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Clément Levrard∗†

Université Paris Diderot

Abstract

Given an n-sample drawn on a submanifold M ⊂ RD, we derive opti-
mal rates for the estimation of tangent spaces TXM , the second fundamen-
tal form IIMX , and the submanifold M . After motivating their study, we
introduce a quantitative class of Ck-submanifolds in analogy with Hölder
classes. The proposed estimators are based on local polynomials and al-
low to deal simultaneously with the three problems at stake. Minimax
lower bounds are derived using a conditional version of Assouad’s lemma
when the base point X is random.

1 Introduction

A wide variety of data can be thought of as being generated on a shape of low
dimensionality compared to possibly high ambient dimension. This point of
view led to the developpement of the so-called topological data analysis, which
proved fruitful for instance when dealing with physical parameters subject to
constraints, biomolecule conformations, or natural images [Was16]. This field
intends to associate geometric quantities to data without regard of any specific
coordinate system or parametrization. If the underlying structure is sufficiently
smooth, one can model a point cloud X = {X1, . . . , Xn} as being sampled on a
d-dimensional submanifold M ⊂ RD. In such a case, geometric and topological
intrinsic quantities include (but are not limited to) homology groups [NSW08],
persistent homology [FLR+14], volume [APR16], differential quantities [CP05]
or the submanifold itself [GPPVW12, AL15].

The present paper focuses on optimal rates for estimation of quantities up
to order two: (0) the submanifold itself, (1) tangent spaces, and (2) second
fundamental forms.

∗Research supported by ANR project TopData ANR-13-BS01-0008
†Research supported by Advanced Grant of the European Research Council GUDHI
‡Supported by the Conseil régional d’̂Ile-de-France program RDM-IdF
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Among these three questions, a special attention has been paid to the es-
timation of the submanifold. In particular, it is a central problem in manifold
learning. Indeed, there exists a wide bunch of algorithms intended to recon-
struct submanifolds from point clouds (Isomap [TdSL00], LLE [RS00], and re-
stricted Delaunay Complexes [BG14, CDR05] for instance), but a few come
with theoretical guarantees [GPPVW12, AL15]. Up to our knowledge, a mini-
max lower bound has proved optimality of a reconstruction scheme in only one
case [GPPVW12]. Some of these reconstruction procedures are based on tan-
gent space estimation [BG14, AL15, CDR05]. Tangent space estimation itself
also yields interesting applications in manifold clustering [GM11, ALZ13]. Esti-
mation of curvature-related quantities naturally arises in shape reconstruction,
since curvature can drive the size of a meshing. As a consequence, most of the
associated results deal with the case d = 2 and D = 3, though some of them
may be extended to higher dimensions [MOG11, GWM01]. Several algorithms
have been proposed in that case [Rus04, CP05, MOG11, GWM01], but with no
analysis of their performances from a statistical point of view.

To assess the quality of such a geometric estimator, the class of subman-
ifolds over which the procedure is evaluated has to be specified. Up to now,
the most commonly used model for submanifolds relied on the reach τM , a gen-
eralized convexity parameter. Assuming τM ≥ τmin > 0 involves both local
regularity — a bound on curvature — and global regularity — no arbitrarily
pinched area. This C2-like assumption has been extensively used in the com-
putational geometry and geometric inference fields [AL15, NSW08, FLR+14,
APR16, GPPVW12]. One attempt of a specific investigation for higher orders
of regularity k ≥ 3 has been proposed in [CP05].

However, many works suggest that the regularity of the submanifold has
an important impact on convergence rates. This is pretty clear for tangent
space estimation, where convergence rates of PCA-based estimators range from
(1/n)1/d in the C2 case [AL15] to (1/n)α with 1/d < α < 2/d in more regular
settings [SW12, TVF13]. In addition, it seems that PCA-based estimators are
outperformed by estimators taking into account higher orders of smoothness
[CC16, CP05], for regularities at least C3. For instance fitting quadratic terms
lead to a convergence rate of order (1/n)2/d in [CC16]. These remarks naturally
led us to investigate the properties of local polynomial approximation for regular
submanifolds, where “regular” has to be properly defined. Local polynomial
fitting for geometric inference was studied in several frameworks such as [CP05].
In some sense, a part of our work extends these results, by investigating the
dependency of convergence rates on the sample size n, but also on the order of
regularity k and the ambient and intrinsic dimensions d and D.

1.1 Contribution

In this paper, we build a collection of models for Ck-submanifolds (k ≥ 3)
that naturally generalize the commonly used one for k = 2 (Section 2). We
emphasize the necessity of both local and global constraints for estimation.
On these models, we study the non-asymptotic rates of estimation for tangent
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space, second fundamental form, and submanifold estimation (Section 3). These
results shed light on the influence of k, d, D and n on these estimation problems,
showing for instance that the ambient dimensionD plays no role. The estimators
proposed all rely on the analysis of local polynomials, and allow to deal with
the three estimation problems in a unified way (Section 5.1). Minimax lower
bounds are derived using standard Bayesian techniques, although a new version
of Assouad’s Lemma is used for tangent spaces and second fundamental forms
when the base point is random (Section 5.2). For the sake of completeness,
geometric background and proofs of technical lemmas are given in the Appendix.

2 Ck Models for Submanifolds

2.1 Notation

Throughout the paper, we consider d-dimensional compact submanifolds M ⊂
RD without boundary. The submanifolds will always be assumed to be at least
C2. For all p ∈M , TpM stands for the tangent space of M at p [dC92, Chapter
0]. We let IIMp : TpM × TpM → TpM

⊥ denote the second fundamental form

of M at p [dC92, p. 125]. IIMp characterizes the curvature of M at p. The

standard inner product in RD is denoted by 〈·, ·〉 and the Euclidean distance by
‖·‖. Given a linear subspace T ⊂ RD, write T⊥ for its orthogonal space. We
write B(p, r) for the closed Euclidean ball of radius r > 0 centered at p ∈ RD,
and for short BT (p, r) = B(p, r) ∩ T . For a smooth function Φ : RD → RD and
i ≥ 1, we let dixΦ denote the ith order differential of Φ at x ∈ RD. For a linear

map A defined on T ⊂ RD, ‖A‖op = supv∈T
‖Av‖
‖v‖ stands for the operator norm.

We adopt the same notation ‖·‖op for tensors, i.e. multilinear maps. Similarly, if
{Ax}x∈T ′ is a family of linear maps, for short, its L∞ operator norm is denoted
by ‖A‖op = supx∈T ′ ‖Ax‖op. When it is well defined, we will write πB(z) for

the projection of z ∈ RD onto the closed subset B ⊂ RD, that is the nearest
neighbor of z in B. The distance between two linear subspaces U, V ⊂ RD of
the same dimension is measured by the principal angle ∠(U, V ) = ‖πU − πV ‖op .

The Hausdorff distance [GPPVW12] in RD is denoted by dH . For a probability
distribution P , EP stands for the expectation with respect to P . We write P⊗n

for the n-times tensor product of P .
Throughout this paper, Cα will denote a generic constant depending on the

parameter α. For clarity’s sake, C ′α, cα, or c′α may also be used when several
constants are involved.

2.2 Reach and Regularity of Submanifolds

As introduced in [Fed59], the reach τM of a subset M ⊂ RD is the maximal
neighborhood radius for which the projection πM onto M is well defined. More
precisely, denoting by d(·,M) the distance to M , the medial axis of M is defined
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to be the set of points which have at least two nearest neighbors on M , that is

Med(M) =
{
z ∈ RD|∃p 6= q ∈M, ‖z − p‖ = ‖z − q‖ = d(z,M)

}
.

The reach is then defined by

τM = inf
p∈M

d (p,Med(M)) = inf
z∈Med(M)

d (z,M) .

It gives a minimal scale of geometric and topological features of M . As a
generalized convexity parameter, τM is a key parameter in reconstruction [AL15,
GPPVW12] and in topological inference [NSW08]. Having τM ≥ τmin > 0
prevents M from almost auto-intersecting, and bounds its curvature in the sense
that

∥∥IIMp ∥∥op ≤ τ−1
M ≤ τ−1

min for all p ∈M [NSW08, Proposition 6.1].

For τmin > 0, we let C2
τmin denote the set of d-dimensional compact con-

nected submanifolds M of RD such that τM ≥ τmin > 0. A key property of
submanifolds M ∈ C2

τmin is the existence of a parametrization closely related
to the projection onto tangent spaces. We let expp : TpM → M denote the
geodesic map [dC92, Chapter 3], that is defined by expp(v) = γp,v(1), where
γp,v is the unique constant speed geodesic path of M with initial value p and
velocity v.

Lemma 1. If M ∈ C2
τmin , expp : BTpM (0, τmin/4) → M is one-to-one. More-

over, it can be written as

expp : BTpM (0, τmin/4) −→M

v 7−→ p+ v + Np(v)

with Np such that for all v ∈ BTpM (0, τmin/4),

Np(0) = 0, d0Np = 0, ‖dvNp‖op ≤ L⊥ ‖v‖ ,

where L⊥ = 5/(4τmin). Furthermore, for all p, y ∈M ,

y − p = πTpM (y − p) +R2(y − p),

where ‖R2(y − p)‖ ≤ ‖y−p‖
2

2τmin
.

In other words, elements of C2
τmin have local parametrizations on top of their

tangent spaces that are defined on neighborhoods with a minimal radius, and
these parametrizations differ from the identity map by at most a quadratic
term. In addition, the reach condition provides an order 2 Taylor expansion
of the submanifold on top of its tangent spaces. A natural extension to Ck-
submanifolds should ensure that such an expansion exists at order k and satisfies
some regularity constraints. To this aim, we introduce the following class of
regularity Ckτmin,L.
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Definition 2. For k ≥ 3, τmin > 0, and L = (L⊥, L3, . . . , Lk), we let Ckτmin,L
denote the set of d-dimensional compact connected submanifolds M of RD with
τM ≥ τmin and such that, for all p ∈ M , there exists a local one-to-one
parametrization Ψp of the form:

Ψp : BTpM (0, r) −→M

v 7−→ p+ v + Np(v)

for some r ≥ 1
8L⊥

, with Np ∈ Ck
(
BTpM (0, r) ,RD

)
such that

Np(0) = 0, d0Np = 0,
∥∥d2

vNp

∥∥
op
≤ L⊥,

for all ‖v‖ ≤ 1
8L⊥

. Furthermore, we require that∥∥divNp

∥∥
op
≤ Li for all 3 ≤ i ≤ k.

Let us precise that the radius 1/(8L⊥) has been chosen for convenience.
Other smaller scales would do and we could even parametrize this constant, but
without substantial benefits in the results.

The Ψp’s can be seen as unit parametrizations of M . The conditions on
Np(0), d0Np, and d2

vNp ensure that Ψ−1
p is close to the projection πTpM . The

bounds on divNp (3 ≤ i ≤ k) allow to control the coefficients of the polynomial
expansion we seek. Indeed, whenever M ∈ Ckτmin,L, Lemma 12 shows that for

every p in M , and y in B
(
p,

τmin∧L−1
⊥

4

)
∩M ,

y − p = π∗(y − p) +

k−1∑
i=2

T ∗i (π∗(y − p)⊗i) +Rk(y − p), (1)

where π∗ denotes the orthogonal projection onto TpM , the T ∗i are i-linear maps
from TpM to RD with ‖T ∗i ‖op ≤ L′i and Rk satisfies ‖Rk(y − p)‖ ≤ C‖y −
p‖k, where the constants C and the L′i’s depend on the parameters τmin, d, k,
L⊥, . . . , Lk.

Such Ψp’s exist for any compact Ck-submanifold, if one allows τ−1
min, L⊥,

L3,. . .,Lk to be large enough. Note that for k ≥ 3 the exponential map can
happen to be only Ck−2 for a Ck-submanifold [Har51]. Hence, it may not be a
good choice of Ψp. However, for k = 2, taking Ψp = expp is sufficient for our
purpose. For ease of notation, we may write C2

τmin,L
although the specification

of L is useless. In this case, we implicitly set by default Ψp = expp and L⊥ =
5/(4τmin).

As will be shown in Theorem 5, the global assumption τM ≥ τmin > 0 cannot
be dropped, even when higher order regularity bounds Li’s are fixed.

Let us now describe the statistical model. Every d-dimensional submani-
fold M ⊂ RD inherits a natural uniform volume measure by restriction of the
ambient d-dimensional Hausdorff measure Hd. In what follows, we will con-
sider probability distributions that are almost uniform on some M in Ckτmin,L,
as stated below.
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Definition 3. For k ≥ 2, τmin > 0, L = (L⊥, L3, . . . , Lk) and fmin ≤ fmax,
we let Pkτmin,L (fmin, fmax) denote the set of distributions P with support M ∈
Ckτmin,L that have a density f with respect to the volume measure on M , and
such that for all x ∈M ,

0 < fmin ≤ f(x) ≤ fmax <∞.

For short, we write Pk when there is no ambiguity. We denote by Xn an
i.i.d. n-sample {X1, . . . , Xn}, that is, a sample with distribution P⊗n for some
P ∈ Pk. In what follows, though M is unknown, all the parameters of the
model will be assumed to be known, including the intrinsic dimension d and the
order of regularity k. We will also denote by Pk(x) the subset of elements in Pk

whose support contains a prescribed x ∈ RD.
In view of our minimax study on Pk, it is important to ensure by now that

Pk is stable with respect to deformations and dilations. Here, since we deal
with submanifolds, a natural way to model deformations is through ambient
diffeomorphisms.

Proposition 4. Let Φ : RD → RD be a global Ck-diffeomorphism. If ‖dΦ− ID‖op
,
∥∥d2Φ

∥∥
op

, . . . ,
∥∥dkΦ

∥∥
op

are small enough, then for all P in Pkτmin,L (fmin, fmax),

the pushforward distribution P ′ = Φ∗P belongs to Pkτmin/2,2L (fmin/2, 2fmax).

Moreover, if Φ = λID (λ > 0) is an homogeneous dilation, then P ′ ∈
Pkλτmin,L(λ)

(fmin/λ
d, fmax/λ

d), where L(λ) = (L⊥/λ, L3/λ
2, . . . , Lk/λ

k−1).

Proposition 4 follows from a geometric reparametrization argument (Propo-
sition 21) and a change of variable result for the Hausdorff measure (Lemma
22).

2.3 Necessity of a Global Assumption

In the previous Section 2.2, we generalized C2-like models — stated in terms
of reach — to Ck for k ≥ 3 by imposing higher order differentiability bounds
on parametrizations Ψp’s. Though, we did not drop the global assumption
τM ≥ τmin > 0. Indeed, it appears that such an assumption is necessary for
estimation purpose.

Theorem 5. Assume that τmin = 0. If D ≥ d + 3, then for all k ≥ 3 and
L⊥ > 0, provided that L3/L

2
⊥, . . . , Lk/L

k−1
⊥ , Ld⊥/fmin and fmax/L

d
⊥ are large

enough (depending only on d and k), for all n ≥ 1,

inf
T̂

sup
P∈Pk

(x)

EP⊗n∠
(
TxM, T̂

)
≥ 1

2
> 0,

where the infimum is taken over all the estimators T̂ = T̂
(
X1, . . . , Xn

)
.
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Figure 1: Inconsistency of tangent space estimation for τmin = 0.
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Figure 2: Inconsistency of curvature estimation for τmin = 0.

Moreover, for any D ≥ d + 1, provided that L3/L
2
⊥, . . . , Lk/L

k−1
⊥ , Ld⊥/fmin

and fmax/L
d
⊥ are large enough (depending only on d and k), for all n ≥ 1,

inf
ÎI

sup
P∈Pk

(x)

EP⊗n
∥∥∥IIMx ◦ πTxM − ÎI∥∥∥

op
≥ L⊥

4
> 0,

where the infimum is taken over all the estimators ÎI = ÎI
(
X1, . . . , Xn

)
.

In other words, if the class of submanifolds is allowed to have arbitrarily
small reach, no estimator can perform uniformly well to estimate neither TxM
nor IIMx . And this, even though each of the underlying submanifolds have arbi-
trarily smooth parametrizations. Indeed, if two parts of M can nearly intersect
around x at an arbitrarily small scale Λ→ 0, no estimator can decide whether
the direction (resp. curvature) of M at x is that of the first part or the second
part (see Figures 1 and 2).

3 Main Results

Let us now move to the description of the main results, that consist of minimax
upper and lower bounds for each object of interest. Given an i.i.d. n-sample
Xn = {X1, . . . , Xn} with unknown common distribution P ∈ Pk having support
M , we detail non-asymptotic rates for the estimation of tangent spaces TXjM ,
second fundamental forms IIMXj , and M itself.

7



For this, we need one more piece of notation. For 1 ≤ j ≤ n, P
(j)
n denotes

integration with respect to 1/(n− 1)
∑
i 6=j δ(Xi−Xj), and y⊗i denotes the D× i-

dimensional vector (y, . . . , y). For a constant t > 0 and a bandwidth h > 0 to
be chosen later, we define the local polynomial estimator (π̂j , T̂2,j , . . . , T̂k−1,j)
at Xj to be any element of

arg min
π,sup2≤i≤k ‖Ti‖op≤t

P (j)
n

∥∥∥∥∥x− π(x)−
k−1∑
i=2

Ti(π(x)⊗i)

∥∥∥∥∥
2

1B(0,h)(x)

 , (2)

where π ranges among all the orthogonal projectors on d-dimensional subspaces,

and Ti :
(
RD
)i → RD among the symmetric tensors of order i such that

‖Ti‖op ≤ t. For k = 2, the sum over the tensors Ti is empty, and the inte-

grated term reduces to ‖x− π(x)‖2 1B(0,h)(x). By compactness of the domain
of minimization, such a minimizer exists almost surely. In what follows, we will
work with a maximum scale h ≤ h0, with

h0 =
τmin ∧ L−1

⊥
8

.

Note that the set of d-dimensional orthogonal projectors is not convex, lead-
ing to a more involved optimization problem than usual least squares. In prac-
tice, this problem may be solved using tools from optimization on Grassman
manifolds [UM14], or adopting a two-stage procedure such as in [CP05]: from
local PCA, a first d-dimensional space is estimated at each sample point, along
with an orthonormal basis of it. Then, the optimization problem (2) is expressed
as a minimization problem in terms of the coefficients of (πj , T2,j , . . . , Tk,j) in
this basis under orthogonality constraints. It is worth mentioning that a simi-
lar problem is explicitly solved in [CC16], leading to an optimal tangent space
estimation procedure in the case k = 3.

The constraint ‖Ti‖op ≤ t involves a parameter t to be calibrated. As will be
shown in the following section, it is enough to choose t roughly smaller than 1/h,
but still larger than the unknown norm of the optimal tensors ‖T ∗i ‖op. Hence,
for h → 0, the choice t = h−1 works to guarantee optimal convergence rates.
Such a constraint on the higher order tensors might have been stated under the
form of a ‖.‖op-penalized least squares minimization — as in ridge regression —
leading to the same results.

3.1 Tangent Spaces

By definition, the tangent space TXjM is the best linear approximation of M
nearby Xj . Therefore, it is natural to take the range of the first order term

minimizing (2) and write T̂j = im π̂j . The T̂j ’s approximate simultaneously the
TXjM ’s with high probability, as stated below.

Theorem 6. Assume that t ≥ Ck,d,τmin,L ≥ sup2≤i≤k ‖T ∗i ‖op. Set h =
(
Cd,k

log(n)f2
max

(n−1)f3
min

)1/d

,

for Cd,k large enough. If n is large enough so that h ≤ h0, then with probability
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at least 1−
(

1
n

)k/d
,

max
1≤j≤n

∠
(
TXjM, T̂j

)
≤ Cd,k,τmin,L

√
fmax
fmin

hk−1(1 + th).

As a consequence, taking t = h−1, for n large enough,

sup
P∈Pk

EP⊗n max
1≤j≤n

∠
(
TXjM, T̂j

)
≤ C

(
log(n)

n− 1

) k−1
d

,

where C = Cd,k,τmin,L,fmin,fmax .

The same bound holds for the estimation of TxM at a prescribed x ∈ M .

For that, simply take P
(x)
n = 1/n

∑
i δ(Xi−x) as integration in (2).

This result is in line with those of [CP05] in terms of the sample size depen-
dency (1/n)(k−1)/d. Besides, it shows that the convergence rate of our estimator
does not depend on the ambient dimension D, even in codimension greater than
2. When k = 2, we recover the same rate as [AL15], where we used local PCA
for estimation, that is a reformulation of (2). When k ≥ 3, this procedure
outperforms PCA-based estimators of [SW12] and [TVF13], where convergence
rates of the form (1/n)α is obtained for 1/d < α < 2/d. This bound also recov-
ers the result of [CC16] in the case k = 3, where a similar procedure is used.
Moreover, Theorem 6 nearly matches the following lower bound.

Theorem 7. If τminL⊥, . . . , τ
k−1
minLk, (τ

d
minfmin)−1 and τdminfmax are large enough

(depending only on d and k), then

inf
T̂

sup
P∈Pk

EP⊗n∠
(
TX1

M, T̂
)
≥ cd,k,τmin

(
1

n− 1

) k−1
d

,

where the infimum is taken over all the estimators T̂ = T̂ (X1, . . . , Xn).

Hence, up to a log n factor, the rate n−(k−1)/d is optimal for tangent space
estimation on the model Pk. The rate (log n/n)1/d obtained in [AL15] for k = 2
is therefore optimal, as well as the rate (log n/n)2/d given in [CC16] for k = 3.
The rate n−(k−1)/d naturally appears on the the model Pk, since it consists of
Ck-submanifolds, and tangent spaces are differential objects of order 1, yielding
the shift k−1. Again, the same lower bound holds for the estimation of TxM at
a fixed point x in the model Pk(x). Interestingly, the tools used to derive the lower

bound for TxM (x fixed) is much less involved than for TX1
M (X1 random and

depending on the distribution P ). In the latter case, a conditional Assouad’s
Lemma (Lemma 16) is used. We will detail these differences in Section 5.2.

3.2 Curvature

The second fundamental form IIMXj : TXjM × TXjM → TXjM
⊥ ⊂ RD is a

symmetric bilinear map that encodes completely the curvature of M at Xj
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[dC92, Chap. 6, Proposition 3.1]. Estimating it only from a point cloud Xn
does not trivially make sense, since IIMXj has domain TXjM which is unknown.

To bypass this issue we extend IIMXj to RD. That is, we consider the estimation

of IIMXj ◦ πTXjM which has full domain RD. Following the same ideas as in the

previous Section 3.1, we use the second order tensor T̂2,j ◦ π̂j obtained in (2) to
estimate IIMXj ◦ πTXjM .

Theorem 8. Let k ≥ 3. Take h as in Theorem 6 and t = 1/h. If n is large
enough so that h ≤ h0 and h−1 ≥ C−1

k,d,τmin,L
≥ (sup2≤i≤k ‖T ∗i ‖op)−1, then with

probability at least 1−
(

1
n

)k/d
,

max
1≤j≤n

∥∥∥IIMXj ◦ πTXjM − T̂2,j ◦ π̂j
∥∥∥
op
≤ Cd,k,τmin,L

√
fmax
fmin

hk−2.

In particular, for n large enough,

sup
P∈Pk

EP⊗n max
1≤j≤n

∥∥∥IIMXj ◦ πTXjM − T̂2,j ◦ π̂j
∥∥∥
op
≤ C

(
log(n)

n− 1

) k−2
d

,

where C = Cd,k,τmin,L,fmin,fmax .

Interestingly, Theorems 6 and 8 are enough to provide estimators of various
notions of curvature. For instance, consider the scalar curvature [dC92, Section
4.4] at a point Xj , defined by

ScMXj =
1

d(d− 1)

∑
r 6=s

[〈
IIMXj (er, er), II

M
Xj (es, es)

〉
− ‖IIMXj (er, es)‖

2
]
,

where (er)1≤r≤d is an orthonormal basis of TXjM . A plugin estimator of ScMXj
is

Ŝcj =
1

d(d− 1)

∑
r 6=s

[〈
T̂2,j(êr, êr), T̂2,j(ês, ês)

〉
− ‖T̂2,j(êr, ês)‖2

]
,

where (êr)1≤r≤d is an orthonormal basis of T̂XjM . Theorems 6 and 8 yield

EP⊗n max
1≤j≤n

∣∣∣Ŝcj − ScMXj ∣∣∣ ≤ Cd,k,τmin,L,fmin,fmax ( log(n)

n− 1

) k−2
d

.

The (near-)optimality of the bound stated in Theorem 8 is assessed by the
following lower bound.

Theorem 9. If τminL⊥, . . . , τ
k−1
minLk, (τ

d
minfmin)−1 and τdminfmax are large enough

(depending only on d and k), then

inf
ÎI

sup
P∈Pk

EP⊗n
∥∥∥IIMX1

◦ πTX1
M − ÎI

∥∥∥
op
≥ cd,k,τmin

(
1

n− 1

) k−2
d

,

where the infimum is taken over all the estimators ÎI = ÎI(X1, . . . , Xn).

10



M̂

Figure 3: M̂ is a union of polynomial patches at sample points.

The same remarks as in Section 3.1 hold. If the estimation problem consists
in approximating IIMx at a fixed point x known to belong to M beforehand, we
obtain the same rate. The ambient dimension D still plays no role. The shift
k − 2 in the rate of convergence on a Ck-model can be interpreted as the order
of derivation of the object of interest, that is 2 for curvature.

Notice that the lower bound (Theorem 9) does not require k ≥ 3. Hence,
we get that for k = 2, curvature cannot be estimated uniformly consistently on
the C2-model P2. This seems natural, since the estimation of a second order
quantity should require an additional degree of smoothness.

3.3 Support Estimation

For each 1 ≤ j ≤ n, the minimization (2) outputs a series of tensors (π̂j , T̂2,j , . . . , T̂k−1,j).
This collection of multidimensional monomials can be further exploited as fol-
lows. By construction, they fit M at scale h around Xj , so that

Ψ̂j(v) = Xj + v +

k−1∑
i=2

T̂i,j
(
v⊗i
)

is a good candidate for an approximate parametrization in a neighborhood of
Xj . We do not know the domain TXjM of the initial parametrization, though

we have at hand an approximation T̂j = im π̂j which was proved to be consistent
in Section 3.1. As a consequence, we let the support estimator based on local
polynomials M̂ be

M̂ =

n⋃
j=1

Ψ̂j

(
BT̂j (0, 7h/8)

)
.

The set M̂ has no reason to be globally smooth, since it consists of a union
of polynomial patches that are not linked together (Figure 3). However, M̂ is
provably close to M for the Hausdorff distance.

Theorem 10. With the same assumptions as Theorem 8, with probability at

least 1− 2
(

1
n

) k
d , we have

dH
(
M,M̂

)
≤ Cd,k,τmin,L,fmin,fmaxhk.

11



In particular, for n large enough,

sup
P∈Pk

EP⊗ndH
(
M,M̂

)
≤ C

(
log(n)

n− 1

) k
d

,

where C = Cd,k,τmin,L,fmin,fmax .

For k = 2, we recover the rate (log n/n)2/d obtained in [AL15, GPPVW12,
KZ15]. However, our estimator M̂ is an unstructured union of d-dimensional
balls in RD. Consequently, M̂ does not recover the topology of M as the esti-
mator of [AL15] does.

When k ≥ 3, M̂ outperforms reconstruction procedures based on a some-
what piecewise linear interpolation [AL15, GPPVW12], and achieves the faster
rate (log n/n)k/d for the Hausdorff loss. This seems quite natural, since our
procedure fits higher order terms. This is done at the price of a probably worse
dependency on the dimension d than in [AL15, GPPVW12]. Theorem 10 is now
proved to be (almost) minimax optimal.

Theorem 11. If τminL⊥, . . . , τ
k−1
minLk, (τ

d
minfmin)−1 and τdminfmax are large

enough (depending only on d and k), then for n large enough,

inf
M̂

sup
P∈Pk

EP⊗ndH
(
M,M̂

)
≥ cd,k,τmin

(
1

n

) k
d

,

where the infimum is taken over all the estimators M̂ = M̂(X1, . . . , Xn).

Theorem 11 is obtained from Le Cam’s Lemma (Theorem 15). Let us note
that it is likely for the extra log n term appearing in Theorem 10 to actually be
present in the minimax rate. Roughly, it is due to the fact that the Hausdorff
distance dH is similar to a L∞ loss. The log n term may be obtained in Theorem
11 with the same combinatorial analysis as in [KZ15] for k = 2.

4 Conclusion, Prospects

In this article, we derived non-asymptotic bounds for inference of geometric ob-
jects associated with smooth submanifolds M ⊂ RD. We focused on tangent
spaces, second fundamental forms, and the submanifold itself. We introduced
new regularity classes Ckτmin,L for submanifolds that extend naturally the case
k = 2. For each object of interest, the proposed estimator relies on local poly-
nomials that can be computed through a least square minimization. Minimax
lower bounds were presented, matching the upper bounds up to log n factors.

The implementation of (2) needs to be investigated. The non-convexity of
the criterion comes from that we minimize over the space of orthogonal pro-
jectors, which is non-convex. However, that space is pretty well understood,
and it seems possible to implement gradient descents on it [UM14]. Another
way to improve our procedure could be to fit orthogonal polynomials instead

12



of monomials. Such a modification may also lead to improved dependency on
the dimension d and the regularity k in the bounds for both tangent space and
support estimation.

As a first attempt to a minimax study over models of higher order regularity
Ck (k ≥ 3) for submanifolds, we chose not to include noise. This is a limitation
of the model Pk, and one could argue that the methods described are not
robust. However, with outliers in the model C2, [AL15] proposes an iterative
denoising procedure based on tangent space estimation. It exploits the fact
that tangent space estimation allows to remove a part of outliers, and removing
outliers enhances tangent space estimation. An interesting question would be
to study how this method can apply with local polynomials.

Another open question is that of exact topology recovering with fast rates
for k ≥ 3. Indeed, M̂ converges at rate (log n/n)k/d but is unstructured. It
would be nice to glue the patches of M̂ together, for example using interpolation
techniques, following the ideas of [FIK+15].

5 Proofs

5.1 Local Polynomials

We now turn to the proof of the upper bounds of Section 3. First, to relate
the existence of parametrizations Ψp’s to a local polynomial decomposition, the
following lemma is needed.

Lemma 12. For any M ∈ Ckτmin,L and x ∈M , the following holds.

(i) For all v1, v2 ∈ BTxM
(

0, 1
4L⊥

)
,

3

4
‖v2 − v1‖ ≤ ‖Ψx(v2)−Ψx(v1)‖ ≤ 5

4
‖v2 − v1‖ .

(ii) For all h ≤ 1
4L⊥
∧ 2τmin

5 ,

M ∩ B
(
x,

3h

5

)
⊂ Ψx (BTxM (x, h)) ⊂M ∩ B

(
x,

5h

4

)
.

(iii) For all h ≤ τmin
2 ,

BTxM
(

0,
7h

8

)
⊂ πTxM (B(x, h) ∩M) .

(iv) Denoting by π∗ = πTxM the orthogonal projection onto TxM , for all x ∈
M , there exist multilinear maps T ∗2 , . . . , T

∗
k−1 from TxM to RD, and Rk

such that for all y ∈ B
(
x,

τmin∧L−1
⊥

4

)
∩M ,

y − x = π∗(y − x) + T ∗2 (π∗(y − x)⊗2) + . . .+ T ∗k−1(π∗(y − x)⊗k−1)

+Rk(y − x),

13



with

‖Rk(y − x)‖ ≤ C ‖y − x‖k and ‖T ∗i ‖op ≤ L
′
i for 2 ≤ i ≤ k − 1,

where L′i depends on d, k, τmin, L⊥, . . . , Li, and C on d, k, τmin, L⊥,. . .,
Lk. Moreover, for k ≥ 3, T ∗2 = IIMx .

(v) For all x ∈M ,
∥∥IIMx ∥∥op ≤ 1/τmin. In particular, the sectional curvatures

of M satisfy

−2

τ2
min

≤ κ ≤ 1

τ2
min

.

The proof of Lemma 12 can be found in Section A.2.
We are now in position to analyze local polynomial estimators. For clarity’s

sake, the bounds are given for j = 1, where we denote by π̂, T̂i (2 ≤ i ≤ k − 1)

the fitted polynomials of (2), and Pn−1 = P
(1)
n−1. The results of Theorems 6,

8, and 10 then follow from a straightforward union bound. We also set k ≥ 3,
the case k = 2 proceeding from the same derivation, omitting the higher order
tensors. Without loss of generality, we can assume that X1 = 0 and that
T0M is spanned by the first d vectors of the canonical basis, so that π∗(x) =
(x1, . . . , xd, 0, . . . , 0) = (x1:d, 0, . . . , 0).

Recall that h0 = (τmin ∧ L−1
⊥ )/8. According to Lemma 12, if M ∈ Ckτmin,L,

for any x ∈M such that ‖x‖ ≤ h0, we may write

x = π∗(x) + T ∗2 (π∗(x)⊗2) + . . .+ T ∗k−1(π∗(x)⊗k−1) +Rk(x),

where ‖Rk(x)‖ ≤ Cτmin,L‖x‖k. Every coordinate of (T̂i − T ∗i )(π∗(x)) may be
thought of as a polynomial map in the variable x1:d. Thus, proximity between
T̂i and T ∗i will be first stated in terms of polynomial norm.

Let Rk[x1:d] denote the set of real-valued polynomial functions in d vari-
ables with degree less than k. For Q ∈ Rk[x1:d], we denote by ‖Q‖2 the Eu-
clidean norm of its coefficients, and by Qh the polynomial defined by Qh(x1:d) =
Q(hx1:d). The following result relates the L2(Pn−1) norm involved in (2) to
polynomial norms.

Proposition 13. Set h =
(
K log(n)

n−1

) 1
d

. There exist constants κk,d, ck,d and

Cd such that, if K ≥ (κk,df
2
max/f

3
min) and n is large enough so that h ≤ h0 ≤

τmin/4, then with probability at least 1−
(

1
n

) k
d+1

, we have

Pn−1[Q2(π∗(x))1B(h)(x)] ≥ ck,dh
dfmin‖Qh‖22,

N(h) ≤ Cdfmax(n− 1)hd,

for every Q ∈ Rk[x1:d], where N(h) =
∑n
j=2 1B(0,h)(Xj).
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The proof of Proposition 13 is deferred to Section B.2. From now on we
assume that the probability event defined in Proposition 13 occurs. For short,
with a slight abuse of notation, we denote by Tp:q(x) the sum Tp(x

⊗p) + . . . +
Tq(x

⊗q), and by Rn−1(π, T2, . . . , Tk−1) the empirical criterion defined by (2).
Since for t ≥ maxi=2,...,k−1 ‖T ∗i ‖op,

Rn−1(π̂, T̂1, . . . , T̂k−1) ≤ Rn−1(π∗, T ∗2 , . . . , T
∗
k−1) ≤ Cτmin,Lh2kN(h)/(n− 1)

according to (1), we may write

Cτmin,Lh
2kN(h)

n− 1
≥ Rn−1(π̂, T̂2, . . . , T̂k−1)

= Pn−1

(∥∥∥(π∗ − π̂)(x) + (T ∗2:k−1 ◦ π∗ − T̂2:k−1 ◦ π̂)(x)

+Rk(x)
∥∥∥2

1B(0,h)(x)

)
,

with ‖Rk(x)‖ ≤ Cτmin,Lh2k. It follows that

Pn−1

(∥∥∥(π∗ − π̂)(x) + (T ∗2:k−1 ◦ π∗ − T̂2:k−1 ◦ π̂)(x)
∥∥∥2

1B(0,h)(x)

)
≤ Cτmin,Lh2kN(h)

n− 1

≤ Cτmin,L,dfmaxhd+2k.

On the other hand, using (1) again yields, for x ∈ B(0, h) ∩M ,

(π∗ − π̂)(x) + (T ∗2:k−1 ◦ π∗ − T̂2:k−1 ◦ π̂)(x)

= T ′1(π∗(x)) + T ′2(π∗(x)⊗2) + T ′3:k(π∗(x)) + π̂(Rk(x)) +R′k(x),

with ‖Rk(x)‖ ≤ Cτmin,Lh
k, ‖R′k(x)‖ ≤ tCτmin,k,Lh

k+1 since only tensors of
order greater than 2 are involved in R′k, and

T ′1(π∗(x)) = (π∗ − π̂)π∗(x)

T ′2(π∗(x)⊗2) = (π∗ − π̂)(T ∗2 (π∗(x)⊗2)) + (T ∗2 ◦ π∗ − T̂2 ◦ π̂)
(
π∗(x)⊗2

)
.

Hence,

Pn−1

(∥∥T ′1(π∗(x)) + T ′2(π∗(x)⊗2) + T ′3:k(π∗(x))
∥∥2
1B(0,h)(x)

)
≤ Cτmin,L,dfmaxhd+2k (1 + ht) . (3)

The left-hand side of (3) may be decomposed coordinate-wise as

Pn−1

(∥∥T ′1(π∗(x)) + T ′2(π∗(x)⊗2) + T ′3:k(π∗(x))
∥∥2
1B(0,h)(x)

)
=

D∑
j=1

Pn−1

((
T ′

(j)
1 (π∗x) + T ′

(j)
2 (π∗(x)⊗2) + T ′

(j)
3:k(π∗(x))

)2

1B(0,h)(x)

)
,
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where for any tensor T , T (j) denotes the j-th coordinate of T and is considered
as a real valued j-order polynomial. Then, for every j, Proposition 13 leads to

Pn−1

((
T ′

(j)
1 (π∗(x)) + T ′

(j)
2 (π∗(x)⊗2) + T ′

(j)
3:k(π∗(x))

)2

1B(0,h)(x)

)
≥ cd,kfminhd

∥∥∥(T ′(j)1 (π∗(x)) + T ′
(j)
2 (π∗(x)⊗2) + T ′

(j)
3:k(π∗(x))

)
h

∥∥∥2

2

= cd,kfminh
d

k∑
i=1

∥∥∥(T ′(j)i (π∗(x)⊗i)
)
h

∥∥∥2

2
.

Summing all contributions leads to

cd,kfmin

D∑
j=1

k∑
i=1

∥∥∥(T ′(j)i (π∗(x)⊗i)
)
h

∥∥∥2

2
≤ Ck,L,d,τminfmaxh2k(1 + t2h2).

This entails

‖T ′i‖2op ≤ Cd,k,L,τmin
fmax
fmin

h2(k−i)(1 + t2h2), (4)

for 1 ≤ i ≤ k, as well as∥∥∥(π∗ − π̂)(x) + (T ∗2:k−1 ◦ π∗ − T̂2:k−1 ◦ π̂)(x)
∥∥∥ ≤ Cd,k,L,τmin

√
fmax
fmin

hk(1 + th),

(5)

for x ∈ B(0, h) ∩M , according to (1).

5.1.1 Bounds for Tangent Space Estimation

Noting that

‖T ′1‖op = ‖(π∗ − π̂)π∗‖op = ‖πT̂⊥1 ◦ π
∗‖ = ∠(T0M, T̂1)

from [GVL96, Section 2.6.2], and using (4) for i = 1 yields Theorem 6.

5.1.2 Bounds for Curvature Estimation

In accordance with assumptions of Theorem 8, we assume that max2≤i≤k ‖T ∗i ‖op ≤
t ≤ 1/h. Since

T ′2(π∗(x)⊗2) = (π∗ − π̂)(T ∗2 (π∗(x)⊗2)) + (T ∗2 ◦ π∗ − T̂2 ◦ π̂)(π∗(x)⊗2),

we deduce that

‖T ∗2 ◦ π∗ − T̂2 ◦ π̂‖op ≤ ‖T ′2‖op + ‖π̂ − π∗‖op + ‖T̂2 ◦ π̂ ◦ π∗ − T̂2 ◦ π̂ ◦ π̂‖op.
Using (4) with i = 1, 2 and th ≤ 1 leads to

‖T ∗2 ◦ π∗ − T̂2 ◦ π̂‖op ≤ Cd,k,L,τmin

√
fmax
fmin

hk−2.

Finally, Lemma 12 states that IIMX1
= T ∗2 , hence Theorem 8 is proved.
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5.1.3 Bounds for Reconstruction

Let v ∈ BT̂0M
(0, 7h/8) be fixed. Notice that π∗(v) ∈ BT0M (0, 7h/8). Hence,

according to Lemma 12, there exists x ∈ B(0, h) ∩M such that π∗(v) = π∗(x).
We may write

Ψ̂(v) = v +

k−1∑
i=2

T̂i(v
⊗i) = π∗(v) +

k−1∑
i=2

T̂i(π
∗(v)⊗i) +Rk(v),

where, since ‖T̂i‖op ≤ 1/h, ‖Rk(v)‖ ≤ Ck,d,τmin,L
√
fmax/fminh

k according to
(4). Then, according to (5),

π∗(v) +

k−1∑
i=2

T̂i(π
∗(v)⊗i) = π∗(v) +

k−1∑
i=2

T ∗i (π∗(v)⊗i) +R′(π∗(v))

= π∗(x) +

k−1∑
i=2

T ∗i (π∗(x)⊗i) +R′(π∗(x)),

where ‖R′(π∗(x))‖ ≤ Ck,d,τmin,L
√
fmax/fminh

k+1. According to Lemma 12, we

deduce that ‖Ψ̂(v)− x‖ ≤ Ck,d,τmin,L
√
fmax/fminh

k, hence

sup
u∈M̂

d(u,M) ≤ Ck,d,τmin,L

√
fmax
fmin

hk. (6)

Now we focus on supx∈M d(x, M̂). For this, we need a lemma ensuring that
Xn = {X1, . . . , Xn} covers M with high probability.

Lemma 14. Let h =
(
C′dk
fmin

logn
n

)1/d

with C ′d large enough. Then for n large

enough so that h ≤ τmin/8, with probability at least 1−
(

1
n

)k/d
,

dH (M,Xn) ≤ h.

The proof of Lemma 14 is given in Section B.1. Now we choose h satisfying
the conditions of Proposition 13 and Lemma 14. Let x be in M and assume that
‖x−Xj0‖ ≤ h. According to (5) and (1), we deduce that ‖Ψ̂j0(π̂j0(x))− x‖ ≤
Ck,d,τmin,L

√
fmax/fminh

k. Hence, from Lemma 14,

sup
x∈M

d(x, M̂) ≤ Ck,d,τM ,L

√
fmax
fmin

hk (7)

with probability at least 1 − 2
(

1
n

)k/d
. Combining (6) and (7) gives Theorem

10.
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5.2 Minimax Lower Bounds

This section is devoted to describe the main ideas of the proofs of the minimax
lower bounds, Theorems 7, 9 and 11. The methods we use rely on hypothesis
comparison [Yu97]. We recall that for two distributions Q and Q′ defined on
the same space, the total variation distance TV (Q,Q′) and the L1 test affinity
‖Q ∧Q′‖1 are given by

TV (Q,Q′) =
1

2

∫
|dQ− dQ′|, ‖Q ∧Q′‖1 =

∫
dQ ∧ dQ′,

where dQ and dQ′ denote densities of Q and Q′ with respect to any dominating
measure.

5.2.1 Le Cam’s Lemma and Consequences

The first technique we use, involving only two hypotheses, is usually referred
to as Le Cam’s Lemma. Let P be a model and θ(P ) be the parameter of
interest. Assume that θ(P ) belongs to a pseudo-metric space (D, d), that is
d(·, ·) is symmetric and satisfies the triangle inequality. Le Cam’s Lemma can
be adapted to our framework as follows.

Theorem 15 (Le Cam’s Lemma [Yu97]). For all P, P ′ in the model P,

inf
θ̂

sup
P∈P

EP⊗nd(θ(P ), θ̂) ≥ 1

2
d (θ(P ), θ(P ′))

∥∥P⊗n ∧ P ′⊗n∥∥
1
,

where the infimum is taken over all the estimators θ̂ = θ̂(X1, . . . , Xn).
Moreover, ‖P⊗n ∧ P ′⊗n‖1 ≥ ‖P ∧ P ′‖

n
1 = (1− TV (P, P ′))

n
.

We derive Theorem 11, as well as Theorems 7 and 9 with fixed base point x,
θ(P ) being supp(P ) = M , TxM and IIMx ◦ πTxM respectively. The hypotheses
P, P ′ are built in Section 5.2.3. Such constructions are not substantially new
in minimax geometric inference [GPPVW12]. Therefore, we do not detail it
further.

5.2.2 Conditional Assouad’s Lemma

Now, consider the estimation of the differential quantities TX1M and IIMX1
with

random base point X1. In both cases, the loss can be cast as

EP⊗n d(θX1
(P ), θ̂) = EP⊗n−1

[
EP d(θX1

(P ), θ̂)
]

= EP⊗n−1

[∥∥∥d(θ·(P ), θ̂
)∥∥∥
L1(P )

]
,

where θ̂ = θ̂(X,X ′), with X = X1 driving the parameter of interest, and X ′ =
(X2, . . . , Xn) = X2:n. Since ‖.‖L1(P ) obviously depends on P , the technique
exposed in the previous section does not apply anymore. However, a slight
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adaptation of Assouad’s Lemma [Yu97] with an extra conditioning on X = X1

carries out for our purpose. Let us now detail a general framework where the
method applies.

We let X ,X ′ denote measured spaces. For a probability distribution Q on
X ×X ′, we let (X,X ′) be a random variable with distribution Q. The marginals
of Q on X and X ′ are denoted by µ and ν respectively. Let (D, d) be a pseudo-
metric space. For Q ∈ Q, we let θ·(Q) : X → D be defined µ-almost surely,
where µ is the marginal distribution of Q on X . The parameter of interest is
θX(Q), and the associated minimax risk over Q is

inf
θ̂

sup
Q∈Q

EQ
[
d
(
θX(Q), θ̂(X,X ′)

)]
, (8)

where the infimum is taken over all the estimators θ̂ : X × X ′ → D.
Given a set of probability distributions Q on X × X ′, write Conv(Q) for

the set of mixture probability distributions with components in Q. For all
τ = (τ1, . . . , τm) ∈ {0, 1}m, τk denotes the m-tuple that differs from τ only at
the kth position. We are now in position to state the conditional version of
Assouad’s Lemma that allows to lower bound the minimax risk (8).

Lemma 16 (Conditional Assouad). Let m ≥ 1 be an integer and let {Qτ}τ∈{0,1}m
be a family of 2m submodels Qτ ⊂ Q. Let {Uk × U ′k}1≤k≤m be a family of pair-

wise disjoint subsets of X × X ′, and Dτ,k be subsets of D. Assume that for all
τ ∈ {0, 1}m and 1 ≤ k ≤ m,

• for all Qτ ∈ Qτ , θX(Qτ ) ∈ Dτ,k on the event {X ∈ Uk};

• for all θ ∈ Dτ,k and θ′ ∈ Dτk,k, d(θ, θ′) ≥ ∆.

For all τ ∈ {0, 1}m, let Qτ ∈ Conv(Qτ ), and write µ̄τ and ν̄τ for the marginal
distributions of Qτ on X and X ′ respectively. Assume that if (X,X ′) has distri-
bution Qτ , X and X ′ are independent conditionally on the event {(X,X ′) ∈ Uk × U ′k},
and that

min
τ∈{0,1}m
1≤k≤m

{(∫
Uk

dµ̄τ ∧ dµ̄τk
)(∫

U ′k

dν̄τ ∧ dν̄τk

)}
≥ 1− α.

Then,

inf
θ̂

sup
Q∈Q

EQ
[
d
(
θX(Q), θ̂(X,X ′)

)]
≥ m∆

2
(1− α),

where the infimum is taken over all the estimators θ̂ : X × X ′ → D.

Notice that for a model of the form Q = {δx0 ⊗ P, P ∈ P} with fixed x0 ∈ X ,
one recovers the classical Assouad’s Lemma [Yu97] taking Uk = X and U ′k = X ′.
Indeed, when X = x a.s, the parameter of interest θX(Q) = θ(Q) can be seen
as non-random.
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5.2.3 Construction of Hypotheses

In order to apply Le Cam’s Lemma (Theorem 15) or the conditional Assouad’s
Lemma (Lemma 16), we describe in this section the construction of the hy-
potheses involved in the different contexts of estimation. For this, the strategy
consists in building distributions that are stochastically close — i.e. with a large
test affinity — for which the associated parameters of interest are as different as
possible. Before continuing to the precise construction, let us make two remarks
about the lower bounds with random point X1. First, the associated minimax
risks (Theorems 7 and Theorem 9) involve the integration with respect to X1.
Hence, as for regression with Lp loss, multiple locations of bumps are required
to yield the right rate. Second, building manifolds with different tangent spaces
(resp curvature) would lead to locally singular distributions. Therefore it is
natural to consider mixture distributions to get non-trivial bounds.

Let M
(0)
0 be a d-dimensional C∞-submanifold of RD with reach greater than

1 and such that it contains BRd×{0}D−d(0, 1/2). M
(0)
0 can be built for example by

flattening smoothly a unit d-sphere. Since M
(0)
0 is C∞, the uniform probability

distribution P
(0)
0 on M

(0)
0 belongs to Pk

1,L(0)(1/V
(0)
0 , 1/V

(0)
0 ), for some L(0) and

V
(0)
0 = V ol(M

(0)
0 ).

Let now M0 = (2τmin)M
(0)
0 be the submanifold obtained from M

(0)
0 by ho-

mothecy. By construction, from Proposition 4, we have τM0
≥ 2τmin, BRd×{0}D−d(0, τmin) ⊂

M0, and the uniform probability distribution P0 on M0 belongs to the model

Pk2τmin,L(fmin, fmax) whenever L⊥ ≥ L
(0)
⊥ /(2τmin), . . ., Lk ≥ L

(0)
k /(2τmin)k−1,

and provided that fmin ≤
(
(2τmin)dV

(0)
0

)−1 ≤ fmax. Note that L
(0)
⊥ , . . . , L

(0)
k ,

V ol(M
(0)
0 ) depend only on d and k. For this reason, all the lower bounds will

be valid for τminL⊥, . . . , τ
k−1
minLk, (τ

d
minfmin)−1 and τdminfmax large enough to

exceed the thresholds L
(0)
⊥ /2, . . . , L

(0)
k /2k−1, 2dV

(0)
0 and (2dV

(0)
0 )−1 respectively.

For 0 < δ ≤ τmin/2, let x1, . . . , xm ∈ M0 ∩ B(0, τmin) be such that for all
k 6= k′, ‖xk − xk′‖ ≥ δ. A classical packing argument (see [Mas07] p. 71) shows
that one can take up to m = dcd/δde for some cd > 0. We let e ∈ RD denote

any unit vector orthogonal to Rd × {0}D−d.
Let φ : RD → [0, 1] be a smooth scalar map such that φ|B(0, 12 ) = 1 and φ|B(0,1)c =

0. Let Λ+ > 0 and 1 ≥ A+ > A− > 0 be real numbers to be chosen later. Let
Λ = (Λ1, . . . ,Λm) with entries −Λ+ ≤ Λk ≤ Λ+, and A = (A1, . . . , Am) with
entries A− ≤ Ak ≤ A+. For z ∈ RD, we write z = (z1, . . . , zD) for its coordi-
nates in the canonical basis. For all τ = (τ1, . . . , τm) ∈ {0, 1}m, define the bump
map as

ΦΛ,A,i
τ (x) = x+

m∑
k=1

φ

(
x− xk
δ

){
τkAk(x− xk)i1 + (1− τk)Λk

}
e. (9)

An analogous deformation map was considered in [AL15]. We let P
Λ,A,(i)
τ de-

note the pushforward distribution of P0 by Φ
Λ,A,(i)
τ , and write M

Λ,A,(i)
τ for its
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Λk

Λ+

δ

xk

(a) Flat bump: τk = 0.

δ

xkA−x1
A+x1

Akx1

(b) Linear bump: τk = 1, i = 1.

δ

xk

Akx
2
1A−x

2
1

A+x
2
1

(c) Quadratic bump: τk = 1, i = 2.

Figure 4: The three shapes of the bump map ΦΛ,A,i
τ around a xk.

support. Roughly speaking, MΛ,A,i
τ consists of m bumps at the xk’s having

different shapes (Figure 4). If τk = 0, the bump at xk is a symmetric plateau
function and has height Λk. If τk = 1, it fits the graph of the polynomial
Ak(x − xk)i1 locally. The following Lemma 17 gives differential bounds and
geometric properties of ΦΛ,A,i

τ . It follows straightforwardly from chain rule,
similarly to Lemma 11 in [AL15].

Lemma 17. There exists cφ,i < 1 such that if A+ ≤ cφ,iδ
i−1 and Λ+ ≤ cφ,iδ,

then ΦΛ,A,i
τ is a global C∞-diffeomorphism of RD such that for all 1 ≤ k ≤ m,

ΦΛ,A,i
τ (B(xk, δ)) = B(xk, δ). Moreover,

∥∥ID − dΦΛ,A,i
τ

∥∥
op
≤ Cφ,i

{
A+

δ1−i

}
∨
{

Λ+

δ

}
,

and for j ≥ 2,

∥∥djΦΛ,A,i
τ

∥∥
op
≤ Cφ,i,j

{
A+

δj−i

}
∨
{

Λ+

δj

}
.

Finally, we define the mixture distribution Q̄
(i)
τ,n on (RD)n by

Q̄(i)
τ,n =

∫
[−Λ+,Λ+]m

∫
[A−,A+]m

(
PΛ,A,(i)
τ

)⊗n dA

(A+ −A−)
m

dΛ

(2Λ+)
m . (10)
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Although the probability distribution Q̄
(i)
τ,n depends on A−, A+ and Λ+, we

omit this dependency for the sake of compactness. Another way to define Q̄
(i)
τ,n

is the following: draw uniformly Λ in [−Λ+,Λ+]m and A in [A−, A+]m, and
given (Λ,A), take Zi = ΦΛ,A,i

τ (Yi), where Y1, . . . , Yn is an i.i.d. n-sample with

common distribution P0 on M0. Then (Z1, . . . , Zn) has distribution Q̄
(i)
τ,n.

We now state useful probabilistic and geometric properties of Q̄
(i)
τ,n, in view

of using Theorem 16. For this, let us denote by P(i)
τ the set composed of all the

distributions P
Λ,A,(i)
τ for A− ≤ A1, . . . , Am ≤ A+ and −Λ+ ≤ Λ1, . . . ,Λm ≤

Λ+. Again, we omit the dependency on A−, A+ and Λ+.

Lemma 18. Assume that the conditions of Lemma 17 hold, and let

Uk = BRd×{0}D−d (xk, δ/2) + Bspan(e)(0, τmin/2),

where for B,B′ ⊂ RD, B +B′ denotes their Minkovski sum, and

U ′k =
(
RD \

{
BRd×{0}D−d (xk, δ) + Bspan(e)(0, τmin/2)

})n−1
.

Then the sets Uk × U ′k are pairwise disjoint, Q̄
(i)
τ,n ∈ Conv

((
P(i)
τ

)⊗n)
, and if

(Z1, . . . , Zn) = (Z1, Z2:n) has distribution Q̄
(i)
τ,n, Z1 and Z2:n are independent

conditionally on the event {(Z1, Z2:n) ∈ Uk × U ′k}.
Moreover, if (X1, . . . , Xn) has distribution

(
P

Λ,A,(i)
τ

)⊗n
(with fixed A and

Λ), then on the event {X1 ∈ Uk}, we have:

• if τk = 0,

TX1
MΛ,A,(i)
τ = Rd × {0}D−d ,

∥∥∥IIMΛ,A,(i)
τ

X1
◦ π

TX1
M

Λ,A,(i)
τ

∥∥∥
op

= 0,

and dH
(
M0,M

Λ,A,(i)
τ

)
≥ |Λk|.

• if τk = 1,

– for i = 1: ∠
(
TX1M

Λ,A,(1)
τ ,Rd × {0}D−d

)
≥ A−/2;

– for i = 2:
∥∥∥IIMΛ,A,(2)

τ

X1
◦ π

TX1
M

Λ,A,(2)
τ

∥∥∥
op
≥ A−/2.

To apply Theorem 16 to the Q̄
(i)
τ,n’s with X = RD, X ′ =

(
RD
)n−1

, it re-
mains to bound the test affinities between their marginals on X and X ′. By

construction (10), these are respectively Q̄
(i)
τ,1 and Q̄

(i)
τ,n−1.

Lemma 19. Assume that the conditions of Lemma 17 and Lemma 18 hold. If
in addition, cA+(δ/4)i ≤ Λ+ ≤ CA+(δ/4)i for some absolute constants C ≥
c > 3/4, and A− = A+/2, then,

∫
Uk

dQ̄
(i)
τ,1 ∧ dQ̄

(i)

τk,1
≥ cd,i

C

(
δ

τmin

)d
,
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and ∫
U ′k

dQ̄
(i)
τ,n−1 ∧ dQ̄

(i)

τk,n−1
=

(
1− c′d

(
δ

τmin

)d)n−1

.

Now, to derive Theorem 7, set i = 1, take A+ = 2A− = εδk−1, and Λ+ =

δA+/4 for ε = εφ,k,d,τmin small enough so that P(1)
τ ⊂ Pkτmin,L(fmin, fmax),

according to Lemma 17 and Proposition 4. Hence, applying Lemma 16 together
with Lemma 18 and Lemma 19, recalling that m can be taken of order cd/δ

d,
we get, for all estimators T̂ ,

sup
P∈Pk

EP⊗n∠
(
TX1

M, T̂
)
≥ cd,kεm

A−
4

(
δ

τmin

)d(
1− c′d

(
δ

τmin

)d)n−1

≥ c′d,k,τmin
δk−1

δd

(
δ

τmin

)d(
1− c′d

(
δ

τmin

)d)n−1

.

Taking (δ/τmin)
d

= 1/(n− 1) yields the result.
Similarly, to derive Theorem 9, set i = 2, take A+ = 2A− = ε′δk−2, and

Λ+ = δ2A+/4
2 with ε′ = ε′φ,k,d,τmin small enough so that P(2)

τ ⊂ Pkτmin,L(fmin, fmax).

With (δ/τmin)
d

= 1/(n− 1), the same derivation as above leads to the result.
Finally, for Theorem 11, simply take m = 1, τ = 0 and Λ1 = δA1/4 = εδk

for ε = εφ,k,d,τmin as above. We may conclude using Theorem 15 with P0 and

P
Λ1,A1,(i)
0 . Indeed, using dH

(
M0,M

Λ1,A1,(i)
0

)
≥ |Λ1| = εδk from Lemma 18,

and noticing that the total variation distance between the two distributions is
P0(B(x1, δ)) = cd(δ/τmin)d, since they differ only outside B(x1, δ), we get the
result.
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A Properties and Stability of the Models

A.1 Property of the Exponential Map in C2
τmin

Here we show the Lemma 1. Proposition 6.1 in [NSW08] states that for all
x ∈ M ,

∥∥IIMx ∥∥op ≤ 1/τmin. In particular, Gauss equation ([dC92, Proposition

3.1 (a), p.135]) yields that the sectional curvatures of M satisfy −2/τ2
min ≤ κ ≤

1/τ2
min. Using Corollary 1.4 of [AB06], we get that the injectivity radius of M is

at least πτmin ≥ τmin/4. Therefore, expp : BTpM (0, τmin/4)→M is one-to-one.
Let us write Np(v) = expp(v)−p−v. We clearly have Np(0) = 0 and d0Np =

0. Let now v ∈ BTpM (0, τmin/4) be fixed. We have dvNp = dv expp−IdTpM .
For 0 ≤ t ≤ ‖v‖, we write γ(t) = expp(tv/ ‖v‖) for the arc-length parametrized
geodesic from p to expp(v), and Pt for the parallel translation along γ. From
Lemma 18 of [DVW15],∥∥∥dt v

‖v‖
expp−Pt

∥∥∥
op
≤ 2

τ2
min

t2

2
≤ t

4τmin
.

We now derive an upper bound for
∥∥Pt − IdTpM∥∥op. For this, fix two unit

vectors u ∈ RD and w ∈ TpM , and write g(t) = 〈Pt(w) − w, u〉. Letting ∇̄
denote the ambient derivative in RD, by definition of parallel translation,

|g′(t)| =
∣∣〈∇̄γ′(t)Pt(w)− w, u〉

∣∣
=
∣∣∣〈IIMγ(t)

(
γ′(t), Pt(w)

)
, u〉
∣∣∣

≤ 1/τmin.

Since g(0) = 0, we get
∥∥Pt − IdTpM∥∥op ≤ t/τmin. Finally, the triangle inequality

leads to

‖dvNp‖op =
∥∥dv exp−IdTpM

∥∥
op

≤
∥∥dv exp−P‖v‖

∥∥
op

+
∥∥P‖v‖ − IdTpM∥∥op

≤ 5 ‖v‖
4τmin

.

We conclude with the property of the projection π∗ = πTpM . Indeed, defining
R2(y − p) = (y − p)− π∗(y − p), Lemma 4.7 in [Fed59] gives

‖R2(y − p)‖ = d(y − p, TpM)

≤ ‖y − p‖
2

2τmin
.

A.2 Geometric Properties of the Models Ck

We now more to the proof of Lemma 12.
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Proof of Lemma 12. (i) Simply notice that from the reverse triangle inequal-
ity,∣∣∣∣‖Ψx(v2)−Ψx(v1)‖

‖v2 − v1‖
− 1

∣∣∣∣ ≤ ‖Nx(v2)−Nx(v1)‖
‖v2 − v1‖

≤ L⊥(‖v1‖ ∨ ‖v2‖) ≤
1

4
.

(ii) The right-hand side inclusion follows straightforwardly from (i). Let us
focus on the left-hand side inclusion. For this, consider the map defined
by G = πTxM ◦Ψx on the domain BTxM (0, h). For all v ∈ BTxM (0, h), we
have

‖dvG− IdTxM‖op = ‖πTxM ◦ dvNx‖op ≤ ‖dvNx‖op ≤ L⊥ ‖v‖ ≤
1

4
< 1.

Hence, G is a diffeomorphism onto its image and it satisfies ‖G(v)‖ ≥
3 ‖v‖/4. It follows that

BTxM
(

0,
3h

4

)
⊂ G (BTxM (0, h)) = πTxM (Ψx (BTxM (0, h))) .

Now, according to Lemma 1, for all y ∈ B
(
x, 3h

5

)
∩M ,

‖πTxM (y − x)‖ ≤ ‖y − x‖+
‖y − x‖2

2τmin
≤
(

1 +
1

4

)
‖y − x‖ ≤ 3h

4
,

from what we deduce πTxM
(
B
(
x, 3h

5

)
∩M

)
⊂ BTxM

(
0, 3h

4

)
. As a conse-

quence,

πTxM

(
B
(
x,

3h

5

)
∩M

)
⊂ πTxM (Ψx (BTxM (0, h))) ,

which yields the announced inclusion since πTxM is one to one on B
(
x, 5h

4

)
∩

M from Lemma 3 in [ALZ13], and(
B
(
x,

3h

5

)
∩M

)
⊂ Ψx (BTxM (0, h)) ⊂ B

(
x,

5h

4

)
∩M.

(iii) Straightforward application of Lemma 3 in [ALZ13].

(iv) Notice that Lemma 1 gives the existence of such an expansion for k = 2.

Hence, we can assume k ≥ 3. Taking h =
τmin∧L−1

⊥
4 , we showed in

the proof of (ii) that the map G is a diffeomorphism onto its image,
with ‖dvG− IdTxM‖op ≤

1
4 < 1. Additionally, the chain rule yields∥∥divG∥∥op ≤ ∥∥divΨx

∥∥
op
≤ Li for all 2 ≤ i ≤ k. Therefore, from Lemma

20, the differentials of G−1 up to order k are uniformly bounded. As a
consequence, we get the announced expansion writing

y − x = Ψx ◦G−1 (π∗(y − x)) ,
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and using the Taylor expansions of order k of Ψx and G−1.

Let us now check that T ∗2 = IIMx . First, since by construction, T ∗2 is
the second order term of the Taylor expansion of Ψx ◦ G−1 at zero, a
straightforward computation yields

T ∗2 = (ID − πTxM ) ◦ d2
0Ψx

= πTxM⊥ ◦ d
2
0Ψx.

Let v ∈ TxM be fixed. Letting γ(t) = Ψx(tv) for |t| small enough, it is clear
that γ′′(0) = d2

0Ψ(v⊗2). Moreover, by definition of the second fundamental
form [dC92, Proposition 2.1, p.127], since γ(0) = x and γ′(0) = v, we have

IIMx (v⊗2) = πTxM⊥(γ′′(0)).

Hence

T ∗2 (v⊗2) = πTxM⊥ ◦ d
2
0Ψx(v⊗2)

= πTxM⊥(γ′′(0))

= IIMx (v⊗2),

which concludes the proof.

(v) The first statement is a rephrasing of Proposition 6.1 in [NSW08]. It
yields the bound on sectional curvature, using the Gauss equation [dC92,
Proposition 3.1 (a), p.135].

In the proof of Lemma 12 (iv), we used a technical lemma of differential
calculus that we now prove. It states quantitatively that if G is Ck-close to the
identity map, then it is a diffeomorphism onto its image and the differentials of
its inverse G−1 are controlled.

Lemma 20. Let k ≥ 2 and U be an open subset of Rd. Let G : U → Rd be Ck.
Assume that ‖Id − dG‖op ≤ ε < 1, and that for all 2 ≤ i ≤ k,

∥∥diG∥∥
op
≤ Li

for some Li > 0. Then G is a Ck-diffeomorphism onto its image, and for all
2 ≤ i ≤ k,∥∥Id − dG−1

∥∥
op
≤ ε

1− ε
and

∥∥diG−1
∥∥
op
≤ L′i,ε,L2,...,Li <∞ for 2 ≤ i ≤ k.

Proof of Lemma 20. For all x ∈ U , ‖dxG− Id‖op < 1, so G is one to one, and
for all y = G(x) ∈ G(U),∥∥Id − dyG−1

∥∥
op

=
∥∥Id − (dxG)−1

∥∥
op

≤
∥∥(dxG)−1

∥∥
op
‖Id − dxG‖op

≤
‖Id − dxG‖op

1− ‖Id − dxG‖op
≤ ε

1− ε
.
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For 2 ≤ i ≤ k and 1 ≤ j ≤ i, write Π
(j)
i for the set of partitions of {1, . . . , i}

with j blocks. Differentiating i times the identity G ◦ G−1 = IdG(U), Faa di
Bruno’s formula yields that, for all y = G(x) ∈ G(U) and all unit vectors
h1, . . . , hi ∈ RD,

0 = dy
(
G ◦G−1

)
.(hα)1≤α≤i =

i∑
j=1

∑
π∈Π

(j)
i

djxG.

((
d|I|y G

−1. (hα)α∈I

)
I∈π

)
.

Isolating the term for j = 1 entails∥∥∥dxΦ.
(
diyG

−1. (hα)1≤α≤i

)∥∥∥
op

=

∥∥∥∥∥∥∥−
i∑

j=2

∑
π∈Π

(j)
i

djxG.

((
d|I|y G

−1. (hα)α∈I

)
I∈π

)∥∥∥∥∥∥∥
op

≤
i∑

j=2

∑
π∈Π

(j)
i

∥∥djG∥∥
op

∏
I∈π

∥∥∥d|I|G−1
∥∥∥
op
.

Using the first order Lipschitz bound on G−1, we get

∥∥diG−1
∥∥
op
≤ 1 + ε

1− ε

i∑
j=2

Lj
∑

π∈Π
(j)
i

∏
I∈π

∥∥∥d|I|G−1
∥∥∥
op
.

The result follows by induction on i.

A.3 Stability of the Model

This section is devoted to prove the stability of the model with respect to am-
bient diffeomorphisms (Proposition 4).

The second part is pretty straightforward since the dilation λM has reach
τλM = λτM , and can be parametrized locally by Ψ̃λp(v) = λΨp(v/λ) = λp+v+
λNp(v/λ), yielding the differential bounds L(λ). Bounds on the density follow
from homogeneity of the d-dimensional Hausdorff measure.

For the first part, we split the proof into two intermediate results. Proposi-
tion 21 deals with the stability of the geometric model, that is, the reach bound
and the existence of a smooth parametrization when a submanifold is perturbed.
Lemma 22 deals with the condition on the density in the models Pk. It gives a
change of variable formula for pushforward of measure on submanifolds, ensur-
ing a control on densities with respect to intrinsic volume measure.

Proposition 21. Let Φ : RD → RD be a global Ck-diffeomorphism. If ‖dΦ− ID‖op
,
∥∥d2Φ

∥∥
op

, . . . ,
∥∥dkΦ

∥∥
op

are small enough, then for all M in Ckτmin,L, the image

M ′ = Φ (M) belongs to Ckτmin/2,2L⊥,2L3,...,2Lk
.
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Proof of Proposition 21. To bound τM ′ from below, we use the stability of the
reach with respect to C2 diffeomorphisms. Namely, from Theorem 4.19 in
[Fed59],

τM ′ = τΦ(M) ≥
(1− ‖ID − dΦ‖op)2

1+‖ID−dΦ‖op
τM

+ ‖d2Φ‖op

≥ τmin
(1− ‖ID − dΦ‖op)2

1 + ‖ID − dΦ‖op + τmin ‖d2Φ‖op
≥ τmin

2

for ‖ID − dΦ‖op and
∥∥d2Φ

∥∥
op

small enough. This shows the stability for k = 2,

as well as that of the reach assumption for k ≥ 3.
By now, take k ≥ 3. We focus on the existence of a good parametrization of

M ′ around a fixed point p′ = Φ(p) ∈ M ′. For v′ ∈ Tp′M ′ = dpΦ (TpM), let us
define

Ψ′p′(v
′) = Φ

(
Ψp

(
dp′Φ

−1.v′
))

= p′ + v′ + N′p′(v
′),

where N′p′(v
′) =

{
Φ
(
Ψp

(
dp′Φ

−1.v′
))
− p′ − v′

}
.

M M ′

TpM Tp′M
′

Φ

Ψp

dpΦ

Ψ′
p′

The maps Ψ′p′(v
′) and N′p′(v

′) are well defined whenever
∥∥dp′Φ−1.v′

∥∥ ≤ 1
8L⊥

,

so in particular if ‖v′‖ ≤ 1
8(2L⊥) ≤

1−‖ID−dΦ‖op
8L⊥

and ‖ID − dΦ‖op ≤
1
2 . One

easily checks that N′p′(0) = 0, d0N
′
p′ = 0 and writing c(v′) = p + dp′Φ

−1.v′ +

Np′
(
dp′Φ

−1.v′
)
, for all unit vector w′ ∈ Tp′M ′,
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∥∥d2
v′N

′
p′(w

′⊗2)
∥∥ =

∥∥∥d2
c(v′)Φ

({
ddp′Φ−1.v′Ψp ◦ dp′Φ−1.w′

}⊗2
)

+ dc(v′)Φ ◦ d2
dp′Φ

−1.v′Ψp

({
dp′Φ

−1.w′
}⊗2

)∥∥∥
=
∥∥∥d2

c(v′)Φ

({
ddp′Φ−1.v′Ψp ◦ dp′Φ−1.w′

}⊗2
)

+
(
dc(v′)Φ− Id

)
◦ d2

dp′Φ
−1.v′Ψp

({
dp′Φ

−1.w′
}⊗2

)
+ d2

dp′Φ
−1.v′Ψp

({
dp′Φ

−1.w′
}⊗2

)∥∥∥
≤
∥∥d2Φ

∥∥
op

(
1 + L⊥

∥∥dp′Φ−1.v′
∥∥)2 ∥∥dp′Φ−1.w′

∥∥2

+ ‖ID − dΦ‖op L⊥
∥∥dp′Φ−1.w′

∥∥2

+ L⊥
∥∥dp′Φ−1.w′

∥∥2

≤
∥∥d2Φ

∥∥
op

(1 + 1/8)2
∥∥dp′Φ−1

∥∥2

op

+ ‖ID − dΦ‖op L⊥
∥∥dΦ−1

∥∥2

op

+ L⊥
∥∥dp′Φ−1

∥∥2

op
.

Writing further
∥∥dΦ−1

∥∥
op
≤ (1 − ‖ID − dΦ‖op)−1 ≤ 1 + 2 ‖ID − Φ‖op for

‖ID − dΦ‖op small enough depending only on L⊥, it is clear that the right-

hand side of the latter inequality goes below 2L⊥ for ‖ID − dΦ‖op and
∥∥d2Φ

∥∥
op

small enough. Hence, for ‖ID − dΦ‖op and
∥∥d2Φ

∥∥
op

small enough depending

only on L⊥, ‖d2
v′N

′
p′‖op ≤ 2L⊥ for all ‖v′‖ ≤ 1

8(2L⊥) . From the chain rule, the

same argument applies for the order 3 ≤ i ≤ k differential of N′p′ .

Lemma 22 (Change of variable for the Hausdorff measure). Let P be a proba-
bility distribution on M ⊂ RD with density f with respect to the d-dimensional
Hausdorff measure Hd. Let Φ : RD → RD be a global diffeomorphism such that
‖ID − dΦ‖op < 1/3. Let P ′ = Φ∗P be the pushforward of P by Φ. Then P ′

has a density g with respect to Hd. This density can be chosen to be, for all
z ∈ Φ(M),

g(z) =
f
(
Φ−1 (z)

)√
det

(
πTΦ−1(z)M

◦ dΦ−1(z)ΦT ◦ dΦ−1(z)Φ TΦ−1(z)M

) .
In particular, if fmin ≤ f ≤ fmax on M , then for all z ∈ Φ(M),(

1− 3d/2 ‖ID − dΦ‖op

)
fmin ≤ g(z) ≤ fmax

(
1 + 3(2d/2 − 1) ‖ID − dΦ‖op

)
.

Proof of Lemma 22. Let p ∈M be fixed and A ⊂ B(p, r)∩M for r small enough.
For a differentiable map h : Rd → RD and for all x ∈ Rd, we let Jh(x) denote the
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d-dimensional Jacobian Jh(x) =
√

det (dxhT dxh). The area formula ([Fed69,
Theorem 3.2.5]) states that if h is one-to-one,∫

A

u (h(x)) Jh(x)λd(dx) =

∫
h(A)

u(y)Hd(dy),

whenever u : RD → R is Borel, where λd is the Lebesgue measure on Rd. By
definition of the pushforward, and since dP = fdHd,∫

Φ(A)

dP ′(z) =

∫
A

f(y)Hd(dy).

Writing Ψp = expp : TpM → RD for the exponential map of M at p, we have∫
A

f(y)Hd(dy) =

∫
Ψp−1(A)

f(Ψp(x))JΨp(x)λd(dx).

Rewriting the right hand term, we apply the area formula again with h = Φ◦Ψp,∫
Ψp−1(A)

f(Ψp(x))JΨp(x)λd(dy)

=

∫
Ψp−1(A)

f
(
Φ−1 (h(x))

) JΨp(h−1 (h(x)))

JΦ◦Ψp(h−1 (h(x)))
JΦ◦Ψp(x)λd(dx)

=

∫
Φ(A)

f
(
Φ−1 (z)

) JΨp(h−1 (z))

JΦ◦Ψp(h−1 (z))
Hd(dz).

Since this is true for all A ⊂ B(p, r)∩M , P ′ has a density g with respect to Hd,
with

g(z) = f
(
Φ−1 (z)

) JΨΦ−1(z)
(Ψ−1

Φ−1(z) ◦ Φ−1 (z))

JΦ◦ΨΦ−1(z)
(Ψ−1

Φ−1(z) ◦ Φ−1 (z))
.

Writing p = Φ−1(z), it is clear that Ψ−1
Φ−1(z) ◦ Φ−1 (z) = Ψ−1

p (p) = 0 ∈ TpM .

Since d0 expp : TpM → RD is the inclusion map, we get the first statement.
We now let B and πT denote dpΦ and πTpM respectively. For any unit vector

v ∈ TpM , ∣∣∥∥πTBTBv∥∥− ‖v‖∣∣ ≤ ∥∥πT (BTB − ID) v∥∥
≤
∥∥BTB − ID∥∥op

≤
(

2 + ‖ID −B‖op

)
‖ID −B‖op

≤ 3 ‖ID −B‖op .

Therefore, 1− 3 ‖ID −B‖op ≤
∥∥πTBTB TpM

∥∥
op
≤ 1 + 3 ‖ID −B‖op. Hence,√

det
(
πTBTB TpM

)
≤
(

1 + 3 ‖ID −B‖op

)d/2
≤ 1

1− 3d
2 ‖ID −B‖op

,
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and√
det
(
πTBTB TpM

)
≥
(

1− 3 ‖ID −B‖op

)d/2
≥ 1

1 + 3(2d/2 − 1) ‖ID −B‖op

,

which yields the result.

B Some Probabilistic Tools

B.1 Volume and Covering Rate

The first lemma of this section gives some details about the covering rate of a
manifold with bounded reach.

Lemma 23. Let P ∈ Pk have support M ⊂ RD. Then for all r ≤ τmin/4 and
x in M ,

cdfminr
d ≤ px(r) ≤ Cdfmaxrd,

for some cd, Cd > 0, with px(r) = P
(
B(x, r)

)
.

Moreover, letting h =
(
C′dk
fmin

logn
n

)1/d

with C ′d large enough, the following

holds. For n large enough so that h ≤ τmin/8, with probability at least 1−
(

1
n

)k/d
,

dH (M,Xn) ≤ h.

Lemma 23 includes Lemma 14, hence we only prove Lemma 23.

Proof of Lemma 23. Denoting by BM (x, r) the geodesic ball of radius r centered
at x, Proposition 25 of [AL15] yields

BM (x, r) ⊂ B(x, r) ∩M ⊂ BM (x, 6r/5).

Hence, the bounds on the Jacobian of the exponential map given by Proposition
27 of [AL15] yield

cdr
d ≤ V ol

(
B(x, r) ∩M

)
≤ Cdrd,

for some cd, Cd > 0. Now, since P has a density fmin ≤ f ≤ fmax with respect
to the volume measure of M , we get the first result.

Now we notice that since px(r) ≥ cdfminr
d, Theorem 3.3 in [CGLM13]

entails, for h ≤ τmin/8,

P
(
dH
(
M,Xn

)
≥ h

)
≤ 4d

cdfminhd
exp

(
−cdfmin

2d
nhd

)
.

Hence, taking h =
(
C′dk
fmin

logn
n

)1/d

with C ′d so that C ′d ≥ 4d

cdk
∨ (1+k/d)

cdk
yields the

result. Since k ≥ 1, taking C ′d = 4d

cd
is sufficient.
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B.2 Concentration Bounds for Local Polynomials

This section is devoted to the proof of Proposition 13. A first step is to ensure
that empirical expectations order k polynomials are close to their deterministic
counterparts.

Proposition 24. For any x ∈ M , we have

P

 sup
u1,...,uk,ε∈{0,1}k

∣∣∣∣∣∣(P − Pn−1)

p∏
j=1

(
〈uj , y〉
h

)εj
1B(x,h)(y)

∣∣∣∣∣∣
≥ px(h)

(
4k
√

2π√
(n− 1)px(h)

+

√
2t

(n− 1)px(h)
+

2

3(n− 1)px(h)

) ≤ e−t,
where Pn−1 denotes the empirical distribution of n − 1 i.i.d. random variables
Xi drawn from P .

Proof of Proposition 24. Without loss of generality we choose x = 0 and shorten
notation to B(h) and p(h). Let Z denote the empirical process on the left-hand

side of Proposition 24. Denote also by fu,ε the map
∏k
j=1

(
〈uj ,y〉
h

)εj
1B(h)(y),

and let F denote the set of such maps, for uj in B(1) and ε in {0, 1}k.
Since ‖fu,ε‖∞ ≤ 1 and Pf2

u,ε ≤ p(h), the Talagrand-Bousquet inequality
([Bou02, Theorem 2.3]) yields

Z ≤ 4EZ +

√
2p(h)t

n− 1
+

2t

3(n− 1)
,

with probability larger than 1− e−t. It remains to bound EZ from above.

Lemma 25. We may write

EZ ≤
√

2πp(h)√
n− 1

k.

Proof of Lemma 25. Let σi and gi denote some independent Rademacher and
Gaussian variables. For convenience, we denote by EA the expectation with
respect to the random variable A. Using symmetrization inequalities we may
write

EZ = EX sup
u,ε

∣∣∣∣∣∣(P − Pn−1)

k∏
j=1

(
〈uj , y〉
h

)εj
1B(h)(y)

∣∣∣∣∣∣
≤ 2

n− 1
EXEσ sup

u,ε

n−1∑
i=1

σi

k∏
j=1

(
〈uj , Xi〉

h

)εj
1B(h)(Xi)

≤
√

2π

n− 1
EXEg sup

u,ε

n−1∑
i=1

gi

k∏
j=1

(
〈uj , Xi〉

h

)εj
1B(h)(Xi).
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Now let Yg denote the Gaussian process
∑n−1
i=1 gi

∏k
j=1

(
〈uj ,Xi〉

h

)εj
1B(h)(Xi).

Since, for any x in B(h), u,v in B(1)k, and ε, ε′ in {0, 1}k, we have∣∣∣∣∣∣
k∏
j=1

(
〈x, uj〉
h

)εj
−

k∏
j=1

(
〈x, vj〉
h

)ε′j ∣∣∣∣∣∣
≤

∣∣∣∣∣∣
k∑
r=1

k+1−r∏
j=1

(
〈x, uj〉
h

)εj k∏
j=k+2−r

(
〈x, vj〉
h

)ε′j

−
k−r∏
j=1

(
〈x, uj〉
h

)εj k∏
j=k+1−r

(
〈x, vj〉
h

)ε′j∣∣∣∣∣∣
≤

k∑
r=1

∣∣∣∣∣∣
k−r∏
j=1

(
〈x, uj〉
h

)εj k∏
j=k+2−r

(
〈x, vj〉
h

)ε′j [( 〈uk+1−r, x〉
h

)εk+1−r

−
(
〈vk+1−r, x〉

h

)ε′k+1−r
]∣∣∣∣∣

≤
k∑
r=1

∣∣∣∣ 〈εrur − ε′rvr, x〉h

∣∣∣∣ .
We deduce that

Eg(Yu,ε − Yv,ε′)2 ≤ k
n−1∑
i=1

k∑
r=1

(
〈εrur, Xi〉

h
− 〈ε

′
rvr, Xi〉
h

)2

1B(h)(Xi)

≤ Eg(Θu,ε −Θv,ε′)
2,

where Θu,ε =
√
k
∑n−1
i=1

∑k
r=1 gi,r

〈εrur,Xi〉
h 1B(h)(Xi). According to Slepian’s

Lemma [BLM13, Theorem 13.3], it follows that

Eg sup
u,ε

Yg ≤ Eg sup
u,ε

Θg

≤
√
kEg sup

u,ε

k∑
r=1

〈
εrur,

∑n−1
i=1 gi,r1B(h)(Xi)Xi

〉
h

≤
√
kEg sup

u,ε

√√√√√k

k∑
r=1

〈
εrur,

∑n−1
i=1 gi,r1B(h)(Xi)Xi

〉2

h2
.
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We deduce that

Eg sup
u,ε

Yg ≤ Eg sup
u,ε

Θg

≤ k

√√√√√Eg sup
‖u‖=1,ε∈{0,1}

〈
εu,
∑n−1
i=1 gi1B(h)(Xi)Xi

〉2

h2

≤ k

√√√√Eg

∥∥∥∥∥
n−1∑
i=1

giXi

h
1B(h)(Xi)

∥∥∥∥∥
2

≤ k
√
N(h).

Then we can deduce that EXEg supu,ε Yg ≤ k
√
p(h), hence the result.

Combining Lemma 25 with Talagrand-Bousquet’s inequality gives the result
of Proposition 24.

We are now in position to prove Proposition 13.

Proof of Proposition 13. If h ≤ τmin/8, then, according to Lemma 23, p(h) ≥

cdfminh
d, hence, if h =

(
K log(n)

n−1

) 1
d

, (n − 1)p(h) ≥ Kcdfmin log(n). Choosing

t = (k/d+ 1) log(n) in Proposition 24 and K = K ′/fmin, with K ′ > 1 leads to

P

 sup
u1,...,uk,ε∈{0,1}k

∣∣∣∣∣∣(P − Pn−1)

k∏
j=1

(
〈uj , y〉
h

)εj
1B(x,h)(y)

∣∣∣∣∣∣
≥ cd,kfmax√

K ′
hd

 ≤ ( 1

n

) k
d+1

.

On the complement of the probability event mentioned just above, for a poly-
nomial Q =

∑
α∈[0,k]d||α|≤k aαx

α
1:d, we have

(Pn−1 − P )Q2(x1:d)1B(h)(x) ≥ −
∑
α,β

cd,kfmax√
K ′

|aαaβ |hd+|α|+|β|

≥ −cd,kfmax√
K ′

hd‖Qh‖22.

On the other hand, we may write, for all r > 0 ,∫
B(0,r)

Q2(x1:d)dx1 . . . dxd ≥ Cd,krd‖Qr‖22,

for some constant Cd,k. It follows that

PQ2(x1:d)1B(h)(x) ≥ PQ2(x1:d)1B(7h/8)(x1:d) ≥ ck,dhdfmin‖Qh‖22,
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according to Lemma 12. Then we may choose K ′ = κk,d(fmax/fmin)2, with
κk,d large enough so that

Pn−1Q
2(x1:d)1B(h)(x) ≥ ck,dfminhd‖Qh‖22.

C Minimax Lower Bounds

C.1 Proof of the Conditional Assouad’s Lemma

This section is dedicated to the proof of Lemma 16. The proof follows that
of Lemma 2 in [Yu97]. Let θ̂ = θ̂(X,X ′) be fixed. For any family of 2m

distributions {Qτ}τ ∈ {Qτ}τ , since the Uk × U ′k’s are pairwise disjoint,

sup
Q∈Q

EQ
[
d
(
θX(Q), θ̂(X,X ′)

)]
≥ max

τ
EQτ d(θ̂, θX(Qτ ))

≥ max
τ

EQτ
m∑
k=1

d
(
θ̂, θX(Qτ )

)
1Uk×U ′k(X,X ′)

≥ 2−m
∑
τ

m∑
k=1

EQτ d
(
θ̂, θX(Qτ )

)
1Uk×U ′k(X,X ′)

≥ 2−m
∑
τ

m∑
k=1

EQτ d
(
θ̂,Dτ,k

)
1Uk×U ′k(X,X ′)

=

m∑
k=1

2−(m+1)
∑
τ

(
EQτ d

(
θ̂,Dτ,k

)
1Uk×U ′k(X,X ′)

+ EQ
τk
d
(
θ̂,Dτk,k

)
1Uk×U ′k(X,X ′)

)
.

Since the previous inequality holds for allQτ ∈ Qτ , it extends toQτ ∈ Conv(Qτ )
by linearity. Let us now lower bound each of the terms of the sum for fixed
τ ∈ {0, 1}m and 1 ≤ k ≤ m. By assumption, if (X,X ′) has distribution Qτ ,
then conditionally on {(X,X ′) ∈ Uk × U ′k}, X and X ′ are independent. There-
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fore,

EQτ d
(
θ̂,Dτ,k

)
1Uk×U ′k(X,X ′) + EQ

τk
d
(
θ̂,Dτk,k

)
1Uk×U ′k(X,X ′)

≥ EQτ d
(
θ̂,Dτ,k

)
1Uk(X)1U ′k(X ′) + EQ

τk
d
(
θ̂,Dτk,k

)
1Uk(X)1U ′k(X ′)

= Eν̄τ
[
Eµ̄τ

(
d
(
θ̂,Dτ,k

)
1Uk(X)

)
1U ′k(X ′)

]
+ Eν̄

τk

[
Eµ̄

τk

(
d
(
θ̂,Dτk,k

)
1Uk(X)

)
1U ′k(X ′)

]
=

∫
Uk

∫
U ′k

d(θ̂,Dτ,k)dµ̄τ (x)dν̄τ (x′) +

∫
Uk

∫
U ′k

d(θ̂,Dτk,k)dµ̄τk(x)dν̄τk(x′)

≥
∫
Uk

∫
U ′k

(
d(θ̂,Dτ,k) + d(θ̂,Dτk,k)

)
dµ̄τ ∧ dµ̄τk(x)dν̄τ ∧ dν̄τk(x′)

≥ ∆

(∫
Uk

dµ̄τ ∧ dµ̄τk
)(∫

U ′k

dν̄τ ∧ dν̄τk

)
≥ ∆(1− α),

where we used that d(θ̂,Dτ,k)+d(θ̂,Dτk,k) ≥ ∆. The result follows by summing
the bound above |{1, . . . ,m} × {0, 1}m| = m2m times.

C.2 Construction of Generic Hypotheses

In this section we prove Lemma 18 and Lemma 19.

Proof of Lemma 18. It is clear from the definition (10) that Q̄
(i)
τ,n ∈ Conv

((
P(i)
τ

)⊗n)
.

By construction of the ΦΛ,A,i
τ ’s, these maps leave the sets

BRd×{0}D−d (xk, δ) + Bspan(e)(0, τmin/2)

unchanged for all Λ,L. Therefore, on the event {(Z1, Z2:n) ∈ Uk × U ′k}, one can
write Z1 only as a function of X1,Λk, Ak, and Z2:n as a function of the rest of
the Xj ’s,Λk’s and Ak’s. Therefore, Z1 and Z2:n are independent.

We now focus on the geometric statements. For this, we fix a deterministic

point z = Φ
Λ,A,(i)
τ (x0) ∈ Uk ∩MΛ,A,(i)

τ . By construction, one necessarily has
x0 ∈M0 ∩ B(xk, δ/2).

• If τk = 0, locally around x0, Φ
Λ,A,(1)
τ is the translation of vector Λke.

Therefore, since M0 satisfies Tx0
M0 = Rd × {0}D−d and IIM0

x0
= 0, we

have

TzM
Λ,A,(i)
τ = Rd × {0}D−d and

∥∥∥IIMΛ,A,(i)
τ

z ◦ π
TzM

Λ,A,(i)
τ

∥∥∥
op

= 0.

Furthermore, by construction, zk = xk + Λke belongs to M
Λ,A,(i)
τ . Since

e is orthogonal to M0, d(z0,M0) ≥ |Λk|. Thus

dH
(
M0,M

Λ,A,(i)
τ

)
≥ |Λk|.
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• if τk = 1,

– for i = 1: locally around x0, Φ
Λ,A,(1)
τ can be written as x 7→ x +

Ak(x − xk)1e. Hence, TzM
Λ,A,(i)
τ contains the direction (1, Ak) in

the plane span(e1, e) spanned by the first vector of the canonical

basis and e. As a consequence, since e is orthogonal to Rd×{0}D−d,

∠
(
TzM

Λ,A,(1)
τ ,Rd × {0}D−d

)
≥
(
1 + 1/A2

k

)−1/2 ≥ Ak/2 ≥ A−/2.

– for i = 2: locally around x0, Φ
Λ,A,(2)
τ can be written as x 7→ x +

Ak(x− xk)2
1e. Hence, M

Λ,A,(2)
τ contains an arc of parabola of equa-

tion y = Ak(x− xk)2
1 in the plane span(e1, e). As a consequence,∥∥∥IIMΛ,A,(2)

τ
z ◦ π

TzM
Λ,A,(2)
τ

∥∥∥
op
≥ Ak/2 ≥ A−/2.

Proof of Lemma 19. First note that all the distributions involved have support

in Rd × span(e) × {0}D−(d+1)
. Therefore, we use the canonical coordinate

system of Rd × span(e), centered at xk, and we denote the components by
(x1, x2, . . . , xd, y) = (x1, x2:d, y). Without loss of generality, assume that τk = 0
(if not, flip τ and τk). Recall that φ has been chosen to be constant and equal
to 1 on the ball B(0, 1/2).

By definition (10), on the event {Z ∈ Uk}, a random variable Z having

distribution Q̄
(i)
τ,1 can be represented as Z = X+φ

(
X−xk
δ

)
Λke = X+Λke where

X and Λk are independent and have respective distributions P0 (the uniform
distribution on M0) and the uniform distribution on [−Λ+,Λ+]. Therefore, on

Uk, Q̄
(i)
τ,1 has a density with respect to the Lebesgue measure λd+1 on Rd ×

span(e) that can be written as

q̄
(i)
τ,1(x1, x2:d, y) =

1[−Λ+,Λ+](y)

2V ol(M0)Λ+
.

Analogously, nearby xk a random variable Z having distribution Q̄
(i)

τk,1
can be

represented as Z = X + Ak(X − xk)i1e where Ak has uniform distribution on
[A−, A+]. Therefore, a straightforward change of variable yields the density

q̄
(i)

τk,1
(x1, x2:d, y) =

1[A−xi1,A+xi1](y)

V ol(M0) (A+ −A−)xi1
.

We recall that V ol(M0) = (2τmin)dV ol
(
M

(0)
0

)
= c′dτ

d
min. Let us now tackle the

right-hand side inequality, writing
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∫
Uk

dQ̄
(i)
τ,1 ∧ dQ̄

(i)

τk,1

=

∫
B(xk,δ/2)

(
1[−Λ+,Λ+](y)

2V ol(M0)Λ+

)
∧

(
1[A−xi1,A+xi1](y)

V ol(M0) (A+ −A−)xi1

)
dydx1dx2:d

≥
∫
BRd−1 (0, δ4 )

∫ δ/4

−δ/4

∫
R

(
1[−Λ+,Λ+](y)

2Λ+

)
∧

(
1[A−xi1,A+xi1](y)

A+xi1/2

)
dydx1dx2:d

V ol(M0)
.

It follows that∫
Uk

dQ̄
(i)
τ,1 ∧ dQ̄

(i)

τk,1

≥ cd
τdmin

δd−1

∫ δ/4

0

∫ Λ+∧(A+x
i
1)

A+xi1/2

1

2Λ+
∧ 2

A+xi1
dydx1

≥ cd
τdmin

δd−1

∫ δ/4

0

∫ (c∧1)(A+x
i
1)

A+xi1/2

(2c ∧ 1/2)

2Λ+
dydx1

=
cd
τdmin

δd−1(2c ∧ 1/2) (c ∧ 1− 1/2)
A+

Λ+

(δ/4)
i+1

i+ 1

≥ cd,i
C

(
δ

τmin

)d
.

For the integral on U ′k, notice that by definition, Q̄
(i)
τ,n−1 and Q̄

(i)

τk,n−1
coin-

cide on U ′k since they are respectively the image distributions of P0 by func-
tions that are equal on that set. Moreover, these two functions leave RD \{
BRd×{0}D−d (xk, δ) + Bspan(e)(0, τmin/2)

}
unchanged. Therefore,∫

U ′k

dQ̄
(i)
τ,n−1∧dQ̄

(i)

τk,n−1

= P⊗n−1
0 (U ′k)

=
(
1− P0

(
BRd×{0}D−d (xk, δ) + Bspan(e)(0, τmin/2)

))n−1

=
(
1− ωdδd/V ol(M0)

)n−1
,

hence the result.

C.3 Minimax Inconsistency Results

This section is devoted to the proof of lower bound for tangent space estimation
(Theorem 5): we build hypotheses P, P ′ and apply Theorem 15. For δ ≥ Λ > 0,
let C′, C′ ⊂ R3 be closed curves of the Euclidean space as in Figure 1, and such
that outside the figure, C′ and C′ coincide and are C∞. The bumped parts are
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obtained with a smooth diffeomorphism similar to (9), centered at x. Here, δ
and Λ can be chosen arbitrarily small.

Let Sd−1 ⊂ Rd be a d − 1-sphere of radius 1/L⊥. Consider the Cartesian
products M1 = C × Sd−1 and M ′1 = C′ × Sd−1. M1 and M ′1 are subsets of
Rd+3 ⊂ RD. Finally, let P1 and P ′1 denote the uniform distributions on M and
M ′. Note that M , M ′ can be built by homothecy of ratio λ = 1/L⊥ from some

unitary scaled M
(0)
1 ,M ′

(0)
1 , similarly to Section 5.2.3, yielding, from Proposition

4, that P1, P
′
1 belong to Pk(x) provided that L3/L

2
⊥, . . . , Lk/L

k−1
⊥ , Ld⊥/fmin and

fmax/L
d
⊥ are large enough (depending only on d and k), and that Λ, δ and Λk/δ

are small enough. From Le Cam’s Lemma 15, we have for all n ≥ 1,

inf
T̂

sup
P∈Pk

(x)

EP⊗n∠
(
TxM, T̂

)
≥ 1

2
∠
(
TxM1, TxM

′
1

)
(1− TV (P1, P

′
1))

n
.

By construction, ∠
(
TxM1, TxM

′
1

)
= 1, and since C and C′ coincide outside

BR3(0, δ),

TV
(
P1, P

′
1

)
= V ol

(
(BR3(0, δ) ∩ C)× Sd−1

)
/V ol

(
C × Sd−1

)
= Length (BR3(0, δ) ∩ C) /Length(C)
≤ cL⊥δ.

Hence, letting Λ, δ go to 0 with Λk/δ small enough, we get the announced bound.
We now tackle the lower bound on second fundamental form estimation

with the same strategy. Let M2,M
′
2 ⊂ RD be d-dimensional submanifolds as in

Figure 2: they both contain x, the part on the top of M2 is a half d-sphere of
radius 2/L⊥, the bottom part of M ′2 is a piece of a d-plane, and the bumped
parts are obtained with a smooth diffeomorphism similar to (9) centered at x.
Outside B(x, δ), M2,M

′
2 coincide and connect smoothly the upper and lower

parts. Let P2, P
′
2 be the probability distributions obtained by the pushforward

given by the bump maps. Under the same conditions on the parameters as
previously, P2 and P ′2 belong to Pk(x) according to Proposition 4. From Le
Cam’s Lemma 15 we deduce

inf
ÎI

sup
P∈Pk

(x)

EP⊗n
∥∥∥IIMx ◦ πTxM − ÎI∥∥∥

op

≥ 1

2

∥∥∥IIM2
x ◦ πTxM2

− IIM
′
2

x ◦ πTxM ′2
∥∥∥
op

(1− TV (P2, P
′
2))

n
.

By construction,
∥∥IIM2

x ◦ πTxM2

∥∥
op

= 0, and since M ′2 is a part of a sphere of

radius 2/ L⊥ nearby x,
∥∥∥IIM ′2x ◦ πTxM ′2

∥∥∥
op

= L⊥/2. Hence,∥∥∥IIM2
x ◦ πTxM2

− IIM
′
2

x ◦ πTxM ′2
∥∥∥
op
≥ L⊥/2.

Moreover, since P2 and P ′2 coincide on RD \ B(x, δ),

TV (P2, P
′
2) = Pc2(B(x, δ)) ≤ cd,L⊥δd.

Letting Λ, δ go to 0 with Λk/δ small enough, we have the desired result.
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