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Abstract

This article addresses the issue of designing bases for L2(R2) that are generated by translations,
rotations and dilations of a single mother wavelet ψ. We show how this construction can be simplified
by setting an odd number of directions and by choosing properly the phase of the Fourier transform
of ψ. A large part of the article is devoted to the proof of theorems that give sufficient conditions
for ψ to generate a Riesz sequence and a Riesz basis for L2(R2). An example of Riesz sequence
whose restriction to each scale is orthonormal is set. Theoretical results are confirmed by numerical
experiments where a discrete directional wavelet transform is introduced.

1 Introduction

For more than two decades, the wavelet transform has been acknowledged as a very powerful tool in image

processing. It is still widely used in many areas such as restoration and classification, but its efficiency

is especially renowned for its applications in image compression through JPEG2000 [19], ICER [17] and

CCSDS [6] standards.

As wavelets were originally designed for 1D signals, they have been extended to 2D images via tensor

product. Since then, many transforms have been introduced as alternatives to the separable wavelet

transform in order to represent more efficiently directional structures. The most famous examples include

hexagonal wavelets [28, 8], steerable pyramids [29], directional wavelets [1], dual-tree complex wavelets [20,

27], ridgelets [4], curvelets [5, 3], contourlets [9], shearlets [14], wavelets with composite dilations [15, 16]

and related constructions such that Haar-type wavelets [18] or crystallographic wavelets [2, 21, 22]. All

these transforms amount to express the image in a frame. But, except for orthonormal ridgelets [10] that

are designed for images with straight edges, up to now only transforms which rely on a filterbank tree

are known to be possibly non-redundant and can therefore be used in compression [30, 26, 11, 15, 16,

18, 12, 13, 2, 31, 22]. Filterbanks have well known digital advantages, but suffer the drawback that the

decimation generates aliasing on the bases functions as it is shown in Figure 1-(a) that is extracted from

[13], and it produces therefore artifacts on the compressed image. Thus, the design of directional bases

that have all the required properties remains an open problem.

Notice that we did not mention adaptive multiscale transforms such as bandlets [23]. The second

generation bandlets are non-redundant [24], but the separable wavelet basis used in their design could be

replaced by any directional wavelet basis in order to get better approximations.

In this article, we focus on Antoine and Murenzi’s directional wavelets [1, 25]. This sequence stands

out from most of the other examples quoted above thanks to the simplicity of its construction. It is

generated by a single wavelet ψ in the Schwartz space S(R2) to which a composition of translations,
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Figure 1: (a) Directional wavelets generated by a filterbank tree are aliased [13]. (b) The proposed
directional wavelet basis has an odd number N of directions, and is invariant under rotation of angle 2π

N .

dilations and rotations is applied. Denote by R the rotation, by Γ the regular lattice along which the

wavelet is shifted, by Γ∗ its dual lattice and put ψj,k,γ = 2jψ(2jRk · −γ). It is well known that if the

function
∑

j∈Z

∑
k∈{0,···,N−1} |ψ̂(2

jRk·)|2 is positive and if supp ψ̂(·) ∩ supp ψ̂(· − γ) = ∅, for all γ ∈ Γ∗,

then (ψj,k,γ)j∈Z,k∈{0,···,N−1},γ∈Γ is a frame for L2(R2).

It is generally believed that one cannot obtain bases for L2(R2) with this approach. This article aims

to contradict this idea. More precisely, we show that, if the number of rotations N is odd, the phase of

the Fourier transform ψ̂ is well chosen and ψ̂ satisfies some specific inequalities, then the lattice Γ can be

changed into a larger one so that (ψj,k,γ)(j,k,γ)∈Z×{0,···,N−1}×Γ becomes surprisingly a Riesz sequence or

possibly a Riesz basis for L2(R2).

2 Notations and preliminaries

2.1 Notations

All along this article, we will use the following notations.

• µ = (2π, 0), ν =
(
π, 3π tan

(
π
2N

))
and η =

(
π, π tan

(
π
2N

))
—see Figure 2.

• Γ = Z

(
1, −1

3 tan(π/2N)

)
+ Z

(
0, 2

3 tan(π/2N)

)
.

• The dual lattice of Γ is therefore

Γ∗ = {γ ∈ R
2 : γ · λ ∈ 2πZ, ∀λ ∈ Γ} = Zµ+ Zν.

• For all ξ = (ξ1, ξ2) ∈ R2, we denote by ξ̃ = (−ξ1, ξ2) its symmetrical point with respect to the

ordinate axis.

• R is the rotation of angle (N−1)π
N about 0. Observe that Rη = η̃.

• I =
{
ξ = (ξ1, ξ2) ∈ R2 : ξ1 ∈ [−2π,−π] ∪ [π, 2π] and |ξ2| ≤ |ξ1| tan

(
π
2N

)}
—see Figure 2. Notice

that (I + {γ})γ∈Γ∗ and (2jRkI)j∈Z,k∈{0,···,N−1} form tilings of R2.

• Denote by L the Lebesgue measure. For example, we have L(I) = 6π2 tan
(

π
2N

)
.

2



0

ν

µ

I

I

η̃ η

Figure 2: The set I represents the ideal frequency support of the wavelet ψ. The vectors µ and ν generates
a lattice Γ∗ such that (I + {γ})γ∈Γ∗ forms a tiling of R2.

• The complex conjugate of any z ∈ C is denoted by z̄.

• Denote by S(R2), the Schwartz space or, in other words, the space of functions all of whose deriva-

tives are rapidly decreasing.

• The Fourier transform F is defined by

F(f)(ξ) = f̂(ξ) =

∫

R2

f(x)e−ix·ξdξ, ∀ξ ∈ R
2, ∀f ∈ L1(R2),

and is extended to L2(R2) by continuity.

• ψj,kγ = 2jψ(2jRk · −γ), ∀j ∈ Z, ∀k ∈ Z

NZ
, ∀γ ∈ Γ.

• We denote by 1IA the indicator function of any set A ∈ R2, and by ψ̂a = ψ̂ 1I{ξ1≥0} and ψ̂aa =

ψ̂ 1I{ξ1≤0} the Fourier transforms of the generalized analytic and anti-analytic parts of ψ ∈ S(R2).

• For all f, g ∈ L2(R2), we denote by 〈f, g〉 =
∫
R2 f(x)g(x)dx, the scalar product on L2(R2).

2.2 Shannon directional wavelets

The Shannon directional wavelet basis is generated by a single wavelet ψ = 2π(L(I))−
1
2F−1(1II)—see

above for notations. Let R be any rotation about 0 such that (2jRkI)j∈Z,k∈{0,···,N−1} forms a tiling of

R2. It is natural to choose hitherto π
N as the angle of rotation, but for reasons that will make clear later,

we will use afterwards a rotation of angle (N−1)π
N .

We can show easily that (ψj,k,γ)j∈Z,k∈{0,···,N−1},γ∈Γ is an orthonormal basis for L2(R2). Observe

indeed that we have

F(ψ0,0,γ)(ξ) = F(ψ( · − γ))(ξ) = ψ̂(ξ)e−iγ·ξ =
2π

(L(I))
1
2

1II(ξ)e
−iγ·ξ, ∀γ ∈ Γ, ξ ∈ R

2,

where (ξ 7→ (L(I))−
1
2 e−iγ·ξ)γ∈Γ is an orthonormal basis for L2

(
R

2

Γ∗

)
or equivalently for L2(I), since

(I + {γ})γ∈Γ∗ is a tiling of R2. By Plancherel’s theorem, (ψ0,0,γ)γ∈Γ is therefore an orthonormal basis

for W s
0,0 = {f ∈ L2(R2) : supp f̂ ⊂ I}. We show the same way that, for all j ∈ Z and k ∈ {0, · · · , N − 1},

(ψj,k,γ)γ∈Γ is an orthonormal basis for

W s
j,k =

{
f ∈ L2(R2) : supp f̂ ⊂ 2−jRkI

}
.
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Then, we conclude by using the identity

L2(R2) =
⊕

j∈Z,k∈{0,···,N−1}

W s
j,k,

which comes from the fact that (2jRkI)j∈Z,k∈{0,···,N−1} is a tiling of R2.

The reader is referred to [12] and the wavelets with composite dilations [15, 16] for more examples

of Shannon wavelets. Shannon directional wavelets are of limited use since they have slow decay. It is

therefore natural to raise the issue of designing an approximation of this sequence that keeps the structure

of a basis, but which elements have fast decay.

2.3 Riesz basis and frame

As directional wavelets with fast decay and sharp frequency localization cannot form an orthonormal

basis [13], we focus on a Riesz basis. Let K be a countable set. A sequence (ψk)k∈K in L2(R2) is said to

be a Riesz sequence if and only if there exists a constant C ≥ 1 such that

1

C

∑

k∈K

|ak|
2 ≤

∫

R2

∣∣∣∣∣
∑

k∈K

akψk(x)

∣∣∣∣∣

2

dx ≤ C
∑

k∈K

|ak|
2, ∀a ∈ ℓ2(K).

It is said to be a Riesz basis for L2(R2) if and only if it is a Riesz sequence and a global sequence for

L2(R2). In other words, we have also

closure (span{ψk : k ∈ K}) = L2(R2).

The sequence (ψk)k∈K is said to be a frame for L2(R2) if and only there exists a constant C ≥ 1 such

that
1

C

∑

k∈K

|〈f, ψk〉|
2 ≤

∫

R2

|f(x)|2 dx ≤ C
∑

k∈K

|〈f, ψk〉|
2, ∀f ∈ L2(R2).

3 Main results

3.1 Introductory example

Before setting the main results, let us consider a specific example of directional wavelet. For τ > 0, let

Hτ be a smooth approximation of the Heaviside function such that

H2
τ (t) +H2

τ (−t) = 1, ∀t ∈ R. (1)

By smooth approximation, we mean that Hτ is a C∞ and [0, 1]-valued function such that Hτ (t) = 0, if

t ≤ −τ , and 1, if t ≥ τ—such a function is used in the design of Meyer wavelet. Thus, for a small τ > 0,

the smooth function Vτ given by

Vτ (ξ) = Hτ

(
ξ1 sin

( π

2N

)
− ξ2 cos

( π

2N

))
Hτ

(
ξ1 sin

( π

2N

)
+ ξ2 cos

( π

2N

))

+Hτ

(
−ξ1 sin

( π

2N

)
+ ξ2 cos

( π

2N

))
Hτ

(
−ξ1 sin

( π

2N

)
− ξ2 cos

( π

2N

))

is drawn near to the indicator function of the set
{
ξ ∈ R2 : |ξ2| ≤ |ξ1| tan

(
π
2N

)}
, and for a small δ > 0,

the function Hδ(| · | − π)Hδ(2π − | · |) is close to the indicator function of [−2π,−π] ∪ [π, 2π]. Define

therefore the wavelet ψ as the inverse Fourier transform of ψ̂ given by

ψ̂(ξ) = e
iξ1
2

2π

L(I)
1
2

Hδ(|ξ1| − π)Hδ(2π − |ξ1|)Vτ (ξ), ∀ξ ∈ R
2. (2)
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When δ and τ tend to 0, ψ̂ tends to
(
ξ 7→ e

iξ1
2 2πL(I)−

1
2 1II(ξ)

)
, in the sense of the L2 norm. The function

ψ tends therefore to the Shannon wavelet that has been translated by
(
1
2 , 0

)
. We will make clearer the

meaning of this translation—i.e. the term e
iξ1
2 —later on.

On the other hand, this wavelet ψ has been design in order to satisfy the following lemma

Lemma 1 Let ψ be as in (2) and R denote the rotation of angle (N−1)π
N . For all δ ∈

(
0, π2

]
, τ ∈(

0, (π − δ) sin
(

π
2N

)]
and ξ ∈ R2, we have

(i)
∑

γ∈Γ∗

∣∣∣ψ̂(ξ − γ)
∣∣∣
2

=
(2π)2

L(I)
,

(ii)
∣∣∣ψ̂a(R(ξ − 3η)) ψ̂aa(ξ − 3η)

∣∣∣ =
∣∣∣ψ̂aa(Rξ) ψ̂a(ξ)

∣∣∣ ,

where ψ̂a = 1I{ξ1>0}ψ̂ and ψ̂aa = 1I{ξ1<0}ψ̂.

Identity (i) allows to show that, for all j ∈ Z and k ∈ {0, · · · , N − 1}, the sequence (ψj,k,γ)γ∈Γ is

orthonormal. Indeed, by Plancherel formula, we know that, for all α and β ∈ Γ,

〈ψ0,0,α, ψ0,0,β〉 = 〈ψ(· − α), ψ(· − β)〉 =
1

(2π)2
〈F(ψ(· − α)),F(ψ(· − β))〉,

where F(ψ(· − α))(ξ) = ψ̂(ξ)e−iα·ξ, ∀ξ ∈ R2. The scalar product can therefore be expressed as

〈ψ0,0,α, ψ0,0,β〉 =
1

(2π)2

∫

R2

∣∣∣ψ̂(ξ)
∣∣∣
2

ei(β−α)·ξdξ =
1

(2π)2

∑

γ∈Γ∗

∫

I

∣∣∣ψ̂(ξ − γ)
∣∣∣
2

ei(β−α)·(ξ−γ)dξ,

because (I + {γ})γ∈Γ∗ is a tilling of R2. Since ei(β−α)·γ = 1, for all γ ∈ Γ∗, and ψ̂ satisfies (i), we infer

that

〈ψ0,0,α, ψ0,0,β〉 =
1

(2π)2

∫

R2

Γ∗

∑

γ∈Γ∗

∣∣∣ψ̂(ξ − γ)
∣∣∣
2

ei(β−α)·ξdξ =
1

L(I)

∫

R2

Γ∗

ei(β−α)·ξdξ =

{
1, if α = β,
0, otherwise.

Thus, using changes of variables, we show that, for all j ∈ Z and k ∈ {0, · · · , N − 1}, (ψj,k,γ)γ∈Γ is an

orthonormal basis for the space Wj,k := closure(span(ψj,k,γ)γ∈Γ).

¿From now on, suppose that the number of directions N is odd. In such a case, we have N× (N−1)π
N ∈

2πZ and RN is no more than the identity map. The rotation number k can therefore be indexed now in
Z

NZ
and we can show, by change of variables, that the product 〈ψ0,k+1,α, ψ0,k,β〉 does not depends on k

in this set.

Hence, consider 〈ψ0,1,α, ψ0,0,β〉. By the same arguments as above, we show that

〈ψ0,1,α, ψ0,0,β〉 =
1

(2π)2

∫

R2

ψ̂(Rξ)ψ̂(ξ)ei(β·ξ−α·Rξ)dξ

Observe that the product of the two Fourier transforms can be developed as ψ̂(Rξ)ψ̂(ξ) = ψ̂aa(Rξ)ψ̂a(ξ)+

ψ̂a(Rξ)ψ̂aa(ξ). The scalar product becomes therefore

〈ψ0,1,α, ψ0,0,β〉 =
1

(2π)2

∫

R2

ψ̂aa(Rξ)ψ̂a(ξ)e
i(β·ξ−α·Rξ)dξ +

1

(2π)2

∫

R2

ψ̂a(Rξ)ψ̂aa(ξ)e
i(β·ξ−α·Rξ)dξ.

Since 3η = (3π, 3π tan π
2N ) = ν + µ ∈ Γ∗ and R(3η) = 3η̃ = (−3π, 3π tan π

2N ) = ν − 2µ ∈ Γ∗, we have

ei(β·(3η)−α·R(3η)) = 1, and if we change the variable ξ into ξ − 3η, in the second integral, we obtain

〈ψ0,1,α, ψ0,0,β〉 =
1

(2π)2

∫

R2

(
ψ̂aa(Rξ)ψ̂a(ξ) + ψ̂a(R(ξ − 3η))ψ̂aa(ξ − 3η)

)
ei(β·ξ−α·Rξ)dξ.
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Notice next that (Rη)1 − η1 = η̃1 − η1 = −π. Hence, ei
3(Rη)1

2 e−i
3η1
2 = e−i 3π2 = −1 and

ψ̂a(R(ξ − 3η))ψ̂aa(ξ − 3η) = ei
(Rξ)1−3(Rη)1

2 e−i
ξ1−3η1

2

∣∣∣ψ̂a(R(ξ − 3η))ψ̂aa(ξ − 3η)
∣∣∣

= −ei
(Rξ)1

2 e−i
ξ1
2

∣∣∣ψ̂a(R(ξ − 3η))ψ̂aa(ξ − 3η)
∣∣∣

= −ψ̂aa(Rξ)ψ̂a(ξ)

thanks to (ii). We deduce that 〈ψ0,1,α, ψ0,0,β〉 = 0, ∀α, β ∈ Γ. By symmetry, we have also 〈ψ0,−1,α, ψ0,0,β〉 =

0. As ψ̂ and ψ̂(Rk·) have disjoint supports whenever {−1, 0, 1} ∩ k = ∅, we know therefore that

〈ψ0,k,α, ψ0,0,β〉 = 0, ∀k ∈ Z
2

NZ2 \ NZ2. By changes of variables, we obtain also 〈ψj,k,α, ψj,l,β〉 = 0,

∀j ∈ Z, whenever k 6= l and we have proven the following proposition.

Proposition 1 If N is an odd number, R is the rotation of angle (N−1)π
N and ψ is as in (2) with δ ∈

(
0, π2

]

and τ ∈
(
0, (π − δ) sin

(
π
2N

)]
, then, for all j ∈ Z, (ψj,k,γ)k∈ R2

Γ∗ ,γ∈Γ
is an orthonormal basis for the space

Wj :=
⊕

k∈ Z

NZ

Wj,k.

The spacesWj andWj+1 cannot be orthogonal or, in other words, the whole sequence (ψj,k,γ)j∈Z,k∈ R2

Γ∗ ,γ∈Γ∗

cannot be orthogonal—see [13]. Using similar arguments as above, we can easily show that, for all

k ∈ R
2

Γ∗
, the angle between the spaces Wj,k and Wj+1,k is sufficiently large so that (ψj,k,γ)j∈Z,γ∈Γ is a

Riesz sequence. One of the questions that motivate this article is to know whether the whole sequence

(ψj,k,γ)j∈Z,k∈ R2

Γ∗ ,γ∈Γ∗
can be a Riesz sequence or a Riesz basis for L2(R2). We will study this sequence

for a more general choice of wavelet ψ.

3.2 Sufficient conditions for a Riesz sequence

As a first step, we give sufficient conditions on a wavelet ψ ∈ S(R2) for its dilated, rotated and translated

versions to generate a Riesz sequence. Conditions for a Riesz basis for L2(R2) are considered in the next

section.

Let us make the following hypotheses.

H1 The number of directions N is odd and R is a rotation of angle (N−1)π
N about 0.

H2 We have ψ̂(ξ) = e
iξ1
2

∣∣∣ψ̂(ξ)
∣∣∣, ∀ξ ∈ R2.

H3 We have supp ψ̂ ∩ supp ψ̂(2jRk·) = ∅, whenever |j| > 1 or k /∈ {−1, 0, 1} + NZ, and we have∣∣∣ψ̂(ξ)
∣∣∣ =

∣∣∣ψ̂(−ξ)
∣∣∣ =

∣∣∣ψ̂
(
ξ̃
)∣∣∣, ∀ξ ∈ R2.

H4 We have

Ψ1(ξ) + Ψ2(ξ) + Ψ3(ξ) < Ψ4(ξ) +
∑

γ∈Γ∗

∣∣∣ψ̂(ξ + γ)
∣∣∣
2

, ∀ξ ∈ R
2, (3)

where

Ψ1(ξ) =
∑

γ∈Γ∗

∣∣∣
∣∣∣ψ̂a(ξ + γ)ψ̂a(2(ξ + γ))

∣∣∣−
∣∣∣ψ̂aa(ξ + γ − µ)ψ̂aa(2(ξ + γ − µ))

∣∣∣
∣∣∣ , (4)

+
∑

γ∈Γ∗

∣∣∣
∣∣∣ψ̂a(ξ + γ)ψ̂a(2

−1(ξ + γ))
∣∣∣−

∣∣∣ψ̂aa(ξ + γ − 2µ)ψ̂aa(2
−1(ξ + γ − 2µ))

∣∣∣
∣∣∣ ,

Ψ2(ξ) =
∑

γ∈Γ∗

∣∣∣
∣∣∣ψ̂a(ξ + γ)ψ̂aa(R(ξ + γ))

∣∣∣−
∣∣∣ψ̂aa(ξ + γ + 3η̃)ψ̂a(R(ξ + γ + 3η̃))

∣∣∣
∣∣∣ (5)
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Figure 3: Functions |ψ̂a|,Ψ1,Ψ3 and Ψ4 +
∑

γ∈Γ∗ |ψ̂(·+ γ)|2 −Ψ1 −Ψ2 − Ψ3 for ψ as in (2) and N = 9.
Only restrictions to the domain [π/2, 5π/2]× [−π, π] are shown.

+
∑

γ∈Γ∗

∣∣∣
∣∣∣ψ̂a(ξ + γ)ψ̂aa(R

−1(ξ + γ))
∣∣∣−

∣∣∣ψ̂aa(ξ + γ − 3η)ψ̂a(R
−1(ξ + γ − 3η))

∣∣∣
∣∣∣ ,

Ψ3(ξ) =
∑

j=±1

∑

k=±1

∑

γ∈Γ∗

∣∣∣ψ̂(ξ + γ)ψ̂(2jRk(ξ + γ))
∣∣∣ , (6)

Ψ4(ξ) = 2
(
1− cos

π

2N

)
(7)

×
∑

ǫ=±1

∑

γ∈Γ∗

(
min

{ω∈R2:|ω−ǫη|=|ξ−ǫη−γ|}

∣∣∣ψ̂(ω)ψ̂(2Rω)
∣∣∣+ min

{ω∈R2:|ω−2ǫη|=|ξ−2ǫη−γ|}

∣∣∣ψ̂(2−1ω)ψ̂(Rω)
∣∣∣
)
. (8)

Then we have the following theorem, the proof of which constitutes a large part of the remaining of

this article.

Theorem 1 Let ψ ∈ S(R2). If conditions H1-4 are satisfied, then (ψj,k,γ)(j,k,γ)∈Z× Z

NZ
×Γ is a Riesz

sequence.

Before going further, let us make some comments on the hypotheses itemized above. First, H1 and

H2 are closely tied in the sense that one cannot enforce the dephasing of H2 if N is even. Indeed, in

order to maintain the invariance by rotation, despite the asymmetry caused by H2, two “neighboring”

wavelets at the same scale must have nearly opposite directions as it is shown in Figure 1-(b). This is

not possible if N is even. As for the Meyer wavelet, there are several possible choice for the modulation.

We chose ei
ξ1
2 as it is often the case for the Meyer wavelet. Regarding the rotation R, any angle in
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N (number of direction) 5 7 9 11

min
R2

L(I)

(2π)2


∑

γ∈Γ∗

|ψ̂(·+ γ)|2 −Ψ1 −Ψ2 −Ψ3


 -0.001 -0.007 -0.016 -0.024

max
R2

L(I)

(2π)2
Ψ4 = 2

(
1− cos

π

2N

)
0.098 0.050 0.030 0.020

min
R2

L(I)

(2π)2


∑

γ∈Γ∗

|ψ̂(·+ γ)|2 −Ψ1 −Ψ2 −Ψ3 +Ψ4


 0.097 0.042 0.013 -0.005

Table 1: If ψ is as in (2) with δ = τ = (π sin π
2N )/(1 + sin π

2N ), the hypothesis H4 is satisfied for N ≤ 9.

2π
N (Z \ (NZ)) would be appropriate, but angles (N−1)π

N or (N+1)π
N let us express hypothesis H4 more

easily.

Condition H3 is a technical, clearly not necessary, hypothesis. Its aim is to simplify H4 and the proof

of the theorem. The only reason for assuming that |ψ̂| is symmetric is to simplify the term Ψ4(ξ). This

condition is however quite natural.

Hypothesis H4 is definitely the most difficult to deal with. Roughly speaking, Ψ1 and Ψ2 measure

the angles between the spaces W0,0 and W1,0, and between W0,0 and W0,1, respectively. For instance, if

Ψ2 = 0, then the spaces W0,k are two-by-two orthogonal as it is the case in the example considered in

Section 3.1. The functions Ψ3 and Ψ4 handle the direction of W0,0 with regard to W1,1 and W1,−1. The

proof of the theorem would be much simpler if we could discard Ψ4 in the inequality (3). But in such

a case, we cannot ensure that there exists any wavelet ψ ∈ S(R2) that satisfy all the hypotheses. For

example, if ψ is as above, then |ψ̂(±η)| = |ψ̂(±2η)| = |ψ̂(±η̃)| = |ψ̂(±2η̃)| = 1
2L(I)

− 1
2 . We infer that

Ψ1(η) = 0 = Ψ2(η), but Ψ3(η) = (2π)2/L(I) =
∑

γ∈Γ∗ |ψ̂(η + γ)|2.

The wavelet defined in (2) satisfies clearlyH2 andH3 when δ and τ are as in Lemma 1. We do not have

an analytic proof that it satisfies H4. We can however check digitally whether the inequality is satisfied

but for quantization and sampling approximations. We know that
∑

γ∈Γ∗ |ψ̂(· − γ)|2 = (2π)2/L(I) and

Ψ2 = 0. Figure 3 shows |ψ̂|,Ψ1,Ψ3 and Ψ4+
∑

γ∈Γ∗ |ψ̂(·+γ)|2−Ψ1−Ψ2−Ψ3 = Ψ4+(2π)2/L(I)−Ψ1−Ψ3.

The function Ψ4 is not shown because it is close to 2(1−cos π
2N )Ψ3. The function 1−L(I)(Ψ1+Ψ3)/(2π)

2

is positive outside a small neighborhood of {η,−η}+ Γ∗ but its minimum value on R2 is negative. This

value is given in Table 1, for N = 5, 7, 9 and 11, as well as maxR2 L(I)Ψ4/(2π)
2 and minR2 1−L(I)(Ψ1+

Ψ3 − Ψ4)/(2π)
2. We can see that the hypothesis H4 is satisfied for N = 5, 7 and 9, but it fails to be

satisfied for N = 11. In this example, we set δ = τ = (π sin π
2N )/(1+sin π

2N ) and Hτ (t) = sin
(
π
2P

(
t−τ
2τ

))
,

∀t ∈ [−τ, τ ], where P (t) = 35t4 − 84t5 + 70t6 − 20t7. The obtained function ψ̂ is only C3 but it can be

uniformly approximated by a C∞ function that satisfies H4 also.

Notice that designing a function ψ ∈ S(R2) such that (ψj,k,λ)j∈Z,k Z

NZ
,λ∈Λ is a Riesz sequence, for some

lattice Λ, is not a difficult issue. For instance, if supp ψ̂ ⊂ I and Λ is such that
∑

λ∈Λ∗ |ψ̂(ξ − λ)|2 > 0,

then (ψj,k,λ)j∈Z,k Z

NZ
,λ∈Λ is a Riesz sequence. Indeed, the second assumption ensures that (ψj,k,λ)λ∈Λ is

a Riesz basis for closure(span(ψj,k,γ)γ∈Λ), for all j ∈ Z and k ∈ Z

NZ
, and by the first assumption, these

spaces are two-by-two orthogonal, since they correspond to disjoint Fourier supports. However, in such

a case, it is clear that the sequence (ψj,k,λ)j∈Z,k Z

NZ
,λ∈Λ cannot be global for L2(R2). A notable point of

Theorem 1 is that ψ is translated along the critical lattice Γ of the Shannon wavelet basis. Hence, the

condition
∑

γ∈Γ∗ |ψ̂(ξ − γ)|2 > 0, ∀ξ ∈ R2, does not allow to have supp ψ̂ ⊂ I.
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3.3 Sufficient conditions for a global sequence and a Riesz basis for L
2(R2)

So far, we gave conditions on ψ so that (ψj,k,γ)j∈Z,k∈ Z

NZ
,γ∈Γ forms a Riesz basis for the closure of

span(ψj,k,γ)j∈Z,k∈ Z

NZ
,γ∈Γ. In order to have closure(span(ψj,k,γ)j∈Z,k∈ Z

NZ
,γ∈Γ) = L2(R2), we need to posit

additional hypotheses. First, we need to narrow the conditions on the support of ψ̂ by assuming that it

satisfies, besides H3, the following property which means that the supports of ψ̂ and ψ̂(·−γ) are disjoint,

for all γ ∈ Γ∗ such that the distance between I and I + {γ} is positive.

H5 We have ψ̂(·) ψ̂(· − γ) = 0, for all γ ∈ Γ∗ \ {0, µ,−µ, 2µ,−2µ, 3η,−3η, 3η̃,−3η̃, ν,−ν, ν̃,−ν̃}.

As H3, condition H5 is not necessary, but it allows to simplify H6, below, that is the counterpart of

H4 for a global sequence.

H6 We have

Φ1(ξ) + Φ2(ξ) + Φ3(ξ) < Φ4(ξ) +
∑

j∈Z

∑

k∈ Z

NZ

|ψ̂(2jRkξ)|2, for almost every ξ ∈ R
2, (9)

where

Φ1(ξ) =
∑

γ=±µ

∑

j∈Z

∑

k∈ Z

NZ

∣∣∣
∣∣∣ψ̂(2jRkξ)ψ̂(2jRkξ − γ)

∣∣∣−
∣∣∣ψ̂(2j+1Rkξ)ψ̂(2j+1Rkξ − 2γ)

∣∣∣
∣∣∣ , (10)

Φ2(ξ) =
∑

γ=±3η

∑

j∈Z

∑

k∈ Z

NZ

∣∣∣
∣∣∣ψ̂(2jRkξ)ψ̂(2jRkξ − γ)

∣∣∣−
∣∣∣ψ̂(2jRk+1ξ)ψ̂(2jRk+1ξ −Rγ)

∣∣∣
∣∣∣ , (11)

Φ3(ξ) =
∑

γ∈{−ν,ν,−ν̃,ν̃}

∑

j∈Z

∑

k∈ Z

NZ

∣∣∣ψ̂(2jRkξ)ψ̂(2jRkξ − γ)
∣∣∣ , (12)

Φ4(ξ) = 4
(
1− cos

π

2N

) ∑

γ∈{2η,−η̃}

∑

j∈Z

∑

k∈ Z

NZ

min
{ω∈R2:|ω|=|2−jξ−Rkγ|}

∣∣∣ψ̂(2η + ω)ψ̂(−η̃ + ω)
∣∣∣ . (13)

We can now state the announced theorem and corollary.

Theorem 2 Let ψ ∈ S(R2). If conditions H1-2 and H5-6 are satisfied, then (ψj,k,γ)(j,k,γ)∈Z× Z

NZ
×Γ is

a global sequence for L2(R2). If, moreover, H6 is satisfied for all ξ ∈ R2, then (ψj,k,γ)(j,k,γ)∈Z× Z

NZ
×Γ is

a frame for L2(R2).

Joining both theorems together, we obtain the following.

Corollary 1 Let ψ ∈ S(R2). If conditions H1-6 are satisfied, then (ψj,k,γ)(j,k,γ)∈Z× Z

NZ
×Γ is a Riesz

basis for L2(R2).

If δ and τ are sufficiently small, then the wavelet defined in (2) satisfies H5. With regard to H6,

one can check that, for all γ ∈
{
±2jRkη : j ∈ Z, k ∈ Z

NZ

}
, we have

∑
γ∈Γ∗ |ψ̂(2jRkγ)|2 = (2π)2/L(I) =

Φ3(γ), while Φ1(γ) = Φ2(γ) = 0 and Φ4(γ) > 0. We infer that Φ4(γ) +
∑

γ∈Γ∗ |ψ̂(2jRkγ)|2 − Φ1(γ) −

Φ2(γ)−Φ3(γ) > 0. The latter is also clearly positive whenever γ is far from
{
±2jRkη : j ∈ Z, k ∈ Z

NZ

}
.

However, its minimum value on R2 is slightly below 0. Hence the hypothesis H6 is not satisfied for this

example. Figure 4 shows
∑

k∈ Z

NZ

|ψ̂(2jRk·)|2,Φ2,Φ3 and Φ4 +
∑

γ∈Γ∗ |ψ̂(2jRk·)|2 − Φ1 − Φ2 − Φ3, for

N = 9. The function Φ1 is zero and Φ4 is closed to 2
(
1− cos π

2N

)
Φ3.

9



Figure 4: Functions
∑

k∈ Z

NZ

|ψ̂(2jRk·)|2,Φ2,Φ3 and Φ4 +
∑

γ∈Γ∗ |ψ̂(2jRk·)|2 − Φ1 − Φ2 − Φ3 for ψ as in

(2) and N = 9. Only restrictions to the domain [π/2, 5π/2]× [−π, π] are shown.

We did not find a simple example of wavelet that satisfies all the six hypotheses. We cannot however

conclude from this that the wavelet defined in (2), or any other wavelet, does not generate a basis for

L2(R2). We only gave indeed sufficient condition for a global sequence. Although it is rather long, the

proof of the theorems relies on coarse bounds and we can therefore conjecture that, when all the other

hypotheses are satisfied, conditions H4 and H6 are not necessary. This proof of both theorems is detailed

in the next section.

4 Proofs

4.1 Proof of Theorem 1

Since the demonstration is carried out in the Fourier domain, we have to give a characterization of the

Riesz sequence in terms of the Fourier transform ψ̂. The following lemma is proved in Section 4.3.

Lemma 2 The directional wavelets (ψj,k,γ)(j,k,γ)∈Z× Z

NZ
×Γ form a Riesz sequence if and only if there

exists C ≥ 1 such that, for all m ∈ L2(Z× Z

NZ
× R

2

Γ∗
), we have

1

C
‖m‖22 ≤ I(m) ≤ C‖m‖22, (14)

where

I(m) =

∫

R2

∣∣∣∣∣∣
∑

j∈Z

∑

k∈ Z

NZ

2jmj,k(2
jRkξ)ψ̂(2jRkξ)

∣∣∣∣∣∣

2

dξ

10



and

‖m‖22 =
∑

j∈Z

∑

k∈ Z

NZ

∫

R2

Γ∗

|mj,k(ξ)|
2dξ.

As ψ is bandlimited, it is quite straightforward to bound I(m) above. Indeed, thanks to H3, most of

the terms in the sum that defines I(m) have disjoint supports. By developing the squared term, we have

therefore

I(m) =
∑

j∈Z

∑

k∈ Z

NZ

j+1∑

j′=j−1

k+1∑

k′=k−1

∫

R2

2j+j′mj,k(2
jRkξ)mj′,k′(2j′Rk′ξ)ψ̂(2jRkξ)ψ̂(2j′Rk′ξ)dξ (15)

The classical Young inequality states that, for all a, b ∈ C, ab̄+ āb ≤ |a|2 + |b|2. Thus, using in a row the

changes of variables ξ 7→ 2jRkξ and the fact that mj,k is γ-periodic for all γ ∈ Γ∗, we obtain

I(m) ≤ 9
∑

j∈Z

∑

k∈ Z

NZ

∫

R2

22j|mj,k(2
jRkξ)ψ̂(2jRkξ)|2dξ

= 9
∑

j∈Z

∑

k∈ Z

NZ

∫

R2

|mj,k(ξ)ψ̂(ξ)|
2dξ

= 9
∑

j∈Z

∑

k∈ Z

NZ

∫

R2

Γ∗

|mj,k(ξ)|
2
∑

γ∈Γ∗

|ψ̂(ξ + γ)|2dξ

which leads to

I(m) ≤ 9

∥∥∥∥∥∥
∑

γ∈Γ∗

|ψ̂(·+ γ)|2

∥∥∥∥∥∥
∞

‖m‖22.

We have therefore the second inequality of (14).

Let us now bound I(m) below. In order to simplify the notations, we make the substitutions ξ 7→

2−jR−kξ in each integral, and j′ 7→ j′ − j, k′ 7→ k′ − k in sums. We get

I(m) =
∑

j∈Z

∑

k∈ Z

NZ

1∑

j′=−1

1∑

k′=−1

∫

R2

2j
′

mj,k(ξ)mj′,k′(2j′Rk′ξ)ψ̂(ξ)ψ̂(2j′Rk′ξ)dξ

Set therefore

I(m) =
∑

j∈Z

∑

k∈ Z

NZ

∫

R2

Γ∗

|mj,k(ξ)|
2
∑

γ∈Γ∗

|ψ̂(ξ + γ)|2dξ + I1(m) + I2(m) + I3(m) + I4(m),

where

I1(m) = 4Re


∑

j∈Z

∑

k∈ Z

NZ

∫

R2

mj,k(ξ)mj+1,k(2ξ)ψ̂(ξ)ψ̂(2ξ)dξ


 , (16)

I2(m) = 2Re


∑

j∈Z

∑

k∈ Z

NZ

∫

R2

mj,k(ξ)mj,k+1(Rξ)ψ̂(ξ)ψ̂(Rξ)dξ


 , (17)

I3(m) = 4Re


∑

j∈Z

∑

k∈ Z

NZ

∫

R2

mj,k(ξ)mj+1,k+1(2Rξ)ψ̂(ξ)ψ̂(2Rξ)dξ


 , (18)

I4(m) = 4Re


∑

j∈Z

∑

k∈ Z

NZ

∫

R2

mj,k(ξ)mj+1,k−1(2R−1ξ)ψ̂(ξ)ψ̂(2R−1ξ)dξ


 . (19)
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In order to bound I(m) below, we can bound I1(m), I2(m) and I3(m) + I4(m) separately, which is the

aim of the following lemma.

Lemma 3 For all m ∈ L2(Z× Z

NZ
× R

2

Γ∗
), we have

(i) |I1(m)| ≤

∫

R2

Γ∗


∑

j∈Z

∑

k∈ Z

NZ

|mj,k(ξ)|
2


Ψ1(ξ) dξ,

(ii) |I2(m)| ≤

∫

R2

Γ∗


∑

j∈Z

∑

k∈ Z

NZ

|mj,k(ξ)|
2


Ψ2(ξ) dξ,

(iii) I3(m) + I4(m) ≥

∫

R2

Γ∗


∑

j∈Z

∑

k∈ Z

NZ

|mj,k(ξ)|
2


 (Ψ4(ξ)−Ψ3(ξ)) dξ,

where Ψ1, Ψ2, Ψ3 and Ψ4 are given in (4), (5), (6) and (8), respectively.

We infer that

I(m) ≥

∫

R2

Γ∗


∑

j∈Z

∑

k∈ Z

NZ

|mj,k(ξ)|
2





∑

γ∈Γ∗

|ψ̂(ξ + γ)|2 −Ψ1(ξ)−Ψ2(ξ)−Ψ3(ξ) + Ψ4(ξ)


 dξ,

where, by H4, ∑

γ∈Γ∗

|ψ̂(ξ + γ)|2 −Ψ1(ξ)−Ψ2(ξ)−Ψ3(ξ) + Ψ4(ξ) > 0, ∀ξ ∈ R
2.

As the latter function is continuous and periodic, it is bounded below by a positive constant C and we

conclude that

I(m) ≥ C

∫

R2

Γ∗


∑

j∈Z

∑

k∈ Z

NZ

|mj,k(ξ)|
2


 dξ.

4.2 Proof of Theorem 2

Showing that the sequence (ψj,k,γ)(j,k,γ)∈Z× Z

NZ
×Γ is global for L2(R2) amounts to show that

(
span(ψj,k,γ)(j,k,γ)∈Z× Z

NZ
×Γ

)⊥

= {0}. (20)

Since, by H6, we have
∑

j∈Z

∑
k∈ Z

NZ

|ψ̂(2jRkξ)|2 − Φ1(ξ) − Φ2(ξ)− Φ3(ξ) > 0, for almost every ξ ∈ R2,

(20) is actually a straightforward consequence of the following inequality that we are going to prove: For

all f ∈ L2(R2), we have

∑

j∈Z

∑

k∈ Z

NZ

∑

γ∈Γ

|〈f, ψj,k,γ〉|
2 ≥

L(I)

(2π)4

∫

R2

|f̂(ξ)|2


∑

j∈Z

∑

k∈ Z

NZ

|ψ̂(2jRkξ)|2 − Φ1(ξ)− Φ2(ξ)− Φ3(ξ) + Φ4(ξ)


 dξ.

(21)

First, we apply Plancherel’s theorem in order to show that, for all j ∈ Z, k ∈ Z

NZ
, γ ∈ Γ,

|〈f, ψj,k,γ〉|
2 =

1

(2π)4
|〈f̂ , ψ̂j,k,γ〉|

2

=
1

(2π)4

∣∣∣∣
∫

R2

f̂(ξ)2−jψ̂(2−jRkξ)e−iγ·2−jRkξdξ

∣∣∣∣
2
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=
1

(2π)4

∣∣∣∣
∫

R2

2j f̂(2jR−kξ)ψ̂(ξ)eiγ·ξdξ

∣∣∣∣
2

=
1

(2π)4

∣∣∣∣∣∣

∫

R2

Γ∗

2j
∑

γ′∈Γ∗

f̂(2jR−k(ξ − γ′))ψ̂(ξ − γ′)eiγ·ξdξ

∣∣∣∣∣∣

2

=
L(I)

(2π)4
|c−γ(gj,k)|

2,

where gj,k =
(
ξ 7→ 2j

∑
γ∈Γ∗ f̂(2jR−k(ξ − γ))ψ̂(ξ − γ)

)
and cγ(g) =

1
L(I)

∫
R2

Γ∗

g(x)e−iγ·xdx is the Fourier

coefficient, of index γ, of a function g. Hypothesis H5 ensures that, for all ξ ∈ R2, ψ̂(ξ − γ) 6= 0 for only

4 values of γ ∈ Γ∗. We have therefore, for almost every ξ ∈ R2,

|gj,k(ξ)| ≤ 4max
γ∈Γ∗

∣∣∣2j f̂(2jR−k(ξ − γ))ψ̂(ξ − γ)
∣∣∣ .

Since f̂ ∈ L2(R2) and ψ̂ ∈ L∞(R2), we infer that gj,k ∈ L2
(

R
2

Γ∗

)
. Thus, we can apply Parseval’s theorem

to gj,k and show that

∑

γ∈Γ

|〈f, ψj,k,γ〉|
2 =

L(I)

(2π)4

∑

γ∈Γ

|cγ(gj,k)|
2 =

L(I)

(2π)4

∫

R2

Γ∗

|gj,k(ξ)|
2dξ

=
L(I)

(2π)4

∫

R2

Γ∗

∣∣∣∣∣∣
∑

γ∈Γ∗

f̂(ξ − 2jR−kγ)ψ̂(2jRkξ − γ)

∣∣∣∣∣∣

2

dξ

=
L(I)

(2π)4

∫

R2

f̂(ξ)ψ̂(2jRkξ)


∑

γ∈Γ∗

f̂(ξ − 2jR−kγ)ψ̂(2jRkξ − γ)


 dξ

We deduce that
∑

j∈Z

∑

k∈ Z

NZ

∑

γ∈Γ

|〈f, ψj,k,γ〉|
2 =

L(I)

(2π)4

∫

R2

|f̂(ξ)|2
∑

j∈Z

∑

k∈ Z

NZ

|ψ̂(2jR−kξ)|2dξ +
L(I)

(2π)4

∑

γ∈G

Jγ ,

where

Jγ =
∑

j∈Z

∑

k∈ Z

NZ

∫

R2

f̂(ξ)ψ̂(2−jRkξ)f̂(ξ − 2jR−kγ)ψ̂(2−jRkξ − γ)dξ,

and, thanks to H5 again,

G = {µ,−µ, 2µ,−2µ, 3η,−3η, 3η̃,−3η̃, ν,−ν, ν̃,−ν̃}.

However, using a change of variable, we show that, for all γ ∈ G,

Jγ =
∑

j∈Z

∑

k∈ Z

NZ

∫

R2

f̂(ξ + 2jR−kγ)ψ̂(2−jRkξ + γ)f̂(ξ)ψ̂(2−jRkξ)dξ = J−γ .

We have therefore Jγ + J−γ = 2Re (Jγ). Putting this all together with the next lemma, we see that (21)

is satisfied.

Lemma 4 For all f ∈ L2(R2), we have

(i) 2|Jµ + J2µ| ≤

∫

R2

|f̂(ξ)|2Φ1(ξ)dξ,

(ii) 2|J3η + J3η̃| ≤

∫

R2

|f̂(ξ)|2Φ2(ξ)dξ,

(iii) 2Re(Jν + Jν̃) ≥

∫

R2

|f̂(ξ)|2(Φ4(ξ)− Φ3(ξ))dξ,
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where Φ1,Φ2,Φ3 and Φ4 are given in (10),(11),(12) and (13), respectively.

If we assume now that the inequality (9) in H6 is satisfied for all ξ ∈ R2, then the function

ξ 7→
L(I)

(2π)4


∑

j∈Z

∑

k∈ Z

NZ

|ψ̂(2jRkξ)|2 − Φ1(ξ) − Φ2(ξ)− Φ3(ξ) + Φ4(ξ)




is bounded below by a positive constant that we denote by 1/C. Indeed, since it is invariant by dilation

of factor 2, its minimum value can be calculated for ξ in a ring where all the sums are finite. We have

therefore ∑

j∈Z

∑

k∈ Z

NZ

∑

γ∈Γ

|〈f, ψj,k,γ〉|
2 ≥

1

C

∫

R2

|f̂(ξ)|2dξ.

On the other hand, one can easily show that 2|Jν+Jν̃ | ≤
∫
R2 |f̂(ξ)|

2Φ3(ξ)dξ—see the proof of (iii). Hence

∑

j∈Z

∑

k∈ Z

NZ

∑

γ∈Γ

|〈f, ψj,k,γ〉|
2 ≤

L(I)

(2π)4

∫

R2

|f̂(ξ)|2


∑

j∈Z

∑

k∈ Z

NZ

|ψ̂(2jRkξ)|2 +Φ1(ξ) + Φ2(ξ) + Φ3(ξ)


 dξ.

We infer that, even if it means increasing the value of C, we have

∑

j∈Z

∑

k∈ Z

NZ

∑

γ∈Γ

|〈f, ψj,k,γ〉|
2 ≤ C

∫

R2

|f̂(ξ)|2dξ,

and we conclude that (ψj,k,γ)j∈Z,k∈ Z

NZ
,γ∈Γ is a frame for L2(R2).

4.3 Proof of lemmas

4.3.1 Proof of Lemma 1

The two identities can be proven by straightforward calculation using (1). First, we have

∑

γ∈Γ∗

|ψ̂(ξ − γ)|2 =
∑

k∈Z2

|ψ̂(ξ − k1µ− k2ν)|
2

=
∑

k∈Z2

|ψ̂a(ξ − k1µ− k2ν)|
2 +

∑

k∈Z2

|ψ̂aa(ξ − k1µ− k2ν)|
2

=
∑

k∈Z2

(
|ψ̂a(ξ − k1µ− k2ν)|

2 + |ψ̂aa(ξ − (k1 + 1)µ− (k2 + 1)ν)|2
)

= L(I)−1
∑

k∈Z

|Hδ(ξ1 − (k − 1)π)|2|Hδ((2 − k)π − ξ1)|
2 = L(I)−1

In order to prove the second identity, let us denote by Rα the rotation of angle α (N−1)π
N . This allows for

writing

Vτ (ξ) = Hτ ((R
1
2 ξ)1)Hτ ((R

− 1
2 ξ)1) +Hτ (−(R

1
2 ξ)1)Hτ (−(R− 1

2 ξ)1), ∀ξ ∈ R
2.

We have therefore

∣∣∣ψ̂a(ξ)
∣∣∣ = 2π(L(I))−

1
2Hδ(ξ1 − π)Hδ(2π − ξ1)Vτ (ξ)

= 2π(L(I))−
1
2Hδ(ξ1 − π)Hδ(2π − ξ1)Hτ ((R

1
2 ξ)1)Hτ ((R

− 1
2 ξ)1).
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On the other hand, we have

∣∣∣ψ̂aa(Rξ)
∣∣∣ = 2π(L(I))−

1
2Hδ(−(Rξ)1 − π)Hδ((Rξ)1 + 2π)Vτ (Rξ)

= 2π(L(I))−
1
2Hδ(−(Rξ)1 − π)Hδ((Rξ)1 + 2π)Hτ (−(R

1
2Rξ)1)Hτ (−(R− 1

2Rξ)1)

= 2π(L(I))−
1
2Hδ(−(Rξ)1 − π)Hδ((Rξ)1 + 2π)Hτ (−(R

3
2 ξ)1)Hτ (−(R

1
2 ξ)1).

Since τ ≤ (π − δ) sin
(

π
2N

)
, we can check easily that Hτ (−(R

3
2 ξ)1) = 1, for all ξ ∈ supp ψ̂a, and

Hτ ((R
− 1

2 ξ)1) = 1, for all ξ ∈ supp ψ̂aa ◦R. We deduce

∣∣∣ψ̂aa(Rξ)ψ̂a(ξ)
∣∣∣ = (2π)2

L(I)
Hδ(−(Rξ)1−π)Hδ((Rξ)1 +2π)Hτ (−(R

1
2 ξ)1)Hδ(ξ1 −π)Hδ(2π− ξ1)Hτ ((R

1
2 ξ)1).

As
∣∣∣ψ̂aa(ξ)

∣∣∣ =
∣∣∣ψ̂a(−ξ)

∣∣∣, we have also

∣∣∣ψ̂a(Rξ)ψ̂aa(ξ)
∣∣∣ = (2π)2

L(I)
Hδ((Rξ)1 −π)Hδ(2π− (Rξ)1)Hτ ((R

1
2 ξ)1)Hδ(−ξ1 −π)Hδ(2π+ ξ1)Hτ (−(R

1
2 ξ)1),

that can be re-ordered into

∣∣∣ψ̂a(Rξ)ψ̂aa(ξ)
∣∣∣ = (2π)2

L(I)
Hδ(2π− (Rξ)1)Hδ((Rξ)1 −π)Hτ (−(R

1
2 ξ)1)Hδ(2π+ ξ1)Hδ(−ξ1−π)Hτ ((R

1
2 ξ)1).

Using the fact that (3η)1 = 3π = −(3η̃)1 = −(R(3η))1 and (R
1
2 (3η))1 = 0, we conclude that

∣∣∣ψ̂a(R(ξ − 3η))ψ̂aa(ξ − 3η)
∣∣∣ =

∣∣∣ψ̂aa(Rξ)ψ̂a(ξ)
∣∣∣ .

4.3.2 Proof of Lemma 2

By definition, (ψj,k,γ)j∈Z,k∈ Z

NZ
,γ∈Γ is a Riesz sequence is and only if there exist C ≥ 1 such that, for all

a ∈ ℓ2(Z× Z

NZ
× Γ),

1

C
‖a‖2 ≤

∥∥∥∥∥∥
∑

j∈Z

∑

k∈ Z

NZ

∑

γ∈Γ

aj,k,γψj,k,γ

∥∥∥∥∥∥
2

≤ C‖a‖2,

or, in other words,

1

C2

∑

j∈Z

∑

k∈ Z

NZ

∑

γ∈Γ

|aj,k,γ |
2 ≤

∫

R2

∣∣∣∣∣∣
∑

j∈Z

∑

k∈ Z

NZ

∑

γ∈Γ

aj,k,γ2
jψ(2jRkx− γ)

∣∣∣∣∣∣

2

dx ≤ C2
∑

j∈Z

∑

k∈ Z

NZ

∑

γ∈Γ

|aj,k,γ |
2.

By Plancherel’s theorem and putting m = (mj,k)(j,k)∈Z× Z

NZ

where mj,k(ξ) =
∑

γ∈Γ aj,k,γe
−iγ·ξ, it

amounts to show that there exist C ≥ 1 such that, for all m ∈ L2
(
Z× Z

NZ
× R

2

Γ∗

)
,

1

C
‖m‖22 ≤

∫

R2

∣∣∣∣∣∣
∑

j∈Z

∑

k∈ Z

NZ

2jmj,k(2
jRkξ)ψ̂(2jRkξ)

∣∣∣∣∣∣

2

dξ ≤ C‖m‖22,

where

‖m‖22 =
∑

j∈Z

∑

k∈ Z

NZ

∫

R2

Γ∗

|mj,k(ξ)|
2dξ.
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4.3.3 Proof of Lemma 3-(i)

First, we develop ψ̂ as ψ̂ = ψ̂a + ψ̂aa. By H3, we have ψ̂a(·)ψ̂aa(2 ·) = 0 and ψ̂aa(·)ψ̂a(2 ·) = 0. We

deduce that ψ̂(·)ψ̂(2·) = ψ̂a(·)ψ̂a(2·) + ψ̂aa(·)ψ̂aa(2·) and

I1 = 4Re


∑

j∈Z

∑

k∈ Z

NZ

∫

R2

mj,k(ξ)mj+1,k(2ξ)
(
ψ̂a(ξ)ψ̂a(2ξ) + ψ̂aa(ξ)ψ̂aa(2ξ)

)
dξ




= 4
∑

j∈Z

∑

k∈ Z

NZ

Re

(∫

R2

mj,k(ξ)mj+1,k(2ξ)ψ̂a(ξ)ψ̂a(2ξ)dξ +

∫

R2

mj,k(ξ)mj+1,k(2ξ)ψ̂aa(ξ)ψ̂aa(2ξ)dξ

)
.

Note that mj,k and mj+1,k(2 ·) are µ-periodic. Making the substitution of variables ξ 7→ ξ − µ in the

second integral, we have therefore

I1 = 4
∑

j∈Z

∑

k∈ Z

NZ

Re

(∫

R2

mj,k(ξ)mj+1,k(2ξ)
(
ψ̂a(ξ)ψ̂a(2ξ) + ψ̂aa(ξ − µ)ψ̂aa(2ξ − 2µ)

)
dξ

)
.

By using ψ̂(ξ) = e
iξ1
2 |ψ̂(ξ)| and e

iµ1
2 = eiπ = −1, we show next that

∣∣∣ψ̂a(ξ)ψ̂a(2ξ) + ψ̂aa(ξ − µ)ψ̂aa(2ξ − 2µ)
∣∣∣ =

∣∣∣e
−iξ1

2 |ψ̂a(ξ)ψ̂a(2ξ)|+ e
−i(ξ1+µ1)

2 |ψ̂aa(ξ − µ)ψ̂aa(2ξ − 2µ)|
∣∣∣

=
∣∣∣|ψ̂a(ξ)ψ̂a(2ξ)| − |ψ̂aa(ξ − µ)ψ̂aa(2ξ − 2µ)|

∣∣∣ .

Thus, we obtain the following bound for I1.

|I1| ≤ 4
∑

j∈Z

∑

k∈ Z

NZ

∫

R2

|mj,k(ξ)mj+1,k(2ξ)|
∣∣∣|ψ̂a(ξ)ψ̂a(2ξ)| − |ψ̂aa(ξ − µ)ψ̂aa(2ξ − 2µ)|

∣∣∣ dξ.

¿From Young inequality, we deduce that

|I1| ≤
∑

j∈Z

∑

k∈ Z

NZ

∫

R2

(
|mj,k(ξ)|

2 + 4|mj+1,k(2ξ)|
2
) ∣∣∣|ψ̂a(ξ)ψ̂a(2ξ)| − |ψ̂aa(ξ − µ)ψ̂aa(2ξ − 2µ)|

∣∣∣ dξ

Then we conclude by making another substitution of variables

|I1| ≤
∑

j∈Z

∑

k∈ Z

NZ

∫

R2

|mj,k(ξ)|
2
∣∣∣|ψ̂a(ξ)ψ̂a(2ξ)| − |ψ̂aa(ξ − µ)ψ̂aa(2ξ − 2µ)|

∣∣∣ dξ

+
∑

j∈Z

∑

k∈ Z

NZ

∫

R2

|mj,k(ξ)|
2

∣∣∣∣|ψ̂a

(
ξ

2

)
ψ̂a(ξ)| − |ψ̂aa

(
ξ − µ

2

)
ψ̂aa(ξ − µ)|

∣∣∣∣ dξ

=
∑

j∈Z

∑

k∈ Z

NZ

∫

R2

Γ∗

|mj,k(ξ)|
2Ψ1(ξ)dξ.

4.3.4 Proof of Lemma 3-(ii)

The proof uses similar arguments to those used for I1. By H3, we have ψ̂(·)ψ̂(R ·) = ψ̂a(·)ψ̂aa(R ·) +

ψ̂aa(·)ψ̂a(R ·). Since 3η ∈ Γ∗ and 3Rη = 3η̃ ∈ Γ∗, the functions mj,k and mj,k+1(R ·) are 3η-periodic and

we deduce

I2 = 2Re


∑

j∈Z

∑

k∈ Z

NZ

∫

R2

mj,k(ξ)mj,k+1(Rξ)
(
ψ̂a(ξ)ψ̂aa(Rξ) + ψ̂aa(ξ)ψ̂a(Rξ)

)
dξ




= 2Re


∑

j∈Z

∑

k∈ Z

NZ

∫

R2

mj,k(ξ)mj,k+1(Rξ)
(
ψ̂a(ξ)ψ̂aa(Rξ) + ψ̂aa(ξ − 3η)ψ̂a(Rξ − 3Rη)

)
dξ


 .
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By using ψ̂(ξ) = e
iξ1
2 |ψ̂(ξ)| and e

i(3η1−3(Rη)1)

2 = ei3π = −1, we show next that
∣∣∣ψ̂a(ξ)ψ̂aa(Rξ) + ψ̂aa(ξ − 3η)ψ̂a(Rξ − 3Rη)

∣∣∣ =
∣∣∣|ψ̂a(ξ)ψ̂aa(Rξ)| − |ψ̂aa(ξ − 3η)ψ̂a(Rξ − 3Rη)|

∣∣∣ .

We obtain therefore the following bound for I2. Justifications are the same as in the proof of (i).

|I2| ≤ 2
∑

j∈Z

∑

k∈ Z

NZ

∫

R2

|mj,k(ξ)mj,k+1(Rξ)|
∣∣∣|ψ̂a(ξ)ψ̂aa(Rξ)| − |ψ̂aa(ξ − 3η)ψ̂a(Rξ − 3Rη)|

∣∣∣ dξ

≤
∑

j∈Z

∑

k∈ Z

NZ

∫

R2

(
|mj,k(ξ)|

2 + |mj,k+1(Rξ)|
2
) ∣∣∣|ψ̂a(ξ)ψ̂aa(Rξ)| − |ψ̂aa(ξ − 3η)ψ̂a(Rξ − 3Rη)|

∣∣∣ dξ

=
∑

j∈Z

∑

k∈ Z

NZ

∫

R2

|mj,k(ξ)|
2
∣∣∣|ψ̂a(ξ)ψ̂aa(Rξ)| − |ψ̂aa(ξ − 3η)ψ̂a(Rξ − 3Rη)|

∣∣∣ dξ

+
∑

j∈Z

∑

k∈ Z

NZ

∫

R2

|mj,k(ξ)|
2
∣∣∣|ψ̂a(R

−1ξ)ψ̂aa(ξ)| − |ψ̂aa(R
−1ξ − 3η)ψ̂a(ξ − 3Rη)|

∣∣∣ dξ

=
∑

j∈Z

∑

k∈ Z

NZ

∫

R2

Γ∗

|mj,k(ξ)|
2Ψ2(ξ)dξ.

4.3.5 Proof of Lemma 3-(iii)

Using H3 again, we see that ψ̂a(·)ψ̂a(2R ·) = ψ̂aa(·)ψ̂aa(2R ·) = ψ̂a(·)ψ̂a(2R−1·) = ψ̂aa(·)ψ̂aa(R−1·) = 0.

We deduce

I3 + I4 = 4
∑

j∈Z

Re



∫

R2

∑

k∈ Z

NZ

mj,k(ξ)mj+1,k+1(2Rξ)ψ̂a(ξ)ψ̂aa(2Rξ) dξ

+

∫

R2

∑

k∈ Z

NZ

mj,k(ξ)mj+1,k+1(2Rξ)ψ̂aa(ξ)ψ̂a(2Rξ) dξ

+

∫

R2

∑

k∈ Z

NZ

mj,k(ξ)mj+1,k−1(2R−1ξ)ψ̂aa(ξ)ψ̂a(2R−1ξ) dξ

+

∫

R2

∑

k∈ Z

NZ

mj,k(ξ)mj+1,k−1(2R−1ξ)ψ̂a(ξ)ψ̂aa(2R−1ξ) dξ




=
∑

j∈Z

Re(I5,j + I6,j),

where

I5,j = 4
∑

k∈ Z

NZ

∫

R2

mj,k(ξ)mj+1,k+1(2Rξ)ψ̂a(ξ)ψ̂aa(2Rξ)dξ

+4
∑

k∈ Z

NZ

∫

R2

mj,k(ξ)mj+1,k−1(2R−1ξ)ψ̂aa(ξ)ψ̂a(2R−1ξ) dξ

and

I6,j = 4
∑

k∈ Z

NZ

∫

R2

mj,k(ξ)mj+1,k+1(2Rξ)ψ̂aa(ξ)ψ̂a(2Rξ) dξ

+4
∑

k∈ Z

NZ

∫

R2

mj,k(ξ)mj+1,k−1(2R−1ξ)ψ̂a(ξ)ψ̂aa(2R−1ξ) dξ.
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Let us focus on I5,j . In the integrals of the first sum in I5,j , we make the substitutions of variables

ξ 7→ η +Rkξ, while in the second one, we apply ξ 7→ Rη +Rkξ. We get

I5,j = 4
∑

k∈ Z

NZ

∫

R2

mj,k(η +Rkξ)mj+1,k+1(2Rη + 2Rk+1ξ)ψ̂a(η +Rkξ)ψ̂aa(2Rη + 2Rk+1ξ) dξ

+4
∑

k∈ Z

NZ

∫

R2

mj,k(Rη +Rkξ)mj+1,k−1(2η + 2Rk−1ξ)ψ̂aa(Rη +Rkξ)ψ̂a(2η + 2Rk−1ξ) dξ

Since η −Rη = η − η̃ = µ ∈ Γ∗, we have mj,k(Rη + ·) = mj,k(η + ·) and mj,k(2Rη+ ·) = mj,k(2η+ ·). It

follows that

I5,j = 4
∑

k∈ Z

NZ

∫

R2

mj,k(η +Rkξ)
(
mj+1,k+1(2η + 2Rk+1ξ)ψ̂a(η +Rkξ)ψ̂aa(2η̃ + 2Rk+1ξ)

+mj+1,k−1(2η + 2Rk−1ξ)ψ̂aa(η̃ +Rkξ)ψ̂a(2η + 2Rk−1ξ)
)
dξ.

We use next H2 to show that

ψ̂a(η +Rkξ)ψ̂aa(2η̃ + 2Rk+1ξ) = e
i(η1+(Rkξ)1)

2 ei(η̃1+(Rk+1ξ)1)
∣∣∣ψ̂a(η +Rkξ)ψ̂aa(2η̃ + 2Rk+1ξ)

∣∣∣

and

ψ̂aa(η̃ +Rkξ)ψ̂a(2η + 2Rk−1ξ) = e
i(η̃1+(Rkξ)1)

2 ei(η1+(Rk−1ξ)1)
∣∣∣ψ̂aa(η̃ +Rkξ)ψ̂a(2η + 2Rk−1ξ)

∣∣∣ .

Since η1 = π = −η̃1, we have however e
iη̃1
2 = −e

iη1
2 and eiη̃1 = eiη1 . Thus,

ψ̂a(η +Rkξ)ψ̂aa(2η̃ + 2Rk+1ξ) = e
i(η1+(Rkξ)1)

2 ei(η1+(Rk+1ξ)1)
∣∣∣ψ̂a(η +Rkξ)ψ̂aa(2η̃ + 2Rk+1ξ)

∣∣∣

while

ψ̂aa(η̃ +Rkξ)ψ̂a(2η + 2Rk−1ξ) = −e
i(η1+(Rkξ)1)

2 ei(η1+(Rk−1ξ)1)
∣∣∣ψ̂aa(η̃ +Rkξ)ψ̂a(2η + 2Rk−1ξ)

∣∣∣ .

We obtain

I5,j = 2

∫

R2

∑

k∈ Z

NZ

ak(ξ)
(
αk(ξ)bk+1(ξ)− βk(ξ)bk−1(ξ)

)
dξ,

where

ak(ξ) = mj,k(η +Rkξ)e
i(η1+(Rkξ)1)

2 ,

bk(ξ) = 2mj+1,k(2η + 2Rkξ)ei(η1+(Rkξ)1),

αk(ξ) =
∣∣∣ψ̂a(η +Rkξ)ψ̂aa(2η̃ + 2Rk+1ξ)

∣∣∣ ,

βk(ξ) =
∣∣∣ψ̂aa(η̃ +Rkξ)ψ̂a(2η + 2Rk−1ξ)

∣∣∣ .

Hence, we can apply the following lemma.

Lemma 5 If N is odd, then for all a, b ∈ C
Z

NZ and α, β ∈ R
Z

NZ

+ , we have

2Re
∑

k∈ Z

NZ

ak(αkbk+1 − βkbk−1) ≥ 2
(
1− cos

π

2N

)
min
k∈ Z

NZ

(min(αk, βk))
∑

k∈ Z

NZ

(
|ak|

2 + |bk|
2
)

−
∑

k∈ Z

NZ

(
(αk + βk)|ak|

2 + (αk−1 + βk+1)|bk|
2
)
.
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Notice that, thanks to the symmetry properties of ψ̂ in H3, for all ξ ∈ R2, |αk| and |βk| have the

same minimum value on {ω ∈ R2 : |ω| = |ξ|} and this value does not depends on k. We deduce that

Re(I5,j) ≥ Aj −Bj where

Aj = 2
(
1− cos

π

2N

)∫

R2

min
{ω∈R2:|ω|=|ξ|}

|α0(ω)|
∑

k∈ Z

NZ

(
|ak(ξ)|

2 + |bk(ξ)|
2
)
dξ,

and

Bj =

∫

R2

∑

k∈ Z

NZ

(
(αk(ξ) + βk(ξ))|ak(ξ)|

2 + (αk−1(ξ) + βk+1(ξ))|bk(ξ)|
2
)
dξ

Let us reverse the former changes of variables as follows

Aj = 2
(
1− cos

π

2N

) ∑

k∈ Z

NZ

(∫

R2

min
{ω∈R2:|ω|=|ξ|}

∣∣∣ψ̂a(η + ω)ψ̂aa(2η̃ + 2Rω)
∣∣∣
∣∣mj,k(η +Rkξ)

∣∣2 dξ

+

∫

R2

min
{ω∈R2:|ω|=|ξ|}

∣∣∣ψ̂a(η + ω)ψ̂aa(2η̃ + 2Rω)
∣∣∣
∣∣2mj+1,k(2η + 2Rkξ)

∣∣2 dξ
)

= 2
(
1− cos

π

2N

) ∑

k∈ Z

NZ

(∫

R2

min
{ω∈R2:|ω−η|=|ξ−η|}

∣∣∣ψ̂a(ω)ψ̂aa(2Rω)
∣∣∣ |mj,k(ξ)|

2 dξ

+

∫

R2

min
{ω∈R2:|ω−2η|=|ξ−2η|}

∣∣∣ψ̂a(2
−1ω)ψ̂aa(Rω)

∣∣∣ |mj+1,k(ξ)|
2
dξ

)

We have therefore ∑

j∈Z

Aj = 2
(
1− cos

π

2N

)∑

j∈Z

∑

k∈ Z

NZ

∫

R2

F (ξ) |mj,k(ξ)|
2
dξ,

where

F (ξ) = min
{ω∈R2:|ω−η|=|ξ−η|}

∣∣∣ψ̂a(ω)ψ̂aa(2Rω)
∣∣∣+ min

{ω∈R2:|ω−2η|=|ξ−2η|}

∣∣∣ψ̂a(2
−1ω)ψ̂aa(Rω)

∣∣∣ .

On the other hand, applying the sames changes of variables, we have

Bj =
∑

k∈ Z

NZ

∫

R2

((∣∣∣ψ̂a(ξ)ψ̂aa(2Rξ)
∣∣∣+

∣∣∣ψ̂aa(ξ)ψ̂a(2R
−1ξ)

∣∣∣
)
|mj,k(ξ)|

2
)
dξ

+
∑

k∈ Z

NZ

∫

R2

((∣∣∣ψ̂a(2
−1R−1ξ)ψ̂aa(ξ)

∣∣∣+
∣∣∣ψ̂aa(2

−1Rξ)ψ̂a(ξ)
∣∣∣
)
|mj+1,k(ξ)|

2
)
dξ.

It follows that ∑

j∈Z

Bj =
∑

j∈Z

∑

k∈ Z

NZ

∫

R2

G(ξ) |mj,k(ξ)|
2
dξ,

where

G(ξ) =
∑

j′=±1

(∣∣∣ψ̂a(ξ)ψ̂aa(2
j′Rξ)

∣∣∣+
∣∣∣ψ̂aa(ξ)ψ̂a(2

j′R−1ξ)
∣∣∣
)
.

Joining all these together, we obtain
∑

j∈Z

Re(I5,j) ≥
∑

j∈Z

(Aj −Bj)

=

∫

R2


∑

j∈Z

∑

k∈ Z

NZ

|mj,k(ξ)|
2




(
2
(
1− cos

π

2N

)
F (ξ)−G(ξ)

)
dξ

=

∫

R2

Γ∗


∑

j∈Z

∑

k∈ Z

NZ

|mj,k(ξ)|
2


 ∑

γ∈Γ∗

(
2
(
1− cos

π

2N

)
F (ξ + γ)−G(ξ + γ)

)
dξ.
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Finally, by exchanging ψ̂a and ψ̂aa, we find a similar bound for I6,j and we deduce that

I3 + I4 ≥

∫

R2

Γ∗


∑

j∈Z

∑

k∈ Z

NZ

|mj,k(ξ)|
2


 (Ψ4(ξ)−Ψ3(ξ)) dξ.

4.3.6 Proof of Lemma 4-(i)

We have

Jµ + J2µ =
∑

j∈Z

∑

k∈ Z

NZ

∫

R2

f̂(ξ)ψ̂(2−jR−kξ)f̂(ξ − 2jRkµ)ψ̂(2−jR−kξ − µ)dξ

+
∑

j∈Z

∑

k∈ Z

NZ

∫

R2

f̂(ξ)ψ̂(2−jR−kξ)f̂(ξ − 2j+1Rkµ)ψ̂(2−jR−kξ − 2µ)dξ.

After the substitution of indices j 7→ j − 1, the second term on the right hand side reads

∑

j∈Z

∑

k∈ Z

NZ

∫

R2

f̂(ξ)ψ̂(2−j+1R−kξ)f̂(ξ − 2jRkµ)ψ̂(2−j+1R−kξ − 2µ)dξ.

Hence,

Jµ + J2µ =
∑

j∈Z

∑

k∈ Z

NZ

∫

R2

f̂(ξ)f̂ (ξ − 2jRkµ)gj,k,µ(ξ)dξ, (22)

where

gj,k,µ(ξ) = ψ̂(2−jR−kξ)ψ̂(2−jR−kξ − µ) + ψ̂(2−j+1R−kξ)ψ̂(2−j+1R−kξ − 2µ).

Observe that, by H2, we have

ψ̂(2−jR−kξ)ψ̂(2−jR−kξ − µ) = e
iµ1
2

∣∣∣ψ̂(2−jR−kξ)ψ̂(2−jR−kξ − µ)
∣∣∣ ,

where e
iµ1
2 = eiπ = −1. On the other hand, we have

ψ̂(2−j+1R−kξ)ψ̂(2−j+1R−kξ − 2µ) = eiµ1

∣∣∣ψ̂(2−j+1R−kξ)ψ̂(2−j+1R−kξ − 2µ)
∣∣∣ ,

where eiµ1 = ei2π = 1. Therefore,

gj,k,µ(ξ) = −
∣∣∣ψ̂(2−jR−kξ)ψ̂(2−jR−kξ − µ)

∣∣∣+
∣∣∣ψ̂(2−j+1R−kξ)ψ̂(2−j+1R−kξ − 2µ)

∣∣∣ .

Going back to (22) and using Young inequality, we show that

2 |Jµ + J2µ| ≤ 2
∑

j∈Z

∑

k∈ Z

NZ

∫

R2

∣∣∣f̂(ξ)f̂(ξ − 2jRkµ)gj,k,µ(ξ)
∣∣∣ dξ

≤
∑

j∈Z

∑

k∈ Z

NZ

∫

R2

(
|f̂(ξ)|2 + |f̂(ξ − 2jRkµ)|2

)
|gj,k,µ(ξ)|dξ,

where
∫

R2

(
|f̂(ξ)|2 + |f̂(ξ − 2jRkµ)|2

)
|gj,k,µ(ξ)|dξ =

∫

R2

|f̂(ξ)|2
(
|gj,k,µ(ξ)| + |gj,k,µ(ξ + 2jRkµ)|

)
dξ

=

∫

R2

|f̂(ξ)|2 (|gj,k,µ(ξ)|+ |gj,k,−µ(ξ)|) dξ.

Thus, we have

2 |Jµ + J2µ| ≤

∫

R2

|f̂(ξ)|2
∑

j∈Z

∑

k∈ Z

NZ

(|gj,k,µ(ξ)| + |gj,k,−µ(ξ)|) dξ =

∫

R2

|f̂(ξ)|2Φ1(ξ)dξ.
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4.3.7 Proof of Lemma 4-(ii)

The proof is similar to that of Lemma 4-(i) where we change the dilation by 2 into the rotation R. We

have

J3η + J3η̃ =
∑

j∈Z

∑

k∈ Z

NZ

∫

R2

f̂(ξ)ψ̂(2−jR−kξ)f̂(ξ − 2jRk(3η))ψ̂(2−jR−kξ − 3η)dξ

+
∑

j∈Z

∑

k∈ Z

NZ

∫

R2

f̂(ξ)ψ̂(2−jR−kξ)f̂(ξ − 2jRk+1(3η))ψ̂(2−jR−kξ − 3η̃)dξ.

After a change of indices, the second term on the right hand side reads

∑

j∈Z

∑

k∈ Z

NZ

∫

R2

f̂(ξ)ψ̂(2−jR−k+1ξ)f̂(ξ − 2jRk(3η))ψ̂(2−jR−k+1ξ − 3η̃)dξ.

Hence,

J3η + J3η̃ =
∑

j∈Z

∑

k∈ Z

NZ

∫

R2

f̂(ξ)f̂(ξ − 2jRk(3η))hj,k,3η(ξ)dξ, (23)

where

hj,k,3η(ξ) = ψ̂(2−jR−kξ)ψ̂(2−jR−kξ − 3η) + ψ̂(2−jR−k+1ξ))ψ̂(2−jR−k+1ξ − 3η̃)

Notice that, by H2, we have

ψ̂(2−jR−kξ)ψ̂(2−jR−kξ − 3η) = e
i3η1

2

∣∣∣ψ̂(2−jR−kξ)ψ̂(2−jR−kξ − 3η)
∣∣∣

where e
i3η1

2 = e
i3π
2 = −i. On the other hand, we have

ψ̂(2−jR−k+1ξ)ψ̂(2−jR−k+1ξ − 3η̃) = e
i3(η̃)1

2

∣∣∣ψ̂(2−jR−k+1ξ)ψ̂(2−jR−k+1ξ − 3η̃)
∣∣∣

where e
−i3η̃1

2 = e−
i3π
2 = i. Therefore,

hj,k,3η(ξ) = −i
∣∣∣ψ̂(2−jR−kξ)ψ̂(2−jR−kξ − 3η)

∣∣∣+ i
∣∣∣ψ̂(2−jR−k+1ξ)ψ̂(2−jR−k+1ξ − 3η̃)

∣∣∣ .

Going back to (23) and using Young inequality, we show that

2 |J3η + J−3η| ≤ 2
∑

j∈Z

∑

k∈ Z

NZ

∫

R2

∣∣∣f̂(ξ)f̂(ξ − 2jRk(3η))hj,k,3η(ξ)
∣∣∣ dξ

≤
∑

j∈Z

∑

k∈ Z

NZ

∫

R2

(
|f̂(ξ)|2 + |f̂(ξ − 2jRk(3η))|2

)
|hj,k,3η(ξ)|dξ,

where
∫

R2

(
|f̂(ξ)|2 + |f̂(ξ − 2jRk(3η))|2

)
|hj,k,3η(ξ)|dξ =

∫

R2

|f̂(ξ)|2
(
|hj,k,3η(ξ)|+ |hj,k,3η(ξ + 2jRk(3η))|

)
dξ

=

∫

R2

|f̂(ξ)|2 (|hj,k,3η(ξ)|+ |hj,k,−3η(ξ)|) dξ.

Thus, we have

2 |J3η + J3η̃| ≤

∫

R2

|f̂(ξ)|2Φ2(ξ)dξ.
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4.3.8 Proof of Lemma 4-(iii)

We have

Jν + Jν̃ =
∑

j∈Z


 ∑

k∈ Z

NZ

∫

R2

f̂(ξ)ψ̂(2−jRkξ)f̂(ξ − 2jR−kν)ψ̂(2−jRkξ − ν)dξ

+
∑

k∈ Z

NZ

∫

R2

f̂(ξ)ψ̂(2−jRkξ)f̂(ξ − 2jR−kν̃)ψ̂(2−jRkξ − ν̃)dξ


 .

By developing ψ̂ as ψ̂a + ψ̂aa, we show that Jν + Jν̃ =
∑

j∈Z
(J1,j + J2,j), where

J1,j =
∑

k∈ Z

NZ

∫

R2

f̂(ξ)ψ̂a(2−jR−kξ)f̂(ξ − 2jRkν)ψ̂a(2
−jR−kξ − ν)dξ

+
∑

k∈ Z

NZ

∫

R2

f̂(ξ)ψ̂aa(2−jR−kξ)f̂(ξ − 2jRkν̃)ψ̂aa(2
−jR−kξ − ν̃)dξ

and

J2,j =
∑

k∈ Z

NZ

∫

R2

f̂(ξ)ψ̂aa(2−jR−kξ)f̂(ξ − 2jRkν)ψ̂aa(2
−jR−kξ − ν)dξ

+
∑

k∈ Z

NZ

∫

R2

f̂(ξ)ψ̂a(2−jR−kξ)f̂(ξ − 2jRkν̃)ψ̂a(2
−jR−kξ − ν̃)dξ.

Let us focus on J1,j. Since e
−

ν1
2 = e−iπ2 = −i and e−

ν̃1
2 = ei

π
2 = i, we have, by H2,

ψ̂a(2−jR−kξ)ψ̂a(2
−jR−kξ − ν) = −i

∣∣∣ψ̂a(2
−jR−kξ)ψ̂a(2

−jR−kξ − ν)
∣∣∣

and

ψ̂aa(2−jR−kξ)ψ̂aa(2
−jR−kξ − ν̃) = i

∣∣∣ψ̂aa(2
−jR−kξ)ψ̂aa(2

−jR−kξ − ν̃)
∣∣∣ .

It follows that

J1,j = −i
∑

k∈ Z

NZ

∫

R2

f̂(ξ)
∣∣∣ψ̂a(2

−jR−kξ)ψ̂a(2
−jR−kξ − ν)

∣∣∣ f̂(ξ − 2jRkν)dξ

+ i
∑

k∈ Z

NZ

∫

R2

if̂(ξ)
∣∣∣ψ̂aa(2

−jR−kξ)ψ̂aa(2
−jR−kξ − ν̃)

∣∣∣ f̂(ξ − 2jRkν̃)dξ

In the first integrals, we make the changes of variables ξ 7→ 2j+1Rkη+ ξ, while in the other integrals, we

apply ξ 7→ 2j+1Rk+1η + ξ. Since 2η − ν = −η̃ and 2Rη − ν̃ = −η, we obtain

J1,j = −i
∑

k∈ Z

NZ

∫

R2

f̂(2j+1Rkη + ξ)
∣∣∣ψ̂a(2η + 2−jR−kξ)ψ̂a(−η̃ + 2−jR−kξ)

∣∣∣ f̂(−2jRk+1η + ξ)dξ

+ i
∑

k∈ Z

NZ

∫

R2

f̂(2j+1Rk+1η + ξ)
∣∣∣ψ̂aa(2η̃ + 2−jR−kξ)ψ̂aa(−η + 2−jR−kξ)

∣∣∣ f̂(−2jRkη + ξ)dξ

=
∑

k∈ Z

NZ

∫

R2

f̂(2j+1Rkη + ξ)
(∣∣∣ψ̂a(2η + 2−jR−kξ)ψ̂a(−η̃ + 2−jR−kξ)

∣∣∣ if̂(−2jRk+1η + ξ)

−
∣∣∣ψ̂aa(2η̃ + 2−jR−k+1ξ)ψ̂aa(−η + 2−jR−k+1ξ)

∣∣∣ if̂(−2jRk−1η + ξ)
)
dξ

=
∑

k∈ Z

NZ

∫

R2

ak(ξ)
(
αk(ξ)bk+1(ξ)− βk(ξ)bk−1(ξ)

)
dξ,
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where

ak(ξ) = f̂(2j+1Rkη + ξ),

bk(ξ) = if̂(−2jRkη + ξ),

αk(ξ) =
∣∣∣ψ̂a(2η + 2−jR−kξ)ψ̂a(−η̃ + 2−jR−kξ)

∣∣∣ ,

βk(ξ) =
∣∣∣ψ̂aa(2η̃ + 2−jR−k+1ξ)ψ̂aa(−η + 2−jR−k+1ξ)

∣∣∣ .

Thus, we can apply once again Lemma 5 to show that 2Re(J1,j) ≥ Aj −Bj , where

Aj = 2
(
1− cos

π

2N

)∫

R2

min
{ω∈R2:|ω|=|ξ|}

|α0(ω)|
∑

k∈ Z

NZ

(
|ak(ξ)|

2
+ |bk(ξ)|

2
)
dξ,

and

Bj =

∫

R2

∑

k∈ Z

NZ

(
(αk(ξ) + βk(ξ))|ak(ξ)|

2 + (αk−1(ξ) + βk+1(ξ))|bk(ξ)|
2
)
dξ.

Let us reverse the former change of variables. We have

Aj = 2
(
1− cos

π

2N

) ∑

k∈ Z

NZ

(∫

R2

min
{ω∈R2:|ω|=|ξ|}

∣∣∣ψ̂a(2η + 2−jω)ψ̂a(−η̃ + 2−jω)
∣∣∣
∣∣∣f̂(2j+1Rkη + ξ)

∣∣∣
2

dξ

+

∫

R2

min
{ω∈R2:|ω|=|ξ|}

∣∣∣ψ̂a(2η + 2−jω)ψ̂a(−η̃ + 2−jω)
∣∣∣
∣∣∣f̂(−2jRkη + ξ)

∣∣∣
2

dξ

)

= 2
(
1− cos

π

2N

)∫

R2


 ∑

k∈ Z

NZ

∑

γ∈{2η,−η̃}

min
{ω∈R2:|ω|=|2−jξ−Rkγ|}

∣∣∣ψ̂a(2η + ω)ψ̂a(−η̃ + ω)
∣∣∣




∣∣∣f̂(ξ)
∣∣∣
2

dξ

We infer that ∑

j∈Z

Aj = 2
(
1− cos

π

2N

) ∫

R2

H(ξ)
∣∣∣f̂(ξ)

∣∣∣
2

dξ,

where

H(ξ) =
∑

j∈Z

∑

k∈ Z

NZ

∑

γ∈{2η,−η̃}

min
{ω∈R2:|ω|=|2−jξ−Rkγ|}

∣∣∣ψ̂a(2η + ω)ψ̂a(−η̃ + ω)
∣∣∣ .

Applying the sames changes of variables in Bj , we get

Bj =
∑

k∈ Z

NZ

∫

R2

|f̂(ξ)|2
(
|ψ̂a(2

−jR−kξ)ψ̂a(2
−jR−kξ − ν)|+ |ψ̂aa(2

−jR−k+1ξ)ψ̂aa(2
−jR−k+1ξ − ν̃)|

)
dξ

+
∑

k∈ Z

NZ

∫

R2

|f̂(ξ)|2
(
|ψ̂a(2

−jR−k+1ξ)ψ̂a(2
−jR−k+1ξ + ν)|+ |ψ̂aa(2

−jR−kξ)ψ̂aa(2
−jR−kξ + ν̃)|

)
dξ

=

∫

R2

|f̂(ξ)|2
∑

γ∈{ν,−ν}

∑

k∈ Z

NZ

(
|ψ̂a(2

−jR−kξ)ψ̂a(2
−jR−kξ − γ)|+ |ψ̂aa(2

−jR−kξ)ψ̂aa(2
−jR−kξ − γ̃)|

)
dξ.

Joining all these together, we obtain

2
∑

j∈Z

Re(J1,j) ≥
∑

j∈Z

(Aj −Bj)

=

∫

R2

∣∣∣f̂(ξ)
∣∣∣
2 (

2
(
1− cos

π

2N

)
H(ξ)

−
∑

γ∈{ν,−ν}

∑

j∈Z

∑

k∈ Z

NZ

(
|ψ̂a(2

−jR−kξ)ψ̂a(2
−jR−kξ − γ)|+ |ψ̂aa(2

−jR−kξ)ψ̂aa(2
−jR−kξ − γ̃)|

)

 dξ.
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Finally, by exchanging ψ̂a and ψ̂aa, we find a similar bound for J2,j and we deduce that

2Re (Jν + Jν̃) ≥

∫

R2

∣∣∣f̂(ξ)
∣∣∣
2

(Φ4(ξ)− Φ3(ξ)) dξ.

4.3.9 Proof of Lemma 5

First, we show that if N is odd, then we have, for all a, b ∈ C
Z

NZ ,

∑

k∈ Z

NZ

(
|ak − bk−1|

2 + |ak + bk+1|
2
)
≥ 2

(
1− cos

π

2N

) ∑

k∈ Z

NZ

(|ak|
2 + |bk|

2). (24)

To prove this inequality, we need to change the notation as follows. As N is odd, put N = 2n+ 1, and

for all k ∈ {0, · · · , 4n+ 1}, set

ck =

{
a[k], if k is even,
b[k], if k is odd,

where [k] is the equivalence class of k in Z

NZ
. Inequality (24) becomes

4n∑

k=0

∣∣ck + (−1)kck+1

∣∣2 + |c4n+1 − c0|
2 ≥ 2

(
1− cos

π

4n+ 2

) 4n+1∑

k=0

|ck|
2, ∀c ∈ C

4n+2. (25)

It can be written in matrix form as ‖Ac‖2 ≥ 2
(
1− cos π

4n+2

)
‖c‖2, or equivalently as

‖Ac‖ ≥
∣∣1− e−i π

4n+2

∣∣ ‖c‖, (26)

where ‖ · ‖ is the Euclidean norm and

A =




1 1
1 −1

1 1
. . .

. . .

−1 1



.

Since ATA = AAT , where AT denotes the transpose of A, the matrix A is diagonalizable in an or-

thonormal basis. Let λ be its eigenvalue with smallest modulus. Proving (26) amounts to show that

|λ| =
∣∣1− e−i π

4n+2

∣∣. The characteristic polynomial of A is (1 − λ)4n+2 + 1 and we deduce that λ =

1 − ie2i
lπ

4n+2 for l ∈ Z

(4n+2)Z . The modulus |λ| is therefore minimal for l ≡ 3n + 1 and we have

|λ| = |1− ie2i
3n+1
4n+2π| = |1− e−i π

4n+2 |. Hence, (26) and (24) are proved.

Next, using the binomial formula, we show that

2Re
∑

k∈ Z

NZ

ak(αkbk+1 − βkbk−1) =
∑

k∈ Z

NZ

(
αk|ak − bk+1|

2 + βk|ak + bk−1|
2
)

−
∑

k∈ Z

NZ

(
(αk + βk)|ak|

2 + (αk−1 + βk+1)|bk|
2
)
,

where, thanks to the above,

∑

k∈ Z

NZ

(
αk|ak − bk+1|

2 + βk|ak + bk−1|
2
)

≥ min
k∈ Z

NZ

min(αk, βk)
∑

k∈ Z

NZ

(
|ak − bk+1|

2 + |ak + bk−1|
2
)

≥ 2
(
1− cos

π

2N

)
min
k∈ Z

NZ

min(αk, βk)
∑

k∈ Z

NZ

(
|ak|

2 + |bk|
2
)
.
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(a) (b) (c)

Figure 5: Three examples of potential implementations for squarely sampled images—(a) and (c)—and
hexagonally sampled images—(b).

5 Numerical implementation

In order to demonstrate the potential of the proposed approach, we give a first numerical implementation.

This task raises several core issues that are addressed below.

5.1 Adaptation to a non-rotation invariant lattice

The frequency tiling displayed in Figure 1-(b) is not adapted to digital images that are generally sampled

on a square lattice and have therefore a square reciprocal cell. An easy solution is to replace some rotations

by shear mappings as it is done for the discrete curvelet transform [3] and the shearlet transform [14].

In order not to get off the above theorems and unlike what is generally done for discrete directional

bases, the wavelet ψ ◦D, for a given mapping D, has to be translated along the lattice D−1Γ. As the

transform in implemented in the Fourier domain, this lattice does not have necessary to be a sublattice

of the lattice Z2 on which the image is sample. It has however to be a sublattice of the periodization

lattice NZ ×MZ for a N ×M -image. Tilings that are generally considered, in particular those of [12],

are therefore not adapted.

Moreover, since the number of directions has to be odd, the basis cannot be invariant by rotation

of angle π/2. We propose therefore to use the frequency tiling of Figure 5-(a) that is well suited to

2n × 2m-images. In this example, only 6 of the 7 directional wavelets are obtained by compositions of

rotations and shear mappings with a mother wavelet ψ. The seventh wavelet is designed separately. The

latter and ψ both satisfy equation (2) with the same δ and τ , but for different angular resolutions—see

Figure 6. One can prove that Proposition 1 can be extended to this case. For each scale j, we have

therefore an orthonormal basis for Wj =
⊕

k∈{1,···,7}Wj,k.

Notice that one could obtain more uniform angular resolutions for the 3—loosely—horizontal direc-

tions with (3 · 2n) × 2m-images. In order to have wavelets with nearly the same angular resolution in

each direction, it would be however more suitable to consider images that are sampled on an hexagonal

lattice—see Figure 5-(b). Recall, by the way, that hexagonal lattices have several notable properties such

as requiring the least number of samples to represent images whose spectrum is supported on a disc.

On the other hand, since most of images that are produced nowadays are sampled on a square lattice,

it might be appropriate to adapt this hexagonal transform to squarely sampled images by shifting some
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Figure 6: Fourier transforms of the primal wavelets. Only imaginary parts are shown.

of their Fourier coefficients as it was done in [13]—See Figure 5-(c). This third solution would be well

suited as the transform, based on bandlimited wavelets, has to be implemented in the Fourier domain.

5.2 Processing of the finest and coarsest scales

Since the frequency support of wavelets at the finest scale exceed the cutoff frequency, their processing is

a genuine issue, especially when our aim is to avoid aliasing. The Fourier transforms are not periodized

as it is done, for instance, in [3]. They are roughly cut as if the image was upsampled by zero padding.

As a consequence, fine scale wavelets have low decay. A periodization would however have the same effect

since wavelets are not translated on a sublattice of Z2 or, in other words, Fourier transforms of wavelets

cannot be periodized along (Z2)∗.

Coarse scales can be processed with separable Meyer scaling function as in [3]. It causes however a

break in the connections between scales and generates therefore a low frequency residue on dual wavelets.

To avoid this issue, wavelets are applied down to the coarsest scale with some approximations in accor-

dance with the sampling theory.

5.3 Experimental results

The primal wavelet transform is implemented in the Fourier domain. Since wavelets are not translated on

square lattices, we used FFT for non-square lattices as in [13]. Up to now, we do not know how to obtain

an explicit expression of the dual basis. It is therefore computed by conjugate gradient. Figure 7 shows

the 7 primal wavelets and the computed dual wavelets. One can observe that the two families are rather

close to each other. This is not surprising since primal wavelets at a same scale form an orthonormal

system. However the orthogonality does not stand up to dilation. As a consequence, one can notice a

light high frequency residue on dual wavelets. We do not know yet whether these artifacts are due to the

adopted processing of the finest and coarsest scales whose effects reverberate through scales. In figure 8,

one of the primal wavelets, at the finest scale, and the associated dual wavelet are displayed. As it is

mentioned above, they have low decay.

We obtained better results when the analysis is done with the primal wavelet. In such a case, the

direct transform is fast, while the inverse transform is built on an iterative process. It is done by conjugate

gradient in the Fourier domain, hence avoiding a recurrent use of the Fourier transform.
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(a) (b)

Figure 7: (a) Primal wavelets. (b) Dual wavelets.

(a) (b)

Figure 8: (a) Primal wavelet at the finest scale. (b) Associated dual wavelet.

As digital images lie in finite dimensional spaces, it is very unlikely that the obtained discrete wavelet

system, drawn near to the Shannon wavelet basis, does not form a basis. The question whether it is a

Riesz basis does not arise here. The point is rather to know whether the basis is close to an orthonormal

basis or, in other words, whether the wavelet transform W is close to an orthogonal transform. To this

end, we compare the transform W ◦W ∗ to the identity map. Figure 9 shows a detail of Barbara image

(a) and its range by W ◦W ∗ when (b) ψ̂ is as in H2 and (c) ψ̂ = |ψ̂|. In the second case, the wavelet still

generates an orthonormal basis for Wj,k, but the latter is no longer orthogonal to Wj,k+1. We can also

surmise that the angle between Wj and Wj+1 is smaller. When it is compared to (c), image (b) looks

clearly very close to the original image (a). The PSNR is however quite low because of a low frequency

errors.

The approximation of Barbara image with the 104 largest directional wavelet coefficients is displayed

in Figure 10. For a comparison, the result obtained with 9/7-separable wavelets [7] and wrapping

curvelets [3] is also shown. Directional wavelets are more efficient than separable wavelets near edges and

on textures although one can notice artifacts in smooth areas. The over-complete curvelet transform is

poorly efficient at this rate of compression.

6 Conclusion and outlook

We gave sufficient conditions for a wavelet function to generate a rotation invariant Riesz sequence or

a Riesz basis for L2(R2). This study leaves however several open questions. First, it does not let us to

know whether the sequence considered in Section 3.1 is global for L2(R2). More generally, we did not

give an example of wavelet with fast decay that satisfies all the conditions to generates a basis for L2(R2).
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(a) (b) (c)

Figure 9: Barbara image and its range by W ◦W ∗. (b) ψ̂ as in H2 (PSNR=27.86 dB). (c) ψ̂ = |ψ̂|
(PSNR=21.21 dB).

(a) (b) (c)

Figure 10: Approximation of Barbara image with the 104 largest coefficients. (a) Proposed directional
wavelets (PSNR=28.31 dB). (b) Separable wavelets (PSNR=27.22 dB). (c) Curvelets (PSNR=23.47 dB).
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Investigations could allow to find such an example. A more relevant way to obtain an analytic proof of

the existence of such a basis would be however to find weaker assumptions in both theorems. It could be

done by developing, for instance, a method that allows to estimate the upper bounds of Lemma 3, and

those of Lemma 4, as a whole.

The proposed implementation allows to keep the orthonormal basis for each space Wj and numerical

results let us surmise that angles between these spaces are fairly large. However, they impel us to

consider several possible improvements. More adapted frequency tilings have already been mentioned

and displayed in Figure 5. Stated theorems do not allow to apply a parabolic scaling law as in the

curvelet transform, but since the two finest scales constitute 15
16 of coefficients, we could obtain better

approximations of images with sharp edges and textures by increasing the number of directions. This

can be easily done, even with the proposed implementation for 2n × 2m-images. Finding a tiling that

enables us to translate wavelets on sublattices of the original lattice Z2 would let us consider a proper

processing of the finest scale and possibly compactly supported wavelets. The processing of the coarsest

scale has also to be reconsidered. The design of dual wavelets, in the discrete as well as the continuous

case, is a another challenging issue.

As a conclusion, we need to mention the very new manuscript by Yin and Daubechies [32]. To our

knowledge, this is the only other article that proposes a method to circumvent the aliasing problem gener-

ated by filterbanks in directional wavelet bases. Although their approach—that relies on the nonuniform

filterbank of [26, 11]—is very different to ours, several parallels can be drawn. For instance, they also con-

sider biothogonal wavelets in order to design non-aliased primal wavelets and give conditions to properly

chose the phase of their Fourier transforms.
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