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The self-sustained turbulent shear or mixing layer that develops at the interface be-
tween a channel and a lateral cavity is the leading mechanism that drives the transfer
of momentum and mass in these open-channel flows. Therefore, quantifying the inter-
actions between large-scale vortical structures and the enhanced velocity fluctuations
at the interface is critical to understand the physical processes which control the
exchanges between the cavity and the main channel. In this investigation, we carry out
hydrodynamic experiments in a straight, rectangular channel with a lateral square cav-
ity. We measure the velocity field in a horizontal plane using particle image velocime-
try to study the dynamics and statistics of the mixing layer, including the effects of the
adverse pressure gradient at the downstream corner. By combining proper-orthogonal
decomposition with a vortex identification technique, we investigate the motion of
coherent structures and calculate the histograms of their trajectories, capturing also
additional phenomena such as the vortex splitting, and the interaction of the mixing
layer with inner vortices formed inside the cavity. We finally quantify the mass trans-
port capacity of the mixing layer, from the statistics of the transverse velocity at the
interface. C 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4945264]

I. INTRODUCTION

Turbulent flows past a cavity are encountered in many problems of significant interest in aerody-
namics and hydrodynamics, including flow-induced vibrations, industrial manufacturing, and acous-
tics.1–3 They have also great relevance in many environmental flows, as cavities form surface-storage
zones in rivers and streams, controlling in many cases the sediment transport, nutrient uptake, and
contaminant transport processes in these aquatic environments.4–6

Cavity flows are characterized by complex flow features such as quasi-periodic vortices produced
at the interface between the main flow and the cavity, multiple recirculating zones, coherent vortical
structures in the cavity that interact with each other and with the walls, development of centrifugal
instabilities due to streamline curvature, etc.7–10 These flow features have been extensively studied
in experiments with rectangular geometries, providing descriptions of the flow topology and the dy-
namics of the coherent structures in the vicinity and inside the cavity. The leading mechanism in the
dynamics of the flow is the emergence of a self-sustained shear layer that develops from the upstream
corner of the cavity where the vortices are shed to the downstream corner where the vortices impinge
and split between both regions. These phenomena are accompanied by additional processes that occur
at different time scales such as low-frequency flapping of the entire shear-layer and vorticity fluxes
from the wall due to streamwise pressure gradients downstream of the cavity.10

Depending on the aspect ratio of the cavity, the flow is characterized by the formation of one
or more large-scale vortical structures that occupy almost the entire cavity volume, in addition to
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corner structures that form due to vortex-wall interactions. Most of the cavity flows documented in the
literature have focused on two-dimensional (2D) geometries in an approaching turbulent boundary
layer flow, where the cavity configuration corresponds to a slit in the wall, without influence of lateral
constrains. In river flows and more generally in open-channel hydraulics, however, lateral cavities
are open to the atmosphere on one face and constricted by the bed on the opposite face, forming
a three-dimensional (3D) geometry. They either correspond to open lateral cavities4,9,11 or to the
so-called groyne fields.12–14 Recent experimental investigations have turned their attention to lateral
cavities in open-channel flows.9,11,15 The specific characteristics of the shear layer in this type of flows,
however, have not yet been described in detail even though the vortex interactions and large-scale
velocity fluctuations constitute the underlying physical mechanisms that control mass and momentum
transport across the interface.

To further our understanding on the interactions of the coherent vortices at the interface between
a channel and a lateral cavity and their consequences on mass exchange, we perform experiments in
an open lateral cavity flow configuration, in a rectangular channel without free-surface oscillations
(i.e., under no-seiching conditions). We focus on the motion and the statistical characterization of
vortical structures of the shear-layer with the following objectives: (1) understand the momentum
exchange mechanisms at the interface by analyzing the instantaneous flow field, the mixing layer
expansion rate, and the fundamental frequency of the flow dynamics. We focus our attention on the
impact of the adverse pressure gradient generated at downstream corner of the cavity; (2) describe the
mechanisms of vortex shedding and propagation and their consequences in terms of the transverse
velocity fluctuations that are produced by the coherent structures of the shear-layer; and (3) quantify
the mass transport capacity of the mixing layer, based on the transverse velocity across the interface.

The paper is organized as follows: In Section II we present the description of the experimental
setup and measurement methodologies with a two-dimensional particle image velocimetry (2D-PIV)
system. Subsequently, in Section III we discuss the mean flow and turbulence statistics in the cavity
and the shear layer. We later quantify the dynamics of the coherent turbulent structures and flow oscil-
lations in the shear-layer in Section IV. In Section V we estimate the mass exchange coefficient across
the mixing layer from the velocity field. Finally, in the conclusions of Section VI, we summarize the
findings of this investigation and discuss future research possibilities.

II. EXPERIMENTAL SETUP

Experiments are performed at the Laboratoire de Mecanique des Fluides et d’Acoustique at the
Universite de Lyon. The facility consists of a 4.9 m long and b = 0.3 m wide horizontal glass channel
of rectangular cross section, connected with a square cavity of width and length equal to b on the side
of the channel at mid-length, as depicted in Figure 1. The inlet discharge in the channel is fixed to
Q = 0.0035 m3/s, measured using a Promag 50 flowmeter (from Endress Hauser; with an accuracy
of 5 × 10−5 m3/s) within the pumping loop. A honeycomb mesh is installed at the inlet of the channel,
which serves to stabilize and straighten the inflow, and a sharp crested weir at the outlet is used to
fix the water depth to h = 0.07 m (±0.15 mm) at the entrance of the cavity. The bulk velocity in the
main channel is therefore equal to Ub = Q/(bh) = 0.166 m/s, such that the Reynolds number of the
flow, expressed in terms of the hydraulic diameter of the channel Dh and the kinematic viscosity
ν, is defined as Re = UbDh/ν = 4Q/[ν(b + 2h)] = 3.2 × 104. The Froude number is thus written as
follows, Fr = Ub/(gh)0.5 = 0.2. It was verified that the maximum free-surface oscillations in the cav-
ity remained negligibly small, with an amplitude smaller than 1%. More details on the experimental
setup can be found in previous investigations.16,17

The time-resolved velocity field was measured in a horizontal plane, collecting the u and v
components of the velocity field along the cartesian x and y axes, respectively, as shown in Figure 1.
We perform our analysis using PIV at the plane located at an elevation of zL = 0.05 m, that is,
zL/h = 0.71, as indicated in Figure 1, which is sufficiently far from the bed to expect any dependency
to the measurement elevation.9 Polyamid particles with a diameter of 50 µm are added to the water,
and we employ a 40 mW continuous laser coupled with a cylindrical lens that generates a 1 mm
horizontal light layer at the elevation of the plane. Our focus is the section of the flow that comprises
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FIG. 1. Experimental configuration of the channel and lateral cavity with rectangular cross sections, where b = 0.3 m and
the water depth is h = 0.07 m. The PIV is performed in a plane at an elevation zL = 0.05 m.

the shear layer, at the interface of the main channel with the cavity, as shown in Figure 1. In this region,
the images are captured with a video camera located above the cavity, which records the motion of the
particles for over 3000 consecutive images, using a resolution of 1280 × 960 pixels with an average
spatial resolution of 0.3 mm per pixel at a frequency equal to 30 Hz. The commercial software Davis
(from Lavision) allows us to correct any image distortion, subtract the background from the images
and compute the instantaneous velocity fields with a spatial resolution of 7 mm, i.e., 43 measurement
points per cavity length b. For the estimation of the uncertainty in the velocity measurements, we
first verify that the Stokes number associated to the seeding particles remains very low to ensure
that the particles follow closely the flow. Following previous work on PIV measurements,17,18 the
Gaussian peak fitting process generates an uncertainty of the estimated flow displacement equal to
0.1 pixel, which should be added to other sources of uncertainty, mainly due to seeding concentration
gradients in the flow field (see Jahanmiri,18 for details). Since these gradients are insignificant in the
present experiment, it is possible to assume that this second source of error leads to an uncertainty
of about the same magnitude as for the peak fitting process. In the present experiment, this leads to a
final uncertainty of the instantaneous velocity estimation about equal to 1.8 mm/s [2 × 0.1× spatial
resolution (0.3 mm/pix)× acquisition frequency (30 Hz)]. Note that we additionally compared the ve-
locity magnitude and fluctuations in the mixing layer with those measured using an Acoustic Doppler
Velocimeter, which exhibited a good agreement with the PIV measurements.

III. MEAN FLOW DESCRIPTION

We begin the presentation and discussion of the velocity field in the shear layer region by focusing
on the time-averaged and statistical features of the 2D flow on the measurement plane. As indicated
by Tuna et al.,9 the mean flow in the cavity is mostly two-dimensional, except in the region closer to
the bed. In Figure 2 we plot the mean streamlines and contours of the velocity magnitude in the cavity,
showing that one recirculation cell occupies almost the entire available volume, as seen in previous
investigations for similar flows.19–21

Figure 2 shows that the velocities in the outer layer of the recirculating cell in the cavity have an
approximate magnitude of 0.025 m/s, which corresponds to 0.15Ub, similar to the ratio found by Tuna
et al.9 in their recent experiments. The shear or mixing layer is formed by the velocity gradient that is
generated across the interface of the main channel with the cavity.22,23 To show the magnitude of this
velocity difference, the zoomed images plotted in Figure 3 depict the approaching velocity profile in
the main channel upstream from the cavity, and the streamlines and velocity contours inside the cavity
at the location of the shear layer. The high-velocity flow in the channel has a maximum streamwise
velocity located at y/b = −0.3, and appears to evolve gradually in the streamwise direction from
x/b = −1.33 to −0.66 as observed in Figure 3(a). We report the development of the upstream channel
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FIG. 2. Time averaged flow field at the horizontal plane, showing the contours of the non-dimensional velocity magnitude
inside the cavity. A large asymmetric vortical structure with a vertical axis occupies most of the cavity volume.

flow at the sidewall, since the boundary layer thickness is one of the parameters that characterizes
the flow past lateral cavities. This information is therefore important to reproduce and compare the
present cavity flow with other similar flow fields.

To study the downstream evolution of the shear layer along the interface, we plot in Figure 4 the
time-averaged streamwise non-dimensional velocity profiles and the transverse mean velocity gradi-
ents at the interface, denoted as u/Ub and b

Ub

∂u
∂y

, respectively. The measurements show that the flow
has many similarities with free mixing layers that appear between two parallel streams,22,23 and with
real-life flows where the axis of the mixing layer is geometrically imposed, i.e., compound channels
where the streamwise axis is constrained along the bank between both channels,24 and vegetated or
urban canopies where the axis is constrained along the crest of the canopy.25 Figure 4(a) shows the
development of the mean streamwise velocity profile at the interface, as the momentum is transferred
inside the cavity and the velocities increase for y/b > 0 in the downstream direction, due to flow

FIG. 3. (a) Approaching mean streamwise velocity profile measured at two locations in the upstream flow at the horizontal
plane zL = 0.05 m; and (b) streamlines and time-averaged velocity magnitude measured at the cavity interface, at elevation
zL = 0.05 m.
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FIG. 4. (a) Transverse profiles of time-averaged non-dimensional streamwise velocity u; and (b) Non-dimensional transverse
gradient of mean streamwise velocity b

Ub

∂u
∂y at the interface with white symbols indicating the location of maximum gradient

(the streamwise spatial resolution is reduced for better reading).

entrainment that produces the lateral spreading of the mixing zone. This is clearer when we observe
the transverse velocity gradient in Figure 4(b), where in this case the maximum gradient is slightly
deflected towards the main stream (y/b < 0) in most of the interface between the cavity and the main
channel.

The spreading of the mixing layer is analyzed by expressing its thickness δ as a function of the
difference between characteristic velocity scales at each side of the interface. We define these veloc-
ities at each streamwise location x inside the cavity U1(x), and in the main channel U2(x), as the mean
streamwise velocity at the position along the y axis where the absolute value of the velocity gradient
becomes negligibly small, i.e., lower than 0.5 s−1. The measured mixing layer thickness δm(x) is then
defined as follows:

δm(x) = U2 (x) −U1 (x)
|∂u(x)/∂ y |max

, (1)

where |∂u(x)/∂ y |max is the maximum transverse gradient of the mean streamwise velocity at each
position x/b along the interface. As shown in Figure 5, the mixing-layer thickness not only increases
in the downstream direction but also exhibits an interesting feature near the downstream corner of the
interface (x/b > 0.8) where δm decreases due to a local increase of the maximum velocity gradient.
This is a consequence of the adverse pressure gradient generated by the downstream corner of the
cavity, where the shear-layer impinges the wall increasing locally the magnitude of the pressure.

To identify the sensitivity of the mixing layer to the adverse pressure gradient, we can compare
the development of the mixing layer with the theoretical growth under free conditions. The thickness
of a free mixing layer δe, can be approximated by using the following relationship:

FIG. 5. Streamwise evolution of the measured (δm, ◦) and theoretical width (δe, solid line) of the mixing-layer along the
interface of the main channel and the cavity.
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dδe
dx
= α

U2 − U1(U1 + U2

)
/2

, (2)

where U1 and U2 are constant velocity scales that represent the magnitudes of the velocity field inside
and outside the cavity, respectively, and α is a constant that modulates the growth of the shear-layer
in the streamwise direction. According to Pope22 the range of α is between 0.06 and 0.11, while
Lesieur26 proposes a constant value of 0.085. To compare with the measured data, we consider that
the scale of the outer velocity in the main channel U2 can be represented by the bulk velocity of
the flow, such that U2 ≈ Ub, and the velocity scale in the cavity is approximated by U1 ≈ 0.15Ub, as
estimated in Figure 2, with a mixing-layer growth rate coefficient of α = 0.069 that yields a best-fit
slope of δm(x) equal to 0.102, as shown in Figure 5. Assuming an initial width of 0.08b, it appears
that the adverse pressure gradient only affects the thickness of the mixing layer for x/b > 0.8, where
it deviates from the linear growth. This is a remarkable characteristic of the flow, since the shear-layer
develops in a very short and restrained section at the interface. The thickness growth preserves this
property, even though the shear-layer interacts continuously with the vortices that emerge from inside
the cavity, which are discussed later in the paper, and it is affected by the strong adverse pressure
gradient produced at the impinging point, in the downstream corner of the cavity.

Turbulent transport of momentum across the interface can be quantified through the primary
term of the Reynolds stress tensor. Figure 6 reveals that at each selected streamwise location x, the
maximum Reynolds shear stress magnitude |u′v ′| is located along the centerline of the mixing layer
(y/b ≈ 0) and rapidly vanishes on both sides at a distance equal to about ±δm/2, except near the
downstream end of the mixing layer (x/b > 0.8) where it spreads further away as δm suddenly de-
creases, as already observed in Figure 5. As expected, Figure 6 also shows that the magnitude of
the dimensionless maximum Reynolds shear stress increases in the downstream direction, reaching
a maximum near x/b = 0.7, and decreasing again towards the downstream corner due to the effect of
the adverse pressure gradient imposed by the stagnation point. To summarize, the flow at the interface
between the main stream and the cavity exhibits typical characteristics of developing free mixing
layers, i.e., the maximum velocity gradient and maximum turbulent shear stress take place close to the
interface and spread in the downstream direction. The most important feature of the mixing layer at the
cavity interface is the sensitivity to the adverse pressure gradient that only affects the time-averaged
characteristics of the shear-layer for x/b > 0.8, decreasing the width and maximum Reynolds shear
stress when approaching the downstream corner.

IV. COHERENT STRUCTURE DYNAMICS IN THE MIXING-LAYER

The objective of the present section is to analyze the temporal characteristics of the turbulent
coherent structures in the mixing layer. We first identify the leading frequency of the vortex shedding

FIG. 6. Turbulent transport of momentum is quantified by the evolution of transverse profiles of the non-dimensional
Reynolds shear stress −u′v′/(U2−U1)2 in the streamwise direction along the mixing layer.
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FIG. 7. Power spectral density of the transverse velocity across the interface v, plotted at different streamwise locations. A
similar scaling is used for all spectra.

by plotting the streamwise evolution of the power spectral density of the transverse velocity signal v
at the interface, as shown in Figure 7, similar to what was reported by Rockwell and Naudascher.1 The
dominant frequency in the downstream region of the mixing layer (x/b > 0.5) equals f p = 0.6 Hz,
with significant energy also around 0.8 Hz for the first sections (x/b < 0.62) of the shear layer. The
maximum peak of energy for 0.6 Hz is measured at a location x/b = 0.7, where the transverse velocity
fluctuation coherency is then maximum. These complex characteristics of the shear layer show that
the turbulent flow past a lateral cavity is highly three-dimensional. The controlling mechanisms of
the shear-layer dynamics, however, which are part of the analysis carried out in this section, show that
the most energetic large-scale coherent structures of the flow are mostly 2D, as discussed by Tuna
et al.9
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FIG. 8. Streamwise and time evolution of the non-dimensional transverse velocity component along the mixing layer. The
capital letters refer to the structures from Figure 10.

In Subsections IV A–IV C we focus our attention on the 2D propagation of the vortices of the
mixing layer along the interface. First we discuss the characteristics of the transverse velocity across
the interface, and then we study the evolution of the low-frequency, large-scale coherent structures
that are continuously shed between the cavity and main stream, by analyzing the vortex cores using
the identification algorithm of Graftieaux et al.27

A. Transverse velocity alternation

The propagation of vortices generated at the interface produces an alternate sequence of positive
and negative fluctuations of transverse velocity component v between the cavity and the main stream.
This oscillating motion is shown in Figure 8 as an alternation of streamwise and temporal contours
of positive and negative transverse velocity v across the interface. Through this space-time plot we
can characterize the vortex evolution, illustrating efficiently important physical features of the mixing
layer. The data are averaged over 0.133 s, which corresponds to over 4 consecutive measured values
for the first 10 s of data. Positive regions of v that are indicated in yellow/orange color correspond to
the flow directed towards the cavity, whereas the regions of instantaneous negative v in blue corre-
spond to the flow directed towards the main stream. It is important to note that the time-averaged
velocity magnitude across the interface v is negligibly small, which indicates that the development
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of the vortices produces a symmetric sequence of positive and negative large-scale fluctuations of the
same magnitude that compensate each other, yielding a near zero average.

As observed in the evolution of the spectra previously shown in Figure 7, the shear layer orga-
nizes as the vortices travel in the downstream direction, which is clearly distinguished in the range
0.3 ≤ x/b ≤ 0.9. The maximum transverse velocity magnitude also increases in the downstream
direction, reaching a maximum of 0.15Ub at x/b = 0.7–0.8 and then decreases as the shear layer
decelerates due to the adverse pressure gradient. The streamwise location of this maxima is in agree-
ment with the periodicity shown in the maximum amplitude of the spectrum observed for x/b = 0.7,
in Figure 7.

From the slope of the centerline of the alternating areas of positive and negative v contours in
Figure 8, the propagation speed c of the large-scale vortices at the interface can also be estimated, as
they move downstream. These parallel centerlines yield a constant value of the propagation speed,
equal to c = 0.094 m/s = 0.56 Ub. The vortex propagation speed thus exceeds the mean streamwise
velocity averaged along the interface. This velocity is denoted as Ui, and it is equal to U = 0.43 Ub,
such that c/Ui ≈ 1.3. This is similar to the observations of Shaw et al.,28 who showed that the coherent
structures in the shear layer formed at the crest of a vegetation canopy are advected at a propagation
speed equal to 2 times the mean local velocity, while Zhang et al.29 estimated this ratio as 1.6, in
better agreement with the present results. Moreover, the spacing between two consecutive high peaks
(or low peaks) of transverse velocity contours correspond to the wavelength λ of the vortices along
x axis, which in this case is equal to λ = c/ f p = 0.16 m = 0.52 b.

To further our understanding on the velocity fluctuations induced by the vortex shedding of the
mixing layer, we plot in Figure 9 time series of velocities u′ and v ′, at a specific point along the inter-
face, corresponding to y/b = 0 and x/b = 0.7, which is the location of maximum energy of the fre-
quency of 0.6 Hz along the interface, i.e., the maximum peak of the spectrum in Figure 7. The plot
in Figure 9 shows that in most cases the periodic time series of the streamwise fluctuation and the
zero-mean transverse velocity are in phase, i.e., both fluctuation velocity components u′ and v ′ are
mostly of the same sign, even though the oscillation of u′ appears to be more complex, as will be
deeply discussed in Subsection IV B, along with the data presented in Figure 10. In the following
figures we non-dimensionalize time using the leading frequency of the mixing layer, expressing the
dimensionless time as t f p.

FIG. 9. Time evolution of the non-dimensional horizontal velocity fluctuations u′ and v′, and of the correlation −u′v′ values,
at the point y/b = 0 and x/b = 0.7. The capital letters refer to the structures from Figure 10. Time is non-dimensionalized
using the leading frequency of the mixing layer fp.
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FIG. 10. Time evolution every t fp = 0.2 (0.33 s) of the fluctuating velocity field (back arrows) and contours of clockwise
(blue color, Γ1 < −0.55) and counter-clockwise (red color, Γ1 > 0.55) coherent vortices, where the white circles correspond
to the vortex centers, i.e., the maximum local value of |Γ1|. The dashed line represents the mixing interface, y/b = 0.

A quadrant analysis performed at the same point (not shown herein) confirms that the values
of the velocity fluctuations are both positive, v ′ > 0, u′ > 0, during 33% of the time, locating the
measurements in the first quadrant. Similarly, both velocity fluctuations are negative, v ′ < 0, u′ < 0,
positioning the measurements in the third quadrant 40% of the total measurement time. These condi-
tions lead to a mostly negative instantaneous turbulent stresses, as shown in the lower subplot of
Figure 9, confirming also the negative time-averaged Reynolds shear stress−u′v ′ depicted in Figure 6.
The alternation of the transverse velocity fluctuations, which include intense positive and negative
transverse velocity events, is likely responsible for the exchange of passive scalars and particulate
matter between the main stream and the cavity that has been observed in experimental studies of
surface storage zones.

B. Two-dimensional time evolution of vortices in the plane

The study of the time series performed in Subsection IV A showed specific features of the mixing
layer along the interface, which are a consequence of the vortex shedding. In this section we carry out
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a spatial analysis, considering the entire measurement plane, to reveal the vortex related mechanisms
that produce the large-scale oscillations of streamwise and transverse velocities. We follow the meth-
odology proposed by Graftieaux et al.,27 to extract the center of low-frequency, large-scale coherent
structures that are continuously shed and advected downstream. This vortex identification method
first employs the proper orthogonal decomposition (POD)30 to extract the most energetic modes of
the flow through a linear decomposition. It then defines a non-dimensional scalar function, denoted
as Γ1, that is used to identify the center of the vortices based on the orientation of the velocity field.
In our analysis of the shear layer, we carry out the vortex identification procedure in the following
three steps:

1. We first perform a POD of the two-dimensional field of velocity fluctuations (after subtracting
the mean flow) over a total time of 133 s with a sampling frequency of 30 Hz which permits to
follow the trajectories of the structures as shown in Figure 10. We then extract the eigenmodes
and use the 10 largest modes to filter and reconstruct the velocity fields, keeping 90% of the mean
kinetic energy and removing a large part of the non-coherent turbulent kinetic energy (about
60%) and of the measurement noise. For more details on the basic aspects of the POD theory,
the reader is referred to Holmes et al.30

2. Subsequently, we calculate at each time step the spatial distribution of the dimensionless scalar
function Γ1, using the reconstructed velocity field. This function can be written for any point P
of the domain as follows:

Γ1(P) = 1
S


M ∈S

(−−→
PM × −→U (M)

)
· −→z

∥−−→PM∥ · ∥−→U (M)∥
dS =

1
S


M ∈S

sin (θM) dS, (3)

where S a circular surface centered on P, M a point within S,
−→
U (M) the velocity vector at point

M , z the previously defined vertical axis, and finally θM the angle between vectors
−−→
PM and

−→
U (M). As the sine function is bounded by 1 and the integral is normalized by the integration
area S, |Γ1| is also bounded by 1. In order to capture the turbulent structures, the integration area
has to be of same size as the typical extension of the structures: in the present case, we selected
a circle of diameter equal to 60 mm (0.2 b), which is the order of magnitude of the size of the
coherent structures in the fluctuating velocity field (black arrows) in Figures 10 and 12.

3. We finally select a threshold value of Γ1 to visualize the vortex cores in regions of high rota-
tion. In this study we choose |Γ1| = 0.55 as it appears to be adapted for the identification of the
coherent vortices in Figure 10. Contours of counter-clockwise and clockwise vortices are plotted
on the following figures, with the red color for counter-clockwise with Γ1 > 0.55, and blue for
clockwise with Γ1 < −0.55.

Note that this method was selected rather than a method based on a threshold of vorticity as (i)
unlike the vorticity, the magnitude of Γ1 remains limited in purely shear flow regions and (ii) it allows
us to follow each vortex along most of the mixing layer, from its upstream region where they are
weakly energetic, to its downstream region where they become highly energetic.

In Figure 10 we present a sequence of the vortex dynamics at 15 consecutive times, advancing
from the upper left plot to the lower right, and visualized every 0.33 s for a total time of 5.0 s. The
time in Figure 10 is non-dimensionalized by the leading frequency of the shear-layer f p, such that
the dynamics of the vortices can be observed in the context of the fundamental period of the vortex
shedding. In each plot we show the instantaneous (not-filtered) fluctuating velocity field with black
arrows, which is averaged over 4 consecutive measurements, reducing the sampling frequency from
30 Hz to 7.5 Hz. The vortex cores are identified with the Γ1 criterion,27 and they are depicted in blue
or red colors, depending if the rotation is clockwise or counter-clockwise, respectively. To analyze
the evolution in time of the coherent structures, the vortices are individually identified by a letter to
observe their trajectory, as they are advected along the mixing layer.

The evolution of the coherent structures visualized in Figure 10 shows that the instantaneous
flow is highly dynamic and characterized by the formation and interaction of multiple vortices. In
the entire plane we can distinguish from two to six vortical structures, which are seen to interact and
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sometimes split. It is important to point out that the instants observed in the 2D plots of Figure 10
coincide with the time in the velocity series at x/b = 0.7 and y/b = 0 depicted in Figure 9, which
can be used to compare the global vortex interaction with the velocity components measured at one
point.

From the series of snapshots in Figure 10 that are representative of the dynamical processes
in the mixing layer, it appears that three main configurations control the flow at the interface: (1)
From t f p = 1.2 to t f p = 2.6, the clockwise vortices (blue) are located inside the cavity (y/b > 0),
whereas the counter-clockwise vortices (red) reside in the main stream (y/b < 0). In this configura-
tion, two intense transverse velocity regions occur along the interface (y/b = 0), the first is upstream
from the clockwise vortices, where v ′ > 0 and u′ ≈ 0 (as seen upstream of vortex A at x/b = 0.7
and t f p = 1.8–2.0, see also Figure 9), and the second is downstream from the clockwise vortices,
where v ′ < 0 and u′ < 0 (as seen downstream of vortex A at x/b = 0.7, and t f p = 1.4–1.6, see also
Figure 9). (2) From t f p = 2.8 to t f p = 3.4 the vortices are aligned with the interface at y/b ≈ 0. In
this configuration, v ′ still oscillates between positive and negative values, but the streamwise compo-
nent u′ exhibits a more complex pattern (see x/b = 0.7 at times t f p = 2.8–3.4, see also Figure 9).
(3) Finally, from t f p = 3.6 to t f p = 4.0, the clockwise vortices (blue) are located in the main stream
(y/b < 0), and the counter-clockwise vortices (red) are located inside the cavity (y/b > 0). The ve-
locity fluctuations along the interface exhibit an opposite behavior compared to configuration (1):
upstream from the clockwise vortices the fluctuations of velocity are both positive, v ′ > 0 and u′ > 0
(as seen upstream of vortex F at x/b = 0.7 and t f p = 3.9–4.0, see also Figure 9); and negative trans-
verse velocities are observed downstream from the clockwise vortices, v ′ < 0 and u′ ≈ 0 (as seen
downstream from vortex F at x/b = 0.7 and t f p = 3.6, see also Figure 9).

Additional aspects of the flow are revealed from the analysis of the vortex-core evolution. Pro-
cesses such as the alignment of vortices at the interface and the vortex splitting produce more complex
fluctuations of the streamwise velocity compared to the transverse component, as previously observed
in the time series of Figure 9. As also seen in our analysis, both components of the fluctuating velocity
field have the same sign most of the time. This positive correlation between u′and v ′generates negative
Reynolds stresses, and it is mostly produced when the absolute value of the streamwise component
|u′| is intense. In these cases two dominant motions are observed, either u′ and v ′ positive, which
corresponds to the third vortex configuration discussed in the previous paragraph, or u′ and v ′ are both
negative which corresponds to the first configuration. Both cases had been recently reported by San-
jou and Nezu,11 who extended the classical terminology “ejection” and “sweep” to an open-channel
lateral cavity flow.

As previously noted, some of the coherent structures go through a splitting process, creating two
separate co-rotating cores at each side of the interface that emerge from one original structure of
the shear layer. This is observed for vortex E at t f p = 3.2, and vortex H at t f p = 3.9 in Figure 10.
The leading edge of the co-rotating vortex pair that travels downstream produces the largest velocity
fluctuations at the interface, as revealed by the time series of velocity depicted in Figure 9.

As the coherent vortices reach the downstream corner, where the shear-layer impinges the wall
(x/b = 1), they either enter the cavity (y/b > 0) or continue to the main stream (y/b < 0). By defining
the vortex location as the center of gravity of the colored area given by |Γ1| > 0.55, indicated by blue
open circles in Figure 11, we can observe that the vortex center path depends mostly on the location
of this center with respect to the interface, upstream from the impinging point. For instance, vortices
A and E1, which are located at y/b > 0, are deflected toward the cavity, whereas vortices B, C, E2,
and F, which are located at y/b ≤ 0, continue downstream in the main channel.

Figure 11 shows the time-space evolution of the vortex center locations during the same period
of 10 s as in previous figures. We plot the streamwise location along the x axis of all the vortex
cores encountered near the interface, in the region |y/b| < 0.167. The coherent structures shown in
Figure 11 correspond to the same vortices identified in our previous analysis, which were defined by
the letters A to J in Figure 10. The time-evolutions of these streamwise locations exhibit an approxi-
mately constant slope in the time-space plot, confirming the constant streamwise propagation speed
of the coherent structures of the mixing layer, reported in Subsection IV A. The period defined as
the characteristic time scale between two structures with the same rotation sign, passing through the
same streamwise location along the x axis is equal to t f p = 1.0.
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FIG. 11. Time-evolution of the streamwise location of the clockwise (open blue symbols) and counter-clockwise (closed red
symbols) vortex centers located near the interface (with |y/b | < 0.167). Green arrow designates four periods.

C. Interaction with inner vortices and statistics of core locations

The vortices described above emerge near the upstream corner and are advected along the inter-
face of the main channel with the cavity. These structures, such as the vortices identified with the
letters A to J in previous figures, are originated near the leading edge of the cavity x/b = 0 and move
downstream with an approximately constant vortex propagation speed. The analysis of the vortex
cores in the vicinity of the interface, however, shows that additional vortical structures that are gener-
ated inside the cavity can interact with the coherent structures of the mixing layer. In Figure 12 we plot
the instantaneous locations of vortex cores using the Γ1 criterion, during short episodes in which these
vortices are strong enough to reach the interface and interact with the shear-layer structures. These
inner vortices, identified as L (clockwise) and M (counter-clockwise) in Figure 12, emerge directly
within the cavity. The process responsible for their appearance remains unclear; one hypothesis is
that they emerge from the smaller shear-layer produced between the recirculating region at the corner,
and the large-scale recirculating cell that occupies most of the cavity (see Figure 2).

Nevertheless, the dynamics of the flow measured in our experiments shows that the formation
of these vortices and their interaction with the mixing layer at the interface is very sporadic. During
the total measurement time, only 3% of the coherent structures identified in the analysis correspond
to inner vortices from the cavity. As they approach the interface, the higher velocities of the main
channel stretch these structures in an oblique direction, rapidly moving in the positive x and negative
y directions. In this situation, the inner vortices also undergo a splitting process, separating into two
smaller structures, one (L1 and M1) staying inside the cavity, and the second one (L2 and M2) being
advected toward the mixing layer as shown in Figure 12.

With the objective of demonstrating the statistical significance of the processes we have unveiled,
and that the leading frequency of the shear-layer is the fundamental mechanism of the flow at the
interface, we show in Figure 13 more details on the POD analysis applied to the transverse velocity, in
the same region depicted in Figures 10 and 12. Figure 13(a) shows the POD spectrum, where the two
largest modes represent a significant percentage of the transverse velocity variance. The frequency
spectra of these two modes, depicted in Figure 13(b), show that both largest modes have the same
peak, at the leading frequency of the shear-layer f p = 0.6 Hz. Figures 13(c) and 13(d) show these
two spatial modes, with the large structures that comprise the mixing layer in the decomposition.
Higher-order modes (not shown herein) exhibit from 3 to 5 vortical structures that form the funda-
mental dynamics of the shear-layer. From the third to the sixth modes, the POD captures the inner
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FIG. 12. Time evolution of the fluctuating velocity field (black arrows) and contours of clockwise (blue color, Γ1 < −0.55)
and counter-clockwise (red color, Γ1 > 0.55) coherent vortices, to capture the dynamics of inner vortices L and M that
originate inside the cavity and interact with the mixing layer. The dashed line represents the mixing interface, y/b = 0.

vortices that interact with the shear layer in the first section of the interface, which were previously
discussed in the analysis of Figure 12.

In Subsections IV A and IV B, we have provided a description of the complex vortex dynamics
and interactions that occur in the shear-layer. To visualize the spatial extension occupied by these
large-scale vortices, we plot in Figure 14 the probability density function (pdf) of the vortex core
locations in the vicinity of the interface: the integral of this estimate over a small area within the
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FIG. 13. Proper orthogonal decomposition (POD) of the transverse velocity fluctuations in the vicinity of the interface.
(a) POD spectrum shows that two largest modes represent a significant percentage of the transverse velocity variance; (b)
Frequency spectrum of the coefficients of the first two modes reveals that both have a peak at fp = 0.6 Hz (dashed vertical
line); (c) Spatial component of mode 1; and (d) Spatial component of mode 2.

whole domain is equal to the probability that a vortex core is located within this area.31 The 2D plots
show contours of normalized histograms, such that the sum of the integrals of the two pdfs, clock-
wise and counter-clockwise vortex cores, respectively, on the plotted domains (0.1 < x/b < 0.9 and
−0.15 < y/b < 0.25) is equal to 1.

The pdfs shown in Figure 14 reveal that the locations of clockwise and counter-clockwise rotat-
ing vortices have almost the same statistical spatial distribution. In the upstream region (x/b < 0.3),
we can observe the high density of inner vortices (y/b ≈ 0.15), such as L and M in Figure 12, and
that of the vortex cores originating in the shear-layer slightly inside the cavity. Further downstream
(0.3 < x/b < 0.7), vortices are predominantly located along the interface, slightly deflected towards
the lateral cavity, y/b > 0. In the downstream region (x/b > 0.7), two tongues of high density of vor-
tex locations can be observed, since the structures either enter the cavity (y/b > 0) or continue to the
main stream (y/b < 0) as the shear-layer impinges on the corner. These two distinct regions of higher

FIG. 14. Probability density functions (pdfs) of vortex center locations identified using the Γ1 criterion in the vicinity of the
interface. (a) Clockwise vortex locations pdf; (b) counter-clockwise vortex locations pdf. Note that 6632 clockwise and 6423
counter-clockwise detected vortices were obtained over the 3000 samples and used to create the figure.
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densities in Figure 14 comprise the area given by−0.1 < y/b < 0.1 and appear from x/b > 0.8, which
corresponds to the location where the mixing-layer shows a change in its dynamics compared to free
shear-layers, as discussed in Secs. III and IV.

V. MASS EXCHANGE COEFFICIENT

The large-scale vortices that are continuously shed from the mixing-layer and advected along the
interface, produce a periodic alternation of positive and negative fluctuations of transverse velocity,
as shown in Figure 9(b). Large-magnitude events of these fluctuations, which reach up to 0.2Ub, are
the most important mechanism of mass and momentum exchange between the lateral cavity and the
main flow. In this section we quantify the mass exchange by computing the coefficient used in the
first-order 1D model4 that represents the mass transfer of a passive scalar across the interface.

The 1D mass exchange model between the main channel and the surface storage zone, first pro-
posed by Valentine and Wood32 and Uijttewaal et al.,12 establishes a first-order relation of the mass
exchange, assuming that the total mass in the cavity evolves in time as a function of the geometry, the
concentration gradient, and the velocity at the interface. This relation is therefore written as follows:

dM
dt
= SexVex∆C(t), (4)

where M is the total mass of the passive scalar within the cavity at time t, Sex = bh is the area of the
interface section between the main stream and the cavity (see Figure 1), Vex is the velocity scale for
the mass exchange, which is the typical time and space averaged exchange velocity across the inter-
face, and ∆C is the passive scalar concentration gradient across the interface. Valentine and Wood32

proposed to relate Vex to the bulk velocity of the main stream as Vex = kUb, where k is a constant and
corresponds to the so-called non-dimensional mass exchange coefficient. Weitbrecht et al.14 and later
Tuna et al.9 evaluated Vex based on the measurements of the transverse velocity along the interface of
the main stream and the lateral cavity, integrating the absolute value of the average as follows:

Vex =
1

2Sex


Sex

|v(x, z)|dS, (5)

where the overbar stands for time averaging of the transverse velocity. It is worth noting that in the
calculation of the velocity Vex, we divide by 2 in Equation (5), due to the fact that the absolute value
of the transverse velocity component considers the exchanges from the main stream to the cavity and
vice versa, which is actually twice of the total mass exchange referred to in Equation (4). Assuming
that the flow field is mostly 2D, Equation (5) for the mass exchange coefficient is written as

k =
1

2Ub

 x/b=1

x/b=0
|v(x, z = zL)|dx. (6)

In Figure 15, we plot the streamwise evolution, from the upstream to the downstream corner of
the cavity, of the mean absolute transverse velocity component, non-dimensionalized such that the

FIG. 15. Streamwise evolution of the mean absolute transverse velocity component along the interface between the cavity
and the mean flow.
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averaged value between x/b = 0 and 1 of the curve is equal to k. The variable plotted in Figure 15 is
then directly related to the amplitude of the alternating transverse velocity component in Figure 9(b).
The curve appears to increase from the upstream corner towards downstream, reach a maximum
magnitude at x/b ≈ 0.7 − 0.8, and to decrease again toward the downstream corner of the cavity. The
maximum absolute value of transverse velocity near x/b ≈ 0.7–0.8 is in good agreement with the
location of the spectrum with a maximum value for f p (Figure 7), and transverse velocity magnitude
(Figure 8) measured at this location in Sec. IV.

In the present case, the mass exchange coefficients yields a value of k = 0.0252, which is in the
range of the values described in the literature in cavity flows without seiching, (see, for instance,
the magnitude of k recently obtained by Tuna et al.9 and by Sanjou and Nezu,11 both for different
aspect ratios of the cavity and mean flow characteristics). Further analyses will require to compare
the value of the exchange coefficient with the transport of a passive scalar past the cavity. In this case,
the complement with high-resolution numerical simulations can improve the description of the mass
exchange at the interface.

VI. CONCLUSIONS

In this investigation we analyze the experimental flow fields measured with PIV in a horizontal
plane across the mixing layer that develops at the interface between a straight rectangular open-
channel, and an adjacent lateral square cavity. The flow is mainly characterized by the periodic dy-
namics of the self-sustained shear or mixing layer that develops at the interface. The vortices advected
along the mixing layer impinge on the downstream corner of the cavity, where the shear-layer is
divided with some vortices entering the recirculating region in the cavity, and others continuing in
the main stream downstream.

The development of the mean velocity profiles and velocity gradients at the interface, as well as
the growth of the mixing layer thickness, exhibit the same characteristics as free shear-layers reported
in the literature. The dynamics of the vortices, however, changes considerably from x/b > 0.8 due to
the adverse pressure gradient, as the vortices of the shear-layer approach the downstream corner of
the cavity.

Measurements of the flow field have shown that along the interface the transverse velocity ex-
hibits a zero-mean periodic signal, while the streamwise component is more complex and strongly
affected by the passing of the vortices in time. To investigate further the dynamics of these coherent
structures we performed a 2D analysis of their motion by combining POD with a vortex identifi-
cation technique,27 employing a scalar calculated from the reconstructed velocity field, denoted as
Γ1. Through this analysis we demonstrated that the vortices of the shear-layer move with a constant
vortex propagation speed. We also identified the splitting of vortices into two co-rotating structures as
they approach the impinging point. Secondary effects are produced by the interaction of the mixing
layer with vortices that are generated in a smaller shear-layer inside the cavity. Additionally, through
the POD analysis we show that the periodic alternation of counter-rotating vortices is responsible for
the large transverse velocity fluctuations produced at the interface by the leading edge of vortices. The
dynamics of this fluctuating transverse velocity finally allowed us to estimate a 1D mass exchange
coefficient across the cavity/flow interface.

In future work we aim at combining additional experiments with high-resolution numerical simu-
lations to understand the changes on the mixing layer and flow field inside the cavity, as a function
of the parameters that characterize the flow, i.e., approaching boundary layer thickness, normalized
water depth, Reynolds number, and aspect ratio of the cavity. We will study the potential influences
on the flow of the free surface, and waves that can be formed in the cavity. We will also focus on the
three-dimensional interactions of the vortices and their global effects on mass transport to understand
the mechanisms that can control the fate of contaminants in rivers.
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