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Testing in Aerospace Research

models are available, derived from aerodynamics, structural dynam-
ics or flight mechanics. Accordingly, the development of Flight Con-
trol Systems (FCS) often makes use of model-based techniques 
(Figure 1), but these models cannot always be implemented just as 
they are because of high orders, strongly nonlinear behaviors or, more 
generally, because they have become increasingly complex in recent 
years. On the other hand, surrogate models are very useful to replace 

Introduction

A number of activities in aeronautical engineering rely on the avail-
ability of models to represent the real behavior of the aircraft. For 
example, let us quote the analysis and design of flight control laws, 
the study of the handling qualities, the fault monitoring process, the 
prediction of hazardous behaviors, or the implementation of simula-
tors used to train the pilots and to validate hardware and software 
systems. One feature of the aeronautical field is that many physical 
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Figure 1 – Some development stages likely to benefit from surrogate models
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the system or the reference model when the latter is too complex or 
time consuming for achieving some tasks (optimization, parameter 
identification, embedded implementation, etc.). 
 
Consequently, a wide range of models and associated methods has 
been developed for building surrogate models efficiently, both accu-
rately and parsimoniously [1][7][8][34][54]. Within this range, Neural 
Networks (NN) are recognized nowadays as an efficient alternative for 
representing complex nonlinear systems, including dynamical ones 
[14][21][49]. As a result, one can also benefit from efficient tools per-
mitting the static nonlinearities to be modeled, such as those involved 
in the representation of aerodynamic coefficients resulting from CFD 
computations, or from wind tunnel or flight testing [26][40][47][52]
[55]. Usually, these data are only available in the form of look-up tables 
and hence are not very convenient for on-board implementation [4]
[22]; that is why analytical and differentiable approximations are con-
templated, with lower memory requirements also. For instance, spe-
cial types of NN can be advantageously used to design grey-box neu-
ral models arranged to accurately represent the aircraft aerodynamic 
coefficients appearing in the flight nonlinear equations of motion [5]. 
Such NN permit the physical readiness and the structure of aerody-
namics to be preserved in the final surrogate model (as opposed to 
black-box approaches often promoted in the field), as illustrated below 
for the pitching moment coefficient Cm  in clean configuration:

( )

( )
( )


( )


( )


( )
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, ,

NN NN NNNN NN
NL NLAC

ff M Pd Mf MMM f f

Cm SlPd Cz CmCm x x α

α

α κ= + − + ∆ +  





	(1)

In (1), the parameters α , M, S, Pd and l refer respectively to the 
aerodynamic Angle of Attack (AoA), Mach number, reference area, 
dynamic pressure and mean aerodynamic chord. CGx  and ACx  cor-
respond to the longitudinal abscissa of the Center of Gravity and Aero-
dynamic Center. [ ]0 AC NLCm x Cz Cmα ∆  and [ ]NLκ  are respectively 
rigid-body aerodynamic and static aeroelastic neural approximations 
of nonlinear effects (as indicated by the NN exponent) which contrib-
ute to the global model of Cm. From this simple example, it can be 
stated that if such surrogate models can be created from the initial 
data, several model-based techniques will be facilitated, both for off-
line and on-line applications.

To cover these aspects, the paper is organized as follows. The first 
section outlines the characteristics of the surrogate models pre-
ferred for meeting the previous needs, and gives an overview of the 
techniques that have been developed for constructing these mod-
els efficiently. The three following sections are devoted to a short 
description of some relevant applications in the field of flight control 
systems:
•	 to derive simplified parsimonious representations useful for 

building Linear Fractional Representations (LFR) of lower com-
plexity for analysis and design of control laws,

•	 as intermediate models to facilitate the identification process of 
aerodynamic nonlinearities from flight tests,

•	 to obtain embeddable models used for the virtual sensing of 
some flight parameters required to schedule the control/protec-
tion laws (tolerance to sensor faults). Concluding remarks and 
perspectives end the paper.

Surrogate models for aircraft modeling

The equations of motion of a rigid body A/C are derived from the fun-
damental principles of mechanics. Thus, the external forces involved 
in these equations arise from propulsion, aerodynamics and gravita-
tional attraction. The major source of complexity in this model mostly 
comes from the highly nonlinear aerodynamic effects, and to a lesser 
extent from the propulsion components. Consequently, the modeling 
of the aerodynamic part within the whole flight envelope is the main 
challenge of many model-based applications. The following subsec-
tions outline the characteristics of the nonlinear surrogate models that 
were selected, and which play a pivotal role in the practical applica-
tions described afterwards, and focus on different aspects of flight 
control systems.

Nonlinear regression for Linear-in-their-Parameters models

At first, it is noteworthy that a nonlinear model can be either linear 
or nonlinear with regard to its internal parameters. Within the frame-
work of NN, the latter case corresponds for example to Multi-Layered 
Perceptrons (MLP) [8][14] as well as to Radial Basis Function (RBF) 
networks [7][17][37][53] when the nonlinear parameters of the radial 
units (centers c and radii σ in Figure 2) are also optimized in addition 
to the linear ones (weights w in Figure 2). Clearly, this is the most 
general formulation since Linear-in-their-Parameters (LP) models are 
nothing but a special case, and it is the origin of the NN theoretical 
properties as parsimonious approximators. However, the joint opti-
mization of the whole set of model parameters (linear plus nonlinear) 
practically results in ill-posed problems, which are likely to converge 
only by enforcing strong regularization constraints in the optimization 
process. This issue can be overcome by splitting the parameters into 
linear and nonlinear subsets [16], but LP models are always quite 
common practice anyway, because more simple and robust algo-
rithms can be adopted, derived from the classical methods in use for 
estimating the parameters of linear regressions. Some advantages for 
preferring RBF versus MLP are:
•	 a possible integration of physical constraints,
•	 they make it easier to perform a local adjustment from hetero-

geneous data distribution or from sparse partial data relative 
only to portions of the flight domain,

•	 their grey-box architecture is better suited to integrate some ini-
tial knowledge (keeping the aerodynamic model readable) and to  
manage the optimization process (w.r.t. pure black-box networks),
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Figure 2 – RBF/LLM-type surrogate models
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•	 they develop local approximations instead of global ones mak-
ing constructive algorithms possible (for determining the num-
ber of units),

•	 the various parameters (linear and nonlinear) can be sequen-
tially optimized during the learning process.

On the other hand, most of the existing tools related to those local 
models are based on some initial user-defined architecture. For RBF, 
this amounts to setting a priori the number of kernels as well as their 
distribution in the input space. Although this distribution can be more 
or less automatically defined from the data repartition, and although 
some pruning is possible after learning, this is not a real structural 
optimization. Most often, only input data are used for choosing the 
kernel distribution without considering the output values, and hence 
the match between the model and the problem complexity cannot be 
guaranteed. Actually, by taking advantage of the features of LP mod-
els, both parametric and structural identification can be jointly pro-
ceeded to for extracting a suitable set of regressors from the available 
data. The procedure should determine the whole set of parameters 
involved in the nonlinear regression, and neither the number of ker-
nels nor their distribution would have to be known in advance. The 
algorithm described in the sequel of this section makes use of the 
best techniques in the fields of Orthogonal Least-Squares (OLS) [9], 
local regularization [39], Separable Nonlinear Least-Squares (SNLS) 
[16], as well as a global evolutionary optimization that hybridizes 
local and global search [12].

The approach relies on a regularized constructive process that adds 
new regressors progressively, in terms of both a performance cost 
and the generalization errors. The LP models that we consider hereaf-
ter comply with the generic form:

	 ( ) ( )
1

ˆ
m

k k j j k
j

y f x w r x
=

= = ∑ 	 (2)

where xk is a vector gathering the n explanatory variables (α , M, Pd 
in the example of Eq. (1)), and yk is assumed to be scalar to alleviate 
the developments. The functions rj are the nonlinear regressors to be 
defined, while wj are the regression parameters also to be determined 
during the optimization process, as well as the number m of regressors 
(unknown a priori). At this time, the regressors rj can represent either 
the monomials of a polynomial expansion, the radial functions of RBF or 
Local Linear Models (LLM), etc. [34], but we will focus in the sequel on 
the use of local models (Figure 2). From N available data samples (xk, 
yk) representing the tabulated coefficient to be modeled, the LS minimi-
zation of the approximation errors yields to consider the criterion:

	 ( )( )2 2

1 1
[ ]

N m

j jk k
k j

C wy f x λ
= =

= +−∑ ∑ 	 (3)

where adding an [optional] regularization term enables large values 
of the wj parameters to be penalized, and thus the conditioning of the 
problem to be improved in case of model overfitting (ridge regres-
sion). By grouping the regularization parameters into the diagonal 
matrix , 1, ,{ }jdiag j mλΛ = =   (also to be adapted), the well-
known solution to this LS problem is given by:

	 1 1ˆ ( )T T Tw R R R y H R y− −= + Λ = 	 (4)

by denoting Rj as the j th column of the regression matrix R, written 
as ( ) ( ) ( )1 2

T
j j j Nj r r r xx xR  =   , and 1H −  as the covari-

ance matrix of the estimation errors. It is noteworthy that, if mIλΛ = , 

this results in global regularization, whereas local ridge regression 
is expected when all of the λj are different from each other, every 
parameter wj being weighted with its own penalty. When radial func-
tions are used as regressors for instance, this form of regularization 
permits the resulting smoothness to be controlled in a local fashion 
[37]. If the individual λj are optimized, this smoothness can then be 
adapted in the different regions of the input space where the regres-
sors are located. From (4), the output prediction error can be simply 
expressed as:

	 ( )1ˆ ˆ T
Ny y y Rw y P yI RH Rε −= − = − = =− 	 (5)

A matrix P appears in (5), which is the projection matrix in the 
simplest case (no penalty). It projects the vector y defined in a 
N-dimensional space in the m-dimensional subspace spanned by 
the model. This matrix plays a crucial role in the regression prop-
erties, and is involved in most of the relationships, e.g. the cost 
function TC y P y= . To choose the regressors rj , we will focus on 
methods based on forward selection, as opposed to another class 
of methods that consists in first selecting a full set of candidates, 
and then removing the less relevant ones one by one (backward 
elimination). Forward selection starts with an empty subset, and 
the regressors are added one at a time in order to gradually improve 
the results. Therefore, the final number of regressors is not known 
in advance, and the computational cost is reduced since the regres-
sion size will become large only if it is required to reduce the model-
ing error. We will examine in the sequel how the candidates can be 
chosen or generated from scratch. Let us first consider the ques-
tion of how and when to stop this forward selection process. The 
available data being limited in number and sometimes noisy, the 
model that we seek should correspond to the best compromise 
between the performances evaluated on the training samples and 
the extrapolated performances evaluated when the model is used 
with other inputs absent from the initial data base. This is referred to 
as validation or generalization error. With a few not very restrictive 
assumptions, it can also be proved that the expected cost can be 
expanded as ( ) ( ) ( ) ( )var biais var /E m NC mξ ξ≈ + +   (over all 
possible data sets), where ( )var ξ  is the variance of the noise ξ , 
and the effective number of parameters m  (usually less than m) 
depends on the regularization parameters.

To tackle this well-known bias/variance dilemma, the most common 
technique consists in splitting the available data set into two groups, 
the 1st one being used for estimating the parameters w and the 2nd 
one for the validation stage. Although irrelevant in practice, this 
trick leads to a more interesting concept, the vir tual "Leave-One-
Out" method (LOO) and its variants [29]. This technique generalizes 
the previous split by suggesting the vir tual use of N subsets to be 
made, each of them including only N–1 samples, prior to computing 
the model performance by averaging the N estimations. The idea is 
to achieve a theoretical prediction (i.e., without really performing 
the corresponding optimizations) of the generalization errors result-
ing from the withdrawal of every sample included in the data base. 
All of the available data are thus effectively used for the optimiza-
tion process, but the validation stage takes also into account the 
consequences of discarding any of them. Moreover, the interest of 
this technique is reinforced in the case of LP models, since a very 
simple analytical expression of the generalization error can then be 
derived. By denoting as fk(xk) the predicted output obtained for the 
k th sample when the model is optimized from the N–1 remaining 
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samples, the LOO variance of the generalization error (also known 
as PRESS for Predicted REsidual Sum of Squares) can be effec-
tively written as [37]:

( )( )22 1 2 2

1 1

1 1 1( ) ( )[ ]
N N

N T
LOO k k k

k k
k y Pdiag P P yy f x

N N N
σ ε − −

= =

= = =−∑ ∑ 	(6)

Forward selection methods

Orthogonal Least Squares

Thanks to this estimation of the generalization error, it is possible 
to rule on the benefits from adding a new regressor to the model, 
at every step of the forward selection process. On the other part, 
when using LP models, it is straightforward to determine by advance 
the result of elementary operations, like adding or subtracting any 
regressor. Again, quite simple analytical formulae can be established 
to cover these situations [37], which avoid retraining the model from 
scratch. At every step of a constructive approach, the chosen new 
regressor will thus be the one reducing the most the value of the cost 
function. The process will be pursued that way until: either a user-
defined minimum value of the criterion Cm is reached (knowing that 
this criterion will continue to decrease as long as m increases), or 
the generalization error (e.g. the LOO one estimated by 2

LOOσ ) stops 
decreasing which reveals model overfitting. Otherwise, determining 
the pool of regressors within which the selection will operate is of 
course a key point for these approaches. There are several alterna-
tives, which can modify the final results and the model parsimony. 
This aspect is discussed afterwards.

Forward selection is computationally efficient, but constructive algo-
rithms can be sped up even further thanks to a preliminary orthogo-
nalization process, making use of the famous Gram-Schmidt tech-
nique. Moreover, this procedure permits the successive regressors to 
be decoupled from each other, and hence their individual contribution 
to be evaluated regardless of those already recruited for the modeling. 
The principle of the method is based on factoring the regression matrix 
as m m mR R U=  , where Um is upper triangular, and where the columns 
of the orthogonalized regression matrix [ ]1 2m mR r r r=

  
  

are such that 0T
i jr r =   for i j≠ . Consequently, when adding a new 

regressor rm+1 , corresponding to the (m+1)th column of the regres-
sion matrix R, only its projection perpendicular to the space already 
spanned by the m first regressors needs to be considered, and can 
contribute to a further reduction of the criterion [37]. This projection 
yields the recurrence:

	 1
1 1

1

Tm
j m

m m jT
j j j

r r
r r r

r r
+

+ +
=

= − ∑


 

 

	 (7)

From P, assuming no weight penalty (Λ=0), an expression can 
be derived for the expected reduction of the cost, depending only 
on the output vector y and the orthogonal regressor 1mr +  (decou-
pling). The regression parameters (orthogonal mw  and ordinary 
ones 1ˆm m mw U w−=  ) are then also easily derived [37]:

2
1

1 1
1 1 1

1
1

( )
( )

[ ] {( ) , 1,..., }

T Tm
j j T m

m N m m m mT T
j j j m m

T T T T
m m j j

r r r y
P I C C y P P y

r r r r

w r y r y diag r r j m

+
+ +

= + +

−


= − ⇒ − = − =


 = =

∑
 



   
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

	(8)

Local regularization and Separable Nonlinear Least Squares

Fortunately, the advantages of forward selection and regularization 
techniques (whether local or global) can be combined without too 
much complexity in the resulting algorithms. Furthermore, when 
radial functions are used as regressors (e.g. in the case of RBF or 
LLM), an analytical solution can usually be found [37], allowing 
the optimal value of each λj (for a local regularization) to be deter-
mined. However, this value is related to those of the (m –1) other 
parameters λj, and an iterative process is required a priori. Another 
approach is explained below, resulting in a joint or alternate proce-
dure to optimize both regressors and regularization parameters. It can 
also help to reduce the modeling size by removing a few regressors 
that have become irrelevant. Effectively, if a parameter value λj con-
verges towards +∞, the j th regressor can be eliminated without any 
damage to the performances. Thus, introducing a local regulariza-
tion into the forward selection incidentally enables useless regressors 
to be pruned without having to implement backward elimination. By 
combining OLS and local regularization, the LOO/PRESS validation 
error becomes ( ) ( ) ( )1N N N

m mk k kε ε η− = , where the modeling error 
( )N

m kε  appears weighted by a coefficient ( )N
m kη  which contributes 

to the computation of the variance of the validation error [9]. A major 
advantage of this expression is to facilitate the implementation of a 
recurrent formulation, resulting in a very effective algorithm [9]:

	

( ) ( ) ( ) ( )

( ) ( ) ( )

1
1

2

1

m
N N
m k j j m m m

j

N N m
m m T

m m m

y r w r wk k k k

r k
k k

r r

ε ε

η η
λ

−
=

−

 = − = −


 = − +

∑    



 

	 (9)

initialized only from the data outputs (no regressor to start the pro-
cess): ( ) ( )0 0/ ,T

kC N yy y kε= =  and ( )0 1kη =  (for 1 k N≤ ≤ ). 
Regarding the joint search for optimal values of the λj (in addition to 
those of the model parameters w), it amounts to minimizing the cost 

( ), T TC w ww ε ε= + ΛΛ  and can be solved within the framework 
of Bayesian learning [9]. Finally, this iterative process involves the 
evaluation of the jw  parameters in terms of the current λj , followed 
by an adaptation of the λj and so on. On the other hand, despite the 
unquestionable pros of the previous forward selection, the choice of 
each regressor is optimal iff it is considered by itself, i.e. for a given 
pre-selection of the pool of its predecessors. Disregarding this matter 
results in sub-optimality, which is the cost to pay for avoiding hav-
ing to deal with a nonlinear complex optimization, involving both the 
regression parameters and the parameters of the regressor kernels. 
Above all, it has to do with the major issue that the number of regres-
sors is not known in advance, and has to be inferred at the same time. 
However, it is possible to win on both counts, and thus to improve the 
forward selection, by adding some extra optimization stages to the 
previous constructive algorithm. The idea is to periodically call the 
global positioning of the selected regressors into question, in order to 
minimize the criterion value for a given model size, before continuing 
with the addition of new terms.

To improve the course of these optimization stages (time and condi-
tioning), it is wise to benefit from particular LS techniques, referred 
to as SNLS, and developed for LP models [16]. Denoting by u the 
vector gathering all of the internal parameters defining a regressor 
(e.g., the centers and radii of a RBF node), the sum-squared error 
(3) is expressed without loss of generality as: ( ), TC u w ε ε=  with 

( )ŷ y R w yuε = − = − . It is worth noting that a regularization 
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term is no longer needed since the number of regressors is fixed for 
the time being. From this expression, the trick of the SNLS meth-
ods comes from the fact that the optimal value of the parameters w 
results directly from the value of the parameters u. In other words, 
for a given u, w is available by solving an ordinary LS problem: 

( ) ( ) ( ) ( )1 1T TTw R y H R yR Ru uu u
− −= =   . Therefore, it would 

be useless and even detrimental to process both sets of parameters 
at the same time. By using the previous expression of w (u) every 
time the cost function needs to be evaluated, it appears that we can 
consider C as a function of u only. The optimization stages can thus 
be restricted to this vector, reducing the dimension of the parameter 
space. It is also noteworthy that they will converge nicely and quickly 
even if 2nd order standard algorithms (Gauss-Newton type) are used, 
which are known for their sensitivity to the initial conditions. There are 
two reasons for this: the conditioning is greatly improved by the SNLS 
formulation, and the nonlinear optimization starts under good condi-
tions thanks to the initial parameters u available from the constructive 
algorithm. Finally, after every optimization stage, a new orthogonal-
ization of the regressors obtained from the resulting uopt is also neces-
sary before starting the forward selection again.

Determining the set of regressors

To implement the previous forward selection, two options are available: 
 to first define an initial pool of candidate regressors from which the 
most relevant ones will be selected,   to determine each regressor 
individually as the process goes on, which generally amounts to opti-
mizing the kernel functions in the input space. Within class   is the 
whole range of classical and direct methods that locate the regressor 
kernels quite arbitrarily: in a subset of the data samples, on the knots 
of a lattice derived from a gridding of the input space, by using data 
clustering or self-organization techniques. These approaches have the 
advantage of being very simple to implement and of providing a pool of 
candidate regressors almost instantly. On the other hand, they do not 
provide any guarantee regarding the balance between the distribution of 
the regressors and the real complexity of the modeling problem, since 
they do not use all available information (only input data are used). More 
elaborate methods attempt to fill this gap by building regression trees 
that do use the values of data outputs [38]. They recursively partition 
the input space, approximating the output values by their average value 
computed from the samples included in each partition. The main weak-
ness of these methods is to be very greedy, the bias/variance dilemma 
resulting in the following interrogation: when should the branching out 
of the tree stop, and how should it then be pruned?

Class  is related to optimization techniques, but to avoid the prob-
lems inherent to classical methods (convergence, sensitivity to 
initial values) global optimization is preferred, among which evolu-
tionary algorithms have done particularly well for some years. New 
techniques have thus appeared such as Genetic Algorithms (GA), 
boosting search, or simulated annealing [10][53]. In return for their 
conceptual simplicity, these classical evolutionary algorithms can be 
computationally very expensive by requiring a number of cost func-
tion evaluations, and they often require the tuning of several internal 
parameters. More recently in the 90's, a new metaheuristics also aris-
ing from biological inspiration (bird flocking or fish schooling) was 
imagined, known as Particle Swarm Optimization (PSO). The collec-
tive behavior of the particles looks like a swarm of living beings, and 
the most relevant metaphor certainly concerns the bees because an 
individual having discovered a good spot passes on the information 
to the others, and is used to direct their next moves. Therefore, the 

swarm represents a set of autonomous and interacting agents, coop-
erating to solve a problem. The members of a group benefit from the 
accidental discoveries as well as the experience acquired by other 
individuals. Similarly to the evolutionary case, the method is based 
on an iterative and stochastic process [12]. At iteration i, the position 
of the particles iu  (which includes all of the parameters to be opti-
mized) and their velocity iv  are updated as follows:

	
( ) [ ] ( ) [ ]1 1 2 3

1 1

0,1 0,1i i i i i i

i i i

v c v c U p u c U g u
u u v

+

+ +

 = + ⊗ − + ⊗ −


= +

     

  

	 (10)

where ip  corresponds to the best position ever reached by particle i, 
and ig  to the best position ever reached by the pool of its informants. 

( )0,1U  is a random number between 0 and 1 chosen following a 
uniform distribution, and ⊗  is a symbolic operator for the element-
by-element product of two vectors. Thus, it appears that a particle 
updates its velocity through a weighted linear combination of three 
behaviors [12]: an adventurous behavior for preserving the acquired 
velocity (inertial component of the motion), a conservative behavior 
consisting of getting closer to its best position (cognitive component 
of the motion), and a sheeplike behavior for getting closer to its best 
informant (social component). It is also worth noting that the required 
number of particles remains quite low as opposed to usual GA popu-
lations, and that PSO algorithms are very robust regarding their tun-
ing: coefficients ci and swarm size T [13].

From this historical and basic version, a number of variants were 
studied during the last decade to improve the performances. They are 
based on various strategies for determining the informants (fixed or 
random topology), population splits (memory vs explorer swarms), 
the proximity distributions used to guide the bounded motion of the 
particles, etc. Adaptive versions were also developed to save the user 
from having to set these elements a priori, by self-adjusting them 
during the run. Hence, a recent extension is aimed at having sev-
eral tribes of particles cooperating, with the idea that many swarms 
should be more efficient to explore the different regions of the search 
space than only one [12]. The most promising techniques have been 
selected and implemented in the PSO code developed by ONERA to 
optimize the regressor positioning (which is part of the koala tool 
described below). A detailed description of this software is beyond 
the scope of this paper. Thus, only a brief survey of the main func-
tionalities offered is given hereafter, with some references for readers 
interested in obtaining more details:
•	 fixed and adaptive topologies  from static (star, ring, Von 

Neumann) to dynamic ones (e.g. Delaunay neighboring) [24],
•	 particle displacement  standard, with constriction factor, FIPS 

and weighted FIPS versions of the velocity update laws [28],
•	 hybrid local/global method  to speed up the convergence 

with direct search (improved Nelder-Mead, Delaunay tessella-
tion for the initial simplex),

•	 multiswarm strategies  for competing swarms or for parti-
tioning the search domain into several subregions [51],

•	 diversity analysis  to provide information about the swarm 
dispersion and to refine the convergence tests [35],

•	 swarm initialization  from random to low discrepancy se-
quences (Hammersley, centroidal Voronoï diagram) [13],

•	 competitive multirun  to benefit from several topologies, al-
gorithm variants and tuning,

•	 charged vs neutral particles  cooperation of particles with 
different physical properties [3].
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A Kernel Optimization Algorithm for Local Approximation (KOALA)

The coupling of this PSO algorithm with the constructive approach 
based on forward selection allows structural and parametric opti-
mizations to be proceeded to jointly for various types of regressors 
with local basis (as opposed to [10] where a basic version of PSO is 
used). In the koala software developed by ONERA for that purpose, 
this approach is applied to various kernel-based NN such as RBF and 
LLM, provided some adjustments of the orthogonalization method. 
LLM generalize RBF [34], by replacing the linear weights (scalar w for 
RBF networks) by an affine expression depending on the model inputs 
(see the dotted connections in Figure 2). They gave rise to the famous 
LOLIMOT algorithm (LOcal LInear MOdel Tree). It is thus expected that 
fewer radial units will be required to achieve the same accuracy in 
most applications. The generic formulation (2) used to represent LP 
models remains thus suitable, but needs only to be adapted to this 
case by using an extended set of regressors #

lr , because a new kernel 
now breeds a subset of regressors and not only one as it was for RBF:

	 ( ) ( )
( )

( )
1

#

1 10

ˆ
mm n n

i
k k j k l l kji k

j li
y f x r x w r xw x

+

= ==

 = = = 
 

∑ ∑∑ 	 (11)

denoting by i
kx  (for i = 1 to n) the value of the i th input variable for the 

k th data sample, and setting 0 1kx =  to include the constant terms of 
the local affine modeling in the 2nd sum. Hence, it will remain possible 
to use the constructive algorithms developed for any type of regres-
sion, but some slight adaptations are required to take the peculiarities 
of the kernel functions #

lr  into account. When adding or subtract-
ing terms, the group of regressors sharing the same kernel rj needs 
to be considered as a whole, and no longer separately as was the 
case for RBF, polynomials, etc. In any case, the algorithm is aimed 
at gradually selecting a series of regressors by optimizing their kernel 
parameters, i.e. the ellipsoid center c and radius σ related to each 
radial unit in Figure 2 (both vectors). Considering the n explanatory 
variables xi, the components of the vector u (particle position) can 
be ordered arbitrarily for instance as i iu c=  if 1 i n≤ ≤ , and i i nu σ −=  
if 1 2n i n+ ≤ ≤  . To sum up, the improved performance of the koala 
tool results from two complementary aspects: on the one hand, apply-
ing efficient OLS-based forward selection and SNLS optimization to a 
more powerful modeling (LLM) and, on the other hand, implementing 
a new PSO algorithm that outperforms the standard one.

Application #1: building efficient LFR for control 
analysis and design

For this first application topic, the motivation is to use surrogate mod-
els to improve the creation process of Linear Fractional Representa-
tions (LFR) of reduced complexity. It happens that the final LFR object 
relies on rational functions which hence can be considered as simple 
surrogate models, but actually we will see in this section that more 
complex surrogate models will be used during the building process 
to obtain these rational functions in fine. Let us remember that a LFR 
is a model where all of the known and fixed dynamics of a given sys-
tem are placed together in a linear time-invariant plant M, while the 
uncertain and varying parameters are stored in a perturbation matrix 
Δ (Figure 3). LFR modeling is now a widely spread and a very efficient 
tool in the fields of system analysis and control design. It notably 
allows the robustness properties of uncertain closed-loop plants to 
be evaluated (e.g. using µ-analysis or Lyapunov-based methods), 
and robust control laws (especially using H∞ approaches) or gain-
scheduled controllers to be designed [56]. However, the efficiency 

of the aforementioned analysis and synthesis techniques strongly 
depends on the complexity of the considered LFR, which is measured 
in terms of both the size of the matrix Δ and the order of the plant M. 
An increase in complexity is usually a source of conservatism, and 
can even lead to numerical intractability.

In most industrial applications, physical systems are described using a 
mix of nonlinear analytical expressions and tabulated data. Therefore, 
a two-step procedure has to be implemented to obtain a suitable LFR: 
a linear model with a rational dependence on the system parameters is 
first generated, and then converted into a linear fractional form. Several 
techniques exist, such as object-oriented realization, to perform the lat-
ter transformation. Although the minimality of the resulting LFR cannot 
be guaranteed, symbolic preprocessing techniques, as well as numeri-
cal reduction, usually enable complexity to be overcome. Efficient soft-
ware such as the LFR Toolbox for Matlab© is also available (see [27] 
and references therein for an overview of LFR modeling).

On the other hand, the preliminary issue of converting the tabulated 
or irrational data into simple yet accurate rational expressions has 
been paid much less attention, although it is of significant practical 
importance. In the aeronautic field for example, most aircraft models 
include tabulated aerodynamic coefficients determined by CFD, wind 
tunnel experiments or flight tests, and several controller gains depend 
on the flight parameters in a tabulated fashion. The motivations for 
addressing the issue of tabulated data approximation are twofold. 
The first one is of a physical nature: computing parsimonious rational 
expressions, for which the number of terms in the numerator and 
denominator is as low as possible, is a natural way to prevent data 
overfitting and to ensure a smooth behavior of the model between 
the points used for approximation. On the other hand, building a LFR 
from a polynomial or a rational expression ( )1 , , nf x x

 results in a 
block diagonal matrix 

1

1diag[ , , ]
n

n
p px I x I∆ =  . The number pj of 

repetitions of each parameter x j in Δ is strongly linked to the number 
of occurrences of x j in f. Although this is not an exact rule, the trend is 
as follows: the fewer the occurrences of x j in ( )1 , , nf x x

 are, the 
smaller the size of Δ will be. In other words, no matter how efficient 
the LFR generation tools can be, they are of little help if the rational 
expressions to be converted are unnecessarily complex. Hence, the 
need to obtain tractable LFR for control analysis or design purposes is 
another strong motivation for generating sparse rational expressions.

For a given accuracy, an intuitive idea is to determine a rational func-
tion for which the numerator P and denominator Q are two polyno-
mials of the lowest possible degrees. This fairly simple strategy is 
followed by most existing methods. A classical linear least-squares 
(LS) technique is notably implemented in the LFR Toolbox [27] in 
case the rational function is restricted to be polynomial. In the gen-
eral case, a nonlinear LS technique, implemented for example in the 

Δ

M (s)
e y

Figure 3 – LFR object
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Curve Fitting Toolbox of Matlab©, strives to minimize the approxima-
tion error, whereas a Quadratic Programming problem solution [6] 
ensures that the resulting rational function intersects a set of intervals 
containing the data. However, all of these techniques suffer from the 
same drawback: all admissible monomials of P and Q are usually 
nonzero, regardless of their real ability to model the data. More gen-
erally, the question of which terms should be included in the model 
is often addressed by trial-and-error, or even ignored in practice. A 
way to deal with this question is to use orthogonal LS (OLS), which 
allows the ability of each monomial to efficiently model the data to be 
evaluated, and therefore only the most relevant ones to be selected 
leading to sparse expressions. This approach was applied in [32][33]
[41] to model aeronautical data with polynomials, but practical meth-
ods leading to rational expressions are still lacking. Yet, the additional 
degrees of freedom offered by such expressions are likely to lead to 
simpler expressions and thus to smaller LFR [43][44].

In this context, a new method has been developed to compute sparse 
rational approximants, i.e. as few monomials in P and Q as possible, by 
using an indirect approach that first builds a parsimonious model based 
on LLM networks, before translating the result into a fractional form. Note 
that a direct approach for computing a rational approximant in a single 
step thanks to a symbolic regression technique is proposed in [18], 
which uses another recent evolutionary algorithm (Genetic Programming) 
to select sparse monomials. A first idea for such an indirect approach 
capitalizing on the tool koala would be to convert (11) a posteriori into a 
rational form. By choosing Gaussian radial functions, this regression is 
expressed as the sum of m terms, the j th one being for any x:

( ) ( ) ( )2

2
0 0 1

exp
in n n

i i ji
j jji ji

i i i ji

x c
f rw x w xx x

σ= = =

 −     = = −         
∑ ∑ ∑ 	 (12)

It is thus possible to use Pade approximants of the exponential func-
tion, so as to replace it by a rational function in reduced form [ , ]exp p q . 
The latter is expressed as the quotient of two polynomials of pth and qth 
degrees, and the corresponding approximant to ( )jf x  becomes a ratio-
nal function of ( ) th2 1p +  and th2q  degrees for every explanatory vari-
able xi. However, obtaining high-quality approximants (e.g., decreas-
ing rapidly to 0 as xi increases) would require large values of q (with 
q – p > 2 or 3). Hence, the degree of the resulting rational function 
would be penalized, with no guarantee as regards the accuracy of the 
global regression ( )f x . Consequently, a more relevant approach con-
sists in replacing the exponential function straight away by such an 
approximant, and then using this new kernel form straightaway during 
the optimization of the regression. The simplest transform corresponds 
to the reduced form [0,1]exp , which yields a sum of m components like:

	 ( ) ( )2 2

0 1
1 /

n n
i i

j ji jiji
i i

f w x x cx σ
= =

   = + −   
   
∑ ∑ 	 (13)

Accordingly, another class of models was added to the RBF/LLM 
kernels proposed by koala, based on the Pade approximant [0,1]exp . 
Thanks to this new form, it is also worth noting that the computa-
tional complexity of the surrogate modeling can be adjusted to limited 
coding requirements, if any, prior to on-board implementation. This 
remark does not apply to LFR models, but rather to other applications 
for which the exponential operator, for instance, is not available on 
aircraft computers (see Application #3 on embeddable models for 
virtual sensing of flight parameters).

Finally, it must also be mentioned that the post-processing of the 
resulting regression, prior to the derivation of the LFR, makes use 
of the Matlab© Symbolic Toolbox. Again, several options exist for 
gathering the m components ( )jf x  into a single rational function: 
global expansions of the numerator/denominator, factorization of 
the denominator, and sum of elementary rational terms. The latter 
appears to be the most relevant since it favors some simplifications 
when building the final LFR. A factor of two (in the scalar case) can 
usually be gained in the final LFR size. When the simultaneous model-
ing of several coefficients is considered, the benefit from using this 
approach is maximized with a LFR size usually reduced by a factor 
equal to the number of coefficients if the complexity of the nonlinear 
coefficients is like-for-like (and hence does not require a significant 
increase in the number of kernel functions).

This work takes place within the framework of a more general ONERA 
project aimed at developing a Systems Modeling, Analysis and Con-
trol (SMAC) toolbox [42]. This Matlab/Simulink© library is being 
developed to provide both researchers and control engineers with a 
complete set of tools for making the design, tuning and validation of 
control laws easier. More precisely, the purposes of the SMAC proj-
ect are to control aeronautical vehicles throughout their whole flight 
domain in the presence of nonlinearities, uncertainties, external dis-
turbances and imperfectly measured or estimated data, while obtain-
ing strong guarantees w.r.t. the stability margins and the performance 
levels. A free version of SMAC can be downloaded from w3.onera.fr/
smac, which includes three kinds of tools:

•	 Modeling tools, which allow the considered physical sys-
tems (usually represented in an industrial context by using a 
mix of nonlinear analytical expressions and tabulated data) to 
be described as a single parameterized model. Typically, they 
are aimed at creating accurate LFR with sizes that are as re-
duced as possible, in order to facilitate the subsequent use 
of the design and the analysis tools described in the next two 
items. The APRICOT library (Approximation of Polynomial and 
Rational-type for Indeterminate Coefficients via Optimization 
Tools) includes a set of optimization tools to convert numeri-
cal data into simple yet accurate polynomial or rational expres-
sions [43][44], and notably implements the adaptation of the 
tool koala described in this section. A limited version is avail-
able at w3.onera.fr/smac/apricot, and can be applied to simple 
cases (n ≤  2, N ≤  100). The GSS library (Generalized State 
Space) then converts the resulting expressions into low-order 
LFR. Note that the GSS library replaces and extends the LFR 
toolbox [27], which is no longer maintained.

•	 Control design tools. The Convex Synthesis library is dedicated 
to convex synthesis of LTI and LFT feedback controllers using 
Youla parameterization. The SAW library is a collection of Mat-
lab/Simulink© tools for Saturated systems analysis and Anti-
Windup design, and the OISTeR library (Output to Input Satura-
tion Transformation extensions for Robustness) allows output 
saturations to be transformed into input saturations, which can 
then be handled with the SAW library. An additional library will 
be available soon. It will combine robustified nonlinear dynamic 
inversion techniques, structured H∞ synthesis and anti-windup 
compensation, so as to produce simple yet powerful controllers, 
which can be easily implemented but do not require any interpo-
lation as is the case with classical gain-scheduling techniques.
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•	 Analysis and validation tools, which permit the robustness 
properties of the resulting closed-loop systems to be evalu-
ated. Let us mention the SMART library (Skew-Mu Analysis 
based Robustness Tools) [42], which implements most of the 
μ-analysis based algorithms developed by ONERA over the last 
15  years, and allows systems with parametric uncertainties 
and unmodeled dynamics to be handled. A frequency-domain 
and a time-domain IQC-based techniques are also available in 

two dedicated libraries. They make it possible to consider time-
varying parameters and hard nonlinearities such as saturations, 
deadzones and sector nonlinearities, in addition to model un-
certainties.

To illustrate the use of some of the tools included into the APRICOT library, 
and relying on surrogate modeling to create LFR, a realistic example is pro-
cessed (Figure 4) involving a set of 3 aerodynamic coefficients depending 
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Figure 4 – Comparison of LFR results achieved by polynomial and rational models (1st row=reference data, 2nd and 3rd rows=polynomial approximations and 
modeling errors achieved by olsapprox 4th and 5th rows= rational approximations and modeling errors achieved by koala)
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on 2 flight parameters (Angle of Attack α and Mach number). More details 
on this benchmark are available at w3.onera.fr/smac/?q=apricot_exam-
ple1. These coefficients are depicted on a fine 50x90 mesh in the top row 
of Figure 4, a gridding which is used as a validation set to evaluate the 
approximation results achieved with a rougher 40x60 mesh of learning 
data. The middle rows of Figure 4 display the results achieved by using 
a polynomial surrogate model to create the LFR (routine olsapprox of the 
library which implements the same OLS-based forward selection to add 
relevant monomials one by one). A maximum degree of 12 is set for each 
explanatory variable and for the monomials, resulting in a size of 40 for 
the final LFR. On the other hand, the bottom rows of Figure 4 display the 
results achieved by using a rational surrogate model to create the LFR 
(routine koala described in the previous sections). A maximum degree of 
12 is also set for a fair comparison, resulting in the creation of 6 kernels 
and in a size of 24 for the final LFR. In addition to providing a much smaller 
LFR size, the modeling accuracy is also better (improvements in the RMS 
errors of 33%, 15% and 25%, respectively). For this type of application, i.e. 
seeking a common model for a set of rather complex coefficients, using a 
powerful approach to construct a rational approximant presents a distinct 
advantage. Although the degrees of the polynomials would be globally the 
same if expanded, the conversion process of the rational expression into a 
LFR fully benefits from the factorized form of the rational function which is 
shared by all of the coefficients to be modeled. 

Unfortunately, things are not that black-and-white and counter-examples 
prove that there is no definite answer for choosing either one or the other 
surrogate model. For example, when seeking LFR models in matrix form 

involving a set of low-complexity coefficients, the pros of rational expres-
sions can be wasted during the final conversion stage into LFR form. In 
this case, accurate polynomial approximants can be achieved with low 
degrees, and can provide very satisfactory LFR with much smaller sizes. 
This is illustrated by the following aircraft benchmark, also available with 
the SMAC toolbox, corresponding to a civil transport A330-like aircraft. 
The goal is to obtain low-order but accurate open-loop LFT models 
covering a significant part of the operating domain (during the approach 
and landing phases), in order to perform control law validation and even-
tually to find worst cases for improving the design. To achieve this, a 
realistic nonlinear model of the aircraft is linearized at various values of 
the airspeed, altitude, mass, Center of Gravity location, and temperature. 
Accordingly, a family of 3000 linear models is obtained from which short-
term longitudinal and lateral models are extracted. In this benchmark, the 
main challenge is not the complexity of the coefficients to be interpolated, 
but rather their high number (for longitudinal models, one has 26 varying 
coefficients distributed in a sparse 6x8 matrix), as well as the significant 
number of explanatory variables.

These two properties tend to generate high-order LFT models especially 
when using rational interpolation techniques. Consequently, the LFT-
based representations are computed here by using polynomial interpola-
tion only. A first and very accurate (global relative error = 0.5%) model 
is obtained by a standard LS technique (routine lsapprox of APRICOT) 
using polynomials of the third degree (resulting in full expressions with 
55 monomials per coefficient). The global size of this first model is 109. 
Next, an enhanced OLS optimization technique is used (routine olsapprox) 
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Figure 5 – Comparison of the longitudinal closed-loop poles of a civil aircraft over a large operating domain before and after LFT modeling (upper-left = 
reference data, upper-right = high-fidelity surrogate model, lower-left = medium-fidelity surrogate model, lower-right = low-fidelity surrogate model)
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which enables the sparsity to be better controlled. The required accuracy 
is successively set to 1% and 5%, resulting in very sparse polynomials for 
the 26 coefficients with a number of monomials from 3 to 26 (10 on aver-
age) in the 1st case, and from 2 to 12 in the 2nd case (4 on average). Two 
reduced-order LFT models (referred to as GSS Models 2 and 3 respec-
tively) are obtained. Their global sizes are significantly reduced to 55 and 
33, which makes these models quite attractive for robustness analysis 
provided that the degraded accuracy does not compromise the analysis.

To evaluate the impact of the quality of the approximation, a pre-
liminary validation of the models is easily performed by compar-
ing closed-loop pole maps in the complex plane for a given basic 
control system designed to stabilize the nominal plant. The result of 
this validation is visible in Figure 5. The upper-left subplot shows the 
closed-loop poles directly obtained from the initial family of 3000 lin-
ear models. Next, the upper-right, lower-left and lower-right subplots 
respectively display the closed-loop poles corresponding to high, 
medium or low-order GSS models. Quite interestingly, one observes 
that the medium-order model (size 55) is still perfectly representa-
tive of the initial set. On the other hand, the lower-order model is not 
accurate enough in the whole operating domain; however, further 
investigations have shown that this model is still quite satisfactory 
in a reduced domain, and hence can be used for a more local valida-
tion. This benchmark shows that even simpler (polynomial) surrogate 
models can be obtained using the constructive OLS-based optimiza-
tion techniques described in the previous sections, which are quite 
efficient to obtain low-order reliable LFR. The order reduction achieved 
by these advanced algorithms is essential for the robustness analysis 
tools. These will later provide stability and perfor-mance certificates 
more efficiently, or alternatively some worst cases useful to further 
improve the controller design.

Application #2: identification of aerodynamic non 
linearities

The concept of model identification refers to a set of tasks required to 
determine, and then to tune, a suitable modeling likely to explain the 
experimental behavior of the system. This involves choosing the type 
of mathematical relationships linking the i/o observed variables (often 
denoted as structural identification), as well as adjusting the unknown 
parameters of these equations (the so-called parametric identifica-
tion). The early developments in system identification date back to 
the 70's, but this topic remains the subject of new developments 
nowadays, especially for aeronautics. They apply to the modeling 
of both rigid aircraft, described by the flight mechanics equations, 
and flexible aircraft where structural deformations are considered 
(see [5] and references therein). Owing to its mission, ONERA plays 
an intermediate role between academy and its main industrial part-
ners. Within the framework of identification as in others domains, 
this role presupposes that new promising methods are investigated, 
adapted and transposed whenever necessary, in order to be evalu-
ated through aeronautical applications. Accordingly, ONERA has been 
working with French aircraft manufacturers (Airbus and Dassault 
Aviation) on a large spectrum of themes and methods [5], applying 
these through a succession of industrial programs from the A320 to 
the A380, the Rafale, UAVs, etc. A close cooperation with the Flight 
Mechanics and Simulation Department of Airbus has been running for 
about 30 years, and has led to the implementation of several software 
codes in their identification toolbox for an operational use [25]. This 
continues nowadays through research programs aimed at improving 

the industrial process that allows the aerodynamic model to be fitted 
more rapidly into a larger part of the flight envelope.

Identification is aimed at producing accurate models to represent the 
behavior of the real aircraft. Given that pre-flight modeling obtained 
from CFD, wind tunnel, or ground tests is seldom faithful enough, this 
accuracy is achieved thanks to a final updating stage from a set of par-
ticular flight tests devoted to the ultimate model refinement. However, 
the aerodynamic models used for example for rigid aircraft, are also 
becoming drastically complex since from now on they integrate several 
effects that were disregarded before, or simply because the airplanes 
themselves have become much more complicated. Let us mention the 
A400M for the propeller blasts, or the A380 with an unprecedented pro-
liferation of control surfaces. Hence, the identification becomes a much 
trickier task, but is also more crucial than it was in the past. Although 
physical models are available, derived from aerodynamics, structural 
dynamics or flight mechanics, quite often they cannot be implemented 
into the identification algorithms just as they are, because of high orders 
or strongly nonlinear behaviors. Hence, they require simplified grey-box 
representations to be developed, of linear or nonlinear types. These sur-
rogate models facilitate the processing of the multivariate aerodynamic 
nonlinearities, usually complex and poorly structured. In addition, some 
constraints should be respected:
•	 the aircraft simulation requires continuous-time differential 

equations to be integrated,
•	 a priori knowledge about the predicted A/C behavior should be 

considered,
•	 a physical understanding and interpretation of the results is 

mandatory and introduces additional constraints into the op-
timization process. 

The need to reduce the duration and the cost of the identification tests 
taking place during the first flights of a new airplane also requires 
specific techniques to be developed for designing, and then for pro-
cessing this type of tests, without degrading the quality of the result-
ing models.

The variety of problems and models under consideration entails hav-
ing a wide range of identification techniques available. Obviously, 
these include basic methods, such as LS or Maximum Likelihood and 
their variants, estimators based on Kalman filtering, etc. Practically, 
they result in 3 major categories of methods [5][23] for minimizing 
the Equation Errors (EE), Output Errors (OE) or Filter Errors (FE). Most 
of these methods are not directly usable as they are and need to be 
adapted to the peculiarities of aeronautical problems. For example, 
a very restrictive point comes from the requirement of coupling the 
identification tools with industrial simulators, in order to facilitate the 
implementation of the results and incremental updating of the aero-
dynamic data. This is all the more restrictive because these simula-
tors also suffer from increasing complexity, involving a drift of the 
computational costs which is hardly compatible with the number of 
simulations required by the identification procedure. Another major 
concern arises from the will to automate and to systematize the test 
processing, to reduce its duration and to facilitate its progress. Actu-
ally, the whole set of available flight tests represents a huge amount 
of data, and hence some semi-manual steps in the process are espe-
cially tedious for the engineers responsible for sifting through the 
data. Automation also enables a global and joint processing of many 
tests, as well as the gradual introduction of new tests as they become 
available during the preliminary test campaigns.
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Techniques based on linear or weakly nonlinear models are efficiently 
used as a first step of the identification process by processing only 
tests flown under close flight conditions [25]. However, when a global 
model is sought, valid over an extended area of the flight domain and 
including all aircraft specific nonlinearities, appropriate approaches 
and techniques must be applied. The task is all the more complex 
because the aerodynamic non-linearities are only available in the form 
of multivariate look-up tables (depending on configuration, Mach, 
AoA, sideslip, deflection angles, and dynamic pressure) which are 
not suited for identification algorithms. In industry, this global model-
ing is typically obtained after a long iterative process mainly based 
on EE approaches, and the result can be dependent on the skill of the 
performing engineers. For that matter, ONERA has been developing 
a so-called hybrid identification approach for several years, which 
might also achieve a more automated processing of the flight data. 
The ultimate goal would be to tune all of the model parameters in 
a single step (linear and nonlinear ones) using all of the available 
test data. The concept of hybrid identification refers to the hybridiza-
tion between classical algorithms and specific techniques based on 
surrogate models intended to handle the aerodynamic nonlinearities. 
The RBF/LLM networks described in the previous sections are imple-
mented for that purpose. They are particularly well suited for model-
ing complex and unstructured nonlinear systems, whether static or 
dynamic ones [11][47][52][55]. In the hybrid approach, they are 
typically used to replace the look-up tables describing the various 
coefficients, e.g. those appearing in equations similar to (1) [26]. This 
allows an algorithmically efficient identification to be performed and, 
additionally, this does not bias the results against a priori knowledge 
(e.g., a predefined look-up index). This kind of implementation is 
grey-box type since it preserves the physical meaning as well as the 
structure of the aerodynamic developments used by industry [4][22].

The methods classically used (EE/OE/FE algorithms) have been 
implemented in a tool developed in cooperation between Airbus and 

ONERA (named IdPy, see Box 1), and this has been achieved through 
extensive algorithmic adaptations (Figure  7). Two complementary 
options are available for the identification: either time dependent coef-
ficients are directly compared with their counterpart extracted from 
flight data throughout the sequence of tests available (EE), or they are 
integrated into the flight dynamic equations in order to minimize the 
errors between measured and simulated state variables (OE/FE). Both 
approaches benefit from the analytical and differentiable formulations 
of the surrogate models, which make it possible to perform quasi-
exact parameter optimization (unlike purely numerical approaches 
using finite differences). Much CPU time is also saved for computing 
the derivative estimates required by the sensitivity equations, which is 
quite valuable especially for the greediest algorithms (OE/FE).

Whatever the approach, it is crucial for the aerodynamic correc-
tions to remain physically acceptable. Practically, the purpose of an 
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Box 1 - Identification of the A350 pitching moment in clean configuration

The following results have been achieved by using the tool IdPy, which stands for Identification with Python, which is the most recent 
tool jointly developed by Airbus and ONERA. Compared to the previous tools, the novelty provided by IdPy comes from directly using 
OSMA, the Airbus simulation tool [4][22], thanks to a python interface that provides all of the functionalities required to match the simu-
lation loop and the algorithm needs. In that way, the computations done by the identification tool are in line with the end user require-
ments. This common interface is a key point for spreading the results effectively to the operational context and for using other Airbus 
post-processing tools. IdPy follows an agile process: any new Airbus requirement to deal with a new issue can be implemented, tested 
by ONERA and validated by Airbus within a few weeks. IdPy is mostly generic since all Airbus models are operated through OSMA; 
hence, IdPy can be deployed very quickly for any aircraft, from the oldest A320 aircraft to the most recent A350 aerodynamic model. 
IdPy also offers new capabilities to operational end users with respect to the legacy Airbus tools: to run a complete identification process 
chaining EE, OE and FE minimizations within the same framework, and to process large flight data sets since the amount of flight test 
maneuvers has tripled during the last decade.

This user case corresponds to the pitching moment Cm, as expressed by (1). The 3 rigid coefficients to be estimated are the moment 
at zero lift ( )0Cm f M= , the aerodynamic center position ( )ACx f M=  and the non-linear term ( ),NLCm f Mα∆ = . In the aerody-
namic model, these coefficients are in the form of look-up tables; 15 parameters describe the linear coefficients and 868 parameters 
are required for the non-linear coefficient. For each coefficient, a surrogate model can be used as a grey-box to estimate an additional 
term w.r.t. the pre-flight model, following an EE approach to start with the identification process. Two look-up tables are set for the linear 
coefficients Cm0 and xAC with 13 parameters, and a LLM network is introduced for the non-linear coefficient ΔCmNL. In the present case, 
the initialization of the network does not make use of a constructive approach, which would result in a more parsimonious model. This 
is a simple mapping of the explanatory variables done by hand, just considering the input space, the output, the flight domain achieved 
and the extrapolation objective. Figure B1-1 superimposes the initial kernel distribution with the flight test data in the input space of the 
non-linearity (AoA, Mach). The density of kernels is raised at high Mach number (green ellipsoids) to ensure enough flexibility during the 
updating process, whereas a few kernels are set up beyond the domain explored during the tests (blue ellipsoids) to facilitate a recovery 
of the pre-flight values (orange ellipsoids). Even with this straightforward parameterization, the number of parameters to be processed 
is 129, much lower than the 868 ones required by the original look-up table.

Figure B1-1 – Kernel and data distribution in the (α, M ) plane

With regard to the flight test data, 374 flight test maneuvers have been selected for this identification step corresponding to over 2x105 

data samples (about 6 flying hours). The identification is done in a single step for both linear and non-linear coefficients. Additive biases 
on the pitching moment are also estimated for each maneuver to account for shifts in the measurements. Several constraints are also 
added into the process, to get suitable updates and to regularize the optimization: 
•	 to constrain the model output to zero in the linear part, assuming that the pre-flight linear domain was properly defined from CFD 

computations,
•	 to smooth the behavior of the surrogate models (look-up tables and LLM network),
•	 to extrapolate the estimation results in the boundary parts of the flight domain covered by the available data,
•	 to smoothly connect the updated and pre-flight models in the far-off regions.
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The identification results obtained within about one hour of computation time, and involving 3 optimization iterations, are shown in 
Figure B1-2. The left part of the figure corresponds to the pre-flight "predicted" nonlinear coefficient ΔCmNL , and the right part to the 
updated one.

Figure B1-2 – Comparison of pre-flight and identified coefficients ΔCmNL 

Figure B1-3 – Pitching moment during a turn maneuver with pitch-up at 
high Mach (from top to bottom: pitching moments, Mach, AoA, elevator 
deflection)

The heterogeneous data distribution is superimposed to the contour lines of the coefficient in the upper part of Figure B1-2, and is also 
displayed via a color code in the 3D plots (from white to black mesh depending on the proximity of the data samples). Finally, the plots 
of Figure B1-3 compare the pitching moment reconstructed from the flight data with the pre-flight and updated values, for one maneuver 
among the 374 flight tests. This user case also shows that the industrial requirement of coupling the identification tool with the Airbus 
simulator OSMA has been satisfied, and is not so detrimental to the industrial process since a large set of data can be managed within 
a reasonable time, which was not possible with the previous standard Airbus tools.
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automated identification over large areas of the flight domain has 
raised a new need: specifying constraints to be followed by the non-
linearities (i.e., the outputs of the surrogate models). Constraints are a 
way to compensate for insufficient or sparse test data (Figure 6) or to 
introduce some kind of expertise into the problem. For instance, freez-
ing the output levels may be required in some zones (e.g., ΔCmNL  in 
(1) should remain zero at low AoA and low Mach, so that it does 
not interfere with the other terms of the development). It may also 
be desired to smooth the nonlinearities, or to connect identified and 
pre-flight models in areas where no flight data is available, and hence 
a priori knowledge from CFD or wind tunnel tests should be preserved 
[31]. These constraints can be enforced by robust regression mecha-
nisms relying on various forms of penalties w.r.t. constrained val-
ues, smoothing, regularization, etc. This in turn raises the question of 
choosing and tuning these hyper-parameters, which should also be 
as automated as possible. 

All of these issues, which are drawn from an identification stage of the 
A380 rudder efficiency, are illustrated by Figures 6-8. The coefficient 
represented in Figure 8 corresponds to a strongly nonlinear effect, con-
tributing to the yawing moment gradient due to the rudders. For the 
A380 aircraft, this is a 3D coefficient depending on the sideslip angle 
and on the rudder deflections (lower and upper surfaces). Figure 6 cor-
responds to a cross-section view of the distribution of the available flight 
test data for a given value of the sideslip angle (i.e., a thin slice of the 
3D volume). The green ellipsoid is a 2D section of the convex hull of the 
flight data, and the background grid represents the look-up nodes of the 
pre-flight look-up table. To facilitate the industrial process, incremental 
updates of the aerodynamic data must be provided to be used by the 
OSMA simulator, and this requires the estimated corrections to be pro-
jected onto these look-up nodes. The issue highlighted by Figure 6 is 
that this projection should only be validated in some regions, due to the 
heterogeneous distribution of the input data in the domain.
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To make this decision and to detect hidden extrapolation zones for 
instance, confidence levels can be associated with the identification 
results by computing useful indicators like the leverages (diagonal 
terms of the hat matrix [2][30]). Such confidence levels are displayed 
in the left bottom part of Figure 8, with a color code going from white 
to blue according to the local relevance of the results. Since this plot 
is only a sectional view of a more general 3D computation, the flight 
data displayed in yellow in this plane do not account on their own for 
these confidence levels. Finally, to smoothly connect the identified 
and pre-flight models, a robust regression procedure is used during a 
post-processing stage, involving a weighted LS optimization for which 
the penalties are inferred from the confidence levels, and an extended 
criterion is defined by introducing regularization constraints on the 
curvature of the outputs. Figure 8 illustrates the results achieved by 
this process with a surrogate LLM-type model (18 kernels) optimized 
using the koala tool described in the previous sections. From the right 
bottom plot of Figure 8, it can be seen that the pre-flight surface is 
reshaped by incremental updates only in the informative zones.

Application #3: embeddable models for virtual sensing

The development of electrical FCS, known as Fly-By-Wire, and the 
increasing level of automation have resulted in advanced capabili-
ties for detecting, protecting and optimizing A/C flight guidance and 
control  [50]. However, this higher level of automation requires the 
availability of some key flight parameters to be extended, particu-
larly both aircraft AoA and calibrated airspeed, to keep the nominal 
flight control laws activated, thus avoiding any switch to degraded 
control modes (e.g., alternate or direct laws as opposed to nor-
mal flight control laws for most of civil transport A/C). Hence, the 
monitoring and consolidation of those signals are significant issues, 
usually achieved via many functionally redundant sensors, allow-

ing the way in which those flight parameters are measured to be 
directly enlarged (hardware redundancy). Unfortunately, this solu-
tion is detrimental to aircraft weight, power consumption and space 
requirements, and requires extra maintenance needs. Another alter-
native consists in benefiting from specific physical and dynamical 
relationships which link some A/C states. Advanced signal process-
ing techniques can achieve real-time estimates of the critical flight 
parameters and yield dissimilar signals, by merging all or part of 
the available measurements through a model-based simulation of 
the aircraft flight mechanics (analytical redundancy). The resulting 
filtered and consolidated information is delivered under unfaulty 
conditions by estimating an extended state vector including wind 
components, measurements biases and modeling errors, and can 
replace failed signals under degraded conditions (virtual probes). To 
this aim, adaptive estimation schemes, which make use of integrated 
Fault Detection and Diagnosis (FDD) methods, can be developed in 
order to provide to the FCS with the ability to accommodate itself to 
potential sensor failures automatically.

Together with its industrial partners, ONERA has been working on this 
topic for a decade now and has exploited the potential and developed 
adaptive versions of several nonlinear state estimation techniques. 
This is the case of the well-proven Extended Kalman Filtering (EKF) 
[19][20][48], which permits basically all available sensor information 
to be merged while enhancing the measurements through a model-
ing that can describe the expected A/C behavior with more or less 
accuracy. The resulting estimates can be processed in parallel with 
the measured signals, thus contributing to extend the way the flight 
parameters are both monitored and consolidated. Several schemes 
allow that extra information to be introduced into the overall FDD 
architecture (see Figure 9): processing the virtual sensor just like the 
real ones, using it only in duplex or simplex modes (after one or sev-
eral faults have already occurred), or using it to form an (n+1)-plex 
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sensing channel (e.g., quadruplex in the case of 3 available sensors). 
The use of analytical redundancy for FCS is not new, as opposed to 
virtual sensors which have been studied more recently [36]. Practi-
cally, a major obstacle to an operational use of this kind of approach 
springs from their implementation in real time on embedded com-
puters and especially from the computational burden of the associ-
ated algorithms. This issue is of primary importance when dealing 
with civil transport aircraft due to the certification purposes which 
impose stringent requirements to be fulfilled. That is why, to limit the 
complexity, surrogate models have been widely harnessed to derive 
simplified representations of the A/C aerodynamics (and possibly of 
the thrust forces). In addition, the selected analytical models, of an 
LLM type, offer other substantial benefits for encoding the EKF-based 
estimation algorithm, while remaining consistent with the implemen-
tation constraints related to the FCS for aviation industry.

Subsequently, this compliant adaptive estimation algorithm embeds 
a dedicated nonlinear state space representation, denoted as MNL in 
the sequel, which describes the flight dynamics. This is derived from 
both kinematic relationships and longitudinal flight mechanics equa-
tions (see [19] for more details). In order to obtain an accurate and 
suitable model, the most relevant rigid-body aerodynamics, as well as 
static aeroelastic and possibly propulsion effects, are modeled using 
LLM networks. Such a dynamic modeling can be mathematically for-
mulated as follows:

	
( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( ) ( )
,

:
, ,

m
NL

mLLM

x f x y vt t t tM
x u yy g wt t tt t

 = +
 = +



 	 (14)

In (14), ( )x t  and ( )y t  designate the state and output vectors of 
the nonlinear state space representation respectively; ( )u t  refers 
to the input vector and gathers the deflection of all aircraft control 
surfaces (ailerons, spoilers, rudder, elevators and horizontal stabi-
lizer); ( )my t  (subscript m will refer to the measurements in what 
follows) is a vector of measurements, which includes also the time 
histories of several measured flight parameters, especially those of 
the longitudinal/lateral variables whose dynamics are not modeled 
in ( )x t . Subscript LLM indicates that the analytical expressions 
associated with the nonlinear output equations contained in func-
tion gLLM exhibit the LLM approximations used to model at least 
the aerodynamic lift force, plus the total static mean gross thrust 
force and pitching moment, depending on the filter formulation. The 
process equations appearing in f correspond to a set of common 
kinematic relationships, augmented by slowly time-varying param-
eters (accounting for the accelerometer biases, the wind speed 
components and the modeling error in the lift force coefficient) 
whose dynamics are represented by random walks. Vectors ( )v t  
and ( )w t  are process and observation Gaussian white noises. They 
are introduced to model errors in both the modeling MNL and the 
measurements ( )my t . It is assumed that they are characterized by 
zero-mean, uncorrelated and mutually independent processes with 
estimated covariance matrices denoted by Q and R respectively.

Based on previous nonlinear flight dynamics modeling introduced 
in (14), the proposed Adaptive EKF (AEKF) algorithm resumes, but 
also adapts, the main processing steps of the nonlinear Kalman 
filtering theory. Considering the standard filtering equation given in 
continuous-time (see [23]) with p N ∗∈  measurements available 
every  dt, and assuming that the correction term remains constant 
over [ ]1;k k kt t t dt+ = + , one can derive:
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with:	 ( ) ( ) ( ) ( )( )1
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In the differential equation (15), the gain matrix K is computed as in 
the discrete-time case. (15) also shows that the correction step is pro-
cessed sequentially, measurement by measurement, which permits 
the computational complexity to be alleviated significantly. Indeed, 
this procedure avoids the matrix inversion traditionally required for 
the calculation of the correction gain matrix K, and replaces it by 
p scalar division(s). This sequential update is strictly equivalent to 
the standard computation of the EKF gain (which involves a matrix 
inversion each time new measurements become available) as both 
process and output noises are assumed to be uncorrelated (diagonal 
estimated covariance matrices Q,R). Then, given that sensor reliabil-
ity can be periodically assessed by means of specific fault detection 
techniques (FDD is a component of the AEKF), the calculation of the 
K matrix in (15) can be adapted continuously over time, in case of 
detected and isolated faulty measurements, by simply omitting them 
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within the sequential update process. Usually, another difficulty for 
implementing such an estimation scheme on embedded computers 
arises from the double linearization that must be performed in real-
time for both the system process (around ( )ˆ k kx t t ) and the output 
equations (around ( )1ˆ k kx t t+ ). Resorting to numerical finite differ-
ences does not appear to be a viable solution w.r.t. the capabilities 
of current on-board computers since this implies multiple calls to the 
nonlinear flight dynamics modeling MNL , as well as numerous mul-
tidimensional save/restore points. Fortunately, regarding the details 
of the equations which compose both nonlinear f and g functions, 
the linear tangent matrices /A f x= ∂ ∂  and /LLMC g x= ∂ ∂  can be 
obtained analytically by means of:

•	 resorting to kinematic relationships to describe A/C dynamics 
(i.e., in f ). The resulting set of differential equations is known to 
be fully differentiable analytically w.r.t. the state vector x(t) con-
sidered. Consequently, the analytical expressions of all A matrix 
coefficients can be established a priori, and their values can be 
calculated over time as the estimated state vector ( )ˆ k kx t t  is 
continuously updated,

•	 using LLM networks which have the property of also being ana-
lytically differentiable w.r.t. their inputs (explanatory variables). 
Thus, given that the gLLM function corresponds to a set of very 
simple static relations (based on standard trigonometric func-
tions or vector norm calculations), except for the vertical load 
factor equation which relies on prior knowledge involving a LLM 
of the lift force coefficient, the nonlinear observation equations 
can again be differentiated once, in an analytical way, in order to 
derive the C matrix. The latter will be refreshed as the predicted 
state vector ( )1ˆ k kx t t+  is periodically calculated.

These remarks make possible an off-line derivation of all of the analyt-
ical expressions associated with the terms composing both A and C 
matrices. Once all of these mathematical expressions have been 
determined, their valuation is carried out naturally over time through 
a single call to the internal model of the estimator. Besides, in most 
aircraft applications, these matrices will also appear to be sparse, 
thereby reducing the numerical complexity of the proposed approach 
slightly more. Deriving the Jacobian matrix /LLMC g x= ∂ ∂  is not as 
straightforward as for A. Indeed, the nonlinear output equations used 
for the prediction step of the AEKF require prior knowledge of the 
A/C aerodynamics. However, the latter can be limited to the aircraft 
lift force coefficient, which is generally represented by a complex 
nonlinear modeling in order to be accurate enough. Although surro-
gate models offer an efficient and powerful solution for representing 
such complex physics, there is also another benefit of using such 
analytical modeling, related to differential calculation. Let us consider 
the general LLM representation with iN N ∗∈  explanatory variables, 

oN N ∗∈  outputs and cN N ∗∈  kernels:
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In (16), the set of parameters ( ), ,ij ik ikw c σ  must be optimized so that 
the output vector y match some reference data for given input vector 
values 1 2 i

T
Ne e ee …=    . Given that the exponential operator is 

not available in most dedicated versions of the SCADE© formalism 
used in the aviation industry, the LLM kernels adopted in this applica-

tion are based on the Pade approximant [ ]0,1exp  (leading to a set of   
rational function(s)). This illustrates that the computational complex-
ity associated with any modeling involved in new potential solutions 
can be adjusted to limited encoding capabilities, despite their algo-
rithmic sophistication. Subsequently, it is noteworthy that the partial 
derivative of any given LLM output [ ], 1,k oy k N∈  with respect to the 
vector e of explanatory variables, the so-called sensitivity, can be eas-
ily computed from (16) s.t.:
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It is of primary interest to note that the differentiation of the Pade 
approximant in (17) leads to an analytical expression which again 
depends on parameterized rational functions. Therefore, the calcula-
tion of LLM /C g x= ∂ ∂ , which combines standard differentiation devel-
opments (analytically known thanks to flight mechanics equations) 
and LLM sensitivities as in (17), can also be carried out analytically 
as for /A f x= ∂ ∂ . Consequently, this adaptive EKF-based estimation 
algorithm can be implemented on-board with a low complexity, and 
used to reconstruct any faulty information so as to maintain nominal 
flight control laws.

As was aforementioned, the adaptation of the nonlinear state estima-
tion is managed by a dedicated FDD technique since the EKF solely 
becomes unsuitable on its own in faulty cases, given that it assumes 
noisy, but healthy, measured signals. This FDD technique can take 
on several forms and can result from any signal- or model-based 
approach provided that it ensures both fault detection and isolation 
capabilities. To say a word about the detection and adaptive part of 
the method, a candidate EKF reconfiguration method has been expe-
rienced in [20] to monitor the measured signals from sensors and 
reduce the estimation errors induced by those potential incorrect 
measurements to recover acceptable performances. This method 
accomplishes both detection and isolation of specific single or mul-
tiple abrupt faults (constant bias, stuck value, strong drift, etc.) before 
adjusting the sequential measurement update process of the EKF.

The FDD relies on Fisher-Snedecor statistical hypothesis tests, recur-
sively processed in order to periodically assess the reliability of the 
sensors. In the case of invalid test results, this pure signal-based 
technique will instantaneously detect and isolate unexpected sensor 
faults characterized by High-Frequency (HF) signatures beyond the 
A/C dynamics bandwidth. All declared and identified faulty measure-
ments will then be denied for data fusion, thus achieving fault-free 
estimates of the key flight parameters, namely the AoA and the Cali-
brated AirSpeed (CAS). In a few words (see [46] for more details), 
these stages are accomplished using several signal processing oper-
ations which consisting, firstly, in extracting the HF components from 
the considered time-varying measurements and, secondly, in apply-
ing an appropriate inverse Auto-Regressive whitening filter. Then, a 
statistical analysis of the resulting HF residues compares a given 
reference variance (characteristic of a healthy signal) with a time-
varying one (calculated over a sliding window), and permits the AoA 
and CAS states to be determined (healthy or faulty measurements).

The AEKF methodology was evaluated with data drawn from real 
flight tests performed on a civil transport aircraft (A340-600). These 
data correspond to an operational flight path profile, comprising 
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climb, cruise and descent flight conditions with heading changes 
(see Figure 10) which span more than 1 hour. The results gathered 
after processing these real flight data are presented in Figure  11. 
The simulated additive AoA and CAS faults (constant biases) are 
both applied at time t = 20 sec, and are quickly detected and iso-
lated by the FDD mechanism used for sensor monitoring (detection 
time less than 1  sec). The results show that the mixed predicted/
estimated flight parameters reconstructed afterwards remain valid 
over a long time horizon (more than 1 hour) under realistic changing 
flight conditions after the sensor reliability is affected by a double 
failure. With respect to these real data, the residual errors associ-
ated with the parameters to be reconstructed reach maximum peak 
values equal to 1° for AoA and 15 knots for CAS in case of a double 
fault. It is worth noting that these results also prove the robustness 
of the developed approach w.r.t. the modeling errors. Actually, the 
internal model used by the estimator corresponds to a simplified one 
resulting from a LLM representation of only a subset of the aerody-

namic coefficients. Moreover, several effects (e.g., the lateral ones) 
were ignored (ailerons) or simply approximated (spoilers). Besides, 
the thrust dynamics appear also roughly modeled, resulting in errors 
on forces/moments varying from 50% to 100% w.r.t. the theoreti-
cal ones. Hence, the internal model approximates the best reference 
model, which itself only approximates the real (unknown) aircraft.

Conclusion and prospects

This paper highlights the potential value of introducing surrogate mod-
els in some stages of the development of FCS for aircraft. The special 
types of neural networks, which have been selected for their attractive 
properties, were firstly described, as well as the constructive proce-
dure implemented to optimize their internal parameters. Then, three 
specific applications related to modeling, identification and control 
aspects were considered and illustrated by processing real aircraft 
data and real aerodynamic models. These applications extend from 
the exploitation of the first flight tests of a new airplane to in-service 
monitoring of the flight parameters, through the intermediate steps 
required for designing the control laws. To complete this picture, it 
is worth noting that other stages of aircraft development are likely 
to benefit from surrogate-based approaches. For instance, at both 
ends of the process, the Multidisciplinary Design Optimization (MDO) 
during the preliminary design of a new airplane, and the clearance of 
the flight control laws involving worst-case analysis prior to aircraft 
certification, are two candidates for which surrogate models are com-
monly investigated. These applications, although slightly different, 
involve a costly multiobjective optimization process, and hence share 
the need to limit the number of high-fidelity computations by means 
of low-fidelity models, which can replace a significant proportion of 
the computationally demanding simulations.
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Concerning the first application topic (building efficient LFR for 
control analysis and design), room for improvement still exists and 
would be based on a better sparsity of the surrogate-based indirect 
approach by pruning useless explanatory variables in the final ratio-
nal expressions. This would contribute to enlarging the practical user 
cases for which rational approximants are superior to polynomial 
ones and can provide smaller sized LFR. Though basically suited to 
off-line modeling applications, it should be noted that the koala tool 
can also be used for on-line implementation of LFT controllers. Actu-
ally, the usual way of computing scheduled LFT gains, for instance, 
is not relevant for embedded controllers because its computational 
burden is generally far too high. Rather than pre-computing tabulated 
values of the control gains, which can be a tricky option for high 
dimensional functions, very accurate and parsimonious models can 
be achieved thanks to the APRICOT library. The surrogate model will 
fully benefit the practical implementation since the (factorized) ratio-
nal expressions are consistent with the stringent coding requirements 
for aircraft computers (see [15] for example).

The second application topic (identification of aerodynamic non lin-
earities) illustrates that the transfer of new tools to industry is quite 
a long term process. The end users need to gain confidence in the 
results provided by new tools and also need time to appropriate these 
tools and their functionalities. In the long run, surrogate models might 
not only be intermediate models introduced into the identification pro-
cess to facilitate the optimization stages, but may also represent a 
new way of representing aerodynamic nonlinearities in a wider part 
of the industrial process. This would avoid the present upstream and 
downstream conversions: from look-up tables to neural networks, 
and then backward reprojection of the updated results in the tables 
used in fine by the simulation environment. Regarding prospects, the 
development of multicriteria optimization is a very promising topic 
for the identification process. As mentioned in the section devoted to 
the second application, this process is still tedious today, involving a 
series of semi-manual steps which are time-consuming and would 
benefit from being more automated. Some of these steps are typi-
cally based on dealing with various criteria: tracking the time domain 
histories of the measured flight parameters by means of both EE and 
OE fitting criteria, considering also the values of modal frequencies 
and dampings in the frequency domain, and offering a compromise 

between the raw solution of the optimization problem and the dis-
crepancies w.r.t. a priori knowledge encoded in the pre-flight data. 
Multiobjective optimization is a way of coping with these criteria of 
various types, and also of providing the end users not only with a 
unique "optimal" solution, but with a set of solutions (the so-called 
Pareto surface), some of which are likely to offer more satisfactory 
trade-offs for those conflicting goals. As the whole process should be 
achieved over large areas of the flight domain and should include all 
of the aerodynamic nonlinearities, surrogate modeling should be an 
integral part of this multicriteria identification, which is a challenging 
topic for future developments.

The third application topic (embeddable models for vir tual sens-
ing) is a good example of the aforementioned remark: the industrial 
process could benefit from a common way of representing aero-
dynamic nonlinearities by means of surrogate models. If this were 
the case, the updated models resulting from the identification stage 
could be directly used as internal models in the estimation scheme. 
Besides, it is worth noting that the same simplified aircraft surro-
gate modeling can be shared by the AEKF and by any model-based 
FDD techniques (as for instance the one used in [45]). In addition to 
being useful for civil aircraft, this vir tual sensing strategy can also 
be beneficial for under-equipped vehicles (UAV, small airplanes). 
In all cases, the grey-box representation selected is essential for 
preserving only the most relevant aerodynamic terms in the embed-
ded surrogate model, and for proceeding to a sensitivity analysis 
as regards the performances of the estimator. Another possibility 
offered by this modular and grey-box architecture, combined with 
the local properties of the RBF/LLM-type networks, would be to 
adjust the internal model of the estimator in a local and incremental 
way. Such an adjustment could be achieved in terms of the real per-
formances under operational flight conditions, with standard flight 
profiles. Hence, the model would be finally fitted to the behavior of 
the estimator, resulting in a surrogate model that may be slightly dif-
ferent from a pure knowledge-based model. Finally, on-going works 
related to this topic are aimed at directly dealing with the anemomet-
ric measurements available on-board (pressures and temperature) 
instead of the CAS information, in order to improve the detection 
capability of the combined FDD and estimation schemes 
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Acronyms

A/C	 (Aircraft)
AEKF	 (Adaptive Extended Kalman Filtering)
AoA	 (Angle of Attack)
CAS	 (Calibrated AirSpeed)
CFD	 (Computational Fluid Dynamics)
EE	 (Equation Error)
FCS	 (Flight Control System)
FDD	 (Fault Detection and Diagnosis)
FE	 (Filter Error)
GA	 (Genetic Algorithm)
HF	 (High-Frequency)
LFR	 (Linear Fractional Representation)
LLM	 (Local Linear Model)
LOO	 (Leave-One-Out)
LP	 (Linear-in-their-Parameters)
LS	 (Least Squares)
MLP	 (Multi-Layered Perceptron)
NN	 (Neural Network)
OE	 (Output Error)
OLS	 (Orthogonal Least Squares)
OSMA	 (Outil de Simulation des Mouvements d'un Avion)
PRESS	 (Predicted REsidual Sum of Squares)
PSO	 (Particle Swarm Optimization)
RBF	 (Radial Basis Function network)
SMAC	 (Systems Modeling, Analysis and Control toolbox)
SNLS	 (Separable Nonlinear Least Squares)
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