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Abstract. In this paper, we study the notion of admissibility in timed games. First, we
show that admissible strategies may not exist in timed games with a continuous semantics
of time, even for safety objectives. Second, we show that the discrete time semantics of
timed games is better behaved w.r.t. admissibility: the existence of admissible strategies is
guaranteed in that semantics. Third, we provide symbolic algorithms to solve the model-
checking problem under admissibility and the assume-admissible synthesis problem for
real-time non-zero sum n-player games for safety objectives.

1 Introduction

An embedded controller is a reactive system that maintains a continuous interaction with its
environment and has the objective to enforce outcomes, from this interaction, that satisfy some
good properties. As the actions taken by the environment in this interaction are out of the direct
control of the controller, those actions should be considered as adversarial. Indeed, a controller
should be correct no matter how the environment in which it operates behaves. As reactive
systems most often exhibit characteristics, like real-time constraints, concurrency, or parallelism,
etc., which make them difficult to develop correctly, formal techniques have been advocated to
help to their systematic design. One well-studied formal technique is model checking [3] which
compares a model of a system with its specification. Model-checking either provides a proof of
correctness of the model of the controller within its environment or provides a counter-example
that can be used to improve the design.

A scientifically more challenging technique is synthesis that uses algorithms that transform
the specification of a reactive system and a model of its environment into a correct system, i.e.,
a system that enforces the specification no matter how the environment behaves. Synthesis can
take different forms: from computing optimal values of parameters to the full-blown automatic
synthesis of a model of the system’s components. Albeit this diversity, one mathematical model
has emerged to perform synthesis for reactive systems: two-player zero-sum games played on
graphs; and the main solution concept for those games is the notion of winning strategy. Zero-
sum timed games played on timed automata (defined by [1]) have been introduced in [27] as a
formal model for the synthesis of reactive systems with timed specifications. A practical algorithm
for the problem was first presented in [17] and implemented in the tool Uppaal-Tiga [5].

Timed games, as defined in [27] and in almost all subsequent works, see e.g. [2, 17, 15, 16], are
zero-sum games. In zero-sum games, the environment is considered as fully antagonist. The zero-
sum game abstraction is often used because it is simple and sound: a winning strategy against
an antagonistic environment is winning against any environment including obviously those that
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strive to secure their own objective. But, in general the zero-sum hypothesis is a bold abstraction
of reality: most often the environment has its own objective which, in general, does not corre-
spond to that of falsifying the specification of the controller. Then, it should be clear that the
zero-sum approach may fail to find a winning strategy even if solutions exist when the objective
of the environment is taken into account, or it may produce sub-optimal solutions because those
solutions are overcautious in order to be able to face with all possible behaviors of the environ-
ment, even if they are in contradiction with the environment’s objectives. Recently, several new
solution concepts for synthesis of reactive systems that take the objectives of the environment
into account, and so relax the fully adversarial assumption, have been introduced [10]. One ap-
proach that is particularly promising is based on the notion of admissible strategies [7, 23, 13, 12,
11].

Assume Admissible Synthesis In [12], we have introduced a new synthesis rule based on
admissibility in the general case of n-player multiplayer games. This synthesis rule can be sum-
marized as follows. For a player with objective φ, a strategy σ is dominated by σ′ if σ′ does as
well as σ w.r.t. φ against all strategies of the other players, and better for some of those strate-
gies. A strategy σ is admissible if it is not dominated by another strategy. Starting from the fact
that only admissible strategies should be played by rational players (dominated strategies being
clearly sub-optimal options), when synthesizing a controller, we search for an admissible strategy
that is winning against all admissible strategies of the environment. Assume admissible synthe-
sis is sound: if all players choose admissible strategies that are winning against all admissible
strategies of the other players, the objectives of all players is guaranteed to be satisfied.

Assume Admissible Timed Synthesis In the classical setting of game graphs with ω-regular
objectives, admissibility is well behaved: admissible strategies always exist in perfect information
n-player game graphs with ω-regular objectives, both for turn-based games [7, 23, 13] and for
concurrent games [4]. By contrast, in this paper, we show that, in the continuous time semantics,
players in a timed game are not guaranteed to have admissible strategies. This is because in
some timed games there may not exist an optimal time to play. This is the case for example if
a player has to play as soon as possible but strictly after a given deadline. We exhibit concrete
games with this property. We also show that those problems are an artefact of the continuous
time semantics. In contrast, in the discrete-time semantics of timed games, admissible strategies
always exist.

To obtain our results in the discrete-time semantics we provide a reduction to finite concurrent
games with an additional player that arbitrates situations in which several players propose to
play at the exact same time. While the reduction to finite concurrent games is adequate to
obtain theoretical results, it is not practical. This is why we define symbolic algorithms based
on zones to solve the model-checking under admissible strategies and the assume admissible
synthesis problem for safety objectives. To obtain those symbolic algorithms, we show how to
use (continuous) timed zones to represent efficiently sets of discrete time valuations. We believe
that those results are also interesting on their own. Note that it is possible to solve discrete-time
games by enumerative techniques [25]; however, our algorithms require representing complex
sets of states, so being able to solve a given game is not sufficient, and we do need some form of
succinct representation.

Other related works Related works on zero-sum timed games have been given above. To the
best of our knowledge, our work is the first to deal with admissibility for timed games. In this
paragraph we discuss several works related to admissibility in (untimed) games.

Other works in the literature propose the use of Nash equilibria (NE) in n-players non-zero
sum games to model variants of the reactive synthesis problem. Most notably, assume-guarantee
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synthesis, based on secure equilibria [19] (refining Nash equilibria), has been proposed in [18],
while cooperative rational synthesis has been proposed in [24], and non-cooperative rational
synthesis in [26]. In the context of infinite duration games played on graphs, one well known
limitation of Nash equilibria is the existence of non-credible threats. Refinements of the notion
of NE, like sub-game perfect equilibria (SPE), have been proposed to overcome this limitation.
SPE for games played on graphs have been studied in e.g. [29, 14]. Admissibility does not suffer
from this limitation. In [23], Faella proposes several alternatives to the notion of winning strategy
including the notion of admissible strategy. His work is for two-players but only the objective
of one player is taken into account, the objective of the other player is left unspecified. In that
work, the notion of admissibility is used to define a notion of best-effort in synthesis. The notion
of admissible strategy is definable in strategy logics [20, 28] and decision problems related to the
assume-admissible rule can be reduced to satisfiability queries in such logics. This reduction does
not lead to worst-case optimal algorithms; we presented worst-case optimal algorithms in [21]
based on our previous work [13].

The only works that we are aware of and that consider non-zero sum timed games are the
following two papers [8, 9] that study decision problems related to the concept of Nash equilibria
and not to the concept of admissibility.

2 Admissibility in Concurrent Games

Let P = {1, 2, . . . n} denote a set of players. A concurrent game played by players P is a tuple
G = (S, sinit, Σ, (Mi)i∈P , δ) where,

– S is a set of states, and sinit ∈ S the initial state;
– Σ is a set of moves;
– For all i ∈ P , Mi : S → 2Σ \ {∅} assigns to every state s ∈ S and player i the set of available

moves from state s.
– δ : S ×Σ × . . .×Σ → S is the transition function.

The game is called finite if S and Σ are finite. We write M(s) = M1(s) × . . . ×Mn(s) for every
s ∈ S. A history is a finite path h = s1s2 . . . sN ∈ S∗ such that (i) N ∈ N; (ii) s1 = sinit; and
(iii) for every 2 ≤ k ≤ N , there exists (a1, . . . , an) ∈ M(sk−1) with sk = δ(sk−1, a1, . . . , an). A run
is defined similarly as a history except that its length is infinite. For a history or a run ρ, let us
denote its i-th state by ρi. The game is played from the initial state sinit for an infinite number
of rounds, producing a run. At each round k ≥ 1, with current state sk, all players i select
simultaneously moves ai ∈ Mi(sk), and the state δ(sk, a1, . . . , an) is appended to the current
history.

It is often convenient to consider a player i separately and see the set of other players P \{i} as
a single player denoted −i. Hence, the set of moves of −i in state s is M−i(s) =

∏
j∈P\{i}Mj(s).

An objective φ is a subset of runs of the game. We assume that concurrent games are equipped
with a function Φ mapping all players i ∈ P to an objective Φ(i). Thus, a run ρ is winning for
player i iff ρ ∈ Φ(i). An objective φ ⊆ Sω is a simple safety objective if there exists B ⊆ S
such that ρ ∈ φ if, and only if ∀j, ρj 6∈ B; and for all s ∈ B and m ∈ M(s), δ(s,m) ∈ B. In
other terms, once B is reached, the play never leaves B. The set B is informally called bad states
for the objective φ. Note that contrary to general safety objectives, simple safety objectives are
prefix independent. Also, any safety objective can be turned into a simple safety objective by
modifying the underlying concurrent game. Games equipped with simple safety objectives are
called simple safety games.

A strategy for player i is a function σ from histories to moves of player i such that for all
histories h: σ(h) ∈ Mi(s) where s is the last state of h. We denote by Γi(G) the set of player i’s
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strategies in the game; we might omit G if it is clear from context. A strategy profile σ for a
subset A ⊆ P of players is a tuple (σi)i∈A with σi ∈ Γi for all i ∈ A. When the set of players A
is omitted, we assume A = P . Let σ = (σi)i∈P be a strategy profile. Then, for all players i, we
let σ−i denote the restriction of σ to P \ {i} (hence, σ−i can be regarded as a strategy of player
−i that returns, for all histories h, a move from M−i(s) where s is the last state of h). We denote
by Γ−i the set {σ−i | σ ∈ Γ}. We sometimes denote by σ the pair (σi,σ−i). For any history
h, let σ(h) = (σi(h))i∈A and be the tuple of choices made by all players (when they play from
h according to σ) and the resulting state, respectively. We let Out(σ) be the outcome of σ, i.e.
the unique run ρ = s1s2 · · · such that sk = δ(sk−1,σ(s1 · · · sk−1)).

Assume the game we consider has winning condition Φ. Then, we say that σ is winning for
i, from h, written σ |=h Φ(i), if h is a prefix of Out(σ) and Out(σ) ∈ Φ(i). We write σ |=h Φ(i),
if for every τ ∈ Γ−i such that h is a prefix of Out((σ, τ)) it holds that Out((σ, τ)) ∈ Φ(i).

Dominance and admissibility Fix a game G and a player i. Given two strategies σ, σ′ ∈ Γi,
we say that σ is weakly dominated by σ′, denoted σ 4 σ′ if for all σ−i ∈ Γ−i, (σ, σ−i) |= Φ(i)
implies (σ′, σ−i) |= Φ(i). Intuitively, this means that σ′ is not worse than σ, because it yields a
winning outcome (for i) every time σ does. When σ 4 σ′ but σ′ 64 σ we say that σ is dominated
by σ′. Note that σ ≺ σ′ if and only if σ 4 σ′ and there exists at least one σ−i ∈ Γ−i, such that
(σ, σ−i) 6|= Φ(i) and (σ′, σ−i) |= Φ(i). That is, σ′ is now strictly better than σ because it yields a
winning outcome for i every time σ does; but i secures a winning outcome against at least one
strategy of the other players by playing σ′ instead of σ. A strategy is called admissible if it is
not dominated.

Theorem 1 ([4]). For every finite concurrent game, for all objectives, the set of admissible
strategies of each player is non-empty.

Now that we have defined a notion of dominance on strategies, let us turn our attention to
a more local definition of dominance on moves. Let h be a history. We say that a move a ∈ Mi

is h-dominated by another move a′ ∈ Mi iff for all σ ∈ Γi s.t. σ(h) = a, there exists σ′ ∈ Γi
s.t. σ′(h) = a′ and σ ≺h σ′. We denote this by a <h a

′. If a move a is not h-dominated by any
move, we say that a is h-admissible. This allows us to define a more local notion of dominated
strategy: a strategy σ of player i is called locally-admissible (LA for short) if for every h, σ(h) is
an h-admissible move. By definition, all admissible strategies are also LA, but the converse only
holds for simple safety games.

Theorem 2 ([4]). In concurrent finite simple safety games, a strategy is locally admissible if,
and only if it is admissible.

We close these preliminaries by explaining how to associate values to histories and moves.
First, the value of history h for player i is defined as follows. χih = 1 if ∃σ ∈ Γi ∀σ−i ∈
Γ−i, (σi, σ−i) |=h Φ(i); χih = −1 if ∀σ ∈ Γ,σ 6|=h Φ(i); and χih = 0 otherwise.

So the intuition is that: (i) χih = 1 iff i has a winning strategy from h; (ii) χih = −1 iff no
outcome is winning for i from h; and (iii) χih = 0 when i has no winning strategy from h but
can still win with the help of other players. Thus, χih = −1 is stronger than saying that i has no
winning strategy from h, since, in this case, i can never win, even with the help of other players.
When the other players can help, we have rather χih = 0, which means that there is some strategy
σ of i such that there is a profile σ with σi = σ and σ |=h Φ(i).

Lemma 1 ([4]). In finite concurrent games, for any player i, history h that ends in a state s,
and moves a, b ∈ Mi(s), we have a <h b if, and only if the conjunction of the following conditions
holds:
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(i) χihδ(s,a,c) ≤ χ
i
hδ(s,b,c) for every c ∈ M−i(s);

(ii) χihδ(s,a,c) < χihδ(s,b,c) for at least one c ∈ M−i(s);

(iii) if χihδ(s,a,c) = χihδ(s,b,c) = 0 then δ(s, a, c) = δ(s, b, c), for every c ∈ M−i(s).

3 Multi-Player Timed Games

In this section, we define multiplayer timed games and apply previously defined admissibility
notions to this setting.

Given a finite set of clocks X, we call the elements of RX≥0 valuations, and those of NX discrete

valuations. Let NX≤M denote the subset of NX in which all components are bounded by M . For
a subset R ⊆ X and a valuation ν, ν[R← 0] is the valuation defined by ν[R← 0](x) = ν(x) for
x ∈ X \R and ν[R← 0](x) = 0 for x ∈ R. Given d ∈ R≥0 and a valuation ν, the valuation ν + d
is defined by (ν+d)(x) = ν(x)+d for all x ∈ X. We extend these operations to sets of valuations
in the obvious way. We write 0 for the valuation that assigns 0 to every clock.

An atomic clock constraint over X is a formula of the form k ≤ x ≤ l or k ≤ x− y ≤ l where
x, y ∈ X, k, l ∈ Z∪{−∞,∞}. A guard is a conjunction of atomic clock constraints. A valuation ν
satisfies a guard g, denoted ν |= g, if all constraints are satisfied when each x ∈ X is replaced
with ν(x). We write ΦX for the set of guards built on X.

Let P be a finite a set of players. A multi-player timed game between players P is a tuple
G = (L, ι, I, X, (∆i)i∈P ) where (i) L is a finite set of locations, (ii) ι is the initial location,
(iii) X is a finite set of clocks, (iv) I : L → Φ(X) is the invariant associated to each location;
we assume that invariants only contain upper bounds on clocks, (v) ∆i ⊆ L × Φ(X) × 2X × L,
the set of Player-i edges: in each tuple (`, g, R, `′), ` is the source location, g is the guard, R the
reset set, and `′ the target location. For any edge e ∈ ∆i, let us denote by (`e, ge, Re, `

′
e) the tuple

associated to it.

The Discrete-Time Semantics In this paper, timed games are equipped with a discrete time se-
mantics described now. We explain later why problems happen when a continuous time semantics
is considered instead.

In the discrete-time semantics, not only are all delays restricted to be discrete, but we also
assume that each clock tick is globally observable by all players. Thus, at each clock tick, all
players simultaneously decide either to wait another clock tick, or to take an enabled edge. The
non-determinism between suggested edges is resolved by an additional player called scheduler.

Given state (`, ν) and an edge e = (`, g, R, `′) such that ν |= g, and ν[R← 0] |= I(`′), let us
write (`′, ν′) = Succe((`, ν)) where ν′ = ν[R← 0].

Consider a bound M > 0 larger than all constants that appear in the guards and define the
operation +M by a+M b = min(M,a+ b) for every a, b ∈ R. We define the semantics of a timed
game G = (L, ι, I, X, (∆i)i∈P ) as a concurrent game DM (G) = (S, sinit, Σ, (Mi)i∈P ′ , δ) where P ′ =
P ∪ {sched}. Let S(n) denote the set of permutations over {1, 2, . . . , n}. We have S = {(`, ν) ∈
L×NX≤M | ν |= I(`)}, Σ = ∪i∈P∆i∪{⊥}∪S(n) where ⊥ is a fresh symbol. For every (`, ν) ∈ S,
and i ∈ P , we have Mi(`, ν) = {e ∈ ∆i | ν |= ge∧I(`), ν[Re ← 0] |= I(`′e)}∪{⊥ | ν+M1 |= I(`)}.
For player sched, we have Msched(`, ν) = S(|P |). Note that DM (G) is a finite concurrent game
due to the bound M .

The transition function δ is defined from the current state (`, ν) given moves m1, . . . ,mn

chosen by the players of P and a permutation π chosen by the scheduler as follows:

δ((`, ν),m1, . . . ,mn, π) =

 (`, ν+M1) if ∀i ∈ P,mi = ⊥,
(`′, ν′) if i = arg minj∈P :mj∈∆j π(j),

mi = (`, g, R, `′), ν′ = ν[R← 0].
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The intuition of the game is that at each discrete time step, each player can choose either
to wait, or to switch state by picking an edge. If several players pick edges, then the player
sched determines, by the permutation it has chosen, which edge is to be taken. In general, one
add fairness constraints for the scheduler by specifying an objective for this player. However, we
consider safety objectives in the present work, for which fairness is not useful.

In the rest of the paper, we only consider timed games with non-strict guards, since any strict
constraint can be converted into a non-strict one when working in discrete time.

We denote by ∆i(s) = Mi(s)\{⊥} the set of edges of player i available in s and by ∆−i(s) =
∪j∈P\{i}Mj(s)\{⊥} the other edges available in s.

Non-Existence of Admissible Strategy in Continuous-Time Semantics We now show that admis-
sible strategies are not guaranteed to exist if one considers a continuous-time semantics instead
of the discrete time semantics.

In the continuous-time semantics, all players simultaneously suggest moves that are pairs
of delay and edges to be taken, and a move with the least delay is taken. The precise choice
of the edge with the least delay is determined by an additional player, named scheduler, which
determines a priority order between players.

Given a timed game G = (L, ι, I, X, (∆i)i∈P ) we define an infinite-state concurrent game C(G) =
(Sc, Σc, scinit, (M

c
i )i∈P ′ , δ

c) where P ′ = P ∪ {sched}. We have Sc = {(`, ν) ∈ L×RX≥0 | ν |= I(`)}.
The moves are Σc = {(d, e) | d ∈ R≥0, e ∈ ∪i∆i} ∪S(|P |), and Mc

i ((`, ν)) = {(d, e) | d ≥ 0, e ∈
∆i, ν + d |= ge ∩ I(`) ∧ ν[Re ← 0] |= I(`′e)}. For player sched, we have Σsched(`, ν) = S(|P |).
The initial state is scinit = (ι,0). The transitions are defined as follows. Intuitively, each player
in P suggests a pair (d, e) of delay and an edge, and player sched’s choice determines which
player’s move is to be taken among those that have suggested the least delay. Formally, we have
δ((`, ν), (d1, e1), . . . , (dn, en), π) = Succei0 ((`, ν + di0)) where i0 = argmini∈P :di=minj∈P dj π(i).

`0

`1

BAD1

e, x > 0 (P1)

x > 1 (P2)

x > 1 (P2)

e′, x > 0 (P2)
`0

`1

BAD1

BAD′1

e, x ≥ 0 (P1)

e′′, x = 0 (P3)

e′, x ≥ 0 (P2)

x ≥ 1 (P2)

x ≥ 1 (P2)

x ≥ 1 (P2)

Fig. 1. Two timed games. Invariants are x ≤ 2 everywhere.

Consider the game on the left in Fig. 1 where the safety objective of player P1 is to avoid
location BAD1. Consider any move (t, e) of P1, the move (t/2, e) dominates (t, e) because any
strategy of P2 that plays (t′, e′) either makes both moves winning if t′ > t (or t = t′ and P1
is scheduled); either makes both moves losing if t′ < t/2 (or t = t′/2 and P2 is scheduled);
either makes (t/2, e) wins and (t, e) loses otherwise. However, it can be seen that (t/2, e) is also
dominated by (t/4, e), which is itself dominated, and so on. Thus, there is no admissible strategy
in this game.

Here the non-existence of admissible strategy in the continuous time semantics is partly due
to the presence of open guards (that is, involving strict inequalities only). With these guards,
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there is no minimal delay that players can choose. Unfortunately problems also occurs in games
with closed guards. Consider the game on the right in Fig. 1. The same discussion holds for
moves of P1 with positive delays, each such move is dominated by any move with strictly smaller
but positive delays. This time there is a unique admissible strategy, the one that plays (0, e).
However, the move (0, e) leads to the state (`1, 0) where player P3 can make P1 lose by going
to the right, so the unique admissible strategy does not dominate the other strategies. Further,
there exist safety conditions for P2 and P3 such that (0, e) is arguably the worst possible move
for P1 (e.g. P2 wants to avoid BAD1∧x = 0 so do not play (0, e′) and P3 wants to avoid `1∧x > 0
so play (0, e′′) in (`1, 0)).

4 Admissible Strategies in Discrete Timed Games

Consider a game DM (G) for some constant M , and simple safety objectives (φi)i∈P . We will
only consider simple safety objectives, which are prefix-independent. Therefore, the value of a
history only depends on its last state. For each player i, let us partition the state space S of DM
into Wini = {s ∈ S | χis = 1}, Maybei = {s ∈ S | χis = 0}, Losei = {s ∈ S | χis = −1}.

For each player i and history h ending in a state s, a move m ∈ Mi(s) is said to be a winning
move from h if there exists a winning strategy σ for Player i such that h is compatible with σ,
and σ(h) = m.

We introduce the following notations. For any edge e = (`, g, R, `′), and set of states Z,
let Succe(Z) = {(`′, ν′) | ∃(`, ν) ∈ Z, ν |= I(`) ∧ ge, ν[R ← 0] = ν′, ν′ |= I(`′)}, which is
the immediate successors of Z through edge e. We define the immediate predecessors through e
as Prede(Z) = {(`, ν) | ν |= ge ∧ I(`),∃(`′, ν′) ∈ Z, ν′ |= I(`′), ν[R ← 0] = ν′}, and immediate
predecessors for Players I ⊆ P as PredI(Z) =

⋃
i∈I,e∈∆i

Prede(Z).
Lemma 1 applied to discrete-time semantics of Section 3 gives the following characterisation

of dominance of moves in terms of values obtained in case the prescribed move is selected.

Theorem 3. Consider any player i and state q of DM (G). If q ∈ Wini, then exactly all winning
moves from q are locally admissible. If q ∈ Losei then all available moves are locally admissible.
Assume now that q ∈ Maybei. A move e ∈ ∆i(q) is locally admissible from q if, and only if either
Succe(q) ∈ Wini or the following conditions hold

– ∀e′ ∈ Mi(q), Succe′(q) 6∈ Wini,
– Succe(q) ∈ Maybei, or ⊥ 6∈ Mi(q) ∧ ∀e′ ∈ ∆i(q), Succe′ ∈ Losei,
– q+M1 ∈ Wini ⇒ ∃e′ ∈ ∆−i(q), Succe′(q) 6∈ Wini ∧ Succe(q) 6= Succe′(q).

Moreover, ⊥ is locally admissible if, and only if, ⊥ ∈ Mi(q), ∀e ∈ ∆i(q), Succe(q) 6∈ Wini and one
of the following conditions holds.

1. q+M1 ∈ Maybei ∪ Wini, and if ∃e ∈ ∆i(q), Succe(q) = q and q+M1 = q, then ∃e′ ∈
∆−i(q), Succe′(q) 6∈ Losei, and Succe′(q) 6= q.

2. ∀e ∈ ∆i(q) such that Succe(q) ∈ Maybei, we have that ∃e′ ∈ ∆−i(q), with Succe′(q) 6∈ Losei

and Succe′(q) 6= Succe(q).

Proof. Let us show that moves satisfying the above properties are locally admissible. We consider
history h ending in some state q ∈ Maybei which is the only non-trivial case.

Let us start with the following simple but useful remark.

Remark 1. Consider any state q, c ∈ M−i(q), e, e
′ ∈ ∆i(q). Then, either δ(q, e, c) = Succe(q)

and δ(q, e′, c) = Succe′(q) or δ(q, e, c) = δ(q, e′, c).
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– Consider e ∈ Mi(q) where Succe(q) ∈ Wini. If e <h e
′, by Remark 1 and Lemma 1 item (i),

we must have Succe′(q) ∈ Wini too. But by the same remark, item (ii) of Lemma 1 cannot
hold, which shows e 6<h e′.

– Consider e ∈ Mi(q) with Succe(q) ∈ Maybei, and assume ∀e′ ∈ Mi(q), Succe′(q) 6∈ Wini.
• Assume e <h e

′. If Succe(q) = Succe′(q), then e′ cannot dominate e by Remark 1 and
Lemma 1 item (ii). Otherwise, by assumption, Succe′(q) 6∈ Wini. If Succe′(q) ∈ Losei, then
e 6<h e′ by Lemma 1 item (i). If Succe′(q) ∈ Maybei, since Succe(q) 6= Succe′(q), we have
e 6<h e′ by Lemma 1, item (iii).
• Assume ⊥ ∈ Mi(q) and e <h ⊥.

– Consider the case q+M1 6∈ Wini. Let c ∈ M−i(q) be such that all players wait. Then,
δ(q,⊥, c) = q+M1 6∈ Wini, while δ(q, e, c) = Succe(q) ∈ Maybei. Assume q+M1 6= q. Then,
we also have q+M1 6= Succe(q), so e 6<h ⊥ by Lemma 1, item (iii).
Assume q+M1 = q. If Succe(q) 6= q, then we conclude similarly as above since Succe(q) ∈
Maybei. Assume Succe(q) = q. Since q 6∈ Wini, there must be an edge e′ ∈ ∆−i(q), such
that q 6= Succe′(q) 6∈ Wini. If c ∈ M−i(q) denotes the profile which gives Player i priority,
and otherwise chooses e′, we have δ(q, e, c) = q, and δ(q,⊥, c) = Succe′(q) 6= q. This
shows that e 6<h ⊥: if Succe′(q) ∈ Losei, this follows by item (i) of Lemma 1, and
if Succe′(q) ∈ Maybei, by item (iii).
– Consider now the case q+M1 ∈ Wini, and let e′ ∈ ∆−i(q) such that Succe′(q) 6∈
Wini ∧ Succe(q) 6= Succe′(q). Let c ∈ M−i(q) which gives priority to Player i, and oth-
erwise picks e′. We thus have δ(q, e, c) 6= δ(q,⊥, c) and neither of them are winning,
while δ(q, e, c) ∈ Maybei. So, by Lemma 1, e 6<h ⊥.

Consider the delays. Assume that ⊥ ∈ Mi(q), and ∀e ∈ Mi(q), Succe(q) 6∈ Wini.

– Assume q+M1 ∈ Maybei ∪ Wini and fix e ∈ ∆i(q). If q+M1 ∈ Wini or Succe(q) ∈ Losei,
then, we cannot have ⊥ <h e by case (i) of Lemma 1. Assume that both belong to Maybei.
Whenever q+M1 6= q or Succe(q) 6= q, we have q+M1 6= Succe(q) for any target location
and reset set e might have, which entails ⊥ 6<h e by Lemma 1, item (iii). Assume now
that q+M1 = q and Succe(q) = q. In this case, there is e′ ∈ ∆−i(q), Succe′(q) ∈ Maybei ∪ Wini,
Succe′(q) 6= q. For c ∈ M−i(q) which gives priority to Player i, and otherwise chooses e′, we
have δ(q,⊥, c) = Succe′(q) and δ(q, e, c) = q. If δ(q,⊥, c) has value 1, then ⊥ 6<h e by Lemma 1
item (i); and if it has value 0, ⊥ 6<h e follows from Lemma 1, item (iii) since Succe′(q) 6= q.

– Assume that ∀e ∈ ∆i(q) such that Succe(q) ∈ Maybei, we have that ∃e′ ∈ ∆−i(q), with
Succe′(q) 6∈ Losei and Succe′(q) 6= Succe(q).
Assume that ⊥ <h e. If Succe(q) ∈ Losei, then item (ii) of Lemma 1 cannot be satisfied
which contradicts ⊥ <h e. Suppose that Succe(q) ∈ Maybei, and let e′ ∈ ∆−i(q) given by
the above property. Let c ∈ M−i(q) which gives Priority to i, and otherwise chooses e′.
We have that δ(q,⊥, c) = Succe′(q) ∈ Maybei ∪ Wini while δ(q, e, c) = Succe(q) ∈ Maybei.
If Succe(q) ∈ Losei or Succe′(q) ∈ Wini, this contradicts ⊥ <h e by item (i) of Lemma 1; and
if Succe(q) ∈ Maybei, by item (iii) since Succe(q) 6= Succe′(q).

We now show the other direction. We prove that any move that does not satisfy the conditions
is locally dominated. Consider any history h ending in q, and e ∈ ∆i(q) that satisfies Succe(q) 6∈
Wini and

∃e′ ∈ ∆i(q), Succe′(q) ∈ Wini

∨
Succe(q) 6∈ Maybei ∧ (⊥ ∈ Mi(q) ∨ ∃e′ ∈ ∆i(q), Succe′(q) ∈ Maybei)
∨
q+M1∈Wini ∧ ∀e′∈∆−i(q), (Succe′(q) ∈ Wini ∨ Succe(q) = Succe′(q)) .
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– Case ∃e′ ∈ Mi(q), Succe′(q) ∈ Wini. We have e <h e
′ by Remark 1. In fact, if Player i’s move

is selected given some c ∈ M−i(q), from δ(q, e, c), he can continue with a winning strategy,
although from δ(q, e′, c) he can lose. If another player’s move is selected, then the successors
are identical.

– Case Succe(q) 6∈ Maybei ∧ (⊥ ∈ Mi(q) ∨ ∃e′ ∈ ∆i(q), Succe′(q) ∈ Maybei). This means
that Succe(q) ∈ Losei. We distinguish two cases. If such an e′ exists, then it is clear that e <h
e′ by Remark 1. Let us assume that no such e′ exists and ⊥ ∈ Mi(q).

Define a move c ∈ M−i(q) as follows. If there exists e′ ∈ ∆j for some j ∈ P such that Succe′(q) ∈
Maybei∪Wini, then cj = e′, ck = ⊥ for all k 6= i, j; and sched gives priority to i, and then to j.
Notice that all players k can wait since ⊥ ∈ Mi(q). Otherwise, let ∀k ∈ P, ck = ⊥, and sched

is arbitrary.

Since q ∈ Maybei, we have δ(q,⊥, c) ∈ Maybei ∪ Wini in all cases. We show that e <h ⊥ using
Lemma 1. Notice that χiδ(h,e,c) < χiδ(h,⊥,c) since e moves to Losei, and χiδ(h,⊥,c) ≥ 0 by the

previous remark. This shows (ii). Furthermore, for all c ∈ M−i(q), χ
i
hδ(h,e,c) ≤ χ

i
hδ(h,⊥,c) since

either Player i’s edge is picked and the inequality is strict, or another move is picked and
the successor states are identical in both cases (Remark 1). This shows (i) and (iii), proving
e <h ⊥.

– Case q+M1 ∈ Wini and for all e′ ∈ ∆−i(q), either Succe′(q) ∈ Wini or Succe(q) = Succe′(q).
Here, we show that e <h ⊥. Note that q+M1 ∈ Wini means ⊥ ∈ Mi(q). Item (i) of Lemma 1
is satisfied since for all c ∈ M−i(q), either δ(q, e, c) = δ(q,⊥, c) or δ(q,⊥, c) ∈ Wini. Item (iii)
follows from this remark. Moreover, q +M 1 is a possible successor under ⊥, which shows
item (ii).

Consider the move ⊥ from history h ending in q with ⊥ ∈ Mi(q), such that either ∃e ∈
∆i(q), Succe(q) ∈ Wini or we have the conjunction of the following:

a) q+M1 ∈ Losei, or q+M1 = q and ∃e ∈ ∆i(q), Succe(q) = q and ∀e′ ∈ ∆−i(q), Succe′(q) ∈
Losei ∨ Succe′(q) = q.

b) ∃e ∈ ∆i(q) with Succe(q) ∈ Maybei and ∀e′ ∈ M−i(q), Succe′(q) ∈ Losei ∨ Succe′(q) = Succe(q).

– If ∃e ∈ ∆i, Succe(q) ∈ Wini, then ⊥ <h e. In fact, whenever Player i has priority, the
move e yields to a winning state; while if Player i waits, then either a delay or another
edge e′ ∈ ∆−i(q) must yield to a state in Maybei ∪ Losei since q ∈ Maybei.

– Consider first the case q+M1 ∈ Losei and b). We show that ⊥ <h e. For all c ∈ M−i(q),
by hypothesis, δ(q,⊥, c) is losing if δ(q,⊥, c) = q+M1 or δ(q,⊥, c) = Succe′(q) ∈ Losei for
some e′ ∈ ∆−i(q). Otherwise, if δ(q,⊥, c) = Succe′(q) 6∈ Losei then, we must have Succe(q) =
Succe′(q). This shows items (i) and (iii) of Lemma 1. Moreover, we have item (ii) since when
all other players wait, δ(q,⊥, c) = q+M1 ∈ Losei while δ(q, e, c) ∈ Maybei.

Last, assume that q+M1 = q and ∃e ∈ ∆i(q), Succe(q) = q, and ∀e′ ∈ ∆−i(q), Succe′(q) ∈
Losei ∨ Succe′(q) = q, and b). This means that ∀e′ ∈ ∆−i(q), Succe′(q) ∈ Losei or Succe′(q) =
q. Observe also that since q ∈ Maybei, and q+M1 = q, there must exist e0 ∈ ∆−i(q)
with q 6= Succe0(q) ∈ Losei ∪ Maybei since otherwise q would be a winning state. It fol-
lows that Succe0(q) ∈ Losei. Let us show ⊥ <h e. Let c ∈ M−i(q). If δ(q,⊥, c) 6∈ Losei,
then δ(q,⊥, c) = q, that is, either δ(q,⊥, c) ∈ Losei, or δ(q,⊥, c) = δ(q, e, c). This shows
item (i) and (iii) of Lemma 1. Moreover, if c gives Priority to i, and otherwise chooses e0, we
have δ(q,⊥, c) = Succe0(q) ∈ Losei and δ(q, e, c) = q ∈ Maybei, which shows item (ii).

ut
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5 Computation using Zones

We assume that clocks are bounded in all locations by an invariant:

Assumption 4 In all considered timed games, the invariant at each location implies
⋂
x∈X x <

M .

5.1 Zones and Difference-Bound Matrices

Formally, a zone Z is a convex subset of RX≥0 definable by a conjunction of constraints of the
form x ./ k, l ./ x, or x− y ./ m where x, y ∈ X, k, l ∈ N≥0, m ∈ Z, and ./ ∈ {<,≤}.

We recall a few basic operations defined on zones. Let Z↑ denote the time-successors of Z,
i.e., Z↑ = {ν ∈ RX≥0 | ∃ν′ ∈ Z,∃t ≥ 0, ν = ν′ + t}; and similarly the time-predecessors are

Z↓ = {ν ∈ RX≥0 | ∃t ≥ 0, ν + t ∈ Z}. For R ⊆ X, we define Z[R← 0] = {ν ∈ RX≥0 | ∃ν′ ∈ Z, ν =

ν′[R← 0]}, and FreeR(Z) = {ν ∈ RX≥0 | ν[R← 0] ∈ Z}. Intersection is denoted Z ∩Z ′. It is well
known that zones are closed under all these operations [6].

Zones can be represented by difference-bound matrices (DBM) which are |X0|×|X0|-matrices
with values in Z × {<,≤} [22], where X0 = X ∪ {0}. Here 0 is seen as a clock whose value
is always 0. Intuitively, each component (x, y) ∈ X0 × X0 of a DBM stores a bound on the
difference x − y. We use the following notations to access to components of a DBM D. For
x, y ∈ X0, let the component (x, y) be written as (Dx,y,≺Dx,y). For any DBM D, let JDK denote
the zone it defines. The DBM D is reduced if no constraint can be made tighter without changing
the defined zone. This is true when the following inequalities are satisfied: for all x, y, z ∈ X0,
(Dx,y,≺Dx,y) < (Dx,z,≺Dx,z)+(Dz,y,≺Dz,y) where we define (a,≺)+(b,≺′) = (a+b,≺′′) with ≺′′=<
if, and only if ≺=< or ≺′=<; while (a,≺) < (b,≺′) if a < b or a = b and either ≺=≺′ or ≺=<
and ≺′=≤. Every DBM can be made reduced using shortest path algorithms. We refer the reader
to [6] for details on operations on DBMs.

We define an extended DBM as a pair (`, Z) where ` is a location and Z a zone. Let J(`, Z)K
denote the set {`} × JZK. By a slight abuse of notation, we will use the same operations for
DBMs as for zones, for instance, we will write D′ = D↑ where D and D′ are DBMs such that
JD′K = JDK↑. In this case, D′ can be computed using algorithms described in [6]. Successors
and predecessors of zones are zones as well, and can be computed efficiently using DBMs. Let
us consider an extended state (`, Z) and an edge e = (`, g, R, `′). We define Succe((`, Z)) =
∪q∈J(`,Z)KSucce(q), and Prede((`

′, Z)) = {`}×{ν | ν |= g, ν[R← 0] ∈ JZK}. A DBM (resp. a zone)
is closed if the set it defines is topologically closed. Equivalently, a closed DBM can be defined
using a conjunction of non-strict constraints.

A federation is a list of DBMs F = ∪iDi, and defines the set JF K = ∪iJDiK. We define the
complement of a zone Z in RX≥0 as Z. If a zone is represented as a DBM D, its complement can be

computed as a federation, denoted D; that is, JDK = JDK. By extension, we also call an extended
federation a union of extended zones. Given an extended federation F and location `, we denote
by `∩F the set {`}×RX≥0∩F ; thus, each location ` denotes an extended zone at that location with
no constraint on clocks. A closed federation is a federation whose DBMs are closed. We extend
all operations on DBMs to federations by applying them on all elements of the federation. For
instance, F↓ = ∪iDi↓; while intersection is defined by (∪iDi) ∩ (∪jD′j) = ∪i,jDi ∩D′j . For the

complement, we set F = ∩iDi.
In order to consider the discrete-time semantics, let us define JZKd = {ν ∈ NX0 | ν |= Z}. In

other terms, JZKd = NX0 ∩JZK. Given any DBM D, let closed(D) denote the largest closed zone
contained in D. Formally, we have D′ = closed(D) where for all i, j, Di,j = D′i,j if the latter is
a non-strict constraint, and Di,j = (a− 1,≤) if D′i,j = (a,<). Intuitively, the closed(D) returns
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a closed DBM whose discrete valuations are identical to those of D. Notice that closed(D) can

be empy although D is not. For any zone Z, let Z
d

= NX \ Z; and we extend this notation to
DBMs and federations. We also define discrete time-successors as Z↑d = {ν + d | d ∈ N, ν ∈ Z},
and Z↓d = {ν | ∃d ∈ N, ν + d ∈ Z}. Similarly, let FreedR(Z) = {ν ∈ NX | ν[R← 0] ∈ Z}.

Lemma 2. Let Z,Z ′ be DBMs and R ⊆ X. The following properties hold.

– Jclosed(Z)Kd = JZKd,

– JZKd
d

= Jclosed(Z)Kd,
– JZKd ∩ JZ ′Kd = JZ ∩ Z ′Kd,
– FreedR(JZKd) = JFreeR(Z)Kd,
– if Z is closed, JZKd[R← 0] = JZ[R← 0]Kd,
– if Z is closed, JZKd↓d = JZ↓Kd,
– if Z is closed, JZKd↑d = JZ↑Kd.

Closed federations are closed under all above operations.

Thanks to the above lemma, we will represent sets of discrete states using DBMs. Intuitively,
we let a closed zone represent the set of discrete valuations it contains, while the lemma ensures
that basic operations applied on the zone corresponds to the corresponding operations in the
discrete semantics.

Note that all operations but complementation are continuous, thus preserve closedness. Since
all guards are closed in the discrete-time setting, the successor and predecessor operators are
defined identically to the continuous case, without using the closed operator. That is, given
extended zone (`, Z) where Z is represented by closed DBM D, and edge e = (`, g, R, `′),
JSucce((`, Z))Kd = {(`′, ν′) ∈ L × NX | ν |= g ∧ I(`), ν[Re ← 0] = ν′ |= I(`′)}, while this
set can be computed by (((D ∩ ge ∩ Inv(`))[R ← 0]) ∩ Inv(`′))↑ ∩ Inv(`′), where Inv is the ex-
tended federation defining for each ` the invariant Inv(`) at location `. The predecessors are
computed similarly by (FreeR(Z ∩ Inv(`′) ∩ (R = 0)) ∩ ge ∩ Inv(`))↓ ∩ Inv(`).

5.2 Computing State Values

We show how to use a zone-based exploration to compute state values for each player. As in the
previous section, we consider the extended federation Inv which defines the set I of states that
satisfy their locations’ invariants, that is, I = JInvK = ∪`∈L`× JInv(`)K.

Given B,G ⊆ S. Let TPreddi (G,B) = {q ∈ S | ∃d ∈ N, q + d ∈ G, q + [0, d] ∩ B = ∅}. This is
the set of states which, by a discrete delay, can reach G while avoiding B in during the delay.
One could also define TPreddi by fixing a unit delay d = 1, and repeating it. However, quantifying
over d ∈ N will allow us to use DBMs to compute this operator efficiently.

We define πd
i (Z) = TPreddi (Predi(Z), Pred−i(Z

d
)). Let us thus first state the set theoretic

fixpoint defining the winning region in the discrete semantics. Below, ν is the greatest fixpoint
operator; we will also use the least fixpoint operator µ.

Lemma 3. For any timed game G, player i, bad states Bi, we have Wini = νZ.Bi
d ∩ S ∩ πd

i (Z).

When G and B are federations, we write TPreddi (G,B) = TPreddi (JGKd, JBKd), and πd
i (G) =

πd
i (JGKd). The following lemma is adapted from [17, Lemma 4]

Lemma 4. Consider any timed game G, player i, bad states B. Given closed federations G =
∪kGk and B = ∪jBj both contained in Inv, TPred(G,B) can be computed as follows. TPredd(G,B) =⋃
k

⋂
j TPred

d(Gk, Bj), where TPredd(Gk, Bj) = JInv∩
(

(Gk↓ ∩Bj↓
d
) ∪
(
Gk ∩ (Bj↓) ∩Bj

d
)
↓
)
Kd.

11



It follows from Lemma 2 and 4 that given a closed federation F , πd
i (F ) can be computed

as a closed federation. Thus, Wini can be computed as an extended closed federation. The next
lemma will show that Maybei can also be computed as an extended closed federation.

We define the discrete variant of Pred by PreddI(Z) = ∪i∈I,e∈∆i
Predde(Z), where Predde(Z) =

{q ∈ S | Succe(q) ∈ Z}.

Lemma 5. For any timed game G, player i, bad states Bi, we have Maybei = νZ.Bi
d ∩ S ∩

PreddP (Z)↓d.

Last, the set Losei can be computed as the complement of Wini ∪ Maybei.
We thus showed, in this section, that sets of states with a given value can be computed using

federations.

6 Model Checking Under Admissibility

In this section, we show how to check whether all states reachable under admissible strategy
profiles satisfy a given invariance property. Formally, the problem is stated as follows.

Problem 1 (Model Checking Under Admissibility). Given a timed game G, simple safety objec-
tives (φi)i∈P , and (arbitrary) safety property φ, check

∀σ ∈
∏
i∈P

Admi(DM (G)),∀σsched ∈ Γsched, Out(DM ,σ, σsched) |= φ.

We describe a forward exploration algorithm using federations similar to the usual reachability
algorithm except that both discrete transitions and time delays are modified so that only locally
admissible moves are considered by players.

For I ⊆ P , let TrapI(Z) = ∩i∈IPredi(Z
d
)
d

, that is, the set of states from which no player in I
can avoid the set Z by choosing a move.

For a reduced DBM D, and a, b ∈ N, define Shifta,b(D) = D′ as D′i,j = Di,j for all i, j 6= 0;
D′i,0 = Di,0 + b and D′0,i = D0,i−a for all i 6= 0. Notice that the resulting DBM D′ may no more
be reduced, so it must be made reduced.

Lemma 6. Let D be a reduced DBM.

– JShift−1,−1(D)Kd = {ν ∈ NX | ν + 1 ∈ JDKd},
– JShift0,−1(D)Kd = {ν ∈ JDKd | ν + 1 ∈ JDKd},
– JShift−1,0(D)Kd = {ν ∈ NX | ν ∈ JDKd ∨ ν + 1 ∈ JDKd},
– JShift0,1(D)Kd = {ν | ν ∈ JDKd ∨ ν − 1 ∈ JDKd}.

Constrained Guards For any location ` and edge e ∈ ∆i(`), let us define

We = {(`, ν) ∈ Wini | ν |= ge, Succe((`, ν)) ∈ Wini, Succ−i((`, ν)) ∈ Wini}.

In other terms, We is the set of states from which Player i can pick the transition e ∈ ∆i which
guarantees staying in Wini.

Given two edges ei = (`i, gi, Ri, `
′
i) for i = 1, 2, let us define the expression Eq(e1, e2) ≡

(∧x∈X((x ∈ R1 ∩ R2) ∨ x = 0)) ∧ `′1 = `′2. In other terms, Eq(e1, e2) are the set of states from
which the successors through these edges are identical. Let us define

g′e = ge ∧ (Wini ⇒We) ∧ (Maybei ⇒ Prede(Wini) ∨ g′′e ) , (1)
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where

g′′e = Trapi(Losei ∪ Maybei) ∧
(
Prede(Maybei) ∪ Shift0,−1(Inv)

d
∧ Trapi(Losei)

)
∧(

Shift−1,−1(Wini)⇒ (∨e′∈∆−i¬Eq(e, e′) ∧ Prede′(Wini))
)
.

Lemma 7. For any player i ∈ P , an edge e = (`, g, R, `′) ∈ ∆i is locally admissible at (`, ν) if,
and only if ν |= g′e.

The proof follows immediately from Theorem 3.

Constrained Time Successors For each location `, and edge e ∈ ∆i(`), define Ge = `∧ge. For each
player i, we define Ai, as the set of states from which waiting is locally admissible, as follows.

Ai = Shift0,−1(Inv)∩
(
Losei∪Shift0,−1(Wini)∪

(
Maybei∩Predi(Wini)∩(Bi∪Ci)

))
, (2)

where Bi = Shift−1,−1(Wini ∪ Maybei) and

Ci =
⋂
e∈∆i

Ge ∩ Prede(Maybei)⇒
⋃

e′∈∆−i

Ge′ ∩ Prede′(Losei) ∩ ¬Eq(e, e′)

 .

Lemma 8. Consider state q, and player i ∈ P . Move ⊥ is locally admissible at q for player i if,
and only if q ∈ JAiKd.

Let A = ∩i∈PAi. Given set F , let F↑dA = {q ∈ S | ∃q′ ∈ F, d ∈ N, q′+d = q, q′+[0, d−1] ⊆ A}.
Hence, this is the set of time successors of F which are reachable by staying inside A (except
that the last state can be outside of A). Notice that all states of F↑dA satisfy the invariants.

Lemma 9. For any set F , F↑dA = µZ.F ∪ I ∩ Shift0,1(Z ∩A).

Algorithm 1 Model checking under admissibility algorithm for safety properties

1: Input: Game G, simple safety objectives (φi)i∈P , M ∈ N, safety property φ
2: Let Wini = νZ.φi ∩ πd

i (Z), Maybei = νZ.φi ∩ πd
P (Z), Losei = Wini ∪ Maybei

3: For all i ∈ P , let ∆′
i = {(`, g′, R, `′) | (`, g, R, `′) ∈ ∆i} where g′ is defined (1).

4: Define A as in (2)
5: Waiting = {(`0,0)}
6: Passed = ∅
7: while Waiting 6= ∅ do
8: Let Z = Pop(Waiting)
9: if Z 6|= φ then

10: return False
11: Passed = Passed ∪ {Z}
12: for all i ∈ P, e ∈ ∆′

i do
13: Z′ = Succe′(Z)↑dA
14: if ¬∃Z′′ ∈ Passed ∪ Waiting, Z′ ⊆ Z′′ then
15: Waiting = Waiting ∪ {Z′}
16: return True
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Exploration Now during the exploration, given any federation F in the waiting list, and edge e,
we expand the search by Succe′(F ) where e′ is the edge e whose guard ge is replaced by g′e. We
then compute its constrained time successors by restricting the delays to those states A where all
players can indeed wait. The algorithm is summarized in Algorithm 1. Notice that Assumption 4
allows us to ensure the termination of the algorithm without using extrapolation operators.

7 Assume-Admissible Synthesis

We now show how to solve the assume-admissible synthesis problem.

Problem 2 (Assume-Admissible Synthesis). Given a timed game G, simple safety objectives (φi)i∈P ,
check if for each player i,

∃σi ∈ Admi(DM (G)),∀σ−i∈Adm−i(DM (G)),∀σsched∈Γsched, Out(DM ,σ, σsched) |= φi.

If for each player i, we manage to find an admissible strategy that is winning against all admissible
strategy profiles of −i, then the combination of these strategies is a profile that satisfies all
objectives. Note that players can choose their strategies arbitrarily among these winning ones
without coordination with other players as long as other players choose admissible strategies.
Let us call σi assume-admissible-winning (AA-winning) if it witnesses the above condition for
Player i.

We are going to solve this problem by using the results of the previous section. In fact, we
showed how to strengthen the guards of the edges of the timed automaton so that they are only
taken by respective players if the corresponding move is locally admissible. We also characterized
those states from which a delay is locally admissible for all players. It remains to show how to
solve the game where all players are restricted to behave admissibly.

Given a timed game G, let G′ be obtained by strengthening the guards of all edges as in the
previous section. Let A be the set from which waiting is locally admissible for all players, as
defined in the previous section. For any set F of states, let us define the A-constrained time-
predecessors as F↓dA = {q ∈ S | ∃d ∈ N, q+ d ∈ F, q+ [0, d− 1] ⊆ A}. Intuitively, this is precisely
the set of states which can reach F by time delays while staying in A (except at the last state).
This operator can be computed as follows.

Lemma 10. For all sets F ⊆ RX≥0, F↓dA = µZ.F ∪ (A ∩ Shift−1,0(Z ∩ I)).

We define TPreddA,i(G,B) = {q ∈ S | ∃d ∈ N, q + d ∈ G, q + [0, d] ∩B = ∅, q + [0, d− 1] ⊆ A}.
This defines the set of states from it is admissible for players to wait until reaching G while
avoiding B.

Lemma 11. Consider any timed game G, player i, bad states B. Given closed federations G =
∪kGk and B = ∪jBj both implying Inv, TPreddA,i(G,B) can be computed as follows. TPreddA,i(G,B) =⋃
k

⋂
j TPred

d
A,i(Gk, Bj), where

TPreddA,i(Gk, Bj) = JInv ∩
(

(Gk↓dA ∩Bj↓dA
d
) ∪
(
Gk ∩ (Bj↓dA) ∩Bj

d
)
↓A
)

Kd.

Let πd
i,A(Z) = TPreddA,i(Predi(Z), Pred−i(Z̄)).

Theorem 5. Let G be a game with simple safety objectives (φi)i∈P . Let G′ be obtained by re-
placing each guard ge by g′e as defined in (1). Let Wi = νZ.φi ∩ S ∩ πd

i,A(Z) computed in G′.
Then, Player i has a AA-winning strategy in G if, and only if the initial state belongs to Wi.
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8 Example: Synthesis of Train Controllers

We consider a one-way circular train network with n segments, and K trains. Each segment
models either a station, or a part of the line between two stations. For safety reasons, each
segment can accomodate at most one train. In order to optimize performance criteria, trains are
allowed to independently regulate their travel time at each segment as long as they meet this
safety critical requirement.

Freej Occj

mj?

mj+1?, yj := 0

Fig. 2. Component for seg-
ment j

Model We describe the system as a network of timed automata
defining a discrete timed game with Boolean variables. Each seg-
ment j is modeled as in Figure 2: it can be “occupied” by a train
upon receiving event mj , after which it is “freed” by the occupa-
tion of the next segment, by event mj+1. The clock yj stores the
time elapsed since the latest train leaving.

Each train i is modeled as a separate player, and its moves
are defined by the component in Fig. 3. If the current state of
the component is si,j or s′i,j , this means that the train i is at
segment j. The train can attempt to move to segment j + 1 by
sending event mj+1 if it has spent at least 10 seconds in the
current segment. This lower bound corresponds to the minimum
travel time (with maximal speed) of a train over a segment. If 30 seconds have elapsed in a given
segment, the train either has to move to the next segment, or enters state s′i,j from which at
least one unit of time will elapse and the variable erri will be set. In our model, the segments
are passive, and they only react to actions received by trains.

For better readability, we use a particular synchronization semantics: we assume that an
event mi is only possible if three components synchronize on the action. That is, if a train enters
from segment j to segment j + 1, then the train sends mj+1!, upon which the first segment is
freed by mj+1?, and the second one is occupied by mj+1?.

Each train controls the edges of its automaton, and the edges of the segments are only taken
in synchronization with trains’ edges. Thus, each transition in the overall system is controlled
by a unique player (i.e. train).

si,1
xi ≤ 30

s′i,1

xi ≤ 40

si,2

xi ≤ 30

s′i,2

xi ≤ 40

. . . si,n

xi ≤ 30

m2!, 10≤xi≤30, xi:=0

xi=30, xi:=0

m2!, xi≥1

xi:=0, erri:=1

m3!, 10≤xi≤30, xi:=0

xi=30, xi:=0

m2!, xi≥1

xi:=0, erri:=1

s′i,n

xi ≤ 40

m1!, 10≤xi≤30, xi:=0

xi=
30, xi:

=0
m1!, xi≥1

xi :=0, err1:=1

Fig. 3. Component for train i whose edges are controlled by Player i. In addition to the transitions
shown in the figure, we add the self-loops with no resets at each state si,j and s′i,j , with the following
guard:

∨
j,k(sj,k ∧ xj = 30 ∨ s′j,k ∧ xj = 40). In fact, if some train j reaches the upper bound of its

invariant, then train i can still choose this self-loop to remain in the current segment.
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We define the initial state by assigning each train i to an arbitrary segment j while respecting
mutual exclusion: no pair of trains can be at the same segment. Moreover, the segment j is at
state Occj if, and only if some train is in state sj . All clocks are initially 0.

Specification Our overall objective Φ is that each segment is served at least once every 150
seconds; in other words, the clocks yj never exceed 150. Let us thus write Φ = ∧jG(yj ≤ 150).
It is clear that this is not the case in general: if a train stops moving, the following segment is
never served. However, we also know that trains do not behave arbitrarily. In fact, to guarantee
acceptable passanger experience, each train is also required not to stay for more than 30 seconds
at each segment. Let us define φi = G(¬erri∧xi ≤ 30), which is the local specification of train i,
that is, its objective. Notice that φi is a simple safety objective: once erri is set to 1, it remains
so. Moreover, if xi exceeds 30, the train is necessarily at some state s′i,j at which the variable erri
will be set to 1 simultaneously when xi is reset.

We assume that each train regulates its travel time with the restriction of behaving admissibly
with respect to its objective φi. Now, assuming each train i is admissible for objective φi, does
the global objective Φ hold under all induced executions? This is precisely a model checking
under admissibility problem.

Admissible Strategies We have Wini = ∅, Losei = erri ∨ (∨js′i,j), and Maybei is the rest of the
states, that is, ¬erri ∧ (∨jsi,j). We have already explained why there are no winning states in
the system. To see that all states satisfying ¬erri ∧ xi ≤ 30 have value 0, consider such a state
where train i is at segment j. If station j + 1 is free, then train i can move as soon as xi ≥ 10.
Otherwise, if i + 1 is the index of the train at segment j + 1, then xi ≤ xi+1 since train i + 1
must have entered segment j + 1 before train i has entered segment j. In this case, all segments
and n−1 trains in the network, all trains that are blocking the way to train i can wait until their
clocks reach 10, and simultaneously move one after the other to free segment j+1. At this point,
train i can (wait and) move to segment j + 1. By repeating this argument, one can construct a
run in which train i satisfies its specification.

Let us now apply Theorem 3 to describe locally admissible moves from states of Maybei. Notice
that the successor of any state of Maybei through edges of type si,j → si,j+1 leads to Maybei. Since
there is no winning states, all these edges are locally admissible according to the theorem. On
the other hand, an edge si,j → s′i,j is only locally admissible if xi = 30 and no other edge is
available. Moreover, any delay at states si,j is locally admissible as long as the delay is allowed
(that is, ∀i, xi ≤ 29). Last, from Losei, any move is locally admissible.

Model Checking Under Admissibility At any moment, the trains form several blocks of consecutive
occupied segments. By the previous description of the locally admissible moves, it follows that
the train at the head of each block must eventually move to the next segment before its clock
exceeds 30, thus allowing the previous train to move as well. One shows by induction on n that
all trains move before their clocks exceed 30, thus along all runs with locally admissible moves,
all objectives φi are satisfied.

Now, the satisfaction of Φ depends on the parameters n and K. One can see that Φ is
satisfied as long as K ≥ n− 4. In fact, if there are four consecutive segments at any time, each
segment will be entered and left by a train within 150 time units. The specification fails however,
when K < n − 4. This can also be determined by Algorithm 1 applied to the game described
above with specifications (φi)i for the trains, and the global safety property Φ.

Assume-Admissible Synthesis Rather than checking whether all executions under admissible
strategies satisfy the specification, let us now apply assume-admissible synthesize to synthesize
an admissible strategy for each train satisfying its objective against all admissible strategies. One
solution to the AA-synthesis is to let trains move to the next segment as soon as possible, that
is, whenever the following segment is free, and the guards allow them to move. Let σASAP

i denote
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this strategy. According to the previous paragraph, σASAP
i is admissible since it only chooses

locally admissible moves. Moreover, it ensures φi against all admissible strategies of the other
trains since we saw that all executions under admissible strategy profiles satisfy φi.

Thus, for each i, the particular strategy σASAP
i is admissible and ensures φi. What are possible

outcomes under the profile (σASAP
1 , . . . , σASAP

n )? Observe that all trains move to the next segment
whenever their clocks reach 10 (in fact, this is true for the train at the head of its block, and
this shows that other trains will also move at the same time). Thus, each train moves to the
next segment every 10 time units under this profile. This means that the specification Φ actually
holds when K ≥ n− 14. In fact, given any block of at most 14 unoccupied consecutive segments,
each of them will be served by a train in at most (14 + 1) × 10 time units. Hence, we have
synthesized a particular admissible strategy profile in which, not only, each train ensures its own
specification against all admissible strategy profiles of other trains, but moreover, together, the
strategy profile satisfies the specification Φ for a larger choice of parameters K and n.

Discussion We showed that all admissible strategies satisfy the minimal performance require-
ment Φ in our system (given constraints on the parameters K,n). Thus, an admissible strategy
for each train can be chosen separately according to other given performance criteria if desired,
and Φ will hold regardless of the precise choice.

We thus suggest a two-step synthesis methodology where we separate minimal performance
requirement Φ from further optimization criteria. We ensure this first step formally using admissi-
bility, while the further steps can be done using other methods: above, we used assume-admissible
synthesis, but other methods can be used as well such as statistical learning with the only re-
quirement of being compatible with locally admissible moves. Thus, one is able to formally ensure
strong guarantees for Φ, and use other methods with relaxed guarantees for further optimization.

We kept the model extremely simple in order to make it human-readable. Several details can
be added to approach a more realistic model. First, the topology of the network can be made
arbitrary, and two-way traffic can be incorporated with possible shared (thus, mutually exclusive)
portions between different lines. Most importantly, perturbations in travel times can be added
by introducing a player which adds a bounded amount of error to each travel time.

9 Conclusion

We studied admissible strategies in non-zero sum multiplayer timed games. As we showed that
admissible strategies do not always exist in the continuous semantics, so we concentrated here
on the discrete-time setting. By a reduction to finite concurrent games, we showed the existence
of admissible strategies, and gave a characterization of admissible strategies. We gave algorithms
to compute the set of admissible outcomes using zone federations, yielding algorithms for model
checking under admissibility and assume-admissible synthesis. As future work, we would like
to study these symbolic algorithms without the assumption of bounded clocks, thus, using ex-
trapolation operators. We will also implement a prototype tool to test the feasability of our
methods.
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A Proofs

Proof (of Lemma 2).

– Case Jclosed(Z)Kd = JZKd. The direction Jclosed(Z)Kd ⊆ JZKd is clear since the opera-
tor closed strengthens the constraints. We show the other direction. Let ν ∈ JZKd. We show
that ν satisfies all constraints of closed(Z). It suffices to show that this is the case before
the application of canonization (as we will prove that all constraints hold). By hypothesis,
we have, for all x, y ∈ X0, ν(x)− ν(y) ≺Zx,y Zx,y. If ≺Zx,y=≤, then Zx,y = closed(Z)x,y, so ν

satisfies this constraint. If ≺Zx,y=<, then since ν ∈ NX , we have ν(x) − ν(y) ≤ Zx,y − 1 =
closed(Z)x,y. Thus, ν ∈ JZK, and since ν is discrete, ν ∈ JZKd.

– Case JZKd
d

= Jclosed(Z)Kd. By the previous case, the RHS is equal to JZKd. Let ν ∈ JZKd
d
.

In particular, ν 6∈ JZK, which means ν ∈ JZK. But since ν ∈ NX , ν ∈ JZKd.

Conversely, if ν ∈ JZKd ⊆ JZK, then ν ∈ JZK. Since ν is discrete, ν ∈ JZK
d
, and since

complement is nondecreasing, JZK
d
⊆ JZKd

d
.

– Case JZKd ∩ JZ ′Kd = JZ ∩ Z ′Kd. For any ν, we have ν ∈ JZKd ∩ JZ ′Kd if and only if ν ∈ NX
and for all x, y ∈ X0, ν(x)− ν(y) ≺Zx,y Zx,y and ν(x)− ν(y) ≺Z′x,y Z ′x,y. This is equivalent to

the condition ν ∈ NX and ν ∈ JZ ∩ Z ′K, that is, ν ∈ JZ ∩ Z ′Kd.
– Case FreedR(JZKd) = JFreeR(Z)Kd. The direction ⊆ follows by definition. Let ν ∈ JFreeR(Z)Kd,

and let ν′ ∈ JZK such that ν[R← 0] = ν′. It follows that ν′ ∈ JZKd. So ν ∈ FreedR(JZKd).
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– Case JZKd[R ← 0] = JZ[R ← 0]Kd. Consider νJZKd[R ← 0], and let ν′ ∈ JZKd such
that ν′[R ← 0] = ν. Since ν′ ∈ JZK, we have ν ∈ JZ[R ← 0]K, and since ν is discrete,
ν ∈ JZ[R← 0]Kd.
Consider now ν ∈ JZ[R ← 0]Kd, and let ν′ ∈ JZK such that ν′[R ← 0] = ν. Let ν′′(x) be
defined as follows. We have ν′′(x) = ν′(x) for all x ∈ X such that ν′(x) ∈ N. For any other x,
let ν′′(x) = bν′(x)c. Notice that for all x 6∈ R, ν′(x) = ν′′(x) since ν(x) = ν′(x) and ν ∈ NX .
We show that ν′′ ∈ JZK. Let us write ν′(x) − ν′(y) = bν′(x)c + ε1 − bν′(y)c − ε2 where
ε1, ε2 ∈ [0, 1). So since ν′(x) − ν′(y) ≤ Zx,y, we have bν′(x)c − bν′(y)c ≤ Zx,y + ε where
ε = ε2 − ε1 ∈ (−1, 1). Since ε < 1 and Zx,y ∈ N, this means that bν′(x)c − bν′(y)c ≤ Zx,y;
hence ν′′(x)− ν′′(y) ≤ Zx,y. It follows that ν′′ ∈ JZKd, and ν′′[R← 0] = ν.

– Case JZKd↑d = JZ↑Kd. The inclusion ⊆ follows by definition. Let ν′ ∈ JZ↑Kd, and let ν ∈ JZK
such that ν′ = ν + d for some d ≥ 0. We can assume that ν and d are discrete. In fact,
assume otherwise, and write ν′′ = ν′ − bdc = dν′ − de, so that ν = ν′′ + ε with ε ∈ (0, 1).
Now, both ν and ν′′ satisfy the same diagonal constraints since ν(x)− ν(y) = ν′′(x)− ν′′(y).
For each x ∈ X, we have ν′′(x) − ε = ν(x) ≤ Zx,0, that is, ν′′(x) ≤ Zx,0 + ε. Since ν′′(x)
and Zx,0 are integers, and ε ∈ (0, 1), we must have ν′′(x) ≤ Zx,0. Therefore, ν′′ ∈ JZKd,
and ν′′ + bdc = ν′ ∈ JZKd↑d

– Case JZKd↓d = JZ↓Kd is symmetric to the previous one.

Proof (of Lemma 3). We first show Wini ⊇ νZ.Bi
d ∩ S ∩ πd

i (Z). Let Z0 = Bi
d ∩ S, and Zj =

Bi
d∩S∩πd

i (Zj−1) for all j ≥ 1, which are the iterates of the fixpoint. We show that from each Zj ,
Player i has a strategy to avoid Bi for at least j discrete transitions. This is clear for Z0. Consider

state q ∈ Zj ⊆ Bi
d ∩ S so that q does not immediately violate Player-i’s objective. Since q ∈

πd
i (Zj−1), there exists d ∈ N such that q+d ∈ Predi(Zj−1) and q+[0, d]∩Pred−i(Zj−1

d
) = ∅. We

let Player i wait for d − 1 times, and from q + d, pick an edge that goes to Zj−1. Hence, either
this edge is taken from q + d, or some other player’s edge is taken from some state in q + [0, d].
By definition of πi, in both cases, the next state is in Zj−1, and we can conclude by induction.

To show the converse, consider state q ∈ S \Zj for some j. We show that under any strategy
of Player i, there is an outcome which, from q, reaches Bi in at most j steps; hence q 6∈ Wini. We
prove this by induction on j. The property is trivial if j = 0 since the objective is immediately

violated. Assume j ≥ 1. We have by hypothesis q 6∈ TPredd(Predi(Zj−1), Pred−i(Zj−1
d
)), for

all delays d ∈ N Player i might wait for (that is, q + d ∈ S), either Predi(q + d) ∩ Zj−1 = ∅
or q+ [0, d]∩ Pred−i(Zj−1

d
) 6= ∅. Thus if a strategy, at q, waits for d steps and chooses an edge e,

either this edge does not enter Zj−1 or q+ [0, d] contains a state where another player can move
the play outside of Zj−1. So some outcome under Player-i’s strategy is outside Zj−1 at the next
step. We conclude by induction.

Proof (of Lemma 4). The proof of TPredd(G,B) =
⋃
k

⋂
j TPred

d(Gk, Bj) is identical to the
counterpart in [17, Lemma 4].

We show TPredd(Gk, Bj) = JInv ∩
(

(Gk↓ ∩Bj↓
d
) ∪
(
Gk ∩ (Bj↓) ∩Bj

d
)
↓
)
Kd.

We start with TPredd(Gk, Bj) ⊆ JInv ∩
(

(Gk↓ ∩Bj↓
d
) ∪
(
Gk ∩ (Bj↓) ∩Bj

d
)
↓
)
Kd. Let q ∈

TPredd(Gk, Bj). By definition of TPredd, q ∈ Inv. Let d ∈ N such that q + d ∈ Gk while q +

[0, d] ∩ Bj = ∅. We thus have q ∈ Gk↓. Now, if q 6∈ Bj↓, then also q ∈ Bj ↓
d

since q is discrete.
Hence, q belongs to the first term of the right hand side. Otherwise, we have q ∈ Bj↓. Let d′

be such that q + d′ ∈ Bj . By hypothesis, we have q + [0, d] ∩ Bj = ∅, so we must have d < d′.

So q + d ∈ Bj
d
, and since (q + d) + d′ ∈ Bj , we have q + d ∈ Gk ∩ Bj↓. Thus, q belongs to the

second term.
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We now show JInv ∩
(

(Gk↓ ∩Bj↓
d
) ∪
(
Gk ∩ (Bj↓) ∩Bj

d
)
↓
)
Kd ⊆ TPredd(Gk, Bj). Consider

state q in the left hand side. If q ∈ Inv∩(Gk↓∩Bj↓
d
), then there exists d ∈ N such that q+d ∈ Gk

and q + [0, d] ∩ Bj = ∅ since q 6∈ Bj↓. Consider now q ∈ Inv ∩ (Gk ∩ (Bj↓) ∩ Bj
d
)↓. Let d ∈ N

such that q + d ∈ Gk ∩ (Bj↓) ∩ Bj
d
. We claim that q + [0, d] ∩ Bj = ∅. Assume otherwise, and

let d′ ∈ [0, d] with q + d′ ∈ Bj . Since q + d ∈ Bj
d ∩ Bj↓, there must exist d′′ ∈ N such that

q + d + d′′ ∈ Bj . By convexity, [q + d′, q + d + d′′] ⊆ Bj , and we have q + d ∈ Bj which is a
contradiction.

Proof (of Lemma 6).

– Consider a reduced DBM D and let D′ denote the DBM obtained by Shift−1,−1(D) before
reduction. Let us show that ν ∈ JD′Kd if, and only if ν + 1 ∈ JDKd. Consider ν ∈ JD′Kd. For
diagonal constraints x, y ∈ X, if ν(x) < M , then (ν +M 1)(x) − (ν+M )(y) = ν(x) − ν(y) ≤
D′x,y = Dx,y. Otherwise,

For diagonal constraints x, y ∈ X, we have (ν+ 1)(x)− (ν+ 1)(y) = ν(x)− ν(y) ≺Dx,y Dx,y =
D′x,y which establishes the equivalence for these constraints. Consider x ∈ X. We clearly

have (ν + 1)(x) ≺Dx,0 Dx,0 if, and only if ν(x) ≺Dx,0 Dx,0 − 1. Similarly, −(ν + 1)(x) ≺D0,x D0,x

if, and only if −ν(x) ≺D0,x D0,x + 1.
– Consider a reduced DBM D and let D′ denote the DBM obtained by Shift0,−1(D) before

reduction. We show that ν ∈ JD′Kd iff ν ∈ JDKd and ν+ 1 ∈ JDKd. The equivalence is obvious
for diagonal constraints (see previous case). Fix x ∈ X. We have that ν(x) ≺x,0 Dx,0 − 1
implies ν(x) ≺x,0 Dx,0 and ν(x) + 1 ≺x,0 Dx,0. Moreover, if ν(x) + 1 ≺x,0 Dx,0, then
ν(x) ≺x,0 Dx,0 − 1, which establishes the equivalence for constraints of type (x, 0). Last, we
have that −ν(x) ≺0,x D0,x implies −ν(x)−1 ≺0,x D0,x. It follows that −(ν+1)(x) ≺0,x D0,x

and −ν(x) ≺0,x D0,x iff −ν(x) ≺0,x D
′
0,x = D0,x.

– Consider a reduced DBM D and let D′ denote the DBM obtained by Shift−1,0(D) before
reduction. We show that ν ∈ JD′Kd iff ν ∈ JDKd or ν + 1 ∈ JDKd. The proof is again easy
for diagonal constraints. Let us fix x ∈ X. We have ν(x) ≺Dx,0 Dx,0 iff ν(x) ≺Dx,0 Dx,0

or ν(x) + 1 ≺Dx,0 Dx,0. Furthermore, −ν(x) ≺D0,x D′0,x = D0,x + 1 iff −(ν + 1)(x) ≺D0,x D0,x.
This proves the required equivalence.

– Consider a reduced DBM D and let D′ denote the DBM obtained by Shift0,1(D) before
reduction. We show that ν ∈ JD′Kd iff ν ∈ JDKd or ν − 1 ∈ JDKd. The proof is again easy
for diagonal constraints. Let us fix x ∈ X. We have ν(x) ≺Dx,0 D′x,0 = Dx,0 + 1 iff ν(x) ≺Dx,0
Dx,0 or ν(x) − 1 ≺Dx,0 Dx,0, Furthermore, −ν(x) ≺D0,x D′0,x = D0,x iff −ν(x) ≺D0,x D0,x or

−(ν − 1)(x) ≺D0,x D0,x. This proves the required equivalence.

Proof (of Lemma 8). We show the equivalence of the set defined by JAiKd, and that of Theorem 3
for ⊥.

Notice that, by Theorem 3, any move is admissible at Losei; this matches the first term in Ai.
Second, waiting is admissible from Wini if and only if the current state and the immediate time
successor both belong to Wini; this is exactly captured by the term Shift0,−1(Wini). Consider

now states of Maybei ∩ Predi(Wini). By Theorem 3, no state of Maybei outside this set is locally
admissible. Now it remains to show that Bi describes the states satisfying item 1, and Ci item
2.

Consider Bi. The set Shift−1,−1(Wini ∪ Maybei) describes exactly those states q such that
q +M 1 ∈ Maybei ∪ Wini. Notice that no state q satisfies q +M 1 = q in our setting due to the
hypothesis on invariants bounding all clocks.

We now consider Ci. It describes the set of states at which, for any edge e ∈ ∆i whose guard
is satisfied (ge), and which leads to Maybei (Prede(Maybei)), there is e′ ∈ ∆−i whose guard is
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satisfied, which does not lead to Losei, and has a different successor than e. Thus, this captures
item 2.
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