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An efficient first principles approach to calculate X-ray magnetic circular dichroism (XMCD) and
X-ray natural circular dichroism (XNCD) is developed and applied in the near edge region at the
K - and L1 -edges in solids. Computation of circular dichroism requires precise calculations of X-ray
absorption spectra (XAS) for circularly polarized light. For the derivation of the XAS cross section,
we used a relativistic description of the photon-electron interaction that results in an additional
term in the cross-section that couples the electric dipole operator with an operator σ · (ε× r) that
we name spin-position. The numerical method relies on pseudopotentials, on the gauge including
projected augmented wave method and on a collinear spin relativistic description of the electronic
structure. We apply the method to the calculations of K -edge XMCD spectra of ferromagnetic iron,
cobalt and nickel and of I L1 -edge XNCD spectra of α-LiIO3, a compound with broken inversion
symmetry. For XMCD spectra we find that, even if the electric dipole term is the dominant one, the
electric quadrupole term is not negligible (8% in amplitude in the case of iron). The term coupling
the electric dipole operator with the spin-position operator is significant (28% in amplitude in the
case of iron). We obtain a sum-rule relating this new term to the spin magnetic moment of the
p-states. In α-LiIO3 we recover the expected angular dependence of the XNCD spectra.

PACS numbers:

I. INTRODUCTION

A dichroic (“two-coloured” in Greek) material has the
property to absorb light differently depending on its po-
larization. X-ray Circular Dichroism is the difference be-
tween X-ray absorption spectra (XAS) obtained from left
and right circularly polarized light so it describes the de-
pendence of the absorption cross-section on the state of
circularly-polarized light.

In a magnetic sample, the breaking of time-reversal
symmetry permits X-ray Magnetic Circular Dichroism
(XMCD). It is a powerful tool for the study of the mag-
netic structure of complex systems as it gives element-
specific information. Almost all synchrotron facilities
around the world have a beamline dedicated to XMCD.1

The existence of well-established magneto-optical sum-
rules that allow to obtain the spin and orbital contri-
bution to the magnetic moment directly from the inte-
gral of the spectra2–4 made it an essential technique to
study the magnetic properties of matter. These sum-
rules are widely and successfully applied at spin-orbit
split L2 ,3 -edges of transition metals5–8 and M 4 ,5 -edges
of actinides.9 On the other hand, in the absence of spin-
orbit splitting of the core state (as for K - or L1 -edge),
only the orbital magnetization sum-rule2,4 can apply and
a quantitative analysis of the spectra is far from being

straightforward. Yet, for 3d transition elements, mea-
surements of XMCD at the K -edge is the main way to
probe magnetism under pressure and it is a widely used
technique despite the interpretation difficulties.10–12

X-ray Natural Circular Dichroism (XNCD) occurs in
non-centrosymmetric materials (for which the inversion
symmetry is not a symmetry of the system). Up to now,
it has been less widely used than XMCD but it presents a
fundamental interest as it gives access to element specific
stereochemical information.13 In the domain of molecular
magnetism, a renewed interest for this technique has re-
cently grown14 with the emergence of new materials that
are both chiral and magnetic. Contrary to optical activ-
ity to which a large number of mechanisms contribute,15

XNCD is largely dominated by a single contribution.13

At L1 - and K -edges, XNCD exists only if p and d orbitals
are mixed,16 yielding a unique measure of the mixing of
even and odd orbitals.

The starting point of our work is a Density Func-
tional Theory (DFT) based pseudopotential method.
Using Projector Augmented Wave (PAW) reconstruc-
tion, Lanczos algorithm and a continued fraction
calculation,17–19 it has proved successful for the calcula-
tion of absorption (XAS) spectra at the K -edge.17,18,20,21

The L1 -edge, that corresponds to a 2s core-hole, is ex-
pected to have the same behavior. In this paper, we
propose the same kind of DFT-based approach for the
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calculation of XMCD and XNCD spectra in the near-
edge (XANES) region.

Several calculations of XMCD at K -edge in the
XANES region can be found in the literature. Most of
these calculations are based on fully relativistic22–27 or
semi-relativistic28,29 multiple-scattering approaches with
muffin-tin potentials even if efforts have been made to go
beyond this approximation.30,31

The technique presented in this paper allows the use
of a free-shape potential. Relativistic perturbations were
taken into account both in the band structure32 and
in the photon matter interaction.33 The method has
been implemented within a highly efficient reciprocal
space code that allows the modelling of a large range
of systems.19

In section II, the terms that enter the absorption cross
section up to the electric quadrupole approximation are
listed. Section III is dedicated to the presentation of the
computational method. Results obtained for XAS and
XNCD at L1 -edge of iodine in both enantiomers of α-
LiIO3 and for K -edge XAS and XMCD spectra in 3d fer-
romagnetic metals are presented in section IV. Finally, in
section V, the relativistic operator is examined in detail
within the collinear spin approximation. Its correspond-
ing sum-rule is derived and evaluated numerically and
an expression that allows for a simple implementation of
this term is given.

II. CONTRIBUTIONS TO THE CROSS
SECTION

In the case of a fully circularly polarized light with a
wave vector k along z, the circular dichroism (XMCD
and XNCD) cross section writes:

σCD = σ(ε2)− σ(ε1) (1)

where ε2 = 1/
√

2(1, i, 0), ε1 = ε?2 = 1/
√

2(1,−i, 0) and
σ(ε) is the X-ray absorption (XAS) cross section of the
material. XMCD effect at K -edge of 3d transition ele-
ments results at most in an asymmetry in absorption of
the order of 10−3. For this study, it is therefore important
to compute the absorption cross section very accurately.

In a monoelectronic semi-relativistic framework the
contribution to the XAS cross section from a given core-
state of energy Ei is given by (see appendix):

σ = 4π2α0~ω
∑
f

|〈f |T |i〉|2δ(Ef − Ei − ~ω) (2)

where α0 is the fine structure constant, |i〉 is the two-
components wave function that corresponds to the large
components of the Dirac wave function of the core state
and the sum runs over unoccupied final states with en-
ergy Ef . The wave functions |f〉 are eigenstates of
the time-independent Foldy-Wouthuysen Hamiltonian of
the electron in the presence of an electromagnetic field

E0,B0:34,35

HFW = mc2 +
p2

2m
+ eV − e~

2m
σ ·B0

− e~
4m2c2

σ · (E0 × p)− e~2

8m2c2
∇ ·E0. (3)

Finally, T is the sum of three operator: (i) the electric
dipole operator, (ii) the electric quadrupole operator and
(iii) a new light-matter interaction term that we named
the spin-position operator:

T = ε · r +
i

2
ε · r k · r +

i~ω
4mc2

σ · (ε× r) (4)

where σ is the vector of Pauli matrices.
The absorption cross section expands in six terms

among which four terms are significant (see the orders
of magnitude in appendix).

The dominant term is the electric dipole-electric dipole
(D-D) term:

σD−D = 4π2α0~ω
∑
f

|〈f |ε · r|i〉|2δ(Ef − Ei − ~ω). (5)

It is usually the only term that is taken into account in
calculations of XAS and XMCD spectra at the L2 ,3 -edges
and sometimes at the K -edge.29,36–38

The electric quadrupole-electric quadrupole (Q-Q)
term is:

σQ−Q = π2α0~ω∑
f

|〈f |(k · r)(ε · r)|i〉|2δ(Ef − Ei − ~ω). (6)

At the K -edge, it can reach a few percent of σD−D
in amplitude. It contributes mainly to the pre-edge
region. It is sometimes included in X-ray absorption
calculations.17,39

When neglecting spin-orbit coupling and in the absence
of an external magnetic field, it is possible to choose real
wave functions. In that case, the D-D and Q-Q terms
verify σ(ε) = σ(ε∗), which leads to a zero contribution to
circular dichroism. For this reason it is crucial to account
for relativistic effects in the wave functions calculation in
order to compute XMCD.

On the other hand, the two following terms can give
a non-vanishing contribution to the circular dichroism
cross section even when wave functions can be chosen
real.

The electric dipole-electric quadrupole cross term (D-
Q) is:

σD−Q = −4π2α0~ω∑
f

=[〈f |(k · r)(ε · r)|i〉〈i|ε? · r|f〉]δ(Ef − Ei − ~ω). (7)

If |i〉 and |f〉 are parity invariant (i.e. if inversion r→ −r
is a symmetry of the system) then σD−Q = 0. It is how-
ever this term that is responsible for XNCD16 because
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the electric dipole-magnetic dipole term (that is respon-
sible for optical activity in the optical range) is very small
in the X-ray range.

The cross term between the electric dipole and the rel-
ativistic operator that we named spin-position (D-SP)
is:

σD−SP = −2π2α0~2ω2

mc2∑
f

=[〈f |σ · (ε× r)|i〉〈i|ε? · r|f〉]δ(Ef − Ei − ~ω). (8)

It exists only in magnetic materials. Like the spin-orbit
coupling term in the FW Hamiltonian, it arises from the
coupling of the small components of the Dirac wave func-
tions. To our knowledge, it has never been evaluated be-
fore. We will show in the following that, despite the small
prefactor of this term, its contribution to XMCD at the
K -edge of 3d metals can account for up to one third of
the XMCD intensity near the edge.

III. METHOD

In the framework of the final state rule40 the absorp-
tion cross section is obtained from one-electron wave
functions. Within the frozen core approximation, the 1s
(K -edge) or 2s (L1 -edge) unperturbed core states |i〉 can
be determined from an all-electron isolated atom calcu-
lation. The stationary final states |f〉 are calculated self-
consistently in the presence of a core hole. Here, they
are calculated within a semi-relativistic pseudopotential
based DFT and Projector Augmented Wave (PAW) re-
construction framework.32 The absorption cross-section
is then calculated in a continued fraction scheme using
Lanczos algorithm.17,18

A. Collinear semi-relativistic self-consistent field
calculation

Self-consistent field calculations in this study are based
on Density Functional Theory (DFT) with a plane-wave
basis set, and pseudopotentials as implemented in Quan-
tum ESPRESSO19 including the spin-orbit coupling
(SOC) term.32 Since an accurate implementation of SOC
plays a crucial role for the evaluation of XMCD spectra,
we briefly describe the underlying approach in the fol-
lowing.

In pseudopotential-based methods the potential near
the nuclei is replaced by a fictitious smooth potential.
The valence electrons wave functions are replaced by
pseudo-wave functions that are exempt from the rapid
oscillations near the core. The size of the plane-waves
basis set needed to describe the system is therefore con-
siderably lowered which leads to a much better compu-
tational efficiency compared to an all-electron approach

making possible an ab initio description of large systems
with thousands of electrons.

In the PAW formalism, as described by Blöchl,41 the
physical valence wave functions |Ψ〉 can be reconstructed

from the pseudo-wave functions |Ψ̃〉 as they are related

through a linear operator T : |Ψ〉 = T |Ψ̃〉 with

T = 11 +
∑
R,n

(|φR,n〉 − |φ̃R,n〉)〈p̃R,n|. (9)

In our case, the set of all-electron partial waves cen-
tered on atomic site R, |φR,n〉, are solutions of the Dirac
equation for the isolated atom within a scalar relativistic
approximation,42 |φ̃R,n〉 are the corresponding pseudo-
partial waves and 〈p̃R,n| form a complete set of projector
functions. The operator T only acts in augmentation
regions enclosing the atoms. Outside the augmentation
regions the all-electron and pseudo-wave functions coin-
cide.

The pseudo-Hamiltonian is given by T †HFWT :32,43

H̃ = Ekin + eṼ loc(r) +
∑
R

eṼ nl
R + H̃SO (10)

where Ekin is the kinetic energy as implemented in
Quantum ESPRESSO and Ṽ loc and Ṽ nl

R are the lo-
cal part and the nonlocal part in separable form of the
pseudopotentials. H̃SO is the pseudo-Hamiltonian corre-
sponding to the time independent spin-orbit term in the
Foldy-Wouthuysen transformed Hamiltonian:43

H̃SO = T †
(

e~
4m2c2

σ · (∇V (r)×p)

)
T (11)

=
e~

4m2c2

(
σ · (∇Ṽ loc(r)×p) +

∑
R

F nl
R

)
.

The F nl
R at the atomic site R are:44

F nl
R =

∑
n,m

|p̃Rn 〉σ · (〈φR,n|∇vR(r)×p|φR,n〉

− 〈φ̃R,n|∇ṽlocR (r)×p|φ̃R,n〉)〈p̃Rm| (12)

where vR and ṽlocR are the atomic all-electron and local
channel pseudopotentials respectively. As these poten-
tials are spherical, F nl

R rewrites:

F nl
R =

∑
n,m

|p̃Rn 〉σ · (〈φR,n|
1

r

∂vR
∂r

L|φR,n〉

− 〈φ̃R,n|
1

r

∂ṽlocR

∂r
L|φ̃R,n〉)〈p̃Rm|. (13)

The local potential Ṽ loc(r) =
∑

R ṽ
loc
R (r) and the quan-

tity 1
r
∂ṽlocR

∂r decreases in 1/r3 so that the action of the

operator Ṽ loc(r)×p in the augmentation region is, at
first order, the same as the action of ∇ṽlocR (r)×p. In the
PAW framework any pseudo-wave function in the aug-
mentation region can be expanded according to |Ψ̃〉 =



4∑
n |φ̃n,R〉〈p̃Rn |Ψ̃〉. Therefore, the term proportional to

ṽlocR and the term proportional to Ṽ loc(r) partially com-
pensate each other so that the dominant contribution
arises from the term:

e~
4m2c2

∑
nRm

σ · |p̃Rn 〉〈φR,n|
1

r

∂vR
∂r

L|φR,m〉〈p̃Rm|. (14)

In this study, we consider collinear spin along z and only
the z Pauli matrix is considered (diagonal spin-orbit cou-
pling approximation):

σ = σzez. (15)

In XMCD experiments a magnetic field is usually applied
parallel to the beam,45 which justifies to consider the
quantization axis parallel to k.

This semi-relativistic approach, that includes spin-
orbit coupling in a two-component approach, is compu-
tationally less expensive than a fully relativistic one. It
has been shown to reproduce the fully relativistic band
structure.32 For heavy atoms, the formula can be gen-

eralized by substituting ∇Ṽ loc and
∂ṽlocR

∂r with reduced

gradients, resulting in a ZORA-type of Hamiltonian.32

In this study, the calculations have been performed us-
ing Troullier-Martins norm-conserving pseudopotentials
and are based on the generalized gradient approximation
(GGA) with PBE functionals.46 The charge density is
evaluated self-consistently in the presence of a core hole
which is described by removing a 1s or 2s electron in
the pseudopotential of the absorbing atom. A large unit
cell (supercell) must be built to minimize the interac-
tions between periodically reproduced core-holes and the
k -points grid can be reduced accordingly.

B. Cross-section calculation

We implemented XMCD and XNCD in the Xspectra
code18 of Quantum ESPRESSO19 distribution. The
first results of this implementation for the terms D-D
and Q-Q can be found in Ref. 47.

In the PAW formalism it has been shown17,18 that the
contribution of the operator O to the absorption cross-
section,

σ(ω) = 4π2α0~ω
∑
f

|〈f |O|i〉|2δ(Ef − Ei − ~ω) (16)

can be rewritten, as the initial wave function is localized
around the absorbing atoms R0,

σ(ω) = 4π2α0~ω
∑
f

|〈f̃ |ϕ̃R0
〉|2δ(Ef − Ei − ~ω) (17)

with

|ϕ̃R0
〉 =

∑
n

|p̃R0
n 〉〈φR0

n |O|i〉. (18)

This sum involves in principle an infinite number of pro-
jectors but experience demonstrated that two or three
linearly independent projectors are in general sufficient
in order to achieve the convergence of the D-D term at
the K -edge in the XANES region.48

The determination of all empty states in Eq. (17)
would require a lot of computing resources and, as a con-
sequence, would limit the size of the manageable super-
cell. To increase the efficiency of the method, the cross
section is evaluated as developed in Ref. 17 and 18 via the
Green’s function using Lanczos algorithm49 which avoids
the heavy workload of a large matrix inversion. The cross
terms D-SP and D-Q are not in the form of Eq. (16) but
they can be determined from two calculations of this type
using the relationship:

=[DB?] =
1

4
(|D + iB|2 − |D − iB|2) (19)

where B is either the electric quadrupole or the spin-
position operator and D is the electric dipole operator.
For the term D-SP within the diagonal spin-orbit cou-
pling approximation, we have checked that this approach
yields the same result as the computational time spar-
ing calculation from the D-D spin-polarized contributions
presented in section V (Eq. (26)).

The calculated spectra are broadened with a
Lorentzian function. Furthermore, the occupied states,
that do not contribute to the absorption cross section,
are cut according to the method described in paragraph
III-B of Ref. 29.

For the selected examples below, the different contri-
butions to the cross sections for left- and right-circularly
polarized light σ(ε2) and σ(ε1) were computed accurately
in order to obtain circular dichroism.

IV. APPLICATIONS

A. Technical details

For LiIO3, the experimental structure is used:50 the
∆ enantiomer of α-LiIO3 belongs to the hexagonal space
group P63 with lattice parameter a = 5.48 Å and c =
5.17 Å. The atomic positions15 are Li 2(a) (0,0,0.076),
I 2(b) (1/3,2/3,0) and O 6(c) (0.247,0.342,0.838). The
Λ enantiomer is the mirror image of the ∆ one (see
Fig. 1) and it belongs to the same space group. A
2×2×2 supercell (80 atoms) is used so that the small-
est distance between a core-hole and its periodic image is
10.344 Å. Gamma-centered k -points grids 3×3×3 for the
self-consistent charge density calculation and 9×9×9 for
the spectra calculation are used. A constant Lorentzian
broadening, with full width at half maximum set to the
core-hole lifetime broadening 3.46 eV,51 is applied. As
XNCD is a structural effect and not a magnetic effect,
the calculation is not spin-polarized.

The XMCD calculations for the 3d ferromagnetic met-
als are carried out by using the following experimental
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FIG. 1: Hexagonal α-LiIO3 unit cell for a) ∆ and b) Λ
enantiomers.15 On bottom: top view of the cells (projection
on (001)).

lattice parameters: a = 2.87 Å for bcc Fe, a = 3.52 Å
for fcc Ni and a = 2.51 Å and c = 4.07 Å for hcp Co.
The number of atoms per supercell is 64 atoms for Fe
and Ni and 96 atoms for Co, so the smallest distance
between the periodically repeated core-holes is 9.84 Å in
Fe, 9.97 Å in Ni and 10.03 Å in Co. A Methfessel-Paxton
cold smearing of 0.14 eV (0.01 Ry) and a centered 2×2×2
k -points grid are used for the self-consistent charge den-
sity calculation. The spectra calculation is performed
with a 6×6×6 grid for Fe and Co and a 8×8×8 grid for
Ni. These calculations are performed with collinear spins
along the easy axis of the crystals, that is to say, [001]
for bcc Fe and hcp Co and [111] for fcc Ni52 and the wave
vector k is set along the same axis.

The spectra are convolved with a Lorentzian broaden-
ing function to simulate the effect of the finite lifetime
of the core-hole (constant in energy) and of the inelas-
tic scattering of the photoelectron (additional energy-
dependent broadening) for which we use the curves pub-
lished by Müller et al.53

Experimental and calculated spectra are normalized
such that the edge jump is equal to 1.

During the calculation of the spectra the origin of en-
ergy is set to the Fermi energy of the material EF . For
the spectra to be compared with experiment, a rigid shift
in energy is applied to the calculated spectra to make the
maxima of the calculated XAS correspond to the maxima
of the experimental spectra. The same shift is applied to
the XMCD spectra. In the plots, the origin of energy
E0 is therefore the one chosen in the publications from
which the experimental spectra are extracted.

B. XNCD at the L1 -edge of I in α-LiIO3

Natural circular dichroism in the inorganic non-
centrosymmetric lithium iodate (LiIO3) crystal have
been measured in 199815 and it has been attributed to
the interference of electric dipole and electric quadrupole

transitions.15,16 Previous calculations15,16,54 were indeed
able to reproduce the overall peak positions and inten-
sities in this framework. The agreement is however not
entirely satisfactory for the absorption spectra. These
discrepancies have been attributed to the use of muffin-
tin potentials.54

The approach presented in this work, that does not rely
on the muffin-tin approximation, was applied to compute
the XAS and XNCD spectra for α-LiIO3. The absorption
is dominated by the electric dipole-electric dipole term
(D-D) as shown in Fig.2 b). The XNCD spectra, on
the other hand, is entirely due to the cross term electric
dipole-electric quadrupole (D-Q).

As illustrated by Fig.2 a), both the calculated XAS and
XNCD spectra at the I L1 -edge are in good agreement
with experiment. However, the amplitude of the calcu-
lated XNCD is 4×10−2 compared to the edge jump while
the amplitude of the experimental spectra from Ref. 15
is 6.5×10−2. Such an underestimation was also observed
in Ref. 16 within a multiple-scattering approach.

From Fig.2 a) bottom, it becomes obvious that the
XNCD spectra for both enantiomers are opposite. In-
deed, it has the same effect for XNCD to change an enan-
tiomer for the other (∆ ↔ Λ) as for XMCD to change
the sign of the magnetic field (B↔ −B).

The angular dependence of the calculated XNCD spec-
tra is depicted in Fig. 2 c) and its amplitude is plotted
in inset as a function of θ, the angle between k and the
c-axis of the crystal. This amplitude varies as 3 cos2 θ−1
so it is maximal in the case k is parallel to the c axis.
This dependence is consistent with the formula derived in
Ref. 16 for point group C6 (point group of the space group
of the crystal). Note that, as ε is kept perpendicular to
k and C6 is a dichroic point group,55 the XAS spectra
also present an angular dependence. It does not prevent
a comparison of the amplitude of the XNCD spectra be-
cause the edge jump remains unchanged.

C. XMCD at the K -edge of 3d transition metals

XMCD was recorded for the first time at the Fe K -edge
in magnetized Fe in 1987.56 Ever since, a large number
of calculations for the electric dipole term of the XMCD
spectra on Fe K -edge in bcc Fe in the XANES region have
been reported, for example in Ref. 23,25–27,29,38,57,58.
Calculations of XMCD at the K -edge in fcc Ni and hcp
Co are fewer26,57,59,60 and are not really conclusive.

These calculations have been performed with various
methods, often within the electric dipole approximation
and with muffin-tin potentials. Here, we present the cal-
culation of the three terms (D-D, Q-Q and D-SP) that are
likely to contribute to the XMCD cross-section at the K -
edge of ferromagnetic 3d transition metals showing the
relevance of the D-SP term.

The contribution of the D-SP term to the absorption
cross-section is not shown here because it is negligible.
On the other hand its contribution to the XMCD spec-
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FIG. 2: a) Comparison of experimental15 and calculated XAS and XNCD spectra at the I L1 -edge in LiIO3 for both enantiomers
with k ‖ c. The XNCD spectra arises from the D-Q term exclusively. Here in the calculation as in the experiment σCD =
σR−σL. b) Calculated contributions to the XAS at the I L1 -edge in LiIO3. The D-Q term was multiplied by 100 and the Q-Q
term by 500. c) Angular dependence of the XNCD at the I L1 -edge in LiIO3. In inset: XNCD amplitude as a function of the
angle following the law 3 cos2 θ − 1 where θ is the angle between c and the incident wave-vector k.

tra (Fig. 3) is significant: it reaches 28% of the D-D
term in amplitude. This can be understood consider-
ing the sum-rules that are made explicit in the next sec-
tion: in the XMCD cross-section, the D-SP term probes
the spin polarization of the p states whereas the D-D
term probes their orbital polarization. In Ref. 59 the
4p orbital magnetic moment in Co, Fe and Ni is evalu-
ated to a few 10−4µB (Fe: 5×10−4µB , Co: 16×10−4µB ,
Ni: 6×10−4µB) and in Ref. 61 the 4p spin magnetic mo-
ment in Fe and Co is evaluated to several 10−2µB (Fe:
5×10−2µB , Co:6×10−2µB) in the opposite direction.
This difference in order of magnitude of both quantities
compensate for the smallness of prefactor (~ω/4mc2) of
the D-SP term (see Table I in appendix).

To check possible numerical problems, we also per-
formed the calculations using the FDMNES code39

where, for this purpose, the D-SP term was introduced
in the same way. This code follows Wood and Boring64

to eliminate the small component and obtain a couple
of Schrödinger-like equations, including the spin-orbit ef-
fect, closely akin but improving the Pauli equation. De-
spite the very different approach (no pseudo-potential,
calculation in real space and no diagonal spin-orbit cou-
pling approximation), we found very similar results for
both the shape and relative amplitude of the D-SP con-
tribution.

The agreement with the experimental spectra is fair
as illustrated Fig. 5. As usual in independent-particle
calculations, the energy axis is slightly compressed65–67
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FIG. 3: Calculated contributions to the K -edge XMCD spec-
tra in the ferromagnetic 3d metals Fe, Co and Ni.

due to the energy dependence of the real part of the self-
energy68 for which corrections to the calculated spectra
could be applied.69 Alternatively, the position of the cal-
culated peaks could be improved by phenomenological
rescaling.65,68

For Fe, the main peaks of the experimental XMCD
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FIG. 4: Total calculated bcc Fe K -edge XMCD spectra with-
out core hole using PBE and LDA functionals (all other tech-
nical parameters identical). Here, the broadening was taken
constant (0.8 eV) along the whole energy range.

are reproduced by the calculation. As in calculations
by others,27 the positive peak at 10 eV is overesti-
mated probably due to the approximate description of
the exchange-correlation energy. Indeed, the comparison
between the spectra calculated with PBE or LDA func-
tionals (Fig. 4) shows that this peak would be even more
enhanced with LDA.

For Ni and Co, a main negative peak is present near the
main rising edge in the calculation as in the experiment
but the satellite peaks that appear in the calculation are
difficult to link to the experiment.

In these calculations, the polarization rate of the light
is taken to be 100 % and a single crystal with full 3d spin
polarization is considered. In Fe, Ni and Co, saturation is
reached with usual experimentally applied magnetic field
and the anisotropy is quite weak so that the rate of cir-
cular polarization of the light Pc is expected to account
for most of the discrepancy in amplitude between the cal-
culated and the experimental XMCD spectra. The data
for Fe and Co were recorded in a 5 T magnet at 5 K and
within a setup that reaches 90 % circular polarization
rate.70 The correction on the amplitude of the calculated
spectra to fit the experimental condition should there-
fore be of order 0.9. Here, it is approximately 0.6 in the
case of Fe and 1.0 in the case of Co. The data for Ni
were recorded at ambient temperature in a 0.7 T magnet
within a dispersive setup with a diamond quarter-wave
plate for which we can infer that Pc ≈ 0.7.71 However,
no correction on the amplitude of the calculated spectra
is needed to make it correspond to the amplitude of the
experimental spectra. So, whereas our calculation over-
estimates the amplitude of the XMCD spectra in the case
of Fe, it underestimates it in the case of Ni.

V. CONTRIBUTION OF THE D-SP TERM TO
XMCD: THE CASE OF COLLINEAR SPINS

A. The SP operator

In this section, we study the spin-position operator
SP (ε) = σ · (ε × r). We consider collinear spins along

z with independent spin channels. The spin part of the

wave functions |s〉 can either be the spin up spinor

(
1
0

)
,

or the spin down spinor

(
0
1

)
.

The D-SP term is the cross term between the electric
dipole and the spin-position operator. Spin does not ap-
pear in the electric dipole operator, so it is diagonal in
spin:

〈φis|ε? · r|φfs′〉 = 〈φi|ε? · r|φf 〉δss′ . (20)

This imposes s′ = s. On the other hand, the vector of
Pauli matrices σ appears explicitly in the Spin-Position
operator:

〈φis|σ · (ε× r)|φfs〉 = 〈φi|(ε× r)|φf 〉 · 〈s|σ|s〉 (21)

As 〈s|σx|s〉 = 〈s|σy|s〉 = 0, we can exclude a priori the
terms that are proportional to σx and σy in the Spin-
Position operator. In that case the spin position operator
rewrites:

SPcol(ε) = σz(εxy − εyx) (22)

= σz
4iπ

3
r(Y −11 (ε)Y 1

1 (ur)− Y 1
1 (ε)Y −11 (ur)).

Its selection rules are almost the same as for the electric
dipole72 one: ∆l = ±1, ∆m = ±1.

As Y −11 (ε1) = 0, Y −11 (ε2) =
√

3/4π, Y 0
1 (ε1) =

Y 0
1 (ε2) = 0, Y 1

1 (ε1) = −
√

3/4π and Y 1
1 (ε2) = 0,

SPcol(ε1) = i

√
4π

3
rY −11 (ur)σz = σziε1.r (23)

SPcol(ε2) = i

√
4π

3
rY 1

1 (ur)σz = −σziε2.r. (24)

Hence,

σD−SP(ε1) = − ~ω
2mc2

(σ↑D−D(ε1)− σ↓D−D(ε1)) (25)

σD−SP(ε2) =
~ω

2mc2
(σ↑D−D(ε2)− σ↓D−D(ε2)) (26)

with

σsD−D(ε) = 4π2α0~ω∑
f

|〈fs|ε · r|is〉|2δ(Ef − Ei − ~ω) (27)

where s =↑ or ↓. Therefore, in the diagonal spin-orbit
coupling collinear spins case, the D-SP term can be com-
puted from the D-D cross section for the up and down
spin channels.

B. Sum-rule at K -edge

A sum-rule is a formula in which the integral of the
circular dichroism spectra due to a given term of the
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FIG. 5: Comparison between the experimental XAS and XMCD spectra for Fe, Co62,63 and Ni60 and the total calculated
spectra. The wave vector and the magnetization axis were set to the easy axis of the crystals, that is to say, [001] for bcc Fe
and hcp Co and [111] for fcc Ni.52

cross-section is expressed as a function of ground state
expectation value of some operator. The sum-rules at
L2 ,3 -edges are well established61,73 and are widely used
to extract quantitative magnetic ground state proper-
ties. Their derivation is based on several approximations
among which the fact that the radial integrals are spin
and energy independent.74 At K -edge the sum-rule for
the electric dipole-electric dipole term3,4,59,75 relates the
integral of the XMCD spectra to the orbital magnetic mo-
ment of occupied p states that is proportional to <Lz>p.
This sum rule is however almost impossible to apply in
practice because the upper limit of the integral is not
well defined and, in the case of 3d transition elements,
the 4p states are almost unoccupied so <Lz>p is very

small and has a minor impact on the magnetic moment
of the material. Deriving a similar sum-rule for the D-
SP term is nevertheless very useful to understand why,
despite its very small prefactor, this term is so large in
XMCD. We derive it following the method of Thole et
al.2,4 with many body wave functions and operators as-
suming all spins collinear and within the diagonal spin-
orbit coupling approximation.

In a many body framework, using the expression for
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SP in terms of spherical harmonics Eq (22):

σD−SP(ε) =
2π2~2α0ω

2

mc2

1∑
ν=−1

<[Y −ν1 (ε?)(
Y 1
1 (ε)ζ1νD−SP − Y −11 (ε)ζ−1νD−SP

)
] (28)

with

ζλνD−SP = (−1)ν
(

4π

3

)2∑
f

〈f |
∑
i

(σziriY
λ
1 (uri))

?|g〉

〈g|
∑
i

riY
ν
1 (uri)|f〉δ(Ef − Eg − ~ω). (29)

In a second quantized form with l,m and σ the usual
quantum numbers:16

〈g|
∑
i

riY
λ
1 (uri)|f〉 =

∑
lmσl0m0σ′

0

√
3(2l + 1)

4π(2l0 + 1)

(10l0|l00)(1λlm|l0m0)〈g|a†l0m0σ
almσ|f〉Dl0,l (30)

where Dl0,l =
∫

dr r3R?l0(r)Rl(r) is assumed - as usual
in sum-rules derivations - to be spin-independent. The
experimental procedure enables to obtain the signal cor-
responding to a specific l0. At K -edge l0 = 0 and m0 = 0
so that,

〈g|
∑
i

riY
ν
1 (uri)|f〉 =

√
1

4π

∑
σ

(−1)ν〈g|a†00σal−νσ|f〉D

(31)
where D = D0,1.
Similarly, as 〈σ′0|σz|σ′〉 = σ′δσ′

0,σ
′

〈g|
∑
i

riY
λ
1 (uri)σzi|f〉 =

∑
σ′

σ′(−1)λ〈g|a†00σ′al−λσ′ |f〉D.

(32)
Using the completeness relation

∫
dE

∑
f |f〉〈f |δ(Ef−

Eg−E) = 11−|g〉〈g|, as the core shell is full and under the
assumption that the radial integral D does not depend
on energy:∫

dE ζλνD−SP =

4π

9

∑
σ

(−1)λσ〈g|a1−νσa†1−λσ|g〉|D|
2. (33)

The combination of Eq. (33) and Eq. (28) leads to:∫
d~ω

σD−SP(ε2
1
)

(~ω)2
=

±2π2α0

3mc2
|D|2〈g|a1±1↑a†1±1↑ − a1±1↓a

†
1±1↓|g〉 (34)

The difference between the two integrals yields the
XMCD sum rule for the D-SP term:∫

d~ω
σXMCD
D−SP
(~ω)2

= −2π2α0

3mc2
〈Sz1,−1l=1 〉|D|

2, (35)

with the operator

Sz1,−1l=1 =
∑

m=−1,1
a†1m↓a1m↓ − a

†
1m↑a1m↑ (36)

corresponding to a partial spin polarization of the occu-
pied p states.

0 2 0 4 0
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FIG. 6: Comparison between the calculated D-SP spectra
without a core hole for Fe,Co and Ni and the calculated pro-
jected densities Sz1,−1

l=1 (E). Sz1,−1
l=1 (E) has been multiplied

by the factor between the p density of states and the dipole
XAS spectra times R = ~ω

2mc2
in accordance with the sum-rule

Eq. (35).

If one considers the derivative of this sum-rule, we
see that the electric dipole - spin position (D-SP) cir-
cular dichroism signal probes the spin polarization of the
empty p states. Fig. 6 illustrates the correspondence
between both quantities. This proves the validity of the
D-SP sum-rule. Unfortunately, this sum rule can not be
applied directly on experimental spectra, mainly because
of the superposition of the D-D contribution to the D-SP
contribution.

VI. CONCLUSION

We have developed an efficient computational ap-
proach to determine accurate XMCD and XNCD spectra.

The main result is that the contribution from the rela-
tivistic term D-SP in the transition operator is significant
in XMCD spectra despite being negligible in XAS. This
importance is explained by the fact that this term probes
the spin of the p states that is two orders of magnitude
larger than its orbital counterpart.
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For XNCD, the calculated spectra are in good agree-
ment with experiment and the angular dependence cor-
responds to the expected one.

A big advantage of the method employed in this paper
to perform XMCD and XNCD calculations is its wide
adaptability that opens opportunities for applications
to several kinds of systems such as strongly-correlated
materials or molecules absorbed on functionalized sur-
faces. The same method could be apply to compute X-
ray magneto-chiral dichroism (XMχD) that has been ob-
served in magnetized chiral systems14. The features of
XMχD differ from the one of XMCD and XNCD making
it a promising probe of the interplay between chirality
and magnetism.
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Appendix: Semi-relativistic transformation of the
relativistic cross section

We start from the expression for the cross section in a
relativistic framework33 and we adapt it to the specific
need of our numerical method that is the determination
of large components of the Dirac wave function for the
core state and of Foldy-Wouthuysen (FW) wave functions
for the valence states.

1. Relativistic cross section

The contribution to the X-ray absorption (XAS) cross
section from a given four-components Dirac core-state
|Ψi〉 of energy Ei is given by:33

σ(~ω) = 4π2α0~ω
∑
f

|〈Ψf |TD|Ψi〉|2δ(Ef − Ei − ~ω)

(A.1)
where the sum runs over unoccupied final states |Ψf 〉
with energy Ef , α0 is the fine structure constant and TD
is the transition operator defined as:

TD = ε · r +
i

2
ε · r k · r− ~c

2ω
(ε× k) · (r×α) (A.2)

where the polarization vector ε, the wave vector k and the
energy ~ω describe the incident electromagnetic wave, r
is the position operator and α = (αx, αy, αz) is the vector
of Dirac matrices.

Here, as in our numerical calculations, a one-electron
scheme is used. In a many-body framework the formula
for the cross-section would be the same but with N-
electrons wave functions and many-body operators that
write as sums over electrons.

In Ref. 33, the transformation into a two-component
representation for |Ψi〉 and |Ψf 〉 was performed by apply-
ing a time-independent Foldy-Wouthuysen transforma-
tion (FW) at order c−2. The FW transformation of Ψl is
obtained by applying a unitary operator: ψFW

l = UFWΨl

with,76

UFW = 1 +
β

2mc2
O − 1

8m2c4
O2 (A.3)

where β the standard Dirac matrix. In this expression,
O is the odd operator entering the Dirac Hamiltonian:
HD = βmc2 + O + E where E is even. It is defined as
O = cα · (p − eA0) where p is the momentum operator
and A0 is the static vector potential.

Only the large components of ψFW
l , denoted φFWl , are

non zero up to order c−2. The cross-section can be writ-
ten as a function of the large components of ψFW

i and
ψFW
f :33

σ = 4π2α0~ω
∑
f

|〈φFWf |TFW|φFWi 〉|2δ(Ef − Ei − ~ω)

(A.4)

The operator TFW is the projection on upper components

of UFWTDU
†
FW:

TFW = TD + TQ + TMD + Ta0 + TSP (A.5)

where

TD = ε · r (A.6)

and

TQ =
i

2
ε · r k · r (A.7)

are the standard electric dipole and electric quadrupole
operators.

The magnetic dipole operator TMD writes:

TMD =
1

2mω
(k× ε) · (~σ + L) (A.8)

where L = r × p and σ is the vector of Pauli matrices.
It is proportional to the total magnetic moment operator
(~σ+L) = (2S+L) where S is the spin operator. TMD is
also present in common non-relativistic derivations.55,77

Its selection rules are li = lf and ni = nf ,55 so it vanishes
in the X-ray energy range because the states involved in
the transition have different principal quantum numbers.
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The correction to this term due to the static vector
potential A0 is:

TA0
= − e

2mω
(k× ε) · (r×A0). (A.9)

The last term in Eq. (A.5) is only present when rela-
tivistic effects are included in the calculation of the tran-
sition operator:

TSP = − ~
4m2c2

(p− eA0) · (ε× σ). (A.10)

A similar term was already found in Ref. 47, but de-
rived from a semi-relativistic Hamiltonian and this ap-
proach presents a conflict with time-dependent pertur-
bation theory.33 It can be rewritten noticing that, in the
non-relativistic limit, |φFWi 〉 and |φFWf 〉 are eigenstates
of:

H0
0 =

(p− eA0)2

2m
+ eV (r)− e~

2m
σ ·B0. (A.11)

where B0 is the static external magnetic field. This
Hamiltonian obeys p− eA0 = (m/i~)[r, H0

0 ] so that,

− ~
4m2c2

〈φFWf |(p− eA0) · (ε× σ)|φFWi 〉

=
i

4mc2
(Ei − Ef )〈φFWf |r · (ε× σ)|φFWi 〉

=
i~ω

4mc2
〈φFWf |(ε× r) ·σ|φFWi 〉.

We name σ · (ε×r), the spin-position operator and define
the associated transition operator:

TSP =
i~ω

4mc2
σ · (ε× r). (A.12)

For technical reasons, in the present paper we consider
a different situation than in Ref. 33: we use FW wave
function for the final states and large components of the
Dirac wave function for the initial (core) state. This dif-
ference in treatment is linked to the fact that the core
wave function is determined from a relativistic atomic
code whereas the unocupied states are calculated with a
semi-relativistic condensed-matter code.

2. Rewriting the cross section with large
components of the Dirac wave function for the core

state

We note φi and χi the large and small components of
Ψi. The order of magnitude of the ratio between small
and large components is v/c where v is the velocity of
the particle.78 Up to order c−1, the small component
writes:78,79

χi =
1

2mc
σ · (p− eA0)φi. (A.13)

Only the second term in UFW Eq. (A.3) couples the
small and the large components. From Eq. (A.13) and
(A.3), the large component of the FW transformed wave
function can be expressed as a function of the large com-
ponents of the Dirac wave function up to order c−2,

φFWi = (1− 1

8m2c4
[O2]p)φi +

1

4mc3
Opσ · (p− eA0)φi.

(A.14)
[O2]p is the projection of O2 on large components:78

[O2]p = c2(p− eA0)2 − c2e~σ.B0

= 2mc2(H0
0 − eV (r))

and Op = cσ.(p − eA0) is the projection of βO on the
upper right components.

The identity cOpσ · (p− eA0) = [O2]p leads to:

φFWi = (1 +
1

8m2c4
[O2]p)φi. (A.15)

From this relation, the cross section of Eq. (A.4) can be
adapted to the case that we consider here.

In Ref. 33 the expansion was made to order 1/c2 for
the dipole contribution and to order kr for multipole con-
tributions. At the same order,

σ = 4π2α0~ω
∑
f

|〈φFWf |T ′FW|φi〉|2δ(Ef − Ei − ~ω)

(A.16)

where T ′FW is:

T ′FW = TFW(1 +
1

8m2c4
[O2]p)

= TFW + T e.

There is one extra terms in the cross section compared to
TFW that is related to the use of large components of the
Dirac wave function instead of Foldy-Wouthuysen wave
function for the core state:

T e =
1

2mc2
(
ε · r H0

0 − eε · r V (r)
)
. (A.17)

We show in the next subsection that it is negligible for
the core states considered in this work.

As the magnetic dipole term is negligible in the X-ray
range, TFW thus contains four operators (see Eq. (A.5)
and the subsequent comments) so T ′FW writes,

T ′FW = TD + TQ + Ta0 + TSP + T e. (A.18)

3. Order of magnitude of the operators

As the core wave function is very localized, we obtain
an idea of the relative order of magnitude of the oper-
ators in Eq. (A.18) by evaluating them at the radius
corresponding to the core state. In Table I these evalua-
tions are given compared to the electric dipole operator.
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Edge
L1 L2 K

I Fe Gd Bi O Fe

Energy (keV) 5.19 0.72 7.898 15.71 0.53 7.11

Zeff 39.067 22.089 29.8527 39.2335 7.6579 25.381

TQ (A.7) krc/2 2.7×10−2 6.6×10−3 5.3×10−2 8.1×10−2 1.4×10−2 5.7×10−2

TSP (A.12) ~ω/4mc2 2.6×10−3 3.5×10−4 3.9×10−3 7.7×10−3 2.6×10−4 3.5×10−3

TA0 (A.9) ekrcB0/4mω 6.0×10−6 1.1×10−5 7.8×10−6 6.0×10−6 3.0×10−5 9.2×10−6

T e (A.17) (Ei − eV )/2mc2 1.3×10−2 4.3×10−3 7.9×10−3 1.3×10−2 5.2×10−4 5.7×10−3

TABLE I: Order of magnitude of the operators in Eq. (A.18) evaluated at the core state radius rc compared to the electric
dipole operator. The mean radius of core orbitals is deduced from the effective nuclear charge: rc = 3

2
a0
Zeff

.80,81 B0 has been

fixed to 2×104 T (1.2eV) which is two order of magnitude larger than the exchange splitting observed for Fe K -edge. The

Coulomb potential is V = −Zeffe
4πε0rc

and the core state energy Ei is evaluated in a planetary model Ei = −Zeffe
2

8πε0rc
.

When expanding the square modulus of the matrix el-
ements in Eq. (A.16), we keep the terms with contribu-
tions higher than 10−3 compared to the dominant electric
dipole term. We also neglect the term T e: as V (r) is al-
most spherical at the core state radius, it concerns tran-
sitions to the same orbitals as the electric dipole term. It

does not contain a spin operator so that, even in XMCD,
it only yields a negligible correction to the electric dipole
contribution. Therefore, we are left with the four sig-
nificant terms D-D, Q-Q, D-Q and D-SP discussed in
section II.
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