of solving numerically the
evolution of C, we replace Eq. (6) by a new equation

∂t B + u · ∇B = B · ∇u + A · B − 1

2τp

[P(B · B)B − B−1], (13)

with a unique antisymmetric matrix A that compensates for the nonsymmetric part of B · ∇u, so
that B is necessarily symmetric. The expression of A is given by

A = B−1 · [B · ∇u − (∇u)T · B]. (14)

The term involving A vanishes when we convert Eq. (13) back to Eq. (6). In Ref. [41] it is shown
that the new equation (13) is strictly equivalent to the old one (6). The advantage is that, if instead
of computing C , we compute B and recover C by Eq. (12), then C will remain definite positive
by construction. Another advantage of using the SRF is that the potential energy KpCii can now
be written as a quadratic quantity. This is a conceptual advantage since in turbulence theory most
theoretical and phenomenological considerations use second-order moments to describe the energy
distribution over time and length scales. For instance, we will consider the polymer correlation
tensor, and its spectrum, in analogy with the statistical quantities for the velocity field. We explain
this with more details hereafter.

The two-point correlation tensor of a homogeneous turbulent velocity field u is defined by

RK
ij (r) = 〈ui(x)uj (x + r)〉, (15)

where r is the separation vector between two points. The kinetic energy wave vector spectrum is
obtained from this tensor by a Fourier transform

δ(k − k′)E(3D)
K (k) = 1

2
δ(k − k′)

∫
R3

RK
ii (r)eik·rd r = 1

2
〈̂ui(k)̂ui(k

′)〉, (16)

with û the Fourier transform of u, k the wave vector, and ∗ the complex conjugate of ∗. Here the
average 〈. . .〉 is an ensemble average. In isotropic turbulence, the dynamics at every time t is fully
determined by a single function EK (k) of the wave number k = |k| related to the three-dimensional
spectrum by the relation

EK (k) =
∫

|k|=k

E
(3D)
K (k) dk. (17)

Thereby, the one-dimensional integral over all wave numbers yields the kinetic energy∫ ∞

0
EK (k)dk = ek. (18)
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Analogously, we define the correlation tensor of field B in homogeneous turbulence by

R
p

ijkl(r) = 〈Bij (x)Bkl(x + r)〉. (19)

Assuming homogeneity, we define the elastic energy spectrum in a similar way as in Eq. (16):

δ(k − k′)E(3D)
p (k) = δ(k − k′)Kp

∫
R3

R
p

ijij (r)eik.rd r = Kp〈B̂ij (k)B̂ij (k′)〉, (20)

with B̂ the Fourier transform of B. In the following, we will use the one-dimensional spectrum

Ep(k) =
∫

|k|=k

E(3D)
p (k) dk (21)

defined such that ∫ ∞

0
Ep(k)dk = Kp〈Cii〉 = ep. (22)

These definitions are similar to the ones used in Refs. [26,43] using a L2 formulation. The difference
is that here we consider the symmetric decomposition instead of an eigenbasis decomposition.

The definitions used here fit well the concept of energy density we are familiar with. Indeed,
Parseval’s relation holds for each component of Bij : starting from relation (20), we can easily deduce
Parseval’s relation between the Fourier and physical space representations of the elastic energy ep

in our domain D of volume V :

ep = Kp

V

∫
D

Cii(x)dx = Kp

V

∫
D

Bij (x)Bij (x)dx = Kp

V

∫
R3

B̂ij (k)B̂ij (k)dk. (23)

In the following, we will discuss the details of the numerical method.

C. Numerical method and numerical setup

One of the difficulties to simulate viscoelastic fluid flow comes from the preservation of the
positive definiteness of the conformation tensor C during the evolution of turbulent flow at high
Weissenberg number. A popular scheme is due to Sureshkumar and Beris [45], combining an
artificial diffusion with a hyperbolic polymer-evolution equation (6). This artificial diffusion may
be global [46] or local [10]. The advantage of this method is its simplicity but the dynamics
of the polymer at small scale is strongly affected by the artificial dissipation. Other, more
sophisticated schemes use a positive definiteness preserving formulation [47], a log-conformation
tensor representation [48], or a square-root conformation representation [41]. These three methods
were compared and reported in Ref. [49]. We choose the SRF [41] because it combines a high
accuracy (spectral precision in our case) and numerical stability with little numerical dissipation. To
prevent the numerical stability to be affected by Gibbs oscillations of the determined conformation
tensor, an artificial diffusion (νa) is added to Eq. (13). However, our value for the diffusivity
is significantly smaller than in other schemes. For comparison, in their DNS of channel flow,
Sureshkumar et al. [46] used νf

νa
≈ 0.8 and at the high resolution, Thais et al. [50] used νf

νa
≈ 0.2.

Our value is in the range 1250 <
νf

νa
< 2500. A simulation with zero artificial viscosity (νa = 0) is

also performed (see Appendix D) in order to quantify the effect of νa . Note that there exist other
sophisticated methods to simulate flow with polymer without explicit diffusion such as proposed in
Ref. [25] or the hybrid method developed in Ref. [39].

We solve Eqs. (4) and (13) using a parallel pseudospectral code [53] in a three-dimensional box
of size 2π using periodic boundary conditions with a resolution up to 2563 collocation points. The
time integration is performed using a second-order Adams-Bashforth method. A smooth filter is
applied to the quadratic terms in Fourier space before these terms are multiplied in real space. This
smooth filter is a modification of the 2

3 -dealiasing used commonly in spectral methods and has been
shown to create fewer and more localized oscillations in the solutions than the 2

3 procedure [54].
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TABLE I. Parameter compilation of different cases. The label S denotes a stochastic forcing [51], ABC

indicates a deterministic helical forcing [52]. The difference in the freely decaying simulations (nonforcing
type) is that in cases c the initial condition is a fully developed velocity field, in cases d it is a synthetic Gaussian
flow field with prescribed energy distribution. The quantity β is the ratio β = νf

νf +νp
.

Forcing νf

Case type ×102 νf /νa τp β

a1 S 1.25 0.5
a2 S 1.25 1250 0.5 0.909
a3 S 2.5 2500 0.5 0.909
a4 S 1.25 1250 0.5 0.833
a5 S 1.25 1250 0.75 0.909

b1 ABC 1.25
b2 ABC 1.25 1250 0.5 0.909

c1 None 1.25
c2 None 1.25 1250 0.5 0.909

d1 None 1.25
d2 None 1.25 1250 0.5 0.909

Series of simulations with different forcing schemes and a series of freely decaying flows were
carried out to disentangle universal features from forcing-specific features and issues related to the
initialization of the velocity and polymer field. The different cases we consider are as follows:

(i) (a1,a2,a3,a4): stochastically forced flows by applying a forcing scheme [51] to the modes
with wave numbers 1.5 < k < 3.5.

(ii) Case (b1,b2): deterministically forced using a fully helical (ABC) acceleration [52] applied
to 1.5 < k < 3.5.

(iii) Case (c1,c2): decaying from a steady state of a stochastically forced Newtonian fluid.
(iv) Case (d1,d2): decaying from a synthetic field randomly generated with the same energy

distribution as case (c).
For each case we consider a flow with and a flow without polymers. The Reynolds number

is moderate: the Reynolds based on Taylor’s microscale Reλ ≈ 30 (initial value for cases c,d,
steady-state value for cases a,b) and the Weissenberg numbers based on large scale time WiL ≈ 1.
For this value of Wi, the relaxation time of the polymers is comparable to the typical integral time
scale of the turbulent flow. To resolve the very fine scales, the dissipation range is resolved with a
resolution of kmaxη ≈ 5.5. Because the non-Newtonian simulations are more time consuming than the
Newtonian ones, to reach the steady state faster, we precalculated simulations of the Newtonian fluid
for over 40 turnover times and use the results as initial condition for each case. For all simulations,
the polymer is initially at rest by imposing B(x,t = 0) = I .

In total, we report the results of 11 numerical simulations. The details of the case-specific
parameters are reported in Table I. In Table II, we report some quantitative results. The values of
the different quantities reported in the table correspond to the statistically steady-state values for
the forced simulations. For the decaying simulations, all quantities are evaluated when the polymer
energy reaches its maximum value.

Some global statistics for the simulations are presented in Table II. To analyze the features of the
flow, we evaluate the box-averaged values as surrogates for the ensemble averaged quantities. The
angle brackets indicate the averages over the fluid domain. All wave number integrals are evaluated
as discrete sums over Fourier modes.

The characteristic quantities we evaluated are the kinetic energy eK , polymer energy ep, viscous
dissipation εf , and polymer relaxation εp. These quantities were defined in Sec. II A. Further
quantities derived from these parameters are the Kolmogorov’s length scale η = (ν3

f /εf )1/4 and the
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TABLE II. Compilation of Newtonian and non-Newtonian DNS results: for forcing cases, the value is
reported is a steady state, and for decaying cases, the value is reported when the polymer’s energy reaches its
maximum value.

Case eK εf εp WiL Wiη
〈Cii 〉

(Lmax)2 σCii
LK Lp λ η lL lDG

a1 0.738 0.275 0.672 0.626 0.0516
a2 0.678 0.216 0.0295 0.5940 2.079 6.58% 12.6 0.687 0.222 0.579 0.0548 0.164 0.0478
a3 0.592 0.272 0.0348 0.5574 1.650 4.43% 7.86 0.690 0.255 0.737 0.0870 0.184 0.0942
a4 0.678 0.205 0.0551 0.5941 2.026 6.24% 12.2 0.693 0.226 0.643 0.0555 0.221 0.0555
a5 0.673 0.226 0.0513 0.9510 3.188 15.01% 28.3 0.647 0.203 0.610 0.0542 0.168 0.0544

b1 0.470 0.1056 0.806 0.746 0.0656
b2 0.441 0.0927 0.0105 0.4177 1.361 3.20% 5.7 0.795 0.276 0.771 0.0677 0.108 0.0531

c1 0.397 0.1616 0.781 0.733 0.0655
c2 0.383 0.1484 0.0154 0.4378 1.723 4.06% 7.4 0.707 0.195 0.568 0.0602 0.136 0.0465

d1 0.331 0.1303 0.716 0.563 0.0622
d2 0.320 0.1204 0.0143 0.3899 1.551 3.48% 5.0 0.725 0.204 0.577 0.0635 0.123 0.0583

Taylor’s microscale λ = √(10νf eK/εf ). The integral length scales of the velocity and polymer field
are defined by

LK =
∫∞

0 k−1EK (k)dk∫∞
0 EK (k)dk

, Lp =
∫∞

0 k−1Ep(k)dk∫∞
0 Ep(k)dk

. (24)

The Weissenberg number measures the ratio between a typical time scale of the velocity field and
the relaxation time of the polymers τp. This latter time scale is well defined. The velocity time scale
is not unambiguously defined. We therefore report in Table II two different Weissenberg numbers for
each flow. The first one is WiL = τp

√
eK/LK , a Weissenberg number based on the integral scale, and

Wiη = τp

√
εf /νf , based on the viscous, or Kolmogorov, time scale. The average polymer extension

normalized by the finite extension length 〈Cii/(Lmax)2〉 is, according to Table II, under 6% except
for the case (a5). The assumption of mild stretching is thus not unreasonable for most simulations. A
related quantity is the standard deviation of the stretching σCii

, which is also reported in the Table II.
The Lumley scale [5] is defined as lL =

√
εf τ 3

p . This scale marks the scale at which the turbulence
time equals the polymer relaxation time. The polymer is significantly stretched only for scales of the
order of or smaller than the Lumley scale. Another characteristic scale is the de Gennes scale lDG,
corresponding to the length for which the energy of the polymer equals the kinetic energy [6–8].
For scales smaller than de Gennes scale, the polymer starts to affect the flow structure. The wave
number corresponding to de Gennes scale kDG = 1/lDG is the intersection of kinetic EK (k) and
elastic energy spectra Ep(k) (see Sec. V C).

III. ENERGY BUDGET

It is insightful to write the equations for the statistical average of the energy contained in our
system. We will hereto restrict ourselves to the considered cases (a) of a flow in a periodic flow
domain, forced by an isotropic forcing term ( f ). In that case, the equation for the kinetic energy
writes, from (4),

1

2
∂t 〈‖u‖2〉 = −νf 〈‖∇u‖2〉 + 〈 f · u〉 + νp

τp

〈u · (∇ · C)〉, (25)
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FIG. 1. Sketch of the stretching of a polymer chain by a velocity gradient during a time τ .

and the energy contained in the polymer field evolves then as

∂t 〈KpTr(C)〉 = −Kp

τp

〈Tr(C) − 3〉 + Kp〈Tr(C · ∇u + (∇u)T · C)〉 (26)

obtained from (6). In a homogeneous flow, we can show that the last terms of those equations are
equal but of opposite sign. They therefore represent the flux of energy between the solvent and the
polymer. Physically, the flow stretches the polymers, thereby injecting energy in the polymer field.
Conversely, if they are properly oriented, the polymers can reinject this energy into the flow when
they relax towards their equilibrium configuration.

The total energy balance equation is obtained by summing the above equations:

∂t 〈‖u‖2/2 + KpTr(C)〉 = 〈 f · u〉 − νf 〈‖∇u‖2〉 − Kp

τp

〈Tr(C) − 3〉. (27)

In a statistically steady state, there is therefore an equilibrium between the energy injected by the
random forcing on the one hand and the dissipation by viscous stresses and polymer relaxation on
the other. How this energy is distributed over the two fields will be discussed now.

Intuitively, it can be understood that the extension of the polymers is determined by the relaxation
time multiplied by the velocity difference between the ends of the polymer δu. This simplified
picture is sketched in Fig. 1. The velocity difference can be estimated by the local velocity gradient
multiplied by the end-to-end vector Ri . The projections parallel and perpendicular to the shear
direction are noted R‖ and R⊥, respectively. A statistical measure for the velocity gradient in a
turbulent flow is

√
εf /νf . Over a time τp, the polymer will thus be stretched to a value

R‖(τp) ≈ R⊥(0)
√

εf

νf

τp, (28)

which is an order of magnitude estimation. If the quantity R‖ 
 R⊥ ≈ R0, it will be the value of R‖
which will determine the trace of the conformation tensor. We have then

〈Cii〉 ∼ 〈R2
‖〉

R2
0

∼ τ 2
pεf

νf

. (29)

This very rough estimation actually very well fits the data, as illustrated in Fig. 2. A linear fit gives

〈Cii〉 = A
τ 2
pεf

νf

= A(Wiη)2, (30)

with A � 3.3 ± 0.2.
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FIG. 2. Dependence of the trace of the conformation tensor on the turbulence to polymer time-scale ratio.

IV. SCALE-BY-SCALE ANALYSIS

A. Spectral energy distribution for the velocity field

The scale-by-scale energy distribution can be characterized by the kinetic energy spectrum EK (k),
defined already in Eqs. (16) and (18). In Fig. 3, we show a comparison of the kinetic energy spectra
as defined in Sec. II C for the Newtonian and non-Newtonian cases. Classical normalization by
Kolmogorov variables is used to superpose the spectra. It is observed that the polymers do not
qualitatively affect the spectrum, except in the far-dissipation range, where a power law is observed
with an exponent around −6. We have performed steady-state simulations with different forcing
schemes and decaying cases starting from different initial conditions. In the range of parameters
we considered, the far-dissipation range power law seems to be a robust feature of the dynamics. It
seems that results of Perlekar et al. (see Fig. 12 in Ref. [13]) and Gupta et al. (see Fig. 2 in Ref. [17])
support this power law. In three-dimensional simulations [13], a second power law with an exponent
α = 3.5 was found for even smaller scales. This second power law, absent in our simulations, is
most probably a signature of elastic turbulence, more clearly observed in the very small Reynolds
number limit [30–32]. For a given large scale Weissenberg number, the local Reynolds number,

FIG. 3. Comparison of normalized fluid kinetic energy spectra EK between non-Newtonian behavior
(continuous lines) and Newtonian behavior (red dashed line).

083301-10



SMALL SCALE DYNAMICS OF ISOTROPIC VISCOELASTIC . . .

FIG. 4. Polymer energy spectra for all considered cases.

based on the scale size, decreases for large k and elastic turbulence is therefore observed in those
simulations, as well as in those by Watanabe and Gotoh [39,40]. It seems that the k−6 power law is
not a signature of elastic turbulence, but corresponds to an intermediate range where the local ratio
Wi/Re is still too small to observe elastic instabilities. Indeed, it will be shown in the following
that this range corresponds to an injection of energy from the polymers to the fluid flow, damped by
viscous dissipation.

To confirm our results, we mildly varied three key parameters: the viscosity of the fluid νf ,
the variation of the ratio νp

νf
, and the relaxation time τp around the reference case (a2). The three

corresponding simulations are noted, respectively, (a3), (a4), and (a5). Figure 3 also shows the
spectrum of the kinetic energy of those cases.

B. Spectral energy distribution for the polymer field

The scale-by-scale polymer energy can be represented by the elastic energy spectrum (cf.
Ref. [43]), defined in Eqs. (20) and (21). In Fig. 4, we show this spectrum for all of our cases.
We observe that they all obey roughly the same power law Ep(k) ∼ k−γ with γ ≈ 2, practically
over the whole wave number range. The exponent of this power law seems to be independent
of the different forcing or decay parameters and of the different flow parameters. The results of
De Angelis et al. [43] support this finding (Fig. 6 in Ref. [43]), where we can also deduce a
power-law exponent around −2. Our results are similar to those of [43] even though we use a
different decomposition of the matrix C (a square-root eigenbasis decomposition in Ref. [26] versus
a symmetric decomposition in this work), the two decompositions have the same physical meaning,
and the polymer energy spectrum presented by De Angelis et al. [43] displays the same power law
Ep(k) ∼ k−2. Nevertheless, in their range of high elasticity, moderate Reynolds number and high
artificial diffusion νf /νa = 1, the change in slope of the kinetic energy spectrum towards a k−6

far-dissipation range will not be observable.

C. Scaling

Using these observations and the arguments of Sec. III, we now suggest how the scaling is
determined by the different flow parameters. First of all, it seems that there is no particular length
scale involved in the polymer dynamics, other than the integral length scale. Indeed, power-law
scaling is observed for Ep(k) between the integral scale and the smallest resolved scales. We
therefore propose an ad hoc scaling for Ep(k),

Ep(k) ∼ eF
p Lp(kLp)−2 + eM

p δ(k), (31)
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where Lp is the polymer integral length scale defined in Eq. (24). The quantities eF
p and eM

p represent,
respectively, the contributions of fluctuating and mean part of polymer elastic energy ep:

eF
p =

∫ ∞

k>0
Ep(k)dk = Kp〈BijBij 〉 − Kp〈Bij 〉〈Bij 〉, (32)

eM
p = Ep(0) = Kp〈Bij 〉〈Bij 〉. (33)

We further recall that, according to Fig. 2,

ep =
∫ ∞

0
Ep(k)dk = eF

p + eM
p = Kp〈Cii〉 ≈ AKp(Wiη)2, (34)

where A is the coefficient obtained by linear regression in Sec. III. Combining these expressions,
we find the following scaling:

Ep(k|k �= 0) ≈ [A(Wiη)2 − 〈Bij 〉2]KpLp(kLp)−2. (35)

The scaling exponent −2 is in this expression obtained from observation, rather than phenomeno-
logical arguments. For the moment, we have not found any convincing Kolmogorov-type or
Batchelor-type arguments to further explain the scaling.

For the k−6 range in the dissipation range of the energy spectrum we have the following suggestion.
In this range, in the Navier-Stokes equation, we expect a balance between viscous stresses and
polymer relaxation:

−νf �u ≈
{

νp

τp

∇ · [P(C)C]

}
. (36)

Indeed, the other terms in Eq. (4) are expected to be negligible for k 
 kη. Ignoring the Peterlin
correction, Fourier transforming this equation and squaring both sides, we have

ν2
f k4 EK (k)

4πk2
≈
(

νp

τp

)2

kikjGij (k), (37)

where Gij (k) is defined such that ∫
R3

Gij (k)dk = 〈CimCjm〉. (38)

From Eq. (37), assuming isotropy, mirror symmetry, and Gaussianity of the polymer fluctuations,
we can obtain the scaling factor of EK (k) (see Appendix A):

EK (k) ≈
(

L3
p

ν2
f

)
Qf (kLp)−6, (39)

where the quantity Qf = (eM
p )2 + 6eM

p eF
p + 3(eF

p )2. In order to check if our assumptions are in
agreement with the dynamics of the flow, we replace Qf by our prediction for the polymer spectrum

Qf = K2
p{3[A(Wiη)2 − 〈Bij 〉2]2 + 6〈Bij 〉2[A(Wiη)2 − 〈Bij 〉2] + 〈Bij 〉4}. (40)

We will now check whether the scaling relations (35) and (39) correctly predict the results.
In Figs. 5(a) and 5(b), the spectra are normalized in such a way that they should collapse if our
arguments are correct. It is observed that the collapse is in general quite good. Note that the spectrum
EK (k) for cases a5 and b2 are slightly off in the dissipation range. We note that case a5 is the case
that corresponds to the most-stretched case and the Peterlin approximation yields a correction of
approximately 25% in this case. Case b2 is the case with a fully helical forcing, but we have
neglected helicity in expression (A2). Further refinement of our arguments would be required to
take into account the influence of helicity or the Peterlin correction. The spectra of polymer energy
collapse rather well using the proposed scaling.
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FIG. 5. Normalized spectra. The normalization is chosen such that the spectra should collapse if our
scaling arguments leading to expressions (35) and (39) are correct. The factor Qf is defined in Eq. (40) and
Qp = A(Win)2 − 〈Bij 〉2.

V. A SCALE-BY-SCALE ANALYSIS OF ENERGY TRANSFER

A. Lin’s equation

Lin’s equation describes the evolution of the kinetic energy spectrum. In the absence of polymer
drag or external body forces, the equation reads as, for homogeneous turbulence,

∂tEK (k) = Tf (k) − 2νf k2EK (k) + F (k). (41)

In this equation, Tf (k) is the nonlinear transfer term, responsible for the energy transfer between
length scales, due to nonlinear mode coupling. The term 2νf k2EK (k) = Df (k) is the energy
dissipation spectrum and its integral yields the kinetic energy dissipation. The term F (k) is the
forcing spectrum. If through the forcing term sufficient energy is injected at a constant rate, the flow
will become statistically stationary and the time derivative ∂tEK (k) will tend to zero.

The Lin equation for viscoelastic turbulence was first obtained by Casciola et al. [26] using the
square-root eigenbasis decomposition. Here, we use the square-root decomposition of matrix C .
First, we write Eqs. (4) and (13) in Fourier space for each wave vector k under the assumption of
mild stretching P(C) ≈ 1 (but the Peterlin correction can be taken into account properly without
any difficulty, if needed):

∂t û(k) + P(k) · ̂(u · ∇u)(k) = −νf k2û(k) + νp

τp

P(k) · [ ̂∇ · (B · B)(k)] + f̂ (k), (42)

∂t B̂(k) + ̂u · ∇B(k) = ̂B · ∇u(k) + ̂A · B(k) + 1

2τp

[B̂(k) − B̂−1(k)], (43)

where ∗̂ is the Fourier transform as defined previously and P(k) is the projector [P(k)]ij = δij −
kikj /k2 subtracting the potential part of a vector field.

To obtain Lin’s equation, we multiply both sides of Eq. (42) by the complex conjugate of û(k),
and sum it with the complex conjugate of Eq. (42) that was also previously multiplied by û(k).
Averaging this vectorial quantity over spherical shells Sk of radius k and normalizing, we obtain
Lin’s equation for the kinetic energy EK (k). The equation for the spectrum Ep(k) is analogously
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obtained from Eq. (43). We hereby have the following evolution equations for spectra of kinetic
energy EK (k) and elastic energy Ep(k):

∂tEK (k) = Tf (k) − Df (k) + Sp→f (k) + F (k), (44)

∂tEp(k) = Tp(k) − R(k) + Sf →p(k) + Ta(k) − Da(k). (45)

We now discuss the different contributions in these equations. First, in the evolution equation for
EK (k) [Eq. (44)], only one new term appears compared to the equation for Newtonian flow [Eq. (41)].
This term is Sp→f (k) and represents the energy transfer from the fluid to the polymers. It is thus
necessarily this term that is involved in the modification of the velocity field by its interaction with
the polymers.

The second equation for the evolution of Ep(k) contains five different terms on the right-hand
side. Those are now discussed.

(1) The polymer-energy transfer term Tp(k) represents a redistribution of polymer stress over
different scales. Its integral over all wave numbers is thus zero.

(2) R(k) is the dissipation of the polymer field. Its integral equals Kp

τp
(〈Cii〉 − 3).

(3) Sf →p(k) is the spectrum of the energy injection into the polymer field due to the polymer
stretching. It is the only energy input and its integral therefore equals the value of Sp→f (k) in the
balance for EK (k).

(4) The term Da(k) = 2νak
2Ep(k) represents the artificial diffusion added to the equation

developed in Balci [41].
(5) Ta(k) is the transfer by the compensation term of the antisymmetric part of the stretching

term. Its integral over all wave numbers is zero (see Appendix B).

B. Transfer of kinetic and elastic energy

We will now consider a steady state so that the time derivatives are zero. In Fig. 6, we consider
the different contributions to the spectral evolution for case a2.

It is observed that, as in turbulence without polymers, the energy input by the forcing F is
approximately in equilibrium with the nonlinear transfer: F ≈ Tf . This energy is then transferred to
other scales and the dissipation spectrum Df extends from the smallest to the largest wave numbers:
Df ≈ Tf . No scale separation is observed at this Reynolds number. The original feature, introduced
by the polymer dynamics, is the polymer stress Sp→f that withdraws energy from all large scales up
to kη ≈ 1.6. For larger k, this term changes sign and it injects energy to the fluid at small scales. At
these small scales, the energy injection through the recoiling of the polymers becomes dominant over
the stretching which extracts energy from the flow. A recent investigation of isotropic viscoelastic
turbulence [28] showed that a similar mechanism is also observed for larger values of Wiη. At scales
larger than kη ≈ 2.1, it even becomes the dominant energy injection, balancing the dissipation rate
Df ≈ Sp→f . It is at these scales that Eq. (37) holds and it is also at these scales that the EK (k) ∼ k−6

power law is observed.
In Fig. 6(c), the different terms in the evolution equation of Ep(k) are investigated. A first

observation is that the two last terms in Eq. (45), Da(k), Ta(k), are small. These terms are from
numerical origin and they will be neglected in the further discussion of the physics of the flow, as
they are negligible. The two dominant terms are the polymer-stretching term Sf →p(k), which is the
energy source in this balance, and the dissipation term R(k), which almost perfectly balances the
stretching term R(k) ≈ Sf →p(k). This equilibrium leads to the power law of Ep(k) ∼ k−2. The value
of the transfer term Tp(k), representing the redistribution of polymer energy, is small compared to
these last two terms.

Note that the energy transfer term of fluid to polymer Sf →p(k) is directly related, through triadic
mode coupling, to the polymer to fluid transfer Sp→f (k), as we will show in the following. It is
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FIG. 6. (a) Different contributions in the evolution of the kinetic energy spectrum EK (k). (b) Fluxes in the
kinetic energy balance. (c) Contributions in the evolution equation of the elastic energy EK (k). (d) Flux of
elastic energy. In all figures, negative values are represented by a dashed line and positive values by a solid line.
Vertical lines represent the velocity’s integral length scale kLK

and de Gennes scale kDG.

also this coupling term which is responsible for the new power laws observed in the viscoelastic
turbulence dynamics.

In Figs. 6(b) and 6(d), we show the different terms integrated from 0 to k. In our notation,

�T (k) =
∫ k

0
T (k∗)dk∗, (46)

and the same convention is used for the other terms. The integrated quantities at the maximum
wave number should by definition equal the terms in the average one-point energy balance (25).
For example, �F (kmax) = 〈 f · u〉. Indeed, we can verify the conservation of energy directly from
Figs. 6(b) and 6(d). Definition (46) is particularly interesting when applied to transfer terms: for
a given k, �T (k) directly measures the total flux due to T from wave numbers k∗ � k to scales
k∗ > k. It is observed that the dominant flux in the kinetic energy balance �Tf attains a peak value
of approximately 70% of the energy injected by the forcing term.

From Fig. 6(d), we observe an equilibrium in the polymer-energy budget, corresponding to (26),
if we neglect the artificial diffusion. A flux of approximately 10% of the injected polymer energy is
observed due to the advective transfer between scales, �Tp . The contribution of this transfer term

083301-15



NGUYEN, DELACHE, SIMOËNS, BOS, AND EL HAJEM

FIG. 7. (a) Components of the total energy ET = EK + Ep . (b) Ratio EK

Ep
. (c) Transfer terms for the total

energy ET (k). (d) Flux of total energy. Negative values are represented by a dashed line, positive values by a
solid line. The vertical lines indicate the integral length scale kLK

and the de Gennes scale kDG.

is small compared to the dissipation and energy input. Clearly, part of the energy injected through
the forcing 〈 f · u〉 in the velocity field is transferred to the polymer field. The total amount of this
transferred energy is �Sf →p (kmax). This energy is dissipated by the polymer dissipation, resulting in
the approximate balance �Sf →p (k) ≈ �R(k).

In Figs. 7(a) and 7(b), we have plotted the total energy ET , the elastic energy Ep, kinetic energy
EK , and their ratio EK/Ep, as well as the de Gennes scale kDG where Ep(kDG) = EK (kDG). At large
scale EK 
 Ep, whereas at small scale EK � Ep.

In our case, the power law in the far-dissipation range appears approximately at k = 2kDG which
is thus slightly larger, but of the same order of magnitude as the scale where the energy balance
theory of de Gennes and Tabor [6–8] predicts a modification of the velocity by polymer interaction.
Note that k = 2kDG corresponds more precisely to the scale where the transfer Sp→f becomes more
important than the nonlinear transfer term Tf . By comparison, at higher Reynolds number, the energy
balance theory of de Gennes and Tabor [6–8] suggests a two-way energy transfer between fluid and
polymers at small scales. This transfer involves an overall modification of the turbulent energy
cascade. Our result seems in agreement with this de Gennes picture even at low Wi and moderate
Re: a two-way energy transfer occurs between polymer and fluid. Moreover, the mechanism based
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on comparison of the transfer strength is in agreement with observations in a recent experimental
investigation of high Reynolds number polymer flow, where an energy flux balance [29] was invoked
to explain the results.

An interesting feature will appear if we consider the total energy balance, indeed, in that case a
third transfer flux will show up, due to the fluid-polymer interaction. This will be shown in the next
section.

C. A new cascade mechanism for the total energy

We consider the same case (a2) as in the last section, but instead of considering the kinetic and
potential energy separately, we consider the sum. The average of total energy satisfies Eq. (27),
which we recall here:

∂t 〈‖u‖2/2 + KpTr(C)〉 = 〈 f · u〉 − νf 〈‖∇u‖2〉 − Kp

τp

〈Tr(C) − 3〉. (47)

Considering the sum of the Lin equation and its polymer counterpart, we have

∂tET (k) = F (k) − DT (k) + Tf (k) + Tp(k) + TS(k), (48)

where we define the total energy spectra ET (k) = EK (k) + Ep(k) and we have neglected the
contributions of the numerical dissipation term Da(k) and the symmetrization term Ta(k). In this
equation, the total dissipation term is

DT (k) = 2νf k2EK (k) + R(k), (49)

which is the sum of the viscous dissipation of fluid energy and the relaxation of polymer energy.
The transfer terms Tf (k), Tp(k) and the forcing term F (k) already appeared in the expressions for
the evolution of EK and Ep. A new contribution is TS(k), which is defined as

TS(k) = Sp→f (k) + Sf →p(k). (50)

Its integral over all wave numbers is zero since this term represents a transfer of energy between
the fields. The individual contributions Sp→f (k),Sf →p(k) do, however, not sum up to zero scale by
scale. If we consider the triadic interactions, this term can be written as

TS(k) =
∫

|k|=k

[∫
R3×R3

(tk, p,q − tq,k, p)δ(k − p − q)d p dq
]
dk, (51)

where the terms tk, p,q and tq,k, p correspond to the triadic interactions behind Sp→f (k) and Sf →p(k),
respectively. Detailed conservation is thus observed, triad per triad, for the transfer of total energy by
polymer-fluid interaction, which yields the global transfer conservation

∫
R TS(k)dk = 0. But, since

tq, p,k is not symmetric under permutation (k,p,q) → (q,k,p), this term is nonzero. We thus have here
a transfer mechanism between scales for the total energy, which adds to the terms Tf (k) + Tp(k).
Technical details on the derivation and energy conservation properties of (51) can be found in
Appendix C.

The total energy presents two regimes on Fig. 7(a). A first regime (kη < 1) is dominated by kinetic
energy. On Fig. 7(c), we plot the different terms. At large scale we observe that the dissipation of
fluid and polymer is balanced by the nonlinear transfer term Tf ≈ Df + R as in classical Newtonian
flow. In the meanwhile, the interaction between polymer and fluid takes away a small part the total
energy (TS < 0 for kη < 0.5) and gives it back to the total energy at smaller scale (TS > 0 for
kη > 0.5).

A second regime (kη > 1) is dominated by polymer energy. At these small scales, the transfer
by interaction dominates the standard nonlinear transfer (Tf � TS at kη ≈ 2), and we have a new
balance between the fluid and polymer interaction (stretch and stress) on the one hand and the
dissipation of fluid and polymer TS ≈ Df + R on the other. This mechanism constitutes a new type
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of transfer from large to small scale but for the total energy. The polymer transfer Tp is negligible
when compared to other terms.

In Fig. 7(d), the budget of fluxes shows that all the power input is, on average, dissipated into heat
by polymer and fluid as it should: P � εf + εp. The precise ratio between the amount of energy
dissipated by the polymers and the amount dissipated by the viscous dissipation is determined by
the interaction between polymer and fluid.

VI. CONCLUSION

The present investigation focused on homogeneous isotropic turbulence advecting a small quantity
of polymers at moderate Reynolds number and low elasticity. The parameters are chosen outside
the range where elastic and elastoinertial turbulence are expected. We have shown that, in the
range of parameters considered, the average amount of stretching, as measured by the trace of the
conformation tensor, can be estimated by elementary arguments on the local rms velocity gradient
and the polymer relaxation time. A more detailed investigation of the scale distribution of the kinetic
and polymer energies showed that the dissipation range of the fluid kinetic energy spectrum displays
a power law, proportional to k−6. It was shown that this range can be explained by an injection
of energy from the polymer field into the velocity field, where the energy is locally balanced by
viscous dissipation. The observation of this power law was made possible by the use of an accurate
numerical method necessitating very little artificial dissipation. The importance to avoid, as much
as possible, the use of artificial diffusion was already suggested in Refs. [11,25].

The polymer-energy spectrum was shown to be described by a power law, proportional to k−2.
Taking into account that the scale depends mainly on the integral scale and that its integral value over
all wave numbers is given by the trace of the conformation tensor, we suggested a way to collapse
all the data. The observed power law is linked to the activity of the polymer which extends even to
scales in the far-dissipation range of the kinetic energy spectrum.

The scale by scale evaluation of the different terms in the evolution equation of the kinetic energy
spectrum allows to demonstrate that triadic interaction allows for the pumping of energy from the
fluid flow at large scales to the polymer field, which returns a part of this energy to the fluid at
small scales. In the far-dissipation range, the viscous stress balances this energy injection, and this
balance leads to a k−6 power law in the kinetic energy spectrum. It further allows to show that
scale by scale, the polymer dynamics is, to a good approximation, described by a local equilibrium
between polymer stretching and relaxation. The transfer of polymer energy between scales exists
but is subdominant.

Considering the total energy, i.e., the sum of kinetic and polymer energy, allows to reveal an
interesting cascade mechanism involving the stretching of the polymers. Indeed, this stretching
allows a transfer of energy between the fields. The interesting feature of this transfer is that the loss
of kinetic energy at a given scale does not necessarily correspond to a gain of polymer energy at the
same scale and vice versa. Detailed conservation of the energy of a triad allows to precisely describe
this transfer.
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APPENDIX A: SCALING OF THE k−6 POWER LAW IN THE KINETIC ENERGY SPECTRUM

In the wave number range where the power law EK (k) ≈ E0
Kk−6 emerges, we can derive the

scaling factor E0
K by considering the equilibrium between viscous stress and polymer effects

[Eq. (37)]. The tensor Gij (k) on the right-hand side of this equation can be written, invoking
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isotropy, as

〈CimCjm〉 = δij

3
〈CmnCmn〉. (A1)

In a mirror-symmetric isotropic field,

Gij (k) = 1

4πk2

[
a(k)

kikj

k2
+ b(k)

(
δij − kikj

k2

)]
, (A2)

where a(k) and b(k) are functions of the norm of the wave vector only, not of its orientation.
The contribution of b(k) will vanish when we multiply Gij with kikj . It is natural in this context

to assume that a(k) is a power law of k: a(k) ∼ k−α1 . Using this assumption, we find that

Gij (k) ∼ Lp〈CmnCmn〉
4πk2

[
(kLp)−α1

kikj

k2
+ b(k)

(
δij − kikj

k2

)]
. (A3)

Combining this expression with Eq. (37), one obtains

EK (k) ≈
(

νp

νf τp

)2

L3
p〈CmnCmn〉(kLp)−α1−2, (A4)

and according to the observations, the power-law exponent is approximately −6, so that α1 = 4. We
can decompose 〈CmnCmn〉 into “mean” and “fluctuating” contributions of B = 〈B〉 + B′:

〈CmnCmn〉 = 〈BmiBinBmjBjn〉
= 〈(〈Bmi〉 + B ′

mi)(〈Bin〉 + B ′
in)(〈Bmj 〉 + B ′

mj )(〈Bjn〉 + B ′
jn)〉. (A5)

Assuming isotropy, Eq. (A5) simplifies to

〈CmnCmn〉 = 1

K2
p

[(
eM
p

)2 + 6eM
p eF

p

]+ 〈B ′
miB

′
inB

′
mjB

′
jn〉. (A6)

The fourth-order correlation terms cannot be calculated directly and we approximated it assuming
the fluctuation to be Gaussianly distributed, by

〈B ′
miB

′
inB

′
mjB

′
jn〉 ≈ 3

K2
p

(
eF
p

)2
. (A7)

By combining the scaling in relation (A4) with (A6) and (A7), we have

EK (k) ≈
(

L3
p

ν2
f

)[(
eM
p

)2 + 6eM
p eF

p + 3
(
eF
p

)2]
(kLp)−6 =

(
L3

p

ν2
f

)
(Qf )(kLp)−6, (A8)

where the quantity Qf = (eM
p )2 + 6eM

p eF
p + 3(eF

p )2.

APPENDIX B: DEMONSTRATION:
∑

k∈Z Ta(k) = 0

In this Appendix, we will show the demonstration that the term Ta(k) in Eq. (45) of Sec. V is a
transfer term. The expression of T k

a is

T k
a = 2KpRe( ÂB

k
: B̂

k
). (B1)

We rewrite the terms using the Hermitian symmetry property B̂ij

k = B̂
−k
ij :

T k
a = 2KpRe

⎛⎝B̂ij

k ∑
p+q=k

Âil
p
B̂lj

q

⎞⎠ = 2KpRe

⎛⎝B̂ij
−k ∑

p+q=k

Âil
p
B̂lj

q

⎞⎠. (B2)

083301-19



NGUYEN, DELACHE, SIMOËNS, BOS, AND EL HAJEM

With change of variable (−k) → k, we have

T k
a = 2KpRe

⎛⎝ ∑
p+q+k=0

B̂ij
k
Âil

p
B̂lj

q

⎞⎠
= 2KpRe

⎛⎝ ∑
p+q+k=0

B̂ij
k
Âil

p
B̂lj

q

⎞⎠ = 2KpRe

⎡⎣ ∑
p+q+k=0

ta(k,p,q)

⎤⎦.

We have decomposed the term T k
a into a sum (integral) of more elementary terms ta(k,p,q) =

B̂ij
k
Âil

p
B̂lj

q
. We can write Bij = Bimδmj = Bmiδmj because (Bij ) is symmetric matrix and Âil

p =
−Âli

p
because (Aij ) is an antisymmetric matrix: ta(k,p,q) = δmj B̂mi

k
Âil

p
B̂lj

q
. We can deduce

ta(k,p,q) = B̂ij
k
Âil

p
B̂lj

q = B̂ij
k(−Âli

p)
B̂ml

q
δmj = −δmj B̂ml

q
Âli

p
B̂ij

k
(B3)

= −ta(q,p,k). (B4)

Finally, if we sum all the triads, we deduce

∑
k∈Z

Ta(k) = 2Kp

∑
k∈Z

∑
|k|=k

⎧⎨⎩Re

⎡⎣ ∑
p+q+k=0

ta(k,p,q)

⎤⎦⎫⎬⎭ = 0 (B5)

because the summation involves all triads, for each given triad ta(k,p,q) we can find an opposite
triad ta(q,p,k) = −ta(k,p,q), so the integral sums up to zero.

APPENDIX C: DETAILS OF THE NONLOCAL TRIAD INTERACTION BEHIND
THE POLYMER-FLUID TRANSFER TERM

In this Appendix, we will show the detailed demonstration in order to prove the term TS(k) in
Eq. (50) of Sec. V C is a transfer term. This term is the combination of the action of fluid flow
on the polymer Sf →p(k), and the back-reaction of the polymer on the flow Sp→f (k). We need to
demonstrate

∑
k∈Z Sp→f (k) + Sf →p(k) = 0. We can compute Sf →p(k) and Sp→f (k) by relation

Sf →p(k) =
∑
|k|=k

Sk
f →p and Sp→f (k) =

∑
|k|=k

Sk
p→f , (C1)

where

Sk
f →p = 2KpRe( ̂B · ∇u

k
: B̂

k
) = 2KpRe

⎛⎝ ∑
p+q=k

B̂im
p
iqmûj

qB̂
k

ij

⎞⎠, (C2)

Sk
p→f = νp

τp

Re[ ̂∇ · (B · B)
k · (̂u)k] = νp

τp

Re

⎛⎝ ∑
p+q=k

ikj B̂
p
imB̂

q
mj ûi

k

⎞⎠, (C3)

where 2Kp = νp

τp
as in Appendix B and the bars ûi and B̂ij represent the complex conjugate of ûi and

B̂ij , respectively. We consider for this derivation the assumption of weak stretching (L2
max) 
 〈Cii〉,

so that we can neglect Peterlin’s correction and therefore P ≈ 1.
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We rewrite these two terms by using the Hermitian symmetry property B̂ij

k = B̂−k
ij and ûi

k =
ûi

(−k), and at the same time, changing the variable −k into k, we obtain

Sk
f →p = 2KpRe

⎛⎝ ∑
p+q+k=0

B̂im
p

i qm ûj
q B̂k

ij

⎞⎠ = 2KpRe

⎡⎣ ∑
p+q+k=0

tf →p(k,p,q)

⎤⎦, (C4)

Sk
p→f = νp

τp

Re

⎛⎝ ∑
p+q+k=0

i kj B̂
p
im B̂

q
mj ûi

k

⎞⎠ = νp

τp

Re

⎡⎣ ∑
p+q+k=0

tp→f (k,p,q)

⎤⎦ (C5)

with tf →p(k,p,q) = B̂k
ij B̂

p
im i qm û

q
j and tp→f (k,p,q) = −B̂

p
im B̂

q
mj ikj ûk

i .
Using that B̂k

ij = B̂k
imδmj , we have tf →p(k,p,q) = (B̂k

im B̂
p
im i qm û

q
j ) δmj . Since B is a symmetric

matrix B̂k
im = B̂k

mi we have

tf →p(k,p,q) = (B̂k
mi B̂

p
im i qm û

q
j

)
δmj . (C6)

We can write ûk
i = ûk

mδmi , and we have

tp→f (k,p,q) = −(B̂p
il B̂

q
lj i kj ûk

m

)
δmi. (C7)

Thus, when we compare (C7) and (C6), we obtain

tf →p(k,p,q) = −tp→f (p,q,k). (C8)

Finally, if we sum all the triads we deduce

∑
k∈Z

Sp→f (k) + Sf →p(k) =
∑
k∈Z

∑
|k|=k

νp

τp

⎧⎨⎩Re

⎡⎣ ∑
p+q+k=0

tf →p(k,p,q) + tp→f (k,p,q)

⎤⎦⎫⎬⎭ = 0 (C9)

by using 2Kp = νp/τp and because the summation involves all triads, for any given triad
tf →p(k,p,q), we can find a triad having opposite value tp→f (p,q,k) and inversely. So, the integral
is equal to zero, and

∑
k∈Z TS(k) = 0.

The final result ∑
k∈Z

Sp→f (k) + Sf →p(k) = 0 (C10)

means that globally these terms transfer the energy between polymer and fluid. Reference [43]
demonstrates this by using physical space arguments.

APPENDIX D: INFLUENCE OF ARTIFICAL DIFFUSIVITY ON THE ENERGY SPECTRA

As we can see in Fig. 6, the artificial diffusivity νa is chosen small enough to ensure the
corresponding term in Lin’s equation not to become dominant in the wave number range we focus
on. In order to compare the effect of artificial diffusivity, and to check if the value we chose is
low enough, we repeated case a3 with two different values of νa: case a3-0 with νa = 0 (artificial
diffusivity free) and case a3-1 with νf

νa
= 625 (double artificial diffusivity). The case a3 is the

only case allowing us to simulate with zero artificial diffusivity. The other cases suffer numerical
instability in the absence of numerical diffusivity. We observe in Fig. 8 that the artificial diffusivity
can affect the power law observed well before the Batchelor scale. This illustrates the importance to
use a method where the numerical diffusivity can be chosen as small as possible, as in the present
approach.
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FIG. 8. Assessment of the effect of artificial diffusivity νa on the kinetic and polymer energy spectra.
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