
HAL Id: hal-01515752
https://hal.science/hal-01515752v2

Submitted on 6 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

K4-free Graphs as a Free Algebra
Enric Cosme-Llópez, Damien Pous

To cite this version:
Enric Cosme-Llópez, Damien Pous. K4-free Graphs as a Free Algebra. 42nd International Symposium
on Mathematical Foundations of Computer Science, Aug 2017, Aalborg, Denmark. �hal-01515752v2�

https://hal.science/hal-01515752v2
https://hal.archives-ouvertes.fr

K4-free Graphs as a Free Algebra∗

Enric Cosme-Llópez Damien Pous

Univ Lyon, CNRS, ENS de Lyon, UCB Lyon 1, LIP, France
{enric.cosme-llopez,damien.pous}@ens-lyon.fr

Abstract—Graphs of treewidth at most two are the ones exclud-
ing the clique with four vertices (K4) as a minor, or equivalently,
the graphs whose biconnected components are series-parallel.

We turn those graphs into a finitely presented free algebra,
answering positively a question by Courcelle and Engelfriet, in
the case of treewidth two.

First we propose a syntax for denoting these graphs: in
addition to parallel composition and series composition, it suffices
to consider the neutral elements of those operations and a
unary transpose operation. Then we give a finite equational
presentation and we prove it complete: two terms from the syntax
are congruent if and only if they denote the same graph.

I. INTRODUCTION

The notion of treewidth is a cornerstone in (algorithmic)
graph theory [14]. It measures how close a graph is from
a forest, and classes of graphs of bounded treewidth often
enjoy good computational properties. For instance, graph
homomorphism (and thus k-colouring) becomes polynomial-
time [18], so does model-checking of Monadic Second Order
(MSO) formulae, and satisfiability of MSO formulae becomes
decidable, even linear. (See the monograph of Courcelle and
Engelfriet about monadic second order logic on graphs [12].)

Here we focus on graphs of treewidth at most two. They
coincide with the partial 2-trees, with the K4-free graphs
(those that exclude the clique with four vertices (K4) as a
minor), and with the graphs whose biconnected components
are series-parallel [16], [5].

For reasons to become apparent later on, we consider the set
Gph of directed graphs with edges labelled with letters a, b, . . .
in some alphabet Σ, and with two distinguished vertices, called
the input and the output. We represent such graphs as usual,
using an unlabelled ingoing (resp. outgoing) arrow to denote
the input (resp. output).

Such graphs can be composed:
• in parallel by putting them side by side, merging their

inputs, and merging their outputs;
• in series by putting them one after the other and merging

the output of the first one with the input of the second.
Every letter of the alphabet can be represented by the graph
consisting of two vertices (the input and the output), and a
single edge from the input to the output, labelled with the
given letter.

If we allow only those operations, we obtain precisely
the series-parallel graphs, and it is easy to see that these

∗ This paper is an extended version of the one with the same title, published
in Proc. MFCS’17 [7]; it contains all proofs, and some typos are fixed.

form the free algebra over the signature 〈 ‖ , ·〉, where ‖ is
an associative-commutative binary operation (parallel com-
position), and · is an associative binary operation (series
composition). For instance, the terms ((a·(b ‖ c))·d) ‖ e and
e ‖ (a·((c ‖ b)·d)) both denote the graph below, and they are
equal up to associativity of · and commutativity of ‖ .

a
b

c

d

e

(Note that parallel composition is not idempotent: (a·b) ‖ (a·b)
and a·b denote distinct graphs.)

However, we cannot denote all graphs of treewidth at most
two in such a way.

First the notion of treewidth does not depend on the ori-
entation of the edges. For instance, the following graph has
treewidth two, yet it is not the image of a term in the previous
syntax.

a b

c

To this end, we add a unary operation ·◦ to our signature,
which we interpret in graphs as the exchange of input and
output. Doing so, the terms (a·b◦) ‖ c and (b·a◦)◦ ‖ c denote
the above graph, and series-parallel graphs with converse
become a free algebra when we ask that ·◦ is an involution
that distributes over ‖ and satisfies (a·b)◦ = b◦·a◦.

Second, the treewidth of a graph does not depend on self-
loops, so that the following graph actually has treewidth one
(it is a tree once we remove the self-loop).

a
b
c

There it suffices to add a constant, 1, interpreted as the graph
with a single vertex (both input and output), and no edge.
Doing so, the above graph is denoted by a·(1 ‖ b)·c. While the
constant 1 is clearly a neutral element for series composition
(·), axiomatising its interactions with parallel composition is
much harder, and is actually one of the key contributions of
the present work. For instance, the equation (1 ‖ a)·(1 ‖ b) =
1 ‖ a ‖ b should belong to the theory as both sides denote the
graph below:

a b

G ·H , G H 1 ,

G ‖H ,
G

H
> ,

G◦ , G a ,
a

Figure 1. The 2p-algebra of graphs and the graph of a letter

Up-to this point, we have recovered the syntax of al-
legories [17], and the graphs associated to the terms are
precisely the ones Freyd and Scedrov use to obtain that the
theory of representable allegories is decidable, yet not finitely
presentable [17, page 210].

But we still miss some graphs, like the one below:

a b c

One can also remark that we only obtain connected graphs
using the above operations. Instead, treewidth allows discon-
nected graphs: a graph has a given treedwidth if and only if
all of its connected components do. Surprisingly, it suffices
to add a second constant, >, interpreted as the disconnected
graph with no edges and two distinct vertices (the input and
the output). This allows us to obtain disconnected graphs, but
also to get a term for the above connected graph, namely,
a·((b·>) ‖ c). Again while it is clear that this constant is
a neutral element for parallel composition (‖), capturing
its interactions with the other operations is non-trivial. For
instance, >·a·>·b·> and >·b·>·a·> both denote the graph
below, and should thus be equated.

a

b

To sum up, the set Gph of graphs forms an algebra for the
signature 〈·2, ‖ 2, ·◦1, 10,>0〉. The various operations of this
algebra are depicted in Figure 1.

Write Trm for the set of terms over the alphabet Σ and
TW2 for the set of graphs of treewidth at most two when an
extra edge is added between input and output. (See Section IV
for this additional condition.) One easily proves that the latter
set actually forms a subalgebra of the algebra of graphs.
Therefore, the function interpreting each term as a graph
actually gives a function g : Trm→ TW2.

We first prove that this function has a right-inverse: we
define a function t : TW2 → Trm such that for all graph
G ∈ TW2, g(t(G)) is isomorphic to G:

Trm TW2

g

t

g(t(G)) ' G (1)

By doing so, we get that the graphs of treewidth at most two
are exactly the ones that can be expressed using the syntax.

Our key contribution then consists in giving a finite equa-
tional axiomatisation of graph isomorphism over this syntax.

u ‖ (v ‖w) ≡ (u ‖ v) ‖w (A1)
u ‖ v ≡ v ‖u (A2)
u ‖> ≡ u (A3)

u·(v·w) ≡ (u·v)·w (A4)
u·1 ≡ u (A5)

u◦◦ ≡ u (A6)
(u ‖ v)◦ ≡ u◦ ‖ v◦ (A7)

(u·v)◦ ≡ v◦·u◦ (A8)

1 ‖ 1 ≡ 1 (A9)
1 ‖u·v ≡ 1 ‖ (u ‖ v◦)·> (A10)
u·> ≡ (1 ‖u·>)·> (A11)

(1 ‖u)·v ≡ (1 ‖u)·> ‖ v (A12)

Figure 2. Twelve axioms for 2p-algebras

This answers positively the question asked by Courcelle and
Engelfriet in their book, for treewidth two [12, page 118].

Note that the choice of the syntax is important. Various
finite syntaxes have already been proposed [10], [14], [12] to
capture graphs of treewidth at most k, for a given k. However,
some choices prevent finite presentations. For instance, while
the converse operation we use could be eliminated by pushing
it to the leaves, doing so would turn some of our axioms into
infinite equational schemes. (See also Remark 28.)

As explained above, a few laws are rather natural like
associativity of the two compositions, commutativity of ‖ ,
or the facts that 1 and > are neutral elements and that ·◦
is an involution. Those are the first eight laws in Figure 2.
Surprisingly, the four subsequent axioms suffice to obtain
a complete axiomatisation: for all terms u, v, u and v are
provably equal using the axioms from Figure 2 if and only if
g(u) and g(v) are isomorphic:

u ≡ v ⇔ g(u) ' g(v) (2)

In other words, calling a 2p-algebra an algebra satisfying the
axioms from Figure 2, TW2 is the free 2p-algebra.

All axioms but (A3) are independent. (See Appendix C;
Axiom (A3) follows from (A9) and (A12) but we keep it
for the sake of clarity.) . Correctness, i.e., the left-to-right
implication from (2), is easy to establish. Indeed, it suffices
to compute and compare the graphs of each equation, and to
prove that valid equations are stable under graph substitution.
The converse implication, completeness, is much harder. This
is because there is no canonical way of extracting a term out
of a graph. In particular, the function t we define to this end
has to make choices based on the concrete representation of
the input graph, so that isomorphic graphs do not always map
to syntactically equal terms.

2

We proceed in the following way to obtain completeness.
First we prove that the function t maps isomorphic graphs to
congruent terms:

G ' H ⇒ t(G) ≡ t(H) (3)

Then we prove that this function is an homomorphism (up to
the axioms), which allows us to deduce that for all term u,
t(g(u)) is provably equal to u:

t(g(u)) ≡ u (4)

In a sense, by interpreting a term u into a graph and then
reading it back, we obtain a term t(g(u)) which plays the role
of a normal form even if it is not canonical (which would
typically be the case in rewriting theory, or in normalisation
by evaluation [4]).

Defining a function t satisfying (1) could be done rather eas-
ily by relying on the notion of tree decomposition. However,
doing so makes it extremely difficult to obtain properties (3)
and (4): the notion of tree decomposition, despite its inductive
nature, does not provide enough structure. Instead, we use the
fact that treewidth at most two graphs are K4-free, and we
exhibit stronger graph invariants that allow us to extract terms
from graphs in a much more structured way.

For instance, when the graph is connected and when its
input and output are distinct, one can compute its checkpoints:
those vertices which all paths from the input to the output must
visit. Those checkpoints are linearly ordered so that the graph
necessarily has the following shape

· · ·

If there is at least one checkpoint then the graph should be
interpreted as a series composition. Otherwise, by the absence
of K4 as a minor, one can show that the graph necessarily is
a non-trivial parallel composition.

The aforementioned step is already there in the standard
result that the biconnected components of a K4-free graph are
series-parallel. More challenging is the case when the input
and output coincide. In this case, we consider the checkpoints
of all pairs of neighbours of the input, and we show that they
form a tree which is a minor of the starting graph.

This tree is a key invariant of the isomorphism class of the
graph and we show that one can extract a term for each choice
of a node in this tree. This is where our function t has to
rely on the concrete representation of the graph: although all
choices of a node in the tree result in provably equal terms,
they do not yield syntactically equal terms. A similar situation
happens with components which are disconnected from the
input and the output: we handle those recursively by taking
any vertex as a new choice of input and output.

II. RELATED WORK

Except for the presence of >, the algebra of graphs we
work with has been proposed independently by Freyd and
Scedrov [17, page 207], and by Andréka and Bredikhin [1].
They used it to characterise the equational theory of binary
relations over the considered signature. Indeed for every set S,
the set P (S × S) of binary relations over S forms an algebra
for the signature we consider in this paper: · is relational
composition, ‖ is set-theoretic intersection (thus it is written
∩ in [17], [1]), ·◦ is transposition (converse), 1 is the identity
relation and > is the full relation. Writing Rel � u ≤ v for
the containments that hold in all such algebras of relations,
and G J H if there exists a graph homomorphism from H to
G, we have the following equivalence.

Rel � u ≤ v ⇔ g(u) J g(v)

This characterisation immediately gives decidability: existence
of a graph homomorphism is an NP-complete problem. Thanks
to the present observation that graphs of terms have bounded
treewidth, the complexity is actually polynomial [18].

Freyd and Scedrov also use this characterisation to prove
that this theory is not finitely presentable [17]: every complete
equational axiomatisation must contain axioms corresponding
to homomorphisms equating arbitrarily many vertices at a
time, and thus must be infinite. Andréka and Bredikhin go
even further and show that it is not even a variety [1].

In this work we focus on isomorphism rather than on ho-
momorphism, and this is why we do obtain a finite equational
axiomatisation. Although all algebras of relations validate our
axioms, these algebras cannot be free models. For instance,
their parallel composition (intersection) is always idempotent.

Freyd and Scedrov remark that certain graphs cannot be
the image of a term [17, page 207]; similarly, Andréka and
Bredikhin use a weak form of the K4 exclusion property [1,
Lemma 7]. However, they cannot obtain a characterisation
result since they do not consider >, which is necessary to
reach all graphs of treewidth at most two.

Our work is also really close to that of Dougherty and
Gutiérrez [15], who proposed an axiomatisation of graph
isomorphism for a slightly different syntax: instead of the
constant >, they use a unary operation dom(·), called domain.
This operation can be defined using >: we have dom(u) =
1 ‖ (u·>); at the graphical level, it consists in relocating the
output of a graph on its input. (Note that > cannot be defined
in terms of dom(·) and the other operations.)

Choosing this domain operation has the advantage of keep-
ing connected graphs, and the disadvantage of being less gen-
eral: disconnected graphs cannot be expressed. More impor-
tantly, the operation > being more primitive than dom(·), we
can obtain a shorter axiomatisation: while we share with [15]
the nine natural axioms from Figure 2 that do not mention >,
the four remaining ones in this figure have to be replaced by
nine axioms when using dom(·): three about 1 and ‖ , and six
about dom(·).

3

To prove completeness, Dougherty and Gutiérrez compute
normal forms for terms using rewriting techniques. Like in
the present work, their normal forms are not canonical and
some additional work is needed. In a second part of the paper,
they characterise graphs of terms using a minor exclusion
theorem which corresponds precisely to what we obtain in
the connected case (see Remark 28).

There are however several typos or gaps in their paper which
we were not able to fix—see the Appendix B for more details.

Bauderon and Courcelle gave a syntax and a complete
axiomatisation for arbitrary graphs [3]. While the overall
statement is similar to ours, their syntax can hardly be related
to the present one (it is infinitary, for instance), and the present
results are not corollaries of their work. Although we need
to present them differently for the sake of our completeness
proof, the structural invariants we exhibit for treewidth at
most two graphs are reminiscent of the general decomposition
results of Tutte [24], which Courcelle later studied in the
context of MSO [11].

III. 2P-ALGEBRA

We consider the signature 〈·2, ‖ 2, ·◦1, 10,>0〉 and we let
u, v, w range over terms over a set Σ of variables.

u, v, w ::= u·v | u ‖ v | u◦ | 1 | > | a (a ∈ Σ)

We usually omit the · symbol and we assign priorities so that
the term (a · (b◦)) ‖ c can be written just as ab◦ ‖ c.

A 2p-algebra is an algebra over this signature satisfying the
axioms from Figure 2. We write u ≡ v when two terms u and
v are congruent modulo those axioms, or equivalently, when
the equation holds in all 2p-algebras.

Following notations from Kleene algebra with tests
(KAT) [19], we let α, β range over tests, those terms that are
congruent to some term of the shape 1 ‖u. (Equivalently by
axiom A9, u is a test if u ≡ 1 ‖u.) The graphs of tests are
precisely those whose input and output coincide.

We shall use the derived operation mentioned in Section II,
domain, as well as its dual, codomain:

dom(u) , 1 ‖u> cod(u) , 1 ‖>u

Domain and codomain terms are tests by definition.
As is standard for involutive monoids, the first eight axioms

from Figure 2 entail 1◦ ≡ 1, >◦ ≡ >, and 1u ≡ u. We will use
such laws freely in the sequel. We recall the four remaining
axioms below, using the above notations.

1 ‖ 1 ≡ 1 (A9)
1 ‖uv ≡ dom(u ‖ v◦) (A10)
u> ≡ dom(u)> (A11)
αv ≡ α>‖ v (A12)

Thanks to converse being an involution, there is a notion of
duality in 2p-algebras: one obtains a valid law when swapping
the arguments of all products and exchanging domains with
codomains in a valid law. (We have cod(u) ≡ dom(u◦).)

Proposition 1. The following equations hold in all 2p-
algebras.

α◦ ≡ α (5)
αβ ≡ α ‖β (6)

α(v ‖w) ≡ αv ‖w (7)
(v ‖w)α ≡ vα ‖w (8)

dom(uv ‖w) ≡ dom(u ‖wv◦) (9)
>u◦> ≡ >u> (10)
u>w ≡ u>‖>w (11)

u>v>w ≡ u>w ‖>v> (12)
(u ‖>v>)w ≡ uw ‖>v> (13)

Proof. To prove (5) we can assume that α = 1 ‖u; by using
axiom A10 twice, we get

α◦ ≡ 1 ‖ 1u◦ ≡ dom(1 ‖u◦◦)
≡ dom(u ‖ 1◦) ≡ 1 ‖u1 ≡ α

Equation (6) follows from (7) by taking v = 1 and w = β.
For (7), we use axiom A12 twice:

α(v ‖w) ≡ α>‖ v ‖w ≡ αv ‖w

Equation (8) is the dual of (7). For (9), we use axiom A10
twice:

dom(uv ‖w) ≡ (1 ‖uvw◦) ≡ dom(u ‖wv◦)

We use (5) as well as axiom A11 and its dual for (10):

>u◦> ≡ >dom(u◦)> ≡ >cod(u)> ≡ >u>

Thanks to axiom A11 and its dual, it suffices to prove the
laws (11) and (12) in the case where u, v and w are tests. The
law α>β ≡ α>‖>β is the instance of axiom A12 where
v = >β. For the second one, we have

α>β>γ ≡ α>‖>β>γ (by A12)
≡ α>‖>β>‖>γ (by dual of A12)
≡ α>γ ‖>β> (by (11))

For the last law, we use axioms A12 and A11 twice:

(u ‖>v>)w ≡ (u ‖ dom(>v))w

≡ dom(>v)uw

≡ uw ‖ dom(>v)>
≡ uw ‖>v>

IV. GRAPHS

As explained in the introduction, we consider labelled
directed graphs with two designated vertices. We just call
them graphs in the sequel. Note that we allow multiple edges
between two vertices, as well as self-loops.

Definition 2. A graph is a tuple G = 〈V,E, s, t, l, ι, o〉, where
V is a finite set of vertices, E is a finite set of edges, s, t :
E → V are maps indicating the source and target of each
edge, l : E → Σ is map indicating the label of each edge, and

4

ι, o ∈ V are the designated vertices, respectively called input
and output.

We write G[x; y] for the graph G with input set to x and
output set to y; we abbreviate G[x;x] to G[x].

Definition 3. A (graph) homomorphism from G =
〈V,E, s, t, l, ι, o〉 to G′ = 〈V ′, E′, s′, t′, l′, ι′, o′〉 is a pair
h = 〈f, g〉 of functions f : V → V ′ and g : E → E′ that
respect the various components: s′ ◦ g = f ◦ s, t′ ◦ g = f ◦ t,
l = l′ ◦ g, ι′ = f(ι), and o′ = f(o).

A (graph) isomorphism is an homomorphism whose two
components are bijective functions. We write G ' G′ when
there exists an isomorphism between graphs G and G′.

Proposition 4. Graphs up to isomorphism form a 2p-algebra.

Proof. The operations of the signature on graphs have been
described in the Introduction and in Figure 1. Providing an
isomorphism for each law from Figure 2 is routine.

Definition 5. Let G = 〈V,E, s, t, l, ι, o〉 be a graph. A tree
decomposition of G is a tree T where each node t is labelled
with a set Vt ⊆ V of vertices, such that:

(T1) for every vertex x ∈ V , the set of nodes t such that
x ∈ Vt is non-empty and connected in T (i.e., forms a
sub-tree);

(T2) for every edge e ∈ E, there exists a node t such that
{s(e), t(e)} ⊆ Vt;

(T3) there exists a node t such that {ι, o} ⊆ Vt.
The width of a tree decomposition is the size of the largest set
Vt minus one; the treewidth of a graph is the minimal width
of a tree decomposition for this graph. We write TW2 for the
set of graphs of treewidth at most two.

The first two conditions in the definition of tree decompo-
sition are standard; the third one is related to the presence of
distinguished nodes: it requires them to lie together in some
node of the tree. This condition ensures that the following
graph is excluded from TW2 whatever the orientation and
labelling of its edges, even though it has treewidth two when
forgetting about input and output.

(M3)

Indeed, such a graph cannot be represented in the syntax
we consider. (Something already observed by Freyd and
Scedrov [17]—the addition of > to the syntax does not help.)

Lemma 6. Let G,H be two graphs with an homomorphism
h from G to H . Suppose we have a tree decomposition of G
such that for all vertices x, y such that h(x) = h(y), there is
a node containing both x and y. Then this tree decomposition
can be renamed by h into a tree decomposition of h(G) of
width smaller or equal.

Proposition 7. Graphs of treewidth at most two (TW2) form
a subalgebra of the algebra of graphs.

Proof. Graphs 1 and > actually have treewidth 0 and 1,
respectively. A tree decomposition for a graph G remains a
tree decomposition for the graph G◦.

For a series composition G1·G2, we have two graph ho-
momorphisms hi from Gi to G1·G2 such that h1(o1) =
h2(ι2). Those homomorphisms are injective (on both
vertices and edges), and h1(G1) ‖h2(G2) ⊆ P ,
{h1(ι1), h1(o1), h2(o2)}. Take tree decompositions of G1 and
G2 and rename them using h1 and h2. By (T3), the former
has a node t1 containing h1(ι1) and h1(o1), and the latter has
a node t2 containing h2(ι2) and h2(o2). A tree decomposition
of G1·G2 is obtained by joining t1 and t2 through a new node
labelled P .

For a parallel composition G1 ‖G2, we also have two
graph homomorphisms hi from Gi to G1 ‖G2 such that
h1(ι1) = h2(ι2) and h1(o1) = h2(o2). Those homomorphisms
are not necessarily injective on vertices (e.g., when ι1 = o1
and ι2 6= o2). Nevertheless, they identify at most the input
and the output, and those are related in some node in any tree
decomposition, by (T3). Thus Lemma 6 applies: we can take
tree decompositions of G1 and G2 and rename them according
to the two homomorphisms. A tree decomposition of G1 ‖G2

is obtained by adding an edge between the nodes given by
(T3) in each decomposition.

The graphs we associate to each letter (Figure 1) also
belong to this subalgebra, so that we obtain an homomorphism
g : Trm → TW2 associating a graph of treewidth at most
two to each syntactic term. When taking quotients under term
congruence and graph isomorphism, this function becomes a
2p-algebra homomorphism g′ : Trm/≡ → TW2/'. Our key
result is that g′ actually is an isomorphism of 2p-algebras
(Corollary 41).

V. K4-FREENESS

In this section we establish preliminary technical results
about unlabelled undirected graphs with at most one edge
between two vertices and without self-loops; we call those
simple graphs. We use standard notation and terminology from
graph theory [14]. In particular, we denote by xy a potential
edge between two vertices x and y; an xy-path is a (possibly
trivial) path whose ends are x and y; G + xy is the simple
graph obtained from G by adding the edge xy if x and y were
not already adjacent; G\x is the simple graph obtained from
G by removing the vertex x and its incident edges.

Definition 8. A minor of a simple graph G is a simple graph
obtained up to isomorphism by performing a sequence of the
following operations on G: delete an edge or a vertex, contract
an edge.

A cornerstone result of graph theory, Robertson and Sey-
mour’s graph minor theorem [23], states that (simple) graphs
are well-quasi-ordered by the minor relation. As a conse-
quence, the classes of graphs of bounded treewidth, which
are closed under taking minors, can be characterised by finite
sets of excluded minors. Two simple and standard instances

5

are the following ones: the graphs of treewidth at most one
(the forests) are precisely those excluding the cycle with
three vertices (C3); those of treewidth at most two are those
excluding the complete graph with four vertices (K4) [16]. We
eventually reprove the latter one here.

(C3) (K4)

We fix a connected simple graph G in the remainder of this
section.

Definition 9. The checkpoints between two vertices x, y are
the vertices which any xy-path must visit.

cp(x, y) , {z | every xy-path crosses z}

Note that for all vertices x, y, we have cp(x, x) = {x} and
{x, y} ⊆ cp(x, y) = cp(y, x). Two vertices x, y are linked,
written x♦y, when x 6= y and cp(x, y) = {x, y}, i.e., when
there are no proper checkpoints between x and y. The link
graph of G is the graph of linked vertices.

The graph G is a subgraph of its link graph: if xy is an
edge in G then x♦y. We also have the following properties.

Lemma 10. Every irredundant cycle in the link graph is a
clique.

Proof. Let x, y ∈ CP(U) be two distinct vertices on the cycle,
and let π1, π2 be the two corresponding xy-paths in CP(U).
We have to show x♦y. Let p 6= x, y be a vertex in G. Chose
π ∈ {π1, π2} such that π does not cross p. Each edge zt in π
can be replaced by a zt-path in G not crossing p. Doing so,
we obtain an xy-path in G excluding p. Thus p cannot be a
checkpoint.

Lemma 11. If xyz is a triangle in the link graph and ι is a
vertex not in G, then the graph G + ιx + ιy + ιz admits K4

as a minor.

Proof. Let π by an irredundant xy-path avoiding z. Let π′

be a path not crossing π, from z to a neighbour z′ of some
elements from π.
• If z′ has at least two neighbours in π, say x′ and y′

such that x′ appears before y′ in π. Then we can get
K4 in the enriched graph by contracting the xx′ and
yy′ subpaths of π as well as the zz′ subpath of π′ into
vertices, contracting the x′y′ subpath into an edge, and
deleting irrelevant vertices.

• If z′ has only one neighbour in π, say n, we can assume
w.l.o.g. that n 6= x. Take an irredundant xz-path avoiding
n. Since π and π′ are disjoint, there must be a sub-path
π′′ of it whose ends m and z′′ are respectively in π and
π′ but whose inner vertices (if any) avoid those sets. We
have m 6= n by assumption, so that K4 can be obtained
in a way similar to the previous case.

Now fix a set U of vertices; we extend the notion of
checkpoints as follows.

Definition 12. The checkpoints of U , CP(U), is the set of
vertices which are checkpoints of some pair in U .

CP(U) ,
⋃

x,y∈U
cp(x, y)

The checkpoint graph of U is the subgraph of the link graph
induced by this set. We also denote this graph by CP(U).

Lemma 13. CP(·) is a closure operator on the set of vertices.
In particular, for all checkpoints x, y ∈ CP(U), cp(x, y) ⊆
CP(U).

Proof. Since x ∈ cp(x, x), the operator is extensive. It
is increasing by definition. For idempotency, take vertices
z1 ∈ cp(x1, y1) and z2 ∈ cp(x2, y2) for vertices x1, y1, x2, y2
in U . We need to prove that every vertex t ∈ cp(z1, z2) is
a check point between elements in U . Let π1 and π2 be,
respectively, two irredundant paths of the form x1y1 and x2y2.
We distinguish four cases.
• if t neither appears in π1 nor in π2, then t ∈ cp(x1, x2).

Assume this is not the case, then we can find an x1x2-
path πx not crossing t. The concatenation of the z1x1-
subpath of π1, the path πx, and the x2z2-subpath of π2
give us a z1z2-path avoiding t, which contradicts t being
a check point in cp(z1, z2).

• If t appears in one of them, say π1, but not in the
other (π2), then either t appears before z1, and we prove
t ∈ cp(y1, y2), or t appears after z1, and we prove
t ∈ cp(x1, x2). The proofs are done as in the first case,
by exhibiting a z1z2-path avoiding t.

• If where t belongs to both π1 and π2, we distinguish four
subcases according to whether t appears before or after
z1 in π1 and before or after z2 in π2.

Lemma 14. For every path in G between two checkpoints
x, y ∈ CP(U), the sequence obtained by keeping only the
elements in CP(U) is an xy-path in CP(U).

Proof. This follows from Lemma 13: we cannot miss inter-
mediate checkpoints when we select only the elements in
CP(U).

Since G is assumed to be connected, it follows that so is
CP(U). A key instance of a checkpoint graph is when U only
contains two vertices, presumably the input and output of some
graph: the checkpoint graph is a line in this case, and it allows
us to decompose the considered graph into a sequence of series
compositions.

Lemma 15. If U = {x, y} for some vertices x, y, then CP(U)
is a line graph whose ends are x and y.

Proof. For vertices z1 and z2 in cp(x, y), we say that z1 � z2
if every xy-path in G crosses z1 before z2. The relation � is
a total order on cp(x, y).

The following two lemmas are helpful in Proposition 21
below, to prove that the checkpoint graph is a tree under certain
circumstances.

6

Lemma 16. If xy is an edge in CP(U), then there exists
x′, y′ ∈ U such that x and y belong to cp(x′, y′).

Lemma 17. If xyz is a triangle in CP(U), then there exists
x′, y′, z′ ∈ U such that x and y (resp. x and z, y and z)
belong to cp(x′, y′) (resp. cp(x′, z′), cp(y′, z′)).

As explained above we use the checkpoint graphs to de-
compose graphs. The following notions of intervals and bags
are the basic blocks of those decompositions.

Definition 18. Let x, y be two vertices. The strict interval
Kx; yJ is the following set of vertices.

Kx; yJ , {p | there is an xp-path avoiding y
and a py-path avoiding x}

The interval Jx; yK is obtained by adding x and y to that set.
We abuse notation and write Jx; yK for the subgraph of G
induced by the set Jx; yK.

Note that while the intervals do not depend on the set U ,
they will mostly be used under the assumption that xy is an
edge in a checkpoint graph.

Definition 19. The bag of a checkpoint x ∈ CP(U) is the
set of vertices that need to cross x in order to reach the other
checkpoints.

JxKU , {p | ∀y ∈ CP(U), any py-path crosses x} .

As before, we also write JxKU for the induced subgraph of G.

Note that JxKU depends on U and differs from Jx;xK (which
is always the singleton {x}).

Proposition 20. If CP(U) is a tree, then the following set V
is a partition of the vertices of G such that any edge of G
appears in exactly one graph of the set E .

V , {JxKU | x ∈ CP(U)} ∪ {Kx; yJ | xy edge in CP(U)}
E , {JxKU | x ∈ CP(U)} ∪ {Jx; yK | xy edge in CP(U)}

Graphically, this means G can be decomposed as in the
picture below; only the vertices of CP(U) are depicted, the
green blocks correspond to edges in CP(U), the yellow blocks
correspond to the graphs JxKU . The leaves of CP(U) are
elements of U ; the converse does not always hold.

Proof. Let p be a vertex. Let N be the set of checkpoints
x ∈ CP(U) for which there exists a px-path avoiding all
checkpoints except x. N is non-empty since G is connected.
One can show that N is a clique in CP(U) using Lemma 14,
whence |N | ≤ 2 since CP(U) is assumed to be a tree. If
N is a singleton {x}, then p ∈ JxKU and p cannot appear
anywhere else in V by definition of N . If N is a pair {x, y},
then p ∈ Kx; yJ; p cannot be in one of the JzKU by definition

of N , and if it were to belong to some other interval Kx′; y′J
with x′y′ an edge in CP(U) then one could exhibit a cycle in
CP(U).

Note that the above argument shows that when p ∈ Kx; yJ
then p lies on an xy-path where the only checkpoints are x
and y, and any path from p to a checkpoint must cross either
x or y (†).

For the second part of the statement, let pq be an edge of
G. If p and q belong to the same element of V then the edge
belongs to the corresponding element in E . Otherwise,
• either p ∈ JxKU and q ∈ JyKU for some distinct

checkpoints x, y. Then necessarily p = x and q = y
(by considering a py-path going through q and a qx-path
going through p). The edge pq thus belongs to the graph
Jx; yK in E .

• Or p ∈ JxKU and q ∈ Ky; zJ for some edge yz in CP(U).
Then there exists a qx-path going through p, so that x
must be either y or z by (†). Say x = y. There exists a
pz-path (throug q) enforcing p = x, so that the edge pq
belongs to the graph Jy; zK.

• Or p ∈ Kx; yJ and q ∈ Kx′; y′J for some distinct edges xy
and x′y′ in CP(U). Assume w.l.o.g. that x 6= x′. By (†),
y and x′ cannot be equal. There is moreover an xx′-
path and a yx′-path (both taking the edge pq) witnessing
the fact that xx′ and yx′ are adjacent in CP(U). This
contradicts CP(U) being a tree.

As a consequence, when CP(U) is a tree, it is also a minor
of G: contract all subgraphs of the form JxKU to the vertex x
and every subgraph of the form Jx; yK to an edge xy.

The following proposition is a key element in the develop-
ments to come. It makes it possible to extract a term out of
a graph whose input and output coincide, by providing ways
to chose an element where to relocate the output and resort to
the easier case when input and output differ.

Proposition 21. Assume G = H\ι, for some K4-free simple
graph H and some vertex ι. Further assume that U is the set
of neighbours of ι in H and that this set is not empty.

(i) CP(U) is a tree,
(ii) for every edge xy in CP(U), the graph Jx; yK + xy is

K4-free,
(iii) for every vertex x in CP(U), the graph H+ιx is K4-free.

(Note that G is still assumed to be connected.)

Proof. Assume by contradiction that CP(U) contains a cycle,
and thus a triangle xyz by Lemma 10. Let x′, y′, z′ be the
elements of U given by Lemma 17. By Proposition 20 applied
to the line graph CP({x′, y′}), one can decompose G as
follows:

x′ x y y′· · · · · ·

z′

z

...

7

One obtains two symmetrical decompositions by using Propo-
sition 20 on the line graphs CP({y′, z′}) and CP({x′, z′}). By
combining those three decompositions, we get the following
decomposition of G:

V , {X,Y, Z, T} E , {X ′, Y ′, Z ′, T ′}

where
• X , Jx;x′K∪ JxKU ∪ Jx′KU and X ′ is the corresponding

induced subgraph;
• similarly for Y, Y ′, Z, and Z ′;
• T , Jx; yK∩Jy; zK∩Jz;xK and T ′ is the subgraph induced

by T ∪ {x, y, z}.
Adding back the vertex ι and the corresponding edges, the
graph H looks as follows:

x y

z

x′ y′

z′

Other edges could be incident to ι, delete them and contract the
blocks X , Y , and Z to obtain a minor H ′ of H . By Lemma 11,
H ′ admits K4 as a minor. This contradicts H being K4-free.

Thus CP(U) is a tree (i), and by Proposition 20, the graph
H looks as follows:

x

ι

Item (ii) follows: for any edge xy in CP(U), Jx; yK + xy can
be seen to be a minor of H; thus it cannot contain K4 as a
minor.

The last point (iii) is more delicate. If x ∈ U , then H +
ιx = H is K4-free by assumption. Otherwise, x must be an
inner node of the tree CP(U), say with n neighbours. We can
weaken the previous decomposition of the graph H to get n+1
components: one for JxKU and one for each neighbour of x
(the blue ones in the picture below). The latter are adjacent to
ι in G while the former is not.

x

ι

x

Consider a minoring process evolving H + ιx into K4. The
case where the edge ιx is deleted is trivial. If it is contracted,
then K4 is necessarily obtained using only one of the n + 1

components; since n ≥ 2, one can always contract one blue
component to achieve the effect of contracting ιx. If ιx is kept
to justify an edge in K4, then name the vertices of K4 ι, x, y, z
and consider the connected components of H giving rise to y
and z. Those connected components cannot contain ι nor x,
and they must be adjacent to justify the yz-edge in K4. Thus
both of them are contained in one of the n + 1 components.
As previously one can contract one blue component to achieve
the effect of keeping ιx.

As a consequence of the above proposition, we have the
following one, which makes it posible to decompose graphs
with distinct input and output into a parallel composition when
they cannot be a series composition.

Proposition 22. Let ι, o be two distinct vertices such that
G+ ιo is K4-free. We have that:

(i) if ι and o are not adjacent in G, ι♦o, and JιK{ι,o} =
{ι} then the graph induced by Kι; oJ has at least two
connected components.

(ii) for every edge xy in CP({ι, o}), the graph Jx; yK + xy
is K4-free,

Proof. (i) Let H = G+ ιo and G′ = H\ι. The neighbours
U of ι in H are the neighbours of ι in G, plus o.
By Proposition 21, CP(U) (for G′) is a tree. If o is
a leaf in that tree then its unique neighbour must be
a proper checkpoint between ι and o, contradicting the
hypothesis cp(ι, o) = {ι, o}. Otherwise its neighbours
make it possible to partition Kι; oJ into at least two
connected components, thanks to Proposition 20.

(ii) By Lemma 15 and Proposition 20, Jx; yK + xy can be
obtained as a minor of G+ ιo; thus it cannot contain K4

as a minor.

VI. EXTRACTING TERMS

Now we have enough preliminary material and we can look
for a right inverse to the function g : Trm → TW2. As
explained in the Introduction, we use K4-freeness to extract
terms from graphs in a more structured way than using tree
decompositions directly.

Definition 23. The skeleton of a graph G is the simple graph
S obtained from G by forgetting input, output, labelling,
edge directions, edge multiplicities, and self-loops. The strong
skeleton of G is S + ιo if ι 6= o, and S otherwise.

As an example, the strong skeleton of any instance of the
graph (M3) from Section IV is K4. More generally, a graph
belongs to TW2 if and only if its strong skeleton has treewidth
at most two in the standard sense (i.e., for simple graphs,
without taking input and output into account).

Proposition 24. The strong skeleton of every graph in TW2

is K4-free.

Proof. The operations used to obtain a minor do not increase
the treewidth, and K4 has treewidth three.

8

Given a graph G and two vertices x, y, we write GJx; yK
for the subgraph of G induced by the set Jx; yK (computed in
the skeleton of G), with input and output respectively set to
x and y, and with self-loops on x and y removed. The strong
skeleton of GJx; yK is Jx; yK + xy.

Similarly, given a graph G, a set U of vertices and vertex
x, we write GJxKU for the subgraph of G induced by the set
JxKU (computed in the skeleton of G), with both input and
output set to x. Doing so, the skeleton and strong skeleton of
GJxKU are both JxKU . We shall omit the subscript when it is
clear from the context.

Definition 25. The term t(G) of a graph G whose strong
skeleton is K4-free is defined by induction on the number of
edges in G1. When G is connected there are two mains cases
depending on whether the input and output coincide (a) or
not (b). We deal with the general case (c) by decomposing the
graph into connected components.

a) Connected, distinct input and output: consider the line
graph (Lemma 15) obtained by taking the checkpoint graph of
U = {ι, o} in the skeleton of G. Write it as x0 . . . xn+1 with
ι = x0 and o = xn+1. According to Proposition 20, G looks
as follows.

ι x1 x2 xn o· · ·

We set

t(G) , t(GJx0K)·t(GJx0;x1K)·t(GJx1K)·
. . . ·t(GJxnK)·t(GJxn;xn+1K)·t(GJxn+1K)

The (strong) skeleton of each graph GJxiK is just JxiK,
which is necessarily K4-free, as a subgraph of that of G.
Proposition 22(ii) moreover ensures that so are the strong
skeletons of all graphs GJxi;xi+1K.

The above recursive calls occur on smaller graphs unless
n = 0 and the graphs GJιK and GJoK are reduced to the trivial
graph with one vertex and no edge (i.e., the graph 1). In such
a situation,
• either ι and o are adjacent in G. Then let G′ be the

graph obtained by removing from G all edges between
ι and o and let u = a1 ‖ . . . ‖ ai ‖ b◦1 ‖ . . . b◦j be a term
corresponding to those edges. We set

t(G) , t(G′) ‖u

• Or they are not, and Proposition 22(i) applies so that
we can decompose G into parallel components: G =
G1 ‖ . . . ‖Gm with m ≥ 2. Accordingly, we set

t(G) , t(G1) ‖ . . . ‖ t(Gm)

b) Connected, input equals output: if there are self-loops
on ι, let u = a1 ‖ . . . ‖ an be a term corresponding to those
edges, let G′ be the graph obtained by removing them, and
recursively set t(G) , t(G′) ‖u.

1More precisely, on the lexicographic product of the number of edges and
the textual precedence of the three considered cases.

Otherwise let H be the skeleton of G. Decompose H\ι
into connected components H1\ι, . . . ,Hm\ι such that H '
H1 ∪ · · · ∪Hm. The graph thus looks as follows.

ι

If m = 0, then set t(G) = 1. If m > 1, set

t(G) ,
n

i≤m

t(Gi) ,

where Gi is the subgraph of G induced by Hi. It remains to
cover the case where m = 1. Let U be the set of neighbours
of the input and compute the checkpoint graph CP(U) in H\ι.
Pick an arbitrary node x ∈ CP(U). By Proposition 21(iii), the
strong skeleton of G[ι;x] is K4-free. Set

t(G) , dom(t(G[ι;x]))

(Remember that dom(·) relocates the output to the input.)
c) General case: decompose the graph G into connected

components G1, . . . , Gn. For all i ≤ n, pick an arbitrary vertex
xi in the component Gi. There are two cases:
• either input and output belong to the same component,

say Gj ; then set

t(G) , t(Gj) ‖
n

i 6=j

>·t(Gi[xi])·>

ι o

• or they belong to two distinct components, say ι in Gj
and o in Gk, in which case we set

t(G) , t(Gj [ι])·>·t(Gk[o]) ‖
n

i 6=j,k

>·t(Gi[xi])·>

ι o

In both cases, it is easy to check that the recursive calls occur
on graphs whose (strong) skeletons are subgraphs of the strong
skeleton of G, and thus K4-free.

The definition of the extraction function t ends here. Note
that this function is defined on “concrete” graphs: we need
to choose some vertices in cases (b) and (c), and we can
only do so by relying on the concrete identity of those
vertices (e.g., choosing the smallest one, assuming they are
numbers). We shall see in the following section that all those
potential choices, nevertheless, always lead to congruent terms
(Theorem 34).

We obtain the following theorem by construction.

Theorem 26. For every graph G ∈ TW2, g(t(G)) ' G.

9

Corollary 27. The following are equivalent for all graph G:

(i) G has treewidth at most two;
(ii) the strong skeleton of G is K4-free;

(iii) G is (isomorphic to) the graph of a term.

Remark 28. When G is connected, t(G) does not contain
occurrences of > other than those that are implicit in our
uses of the domain operation (case (b)). Thus we obtain
an alternative proof of Dougherty and Gutiérrez’ character-
isation [15, Section 4, Theorem 31] (their minor exclusion
property is easily proved equivalent to ours—they do not
mention treewidth).

Also note that we can easily avoid using 1 (but not dom(·))
when the graph does not contain self-loops and is not reduced
to the trivial graph 1. When the graph does not contain self-
loops and has distinct input and output, the construction can
be modifed to produce terms without both 1 and dom(·); the
resulting construction becomes, however, less local, and we
do not know how to use it to axiomatise the 1-free reduct of
2p-algebra.

VII. COMPLETENESS OF THE AXIOMS

Our goal is now to prove that the axioms of 2p-algebras are
complete w.r.t. graphs: they suffice to equate all terms denoting
the same graph up to isomorphism.

We first prove that t maps isomorphic graphs to congruent
terms (Theorem 34 below). We need for that the following
lemmas and propositions.

Lemma 29. Let G ∈ TW2. If ι = o, then t(G) is a test.

Proof. By a simple case analysis.

Lemma 30. For every graph G ∈ TW2, t(G◦) ≡ t(G)◦.

Proof. Follows by a simple induction, using Lemma 29 and
Equation (5).

Proposition 31. Let G ∈ TW2 be a graph with ι = o, without
self-loops on ι. Let S be its skeleton, and assume that S\ι is
connected. Let U be the neighbours of ι in G and consider
the checkpoint graph of U in the skeleton of S\ι. For all
checkpoints x, y, we have dom(t(G[ι, x])) ≡ dom(t(G[ι, y])).

Proof. The checkpoint graph is connected, so that it suffices
to prove the statement when xy is an edge in the checkpoint
graph. We depict the generic situation below.

x y

ιι

x y

a c

α γ

b

In such a case, we have t(G[ι; y]) = dom((aαb ‖ c)γ) for
some terms a, b, c and tests α, γ (up to associativity of ·
and associativity and commutativity of ‖), and t(G[ι;x]) ≡

dom((a ‖ cγb′)α) for some term b′ such that b′ ≡ b◦ by
Lemma 30. We conclude as follows.

dom((aαb ‖ c)γ) ≡ dom(aαb ‖ cγ) (by (8))
≡ dom(aα ‖ cγb◦) (by (9))
≡ dom((a ‖ cγb◦)α) (by (8))

Lemma 32. Let G ∈ TW2 be a connected graph with ι = o.
For all neighbour x of ι, we have t(G)> ≡ t(G[ι, x])>.

Proof. The graph might have self-loops on ι and might
be disconnected when removing ι. Let G′ be the maximal
subgraph without self-loops on ι that contains x and remains
connected when removing ι. Let G′′ be the subgraph of G
induced by {ι} ∪ (G\G′). The situation is depicted below:

xι

G′G′′

Let α = t(G′′) and u = t(G′[ι, x]). By definition of
the extraction function, we have t(G) ≡ α ‖ t(G′) and
t(G[ι, x]) ≡ αu. By Proposition 31, we moreover have
t(G′) ≡ dom(u). We conclude:

t(G)> ≡ (α ‖dom(u))>
≡ αdom(u)> (by (6))
≡ αu> (by axiom A11)
≡ t(G[ι, x])>

Proposition 33. Let G ∈ TW2 be a connected graph. For all
vertices x, y, we have >t(G[x])> ≡ >t(G[y])>.

Proof. Since G is connected, it suffices to prove the property
for every edge xy in G. For each of these, we have

>t(G[x])> ≡ >t(G[x, y])> (by Lemma 32)
≡ >t(G[y, x])◦> (by Lemma 30)
≡ >t(G[y, x])> (by (10))
≡ >t(G[y])> (by Lemma 32)

Theorem 34. Let G,H ∈ TW2 be two graphs. If G ' H
then t(G) ≡ t(H).

In other words, the extraction function t yields a function
t′ : TW2/' → Trm/≡ between 2p-algebras.

Proof. By induction following the computation of t(G) and
t(H). The interesting cases are the following ones.
• Case (b) when m = 1. Modulo the axioms, the extracted

terms do not depend on the chosen checkpoints, thanks
to Proposition 31.

• Case (c). The only difficulties occur in the connected
components that contain neither the input nor the output:

10

we arbitrarily pick a vertex which becomes both input
and output. Proposition 33 shows that such a choice is
inocuous modulo the axioms.

We finally prove that t′ is an homomorphism, and, in fact,
an isomorphism.

Lemma 35. Let G,H ∈ TW2 be two graphs whose input and
output coincide. We have

t(G·H) ≡ t(G ‖H) ≡ t(G) ‖ t(H) ≡ t(G)·t(H)

·
‖ '

Proof. The first equation follows from Theorem 34: G·H
and G ‖H are isomorphic. The second one is obtained using
associativity and commutativity of ‖ , and axiom A9. The third
one is an instance of (6) by Lemma 29.

Lemma 36. Let G,H ∈ TW2, we have t(G·H) ≡ t(G)·t(H).

Proof. If G (resp. H) has components disconnected from both
input and output, we use (13) (resp. its dual) to extrude the
corresponding terms (of shape >b>) at toplevel. Then we
reason by cases.
• G and H are connected. We use associativity of · and

Lemma 35 on the last test in t(G) and the first test in
t(H).

• Both G and H have exactly two connected components
and their input and output are not connected. We use
Lemma 35 as previously, and (12).

• H is in the latter situation, and G is connected. If
the input and output of G coincide, then we just use
Lemma 35. Otherwise, we proceed by induction on the
size of G.

– if there is a proper checkpoint between ι and o (in
G), then decompose the graph into smaller graphs
using this checkpoint: G ' G1·G2. We have

t(G·H) ≡ t(G1·G2·H) (by Theorem 34)
≡ t(G1)t(G2·H) (by induction on G1)
≡ t(G1)t(G2)t(H) (by induction on G2)
≡ t(G)t(H) (by the connected case)

– if there is no checkpoint between ι and o, then let
αuβ = t(G) and γ>δ = t(H). By Proposition 31,
t(G·H) ≡ (α ‖ dom(u(β ‖ γ)))>δ. (Indeed, o be-
longs to the appropriate checkpoint graph: either
ι and o are adjacent, or this is a consequence of
Proposition 22 (i).) We have

t(G)·t(H) = αuβγ>δ
≡ αdom(uβγ)>δ (by axiom A11)
≡ (α ‖ dom(u(β ‖ γ)))>δ (by (6))
≡ t(G·H)

• The last case is symmetric and can be handled using
Lemma 30 to get back to the previous case.

Lemma 37. For all graphs G,H ∈ TW2, we have t(G ‖H) ≡
t(G) ‖ t(H).

Proof. If G or H have components disconnected from both
input and output, we use associativity and commutativity of
‖ to reorganise them. Then we reason by cases.
• If both G and H have distinct input and output, then

let αuβ = t(G) and α′vβ′ = t(H). (With u and/or v
possibly equal to >, if G and/or H are disconnected.)
We have

t(G) ‖ t(H) = αuβ ‖αuβ
≡ αα′(u ‖ v)ββ′ (by (7,8) twice)
≡ (α ‖α′)(u ‖ v)(β ‖β′) (by (6) twice)
≡ t(G ‖H) . (by definition)

• The case where one graph is disconnected and the other
has equal input and output is routine, using the same laws
as above.

• The only remaining case is when one graph is connected,
say G, and the other (H) has equal input and output. We
proceed by induction on the number of vertices of G. It
suffices to prove the statement when H = 1: indeed, we
have

t(G ‖H) ≡ t(G ‖ 1 ‖H) (by Theorem 34)
≡ t(G ‖ 1) ‖ t(H) (by Lemma 35)
≡ t(G) ‖ 1 ‖ t(H) (by the proof below)
≡ t(G) ‖ t(H) (by Lemma 29)

11

We can further assume that ι 6= o in G (oth-
erwise Lemma 35 applies), and that there are no
self-loops on ι and o (otherwise decompose G into
Gι·G′·Go with G′ satisfying the above property; we have
G ‖ 1 ' G′ ‖ 1 ‖Gι ‖Go, use the fact that αuβ ‖ 1 ≡
(u ‖ 1) ‖α ‖β).

– If there is a proper checkpoint between ι and o, write
t(G) = uβv using this checkpoint. We have

t(G ‖ 1) ≡ dom((u ‖ v◦)β) (by Proposition 31)
≡ dom(uβ ‖ v◦) (by (8))
≡ 1 ‖uβv (by axiom A10)
≡ t(G) ‖ 1

– Otherwise, G is a (non-trivial) parallel composition
G1 ‖G2. We have

t(G ‖ 1) ≡ t(G1 ‖G2 ‖ 1)

≡ t(G1) ‖ t(G2 ‖ 1) (by induction on G1)
≡ t(G1) ‖ t(G2) ‖ 1 (by induction on G2)
≡ t(G) ‖ 1 (by the first case)

Proposition 38. The function t′ : TW2/' → Trm/≡ is an
homomorphism of 2p-algebras.

Proof. The cases for converse, series composition, and parallel
composition are given by Lemmas 30, 36, and 37; those for
constants 1 and > are straightforward.

Theorem 39. For every term u, we have t(g(u)) ≡ u.

Proof. By structural induction on u, using Proposition 38 and
the observation that t(g(a)) ≡ a for every letter a.

Corollary 40. For all terms u and v, we have u ≡ v if and
only if g(u) ' g(v).

Proof. The direct implication amounts to Proposition 4. Con-
versely, if g(u) ' g(v) then t(g(u)) ≡ t(g(v)) by Theorem 34,
and thus u ≡ v by Theorem 39.

Corollary 41. Graphs of treewidth at most two form the free
2p-algebra, as witnessed by the following diagram.

Trm/≡ TW2/'

g′

t′
(14)

VIII. FUTURE WORK

What is the free idempotent 2p-algebra? (Where parallel
composition is idempotent.) One could be tempted to switch to
simple directed graphs, where there is at most one edge with a
given label from one vertex to another. This is however not an
option: the graphs of ab ‖ ab and ab are not isomorphic. One
could also consider equivalences on graphs that are weaker
than isomorphism. The notion of (two-way) bisimilarity [22],
[21] that come to mind does not work either: such an equiva-
lence relation on graphs certainly validates idempotency of
parallel composition, but it also introduces new laws, e.g.,
>(1 ‖ aa)> = >(1 ‖ a)>, which are not even true in algebras
of binary relations.

a

a

∼
a

Courcelle used the algebraic theory he defined with Baud-
eron for arbitrary graphs [3] to propose a notion of graph
recognisability [8], based on the generic framework by Mezei
and Wright [20]. He proved that sets of graphs definable in
MSO are recognisable. The converse does not hold in general.
He later proved it for graphs of treewidth at most two [9] with
a counting variant of MSO, conjecturing that it would be so
for classes of graphs of bounded treewidth. This conjecture
was proved only last year, by Bojańczyk and Pilipczuk [6].

The present work makes it possible to propose an alter-
native notion of recognisability for treewidth at most two,
2p-recognisability: recognisability by a finite 2p-algebra. We
conjecture that this notion coincides with recognisability. That
recognisability entails 2p-recognisability is easy. The converse
is harder; it amounts to proving that any finite congruence with
respect to substitutions in treewidth at most two graphs can be
refined into a finite congruence with respect to substitutions in
arbitrary graphs. We see two ways of attaining this implication:

1) prove that 2p-recognisability entails MSO-definability,
which could possibly be done along the lines of [9],
by showing that our term extraction procedure is MSO-
definable.

2) or use a slight generalisation of the result by Cour-
celle and Lagergren [13], relating recognisability to k-
recognisability for graphs of treewidth at most k. Indeed,
2p-recognisability is really close to 2-recognisability.
Unfortunately, Courcelle and Lagergren’s result is es-
tablished only for unlabelled, undirected graphs, without
sources, while we need labelled directed graphs with two
sources.

One can easily extend our syntax to cover graphs of
treewidth at most k, with k sources, for a given k (see,
e.g., [10], [2]). However, we do not know how to generate
finite axiomatisations in a systematic way, for every such
k. Moreover, our proof strategy heavily depends on the fact
that when k = 2, K4 is the only excluded minor. We would
need another strategy to deal with the general case since the
excluded minors are not known for k ≥ 4.

12

ACKNOWLEDGMENTS

We would like to thank Nicolas Trotignon for the reasonably
short proof he gave us for Lemma 11, and Christian Doczkal
for the typos and slight mistakes he found that are fixed in
this extended version.

The authors were supported by the European Research
Council (ERC) under the European Union’s Horizon 2020
programme (CoVeCe, grant agreement No 678157).

This work was also supported by the LABEX MILYON
(ANR-10-LABX-0070) of Université de Lyon, within the
program ”Investissements d’Avenir” (ANR-11-IDEX-0007)
operated by the French National Research Agency (ANR).

REFERENCES

[1] H. Andréka and D. A. Bredikhin. The equational theory of union-free
algebras of relations. Algebra Universalis, 33(4):516–532, 1995.

[2] S. Arnborg, B. Courcelle, A. Proskurowski, and D. Seese. An algebraic
theory of graph reduction. Journal of the ACM, 40(5):1134–1164, 1993.

[3] M. Bauderon and B. Courcelle. Graph expressions and graph rewritings.
Mathematical Systems Theory, 20(2-3):83–127, 1987.

[4] U. Berger and H. Schwichtenberg. An inverse of the evaluation
functional for typed lambda-calculus. In Proc. LICS, pages 203–211.
IEEE, 1991.

[5] H. Bodlaender. A partial k-arboretum of graphs with bounded treewidth.
Theoretical Computer Science, 209(1):1–45, 1998.

[6] M. Bojańczyk and M. Pilipczuk. Definability equals recognizability for
graphs of bounded treewidth. In Proc. LICS, pages 407–416. ACM,
2016.

[7] E. Cosme-Llópez and D. Pous. k4-free graphs as a free algebra. In
Proc. MFCS, volume 83 of LIPIcs. Schloss Dagstuhl, 2017.

[8] B. Courcelle. The monadic second-order logic of graphs. I: Recognizable
sets of finite graphs. Information and Computation, 85(1):12–75, 1990.

[9] B. Courcelle. The monadic second-order logic of graphs V: on closing
the gap between definability and recognizability. Theoretical Computer
Science, 80(2):153–202, 1991.

[10] B. Courcelle. Graph grammars, monadic second-order logic and the
theory of graph minors. In Proc. Graph Structure Theory, volume 147
of Contemporary Mathematics, pages 565–590. American Mathematical
Society, 1993.

[11] B. Courcelle. The monadic second-order logic of graphs XI: Hierarchical
decompositions of connected graphs. Theoretical Computer Science,
224(1):35–58, 1999.

[12] B. Courcelle and J. Engelfriet. Graph Structure and Monadic Second-
Order Logic - A Language-Theoretic Approach, volume 138 of Ency-
clopedia of mathematics and its applications. Cambridge Univ. Press,
2012.

[13] B. Courcelle and J. Lagergren. Equivalent definitions of recognizability
for sets of graphs of bounded tree-width. Mathematical Structures in
Computer Science, 6(2):141–165, 1996.

[14] R. Diestel. Graph Theory. Graduate Texts in Mathematics. Springer,
2005.

[15] D. J. Dougherty and C. Gutiérrez. Normal forms for binary relations.
Theoretical Computer Science, 360(1-3):228–246, 2006.

[16] R. Duffin. Topology of series-parallel networks. Journal of Mathemat-
ical Analysis and Applications, 10(2):303–318, 1965.

[17] P. Freyd and A. Scedrov. Categories, Allegories. North Holland.
Elsevier, 1990.

[18] M. Grohe. The complexity of homomorphism and constraint satisfaction
problems seen from the other side. Journal of the ACM, 54(1):1:1–1:24,
2007.

[19] D. Kozen. Kleene algebra with tests. Transactions on Programming
Languages and Systems, 19(3):427–443, May 1997.

[20] J. Mezei and J. Wright. Algebraic automata and context-free sets.
Information and Control, 11(1–2):3 – 29, 1967.

[21] R. Milner. Communication and Concurrency. Prentice Hall, 1989.
[22] D. Park. Concurrency and automata on infinite sequences. In Proc.

Theoretical Computer Science, pages 167–183, 1981.
[23] N. Robertson and P. Seymour. Graph minors. XX. Wagner’s conjecture.

Journal of Combinatorial Theory, Series B, 92(2):325 – 357, 2004.
[24] W. Tutte. Graph Theory. Addison-Wesley, Reading, MA, 1984.

APPENDIX A
OMMITTED PROOFS

Proof of Lemma 16. There exists elements x1, x2, y1, y2 in
U for which x ∈ cp(x1, x2) and y ∈ cp(y1, y2). We can
assume without loss of generality that y 6∈ cp(x1, x2) and
x 6∈ cp(y1, y2), otherwise the statement will follow immedi-
ately. Let πx and πy be, respectively, two irredundant paths
of the form x1x2 and y1y2 avoiding, respectively, y and x.
Assume x 6∈ cp(x1, y1) and x 6∈ cp(x2, y2), then we can
find paths π1 and π2 of the form x1y1 and y2x2 avoiding
x, but then we find a contradiction, since the concatenation
of the paths π1, πy , and π2 give us a x1x2-path avoiding x.
Consequently, x ∈ cp(x1, y1) or x ∈ cp(x2, y2). We have, by
a similar argument, the same statement on y.

Assume, without loss of generality, that x ∈ cp(x1, y1) but
y 6∈ cp(x1, y1), then necessarily, y ∈ cp(x2, y2). Assume
that x 6∈ cp(x2, y2) and consider a y2x2-path γx avoiding
x. We claim that x, y ∈ cp(x1, y2). Assume towards a
contradiction the existence of a x1y2-path δx avoiding x. Then
the concatenation of the paths δx and γx give us a x1x2-
path avoiding x, and, thus, a contradiction. Similarly, if we
assume the existence of a y2x1-path δy avoiding y. Then
the concatenation of the paths δy and π1 give us y2x2-path
avoiding y, and, thus, a contradiction. Consequently, x and y
must belong to cp(x1, y2).

Proof of Lemma 17. Since we have an edge xy in CP(U),
Lemma 16 give us elements x′ and y′ in U for which x and y
are vertices in cp(x′, y′). We claim that z cannot be an element
in cp(x′, y′), otherwise, we would have three checkpoints in
sequence, and, since xyz is a triangle, a path from the first to
the third check point avoiding the vertex in the middle. This
configuration contradicts the fact that the vertex in the middle
is a check point in cp(x′, y′).

Fix an irredundant x′y′-path π avoiding z. Assume, without
loss of generality, that x appears before y in this path. There
exists elements z1 and z2 in U for which z ∈ cp(z1, z2). As-
sume that z is neither an element in cp(x′, z1) nor in cp(y′, z2),
then we can find π1 and π2, respectively z1x′ and y′z2 paths,
avoiding z. The concatenation of the paths π1, π, and π2
give us a z1z2-path avoiding z, and, thus, a contradiction.
Consequently, either z ∈ cp(x′, z1) or z ∈ cp(y′, z2).

Consider the first configuration. We claim that z′ = z1
satisfies the conditions on the statement. Assume the existence
of a x′z-path γ1 avoiding x. Since zy is an edge in CP(U),
we can find a zy-path γ2 avoiding x. The concatenation
of the paths γ1, γ2 and the yy′-subpath of π give us a
x′y′ path avoiding x, which is a contradiction. Consequently,
x ∈ cp(x′, z). Moreover, since z ∈ cp(x′, z′) we conclude
that x ∈ cp(x′, z′). By the same argument as before, the three
elements x, y, and z cannot be at the same time check points
of two single elements in U . Consequently, we can find an
irredundant x′z′-path γ avoiding y. Assume the existence of a
z′y′-path δy avoiding y. The concatenation of the paths γ and
δy give us a x′y′-path avoiding y, which is a contradiction.
Consequently, y ∈ cp(y′, z′). Similarly, if we assume the

13

http://dx.doi.org/10.1007/BF01225472
http://dx.doi.org/10.1007/BF01225472
http://dx.doi.org/10.1145/174147.169807
http://dx.doi.org/10.1145/174147.169807
http://dx.doi.org/10.1007/BF01692060
http://dx.doi.org/10.1109/LICS.1991.151645
http://dx.doi.org/10.1109/LICS.1991.151645
http://dx.doi.org/10.1016/S0304-3975(97)00228-4
http://dx.doi.org/10.1145/2933575.2934508
http://dx.doi.org/10.1145/2933575.2934508
http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.76
http://dx.doi.org/10.1016/0890-5401(90)90043-H
http://dx.doi.org/10.1016/0890-5401(90)90043-H
http://dx.doi.org/10.1016/0304-3975(91)90387-H
http://dx.doi.org/10.1016/0304-3975(91)90387-H
http://dx.doi.org/10.1090/conm/147
http://dx.doi.org/10.1090/conm/147
http://dx.doi.org/10.1016/S0304-3975(98)00306-5
http://dx.doi.org/10.1016/S0304-3975(98)00306-5
http://dx.doi.org/10.1017/S096012950000092X
http://dx.doi.org/10.1017/S096012950000092X
http://dx.doi.org/10.1016/j.tcs.2006.03.023
http://dx.doi.org/10.1016/0022-247X(65)90125-3
https://books.google.fr/books?id=fCSJRegkKdoC
http://dx.doi.org/10.1145/1206035.1206036
http://dx.doi.org/10.1145/1206035.1206036
http://dx.doi.org/10.1145/256167.256195
http://dx.doi.org/10.1016/S0019-9958(67)90353-1
http://dl.acm.org/citation.cfm?id=647210.720030
http://dx.doi.org/10.1016/j.jctb.2004.08.001

existence of a y′z′-path δz avoiding z, the concatenation of
the paths π and δz gives an x′z′-path avoiding z, which is a
contradiction. Consequently, z ∈ cp(y′, z′).

Finally, for the second configuration take z′ = z2.

APPENDIX B
PROBLEMS WITH [15]

Parallel composition (‖) is written as an intersection (∩)
in [15]; we switch to this convention in this appendix.

A. Completeness of the axiomatisation

The authors define a taxonomy allowing to characterise
certain terms as standard forms. They also define a rewriting
system which they prove to be terminating and such that the
irreducible terms belong to the taxonomy (Proposition 14).

However:

• The irreducible term dom(a ∩ b) does not belong to the
taxonomy. One certainly wants to rewrite this term into
1 ∩ ab◦ using Equation (16) from Table 3. But doing so
requires us to interpret the rewriting system modulo the
neutral element 1.
If we do so in a systematic way, then it is no longer
terminating: we get a loop between (1 ∩ (1 ∩ 1)) and
(1 ∩ 1) ∩ (1 ∩ 1) using Equations (9) and (10).

• The congruent terms u = dom(a)·dom(b) and v =
dom(a)∩dom(b) do not belong to the taxonomy. (Actu-
ally we see no term in the taxonomy for the corresponding
graph.)
Both of them are irreducible, unless we consider Equa-
tion (17) modulo the neutral element, in which case v
rewrites into u. The converse would seem more natural
to us, but this would go backward w.r.t. the lexicographic
ordering used by the authors to prove termination.

All in all, it is unclear to us how to interpret the rewriting
system and its termination proof.

Moreover, the presented taxonomy is not strong enough for
the final induction to go through (in Theorem 15). Indeed,
take terms dom(d(ab ∩ c)) and dom(d(a ∩ cb◦)), which are
irreducible and belong to the taxonomy; they denote the same
graph so that they should be proved congruent. The main
induction in the proof of Theorem 15 however asks us to prove
recursively that the subterms ab∩ c and a∩ cb◦ are congruent,
which is false (lines 8,9 in the proof).

B. Minor exclusion theorem

On pages 240-241, a function unfold is defined and it is
claimed that it should satisfy P ' 1 ∩ unfold(P).

According to the definition, unfold(dom(a)) is 1∩aa◦, but
the graphs of dom(a) and 1 ∩ aa◦ are not isomorphic.

This function is later used to extract terms from graphs
whose input and output coincide. We could not understand
how this works. (Cf. the end of the proof of Theorem 31.)

APPENDIX C
INDEPENDENCE OF THE 2P-ALGEBRA AXIOMS

The following finite and commutative algebras, where we
set x◦ = x, prove the independence of the last four axioms of
2p-algebras (Figure 2). In each case, we automatically checked
that they form a model of the remaining axioms using the Coq
proof assistant. See the web appendix of this work available at
http://perso.ens-lyon.fr/damien.pous/tw2/. Except for (A3), the
other axioms are also independent; their finite counter-models
are provided on the aforementioned page.

Counter-model for axiom A9

· 1 >
1 1 >
> 1

‖ 1 >
1 > 1
> >

Counter-model for axiom A10

· 1 2 3 >
1 1 2 3 >
2 2 2 2
3 > 2
> 2

‖ 1 2 3 >
1 1 2 1 1
2 2 2 2
3 3 3
> >

(Take a = b = 3.)

Counter-model for axiom A11

· 1 >
1 1 >
> 1

‖ 1 >
1 1 1
> >

(Take a = >.)

Counter-model for axiom A12

· 1 2 >
1 1 2 >
2 > 2
> >

‖ 1 2 >
1 1 2 1
2 1 2
> >

(Take a = b = 2.)

14

http://perso.ens-lyon.fr/damien.pous/tw2/

