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Second-order work criterion: from material point to
boundary value problems

Abstract Although the concept of the second-order work criterion dates back to the middle of the past
century, its physical meaning often continues to be debated. Recent papers have established that a certain class
of instabilities, related to the occurrence of an outburst in kinetic energy, could be properly detected by the
vanishing of the second-order work. This manuscript attempts to extend the second-order work formalism to
boundary value problems. For this purpose, the role of the boundary stiffness tensor (relating external forces
and displacement components) is put forward in the occurrence of instability by divergence. Omitting body
forces, a global method is then given to compute the second-order work terms directly. The capability of this
formalism is finally demonstrated in the context of engineering issues.

1 Introduction

In rate-independent solidmechanics, from a historical perspective, the question of stability has been considered
mainly from two different points of view. The first one has focused its analyses on discrete elastic systems
([5,38,43] among many others) with, for instance, the emblematic Ziegler column, while the second one was
developed within a continuous mechanics framework usually at a specimen or representative volume element
(R.V.E.) scale (e.g., [13] and [2,14,29,33,41]). For continuous systems, strains and stresses are related by a
constitutive tensor. More recently (e.g., [7,18,22]), some common conclusions have been exhibited when the
constitutive operator is not symmetric and linear combinations of strains are applied as loading conditions.
See also Bigoni [4] for a thorough review on the second-order work approach for non-symmetric plasticity.

Let us restrict this paper to divergence instabilities (i.e., suddenly monotonously increasing displacements
or strains), to quasi-static loading conditions and to the stability “in the small.” The first restriction implies that
flutter instabilities (i.e., displacements or strains increasing cyclically; see Bigoni andNoselli [3], for a practical
example) are not considered here (see [18,26], for instance, for more general considerations). Secondly, only
quasi-static loading paths until reaching the unstable state are taken into account. Of course, as soon as the
instability is effective, the post-collapse displacement/strain regime usually becomes dynamic with a burst of
kinetic energy [8,23]. However, the pre-collapse behavior (including the bifurcation state) remains in static
conditions and it allows a purely static analysis of this class of instabilities. Finally, the third limit of this paper
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is given by the fact that only the stability “in the small” is analyzed, leaving asymptotic (“in the large”) stability
as introduced by [20] beyond its scope. Stability in the small means that a mechanical state is considered stable
as soon as any incremental loading included inside an arbitrarily small ball centered on this state in the loading
space leads to an incremental response included in a given finite ball in the response space.

Experiments and theoretical considerations show that the constitutive tensor can be non-symmetric for
continuous elastoplastic bodies in the non-associative case (yield surface and plastic potential do not coincide,
as in the case of Coulombian frictional materials). In this situation, experiments and theoretical analyses
show that some “paradoxical” instabilities can be repeatedly observed [6,10,18,31]. Paradoxical instability
here means that the collapse appears strictly before any limit state of the stress-controlled elastoplastic body.
Moreover, these instabilities can be described using the second-order work criterion. Indeed, the second-order
work criterion (i.e., loss of definite positiveness of the constitutive matrix) constitutes a lower bound of all
possible instability diagrams, and is thus considered as the “optimal” criterion [18]. The main results are as
follows:

– First, there is a bifurcation domain delimited by the singularities of the symmetric part of the constitutive
tensor (corresponding to the loss of definite positiveness) as a lower bound and the singularities of the
tensor itself as the upper bound.

– Second, in this bifurcation domain, the negative values of internal second-order work are obtained in the
“isotropic cone” (according to linear algebra vocabulary) of the tensor. This “instability cone” (according
to a mechanical point of view) gathers the potentially unstable loading directions associated with the mixed
loading paths. The instability will become effective for proper control loading variables [36].

According to experiments [8,11] and to numerical computations using finite element or discrete element
methods [35,42], once the instability state is reached after a quasi-static loading path, and for a proper control
variable, instability becomes effective for some ad hoc perturbations, such as an arbitrarily small additional
loading applied at the extremum of the critical load. If so, a burst of kinetic energy is generally observed at
this bifurcation point, with an abrupt transition from a static regime of deformation to a dynamic one [23].
Thus a link can be expected between kinetic energy and second-order work items. This is the link that gives
the proper mechanical interpretation of the predictive capacity of the second-order work criterion with respect
to divergence instabilities. However, these analyses of the stability in the small cannot give any indication
about the asymptotic stability of the elastoplastic body. Indeed, the notion of asymptotic stability disappears
in elastoplasticity because of the history dependence of this mechanical behavior (except in 1D or for drastic
assumptions about the loading path considered; [32]).

So far, most investigations have dealt with the material point scale, or with homogeneous specimens sub-
jected to homogeneous loading paths. Extending the second-order work formalism to more general boundary
value problems remains an open, and important, issue. At the same time, this challenge is of paramount impor-
tance in view of making this approach efficient for engineering purposes. In this paper, we demonstrate how
the second-order work approach can be conveniently extended to boundary value problems. First, the basic
second-order work equation is recalled, showing how the increase in kinetic energy is related to the difference
between both external and internal second-order works. Omitting body forces, a global method is then given
to compute the second-order work terms directly. The capability of this formalism is shown by considering
two engineering situations: a laboratory test and a shallow foundation problem.

Throughout this paper, allmaterials are assumed to be rate independent and are simplematerials [27,39,40].
Moreover, vectors will be denoted with a single overbar ( Ā), and second-order tensors will be denoted with a

double overbar (A). Generic terms of any vector Ā are noted Ai . Likewise, generic terms of any second-order

tensor A are noted Aij. Einstein convention on summation of repeated indices (underscript position) is used
onlywhen there is no ambiguity. Otherwise, the summation is indicated explicitly using the summation symbol.

2 Kinetic energy and second-order work

Consider a material body of volume Vo and density ρo enclosed by boundary (�o) in an initial configuration
Co at time to. Following a certain loading history, the body is in a strained configuration C and occupies a
volume V of boundary (�), in equilibrium under a prescribed external loading. This loading is defined by
specific static or kinematic parameters, referred to as the loading parameters [17,28,34].

We query in this paper the conditions in which the kinetic energy of the system is a convex function over
time, that is Ëc > 0, at least over a finite time range of amplitude�t . Starting from an equilibrium configuration
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at time to, Ėc(to) = 0. Thus, if ∀t ∈ [to, to + �t[, Ëc(t) > 0. Both Ec(t) and Ėc(t) are thereby strictly positive
over [to, to + �t[. The kinetic energy of the system increases over the time range [to, to + �t[. It will be seen
hereafter that the stability analysis cannot be carried out in an asymptotical way for elastoplastic materials,
contrary to linear systems. Thus the analysis should be restricted to a finite time range. Herein, the notion of
local stability (in the small) at time to contrasts with that of Lyapunov’s asymptotic stability (in the large), in
that only the time range [to, to + �t[ is considered from an equilibrium configuration [24,25].

Adopting a semi-Lagrangian formulation (each material point x̄ of the current configurationC corresponds
(through bijectivemapping) to amaterial point X̄ of the initial configurationCo), and in absence of body forces,
the evolution of each material point of the system is given by the equation

ρo üi − ∂�ij

∂X j
= 0, (1)

where � is the first Piola–Kirchoff stress tensor and ū is the displacement field. The kinetic energy of the
whole system reads

Ec = 1

2

∫

Vo

ρo ˙̄u2 dVo, (2)

where ˙̄u(X̄) is the Lagrangian velocity field.
A double time differentiation of Eq. (2) yields1:

Ëc =
∫

Vo

ρo ¨̄u2 dVo +
∫

Vo

ρo ˙̄u · ...ū dVo. (3)

Combining Eq. (3) with Eq. (1) gives:

Ëc =
∫

Vo

ρo ¨̄u2 dVo +
∫

Vo

u̇i
∂�̇ij

∂X j
dVo. (4)

By virtue of the Green formula, Eq. (4) can be rewritten as:

Ëc =
∫

Vo

ρo ¨̄u2 dVo +
∫

∂Vo

u̇i �̇ij N j dSo −
∫

Vo

�̇ij
∂ u̇i
∂X j

dVo. (5)

The result is that the second-order time derivative of the kinetic energy is the sum of three terms:

– The first term I2 = ∫
Vo

ρo ¨̄u2 dVo is an inertial term. This is the quadratic average of the acceleration; this
term is therefore always positive.

– The second term
∫
∂Vo

u̇i �̇ij N j dSo = ∫
∂Vo

u̇i ṡi dSo is a boundary term involving the loading parameters

(the displacements ū and the current external forces f̄ with d f̄ = s̄ dSo) acting on the boundary of the
initial (reference) configuration of the system. It is hereafter called the external second-order work W ext

2 .
– The third termexplicitly introduces the second-orderwork,which is expressed following a semi-Lagrangian

formalism [13] as
∫
Vo

�̇ij
∂ u̇i
∂X j

dVo = ∫
Vo

�̇ij Ḟij dVo, where F is the tangent linear transformation. This
term is related to the constitutive behavior of the material and is therefore referred to as the internal second-

order workW int
2 . It should be noted that at anymaterial point of the system, both the stress rate tensor �̇ and

velocity gradient tensor Ḟ are related by the constitutive relation �̇ij = Lijkl Ḟkl, where the fourth-order

tensor
4
L is the tangent constitutive tensor for rate-independent materials.

1 The advantage of the Lagrangian formulation is that all integrals are expressed with respect to a fixed domain (corresponding
to the initial configuration).
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It follows that Eq. (5) can be expressed as:

Ëc = I2 + W ext
2 − W int

2 . (6)

When the loading conditions and the constitutive behavior of the material make it possible that W int
2 < W ext

2
from a given time to, then the second-order time derivative of the kinetic energy is strictly positive after time
to. Starting from an equilibrium configuration at time to, Ėc(to) = 0, the kinetic energy of the system is a
growing function over a certain time range [to, to + �t[.

Until now, the second-orderwork criterion [25] has been applied essentially to thematerial point scale (or for
homogeneous specimens under homogeneous loading conditions). In this manuscript, we extend this approach
to any material system. Both strain and stress fields may no longer be homogeneous, and the computation of
both internal and external second-order works can be demanding, essentially because the internal second-order
work requires determining both stress and strain fields. In the following sections, we propose an approach in
which internal and external second-order works are computed based on the mechanical parameters (forces,
displacements) acting on the boundary of the system only, without requiring any information inside the system.
This is highly advantageous, since these boundary parameters are generally accessible.

3 External and internal second-order works

3.1 External second-order work

Let us consider that the system introduced in Sect. 2 is initially at rest. We associate a Galilean frame with the
physical space, in which all subsequent derivations will be expressed. A force or displacement loading can be
applied to the boundary (�o) of the system. If incremental displacements are prescribed to the whole boundary,
then boundary incremental forces develop as a response to the kinematic loading. We assume hereafter that
the loading is directed by either forces or displacements applied to the boundary of the system. Body forces
will be neglected. Thus, the boundary is composed of n parts ‘k’ subjected to either a rigid body velocity ˙̄uk or
to an external rate force ˙̄f k . By renumbering, any boundary loading is therefore defined from a set of N = 3n
components ui or fi . When u̇i is imposed, ḟi stands as the dual rate force response of the system. Likewise,
when ḟi is imposed, u̇i stands as the dual velocity response of the system. In these conditions, the external
second-order work reads:

W ext
2 =

N∑
i=1

u̇i ḟi . (7)

More broadly, the loading can be defined by selecting p control variables Ci , together with N − p loading
conditions L j . See also Khalil [15] for a thorough review on the theory of control in nonlinear systems. If
a purely strain loading is considered (as will be done in this section), the p control variables Ci can be the
displacement components: C1 = u1, . . .Cp = u p. The loading conditions Li are given by N − p independent
linear combinations of displacement components, as follows [17,23,28,34]:

Li = Ai−p,1 u1 + · · · + Ai−p,N uN , for i = p + 1, . . . N , (8)

where A is a rate-independent matrix of dimension ((N − p) × N ). t A is composed of N − p vectors Āi =
t (Ai,1, . . . , Ai,N ) of RN . Thus, the loading program can be defined as follows:

Ċi = const. (>0) for i = 1, . . . p, (9a)

L̇i = 0 for i = p + 1, . . . N . (9b)

In an analogous manner, the response can be expressed in terms of N independent linear combinations Ri of
force components, as follows:

Ri = Bi,1 f1 + · · · + Bi,N fN for i = 1, . . . p, (10a)

Ri = fi for i = p + 1, . . . N , (10b)
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where B is a rate-independentmatrix of dimension (p × N ). t B is composedof p vectors B̄i = t (Bi1, . . . , BiN )
of RN . These vectors are chosen so that the following condition holds [10,28]:

N∑
i=1

u̇i ḟi =
p∑

i=1

Ċi Ṙi +
N∑

i=p+1

L̇i Ṙi . (11)

Combining Eqs. (9) and (10) with Eq. (11) yields:

N∑
i=1

u̇i ḟi =
p∑

i=1

(
Bi,1 u̇i ḟ1 + · · · + Bi,N u̇i ḟN

) +
N∑

i=p+1

(
Ai−p,1 u̇1 ḟi + · · · + Ai−p,N u̇N ḟi

)
, (12)

which gives, after some algebraic transformations:

N∑
i=1

u̇i ḟi =
p∑

i=1

p∑
j=1

Bi,j u̇i ḟ j +
p∑

i=1

N∑
j=p+1

Bi,j u̇i ḟ j +
N∑

j=p+1

p∑
i=1

A j−p,i u̇i ḟ j +
N∑

i=p+1

N∑
j=p+1

A j−p,i u̇i ḟ j .

(13)
Noting that

∑N
i=1 u̇i ḟi = ∑N

i=1
∑N

j=1 δij u̇i ḟ j , Eq. (13) is rewritten as:

p∑
i=1

p∑
j=1

(
Bi,j − δij

)
u̇i ḟ j +

N∑
i=p+1

N∑
j=p+1

(
A j−p,i − δij

)
u̇i ḟ j +

p∑
i=1

N∑
j=p+1

(
Bi,j + A j−p,i

)
u̇i ḟ j = 0. (14)

As Eq. (14) must be verified whatever ui and f j , the following relations hold:

i = 1, . . . p and j = 1, . . . p Bi,j = δij, (15a)

i = p + 1, . . . N and j = p + 1, . . . N A j−p,i = δij, (15b)

i = 1, . . . p and j = p + 1, . . . N Bi,j = −A j−p,i . (15c)

Property 1 The column vectors of matrices A and t B are orthogonal to one another.

Proof For any pair of vectors Āk = t (Ak,1, . . . , Ak,N ) and B̄l = t (Bl1, . . . , BlN ), with k = 1, . . . N − p and
l = 1, . . . p, we have:

t Āk B̄l =
N∑
i=1

Ak
i Bl

i =
N∑
i=1

Aki Bli =
p∑

i=1

Aki Bli +
N∑

i=p+1

Aki Bli . (16)

Taking advantage of relations (15), Eq. (16) yields:

t Āk B̄l =
p∑

i=1

Aki δli −
N∑

i=p+1

δk+p,i Ai−p,l = Akl − Akl = 0. (17)

Any two vectors Āk and B̄l , with k = 1, . . . N− p and l = 1, . . . p, are therefore orthogonal, which establishes
the property.

Moreover, we have:

Li =
p∑

j=1

Ai−p, j u j + ui for i = p + 1, . . . N , (18)

Ri = fi −
N∑

j=p+1

A j−p,i f j for i = 1, . . . p. (19)
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Taking advantage of Eqs. (8), (11), and (19), the external second-order work can be expressed as:

W ext
2 =

p∑
i=1

u̇i

⎛
⎝ ḟi −

N∑
j=p+1

A j−p,i ḟ j

⎞
⎠ (20)

under the loading conditions
∑p

j=1 Ai−p, j u̇ j + u̇i = 0, for i = p + 1, . . . N .

The physical meaning of Eq. (20) is as follows: WhenW ext
2 is nil, at least one of the p terms Ṙi is negative

(say Ṙα), and the corresponding response parameter Rα = fα − ∑N
j=p+1 A j−p,α f j follows a descending

branch (Ṙα < 0).

3.2 The system stiffness operator

Let a velocity of loading t ū = (u̇1, . . . , u̇N ) be prescribed to the system. The response of the system is defined

by the boundary force rates ( ḟ1, . . . , ḟN ). These force rates (vector ˙̄f ) constitute the quasi-static response of
the system to the loading defined by vector ˙̄u.

Given a mechanical system composed of a material considered as a simple medium in the sense of [27],
the principle of determinism implies that the force response f̄ (t) at a given time t is a functional of the strain
history at this point up to this time. Thus, as an assumption when heterogeneous conditions hold, we can
conceive that a functional � exists such that:

f̄ (t) = � (ū (τ ) , τ ≤ t) . (21)

This is an extension of the general framework that holds on the material point scale [9]. As soon as plastic
irreversibilities occur, the functional � is not differentiable, making the global formulation (21) inappropriate.
It is more convenient to adopt an incremental formulation, as follows:

H
( ˙̄f, ˙̄u, h

)
= 0, (22)

where H is a nonlinear tensorial function of arguments ˙̄f , ˙̄u and h, h being a set of parameters characterizing
the previous loading history of the system.

Moreover, by restricting the subject at hand to non-viscous materials, and assuming the tensorial function

H to be sufficiently regular, Eq. (22) is written as

˙̄f = Gh
( ˙̄u)

, (23)

where Gh is a tensorial function that depends on the previous loading path history through state variables and
memory parameters h.

Because of the rate-independency condition,Gh is a homogeneous function of degree 1 (for positive values
of the multiplicative parameter):

∀λ ∈ R+ : Gh
(
λ ˙̄u) = λ Gh

( ˙̄u)
. (24)

Euler’s identity for homogeneous functions implies that ˙̄f = ∂Gh
∂( ˙̄u)

˙̄u. Thus the system stiffness matrix � can
be defined as: ˙̄f = � (ēu) ˙̄u, (25)

where � is a homogeneous function of degree 0, of ēu = ˙̄u/‖ ˙̄u‖.
As will be shown in a later section, the system stiffness matrix concept stands as an extension of the

constitutive operator that holds on the material point scale or for homogeneous volumes (subjected to a
uniform loading). This extended framework is much more general, as it applies to any system, subjected to any

kinematically controlled loading. It is worth noting that � characterizes the behavior of the system through
the accessible variables acting on the system’s boundary.

It is immediate that, according to Eq. (7), the external second-order work reads:

W ext
2 = t ˙̄u � ˙̄u = t ˙̄u �

s ˙̄u. (26)
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As a result, when the loading path is strain-controlled, the external second-order work is a quadratic form

associated with the symmetric part �
s
of the system stiffness matrix. This property no longer holds when the

loading is statically (force) controlled. In this case, the system stiffness matrix cannot be defined, because the
response of the system may no longer be quasi-static but is likely to be dynamic.

3.3 The internal second-order work

The internal second-orderwork readsW int
2 = ∫

Vo
�̇ij Ḟij dVo, or equivalently, condensing both (3×3)matrices

F and � in six component vectors F̄ and �̄, W int
2 = ∫

Vo
�̇i Ḟi dVo. At each material point, the constitutive

relation �̇i = Kij Ḟj (stemming from the constitutive relation �̇ij = Lijkl Ḟkl,) applies, where K is the
constitutive tensor operating at the material point considered.

Thus, the internal second-order work reads:

W int
2 =

∫

Vo

t ˙̄F K ˙̄F dVo =
∫

Vo

t ˙̄F K
s ˙̄F dVo, (27)

where K
s
is the symmetric part of K .

When the loading is kinematically controlled, themechanical response of the system is quasi-static, without
any (prominent) inertial effects. No outburst in kinetic energy occurs, and Eq. (6) yields:

W ext
2 − W int

2 = 0. (28)

Equation (28) means that both internal and external second-order works, in this kinematic control context,
coincide. Thus, according to Eq. (18), the internal second-order work also reads:

W int
2 =

p∑
i=1

u̇i

⎛
⎝ ḟi −

N∑
j=p+1

A j−p,i ḟ j

⎞
⎠. (29)

We conjecture the following proposition:

Proposition 1 Starting from an equilibrium configuration, the internal second-order work of a given system
subjected to any loading program depends only on the infinitesimal loading path and not on the control mode
adopted.

At a given mechanical state, the incremental response of a material depends on the loading direction, not on the
control mode, that can be static or kinematic. This is not true over a finite time range, since inertial effects can
occur for a stress control path, modifying therefore the response of the system, and the corresponding value
of the internal second-order work. Limiting our analysis to the initiation of failure, the internal second-order
work of the system, under a given loading path, can be computed by adopting a kinematical control (Wint,kc

2 ),
as assumed in the previous section. In this case, Eq. (28) holds, and by virtue of Eq. (26) it follows that:

W int
2 = W int,kc

2 = W ext
2 = t ˙̄u �

s ˙̄u. (30)

The loading path is defined by the N − p relations

p∑
j=1

Ai−p, j u̇ j + u̇i = 0, for i = p + 1, . . . N , (31)

and is controlled by the p kinematical variables C1 = u1, …Cp = u p; the p velocities u̇i are imposed as
constant: u̇i = vi (vi being a real constant).
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Equations (31) mean that vector ˙̄u is normal to the N − p vectors Āi = t (Ai−p,1, . . . , Ai−p,N ). As both

matrices A and t B are orthogonal to one another, ˙̄u can be decomposed on the basis formed by the vectors
B̄l = t (Bl1, . . . , BlN ), with l = 1, . . . p. Taking Eq. (15) into account finally gives

˙̄u =
p∑

l=1

αl B̄
l , with αl being any real scalar (32)

or

u̇i = αi for i = 1, . . . p and u̇i = −
p∑

l=1

αl Ai−p,l for i = p + 1, . . . N . (33)

Finally, the N kinematical variables can be expressed as a function of both the (constant) parameters vi
and Aij as follows:

u̇i = vi for i = 1, . . . p, (34a)

u̇i = −
p∑

l=1

vl Ai−p,l for i = p + 1, . . . N . (34b)

As a symmetric, real matrix, �
s
is diagonalizable with all eigenvalues being real. If all eigenvalues of �

s

are strictly positive, W int
2 is a strictly positive quadratic form. If �

s
admits p negative eigenvalues λk , let B̄k

be the p-associated eigenvectors. Then, by selecting the N − p vectors Āi orthogonal to the p vectors B̄k ,
if the N − p kinematic loading conditions L̇i = 0 are prescribed, with Li = Ai1 u1 + · · · + AiN uN for
i = p + 1, . . . N , Eq. (10a) hold. By virtue of Eq. (32), the internal second-order work, given by Eq. (30),
reads:

W int
2 =

N∑
k=1

N∑
l=1

�s
kl u̇k u̇l =

p∑
k=1

p∑
l=1

αk αl �s
ij Bk j Bli (35)

which gives, as �s
ij Bk j = �s

ij B
k
j = λk Bk

i = λk Bki :

W int
2 =

p∑
k=1

p∑
l=1

αk αl λk Bki Bli . (36)

As the vectors B̄k are orthogonal to one another (the eigen subspaces of a symmetric, realmatrix are orthogonal),
then Bki Bli = δkl |Bk | |Bl |, where δkl is the Kronecker symbol. Finally, Eq. (36) is expressed as:

W int
2 =

p∑
k=1

λk α2
k

∣∣∣Bk
∣∣∣2 =

p∑
k=1

λk v2k

∣∣∣Bk
∣∣∣2. (37)

As the p eigenvalues λk are negative, W int
2 is strictly negative. Thus, in these loading conditions, with this

choice of control parameters, both external and internal second-order works are equal (Eq. 30) and negative.
If the same loading conditions are applied (L̇i = 0 are prescribed, with Li = Ai1 u1+· · ·+AiN uN for i =

p+1, . . . N ), but by changing the control parametersCi (for i = 1, . . . p) intoCi = fi −∑N
j=p+1 A j−p,i ḟ j ,

with Ċ i being constant (positive), proposition 1 implies that the expression of the internal second-order work
is unchanged and is still given by Eq. (37). The internal second-order work is negative.

On the other hand, this choice of control parameters results in both force rates and velocities no longer
being related by the boundary operator. Thus, the external second-order work is no longer given by Eq. (26).
It is given by Eq. (20): W ext

2 = ∑p
i=1 u̇i ( ḟi − ∑N

j=p+1 A j−p,i ḟ j ).

The control parametersCi (for i = 1, . . . p) are prescribed.Aswe consider loading conditions, the terms Ċ i

are constant and positive (they would be negative if unloading conditions were considered). The p kinematical
terms u̇i constitute a part of the response of the system. As the terms u̇i are positive (as a result of the loading
conditions), the external second-order work is strictly positive as well.

According to Eq. (6), if W ext
2 > 0 and W int

2 < 0, the second-order time derivative of the kinetic energy
of the system is strictly positive. The response of the system is no longer quasi-static. The system evolves
with inertial effects. The kinetic energy increases, with undefined (and possibly unbounded) values for the
velocities u̇i (i = 1, . . . p).
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3.4 Practical method

The second-order work formalism developed in the subsections above can be applied to any boundary value
problem. Given a system, the question that arises is to determine whether a loading program exists that could
lead to negative values of the internal second-order work. If so, an adequate choice of control parameters will
lead the system to failure (characterized by an outburst in kinetic energy).

If the dimension (N ) of the problem at hand is small enough (typically N = 3), the boundary stiffness
operator can be specified and its spectral properties can be investigated. This enables checking whether this
operator admits negative eigenvalues. However, for larger N -values, this method is certainly not convenient.
In this case, the spectral properties of the boundary stiffness operator can be investigated indirectly, using a
directional analysis. This method is exactly the same as what is done on the material point scale to characterize

the spectral properties of K
s
(see [22,23,25]). Boundary velocities u̇i are prescribed to the system, with

the same norm (
∥∥ ˙̄u∥∥ = const), in all the directions within the related space. The rate force response ḟi

is determined, and the external second-order work is computed as W ext
2 = ∑N

i=1 u̇i ḟi . Then the sign of the
external second-order work can be explored as a function of the loading direction, and the existence of negative
eigenvalues is examined. If the second-order work takes negative values along certain loading directions, at
least one negative eigenvalue exists. Then the existence of a proper loading program leading to an increase in
kinetic energy is guaranteed.

This approach was presented in a general framework including any p control parameters, with p possibly
larger than 1. This situation may arise in complex systems, particularly in civil engineering where the loading
can be controlled (that is to say, the evolution of the loading over time can be controlled) by different variables
operating at different areas of the structure.

However, for the sake of simplicity, the approach is exemplified in the following section by considering the
usual case p = 1. Two examples are presented: a homogeneous laboratory test and an engineering boundary
value problem.

4 Engineering applications

4.1 The homogeneous triaxial laboratory test

The particularization of this framework to the case of homogeneous material specimens is worthy of interest,
because it corresponds to the laboratory specimen scale where (for instance) parallelepiped-like specimens
subjected, on each wall, to a prescribed force or displacement directing both stress and strain fields are studied.
Investigating this elementary scale can be useful in, for example, the interpretation of the derived results of
experimental tests. Both strain and stress fields are homogeneous. The external forces applied to the boundary
of the specimen are related to the average stress tensor, and the displacements of each point of the boundary
are related to the average strain tensor. Both strain and stress states are fully characterized with both forces
and displacements measured on the boundary.

Experimental tests with homogeneous specimens allow a constitutive relation to be developed, expressed
on the material point scale, when the internal fields are directly related to accessible boundary variables.

Let a parallelepiped specimen be considered. Each side ‘i’ admits a normal N̄ i that coincides with the
directions v̄i of a fixed reference frame. The initial area of each side ‘i’ is denoted Si and the initial length
of each edge is denoted Li , with i = 1, . . . 3. Index ‘1’ refers to the axial direction, whereas indices ‘2’ and
‘3’ refer to the two lateral directions perpendicular to the axial direction (Fig. 1). When a static condition is
assigned to a side ‘i’, it is convenient to introduce the resultant external force fi acting on this side. This force
is assigned to be normal to the side considered. The uniform external Lagrangian stress vector distribution si
acting on side ‘i’ and related to fi is also introduced: si = fi/Si . The displacement of each side ‘i’, along the
direction v̄i , is denoted Ui . No tangential displacement is assumed to take place. When a kinematic condition
is assigned to a side ‘i’, the resultant external force fi (or the stress vector distribution si ) acting on this side
corresponds to the external loading that must be applied to ensure the prescribed displacement Ui .

In these conditions, the displacement ū of any point M(X1, X2, X3) reads in the frame {O, v̄1, v̄2, v̄3}:

ū =
3∑

i=1

Xi

Li
Ui v̄i , (38)
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Fig. 1 Parallelepiped specimen and definition of the axes

which gives, as Fij = δij + ∂ui/∂X j :

Ḟ =
⎡
⎣ U̇1/L1 0 0

0 U̇2/L2 0
0 0 U̇3/L3

⎤
⎦ . (39)

Thus, in homogeneous conditions Eq. (6) is written:

Ëc = I2 + ḟ1 U̇1 + ḟ2 U̇2 + ḟ3 U̇3 − W int
2 . (40)

Furthermore, the internal second-order work simplifies in homogeneous conditions as:

W int
2 = Vo

(
�̇11 Ḟ11 + �̇22 Ḟ22 + �̇33 Ḟ33

)
. (41)

Recalling that Vo = S1 L1 = S2 L2 = S3 L3 and by virtue of Eq. (39), combining Eqs. (40) and (41) yields:

Ëc = I2 +
3∑

i=1

(
ḟi − �̇i i S

i
)
U̇i . (42)

As already pointed out by Nicot [25], the increase in kinetic energy is related to a conflict between the loading

( ḟ ) applied to the boundary of the specimen and the internal stress (�̇) that the material can develop in relation
with its constitutive properties.

During a quasi-static evolution, no increase in kinetic energy is expected. The different lateral walls are in
equilibrium, which gives ḟi = �̇i i Si (for i = 1, . . . 3). External forces are exactly balanced by the internal
forces resulting from the internal stress, which also means that the internal stress can be assessed from the

measurement of forces acting on the boundary. In this situation, the system stiffness matrix � can be defined.
According to Eq. (38), we have:

K = S � L (43)

with S =
⎡
⎣1/S1 0 0

0 1/S2 0
0 0 1/S3

⎤
⎦ and L =

⎡
⎣ L1 0 0

0 L2 0
0 0 L3

⎤
⎦.

The system stiffness tensor � is proportional to the standard constitutive tensor K . In particular, both
matrices have the same eigen properties.

As an illustration, the following example can be considered. We assume that the constitutive operator K

is known, and that the symmetric part K
s
admits one negative eigenvalue λ. The associated eigen subspace is

assumed to be a vectorial line, defined by the vector B̄ = (1, −B2, −B3). According to Eqs. (15a–c), B̄ can
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be completed by the vectors Ā1 = (B2, 1, 0) and Ā2 = (B3, 0, 1) to form a base of R3, with t B̄ Ā1 = 0
and t B̄ Ā2 = 0. Then, as developed in Sect. 3, let the following loading program be defined (N = 3, p = 1):

C1 = U1, with U̇1 = const. (kinematic control parameter), (44a)

L2 =
3∑

i=1

A1
i Ui = B2 U1 +U2, with L̇2 = 0 (loading path), (44b)

L3 =
3∑

i=1

A2
i Ui = B3 U1 +U3, with L̇3 = 0 (loading path). (44c)

This loading program corresponds to the standard proportional strain loading path. Indeed, according to Eq.
(39), we have:

Ḟ11 = const, (45a)

B2 Ḟ11 + Ḟ22 = 0, (45b)

B3 Ḟ11 + Ḟ33 = 0. (45c)

The response parameters are:

R1 = f1 − A1
1 f2 − A2

1 f3 = f1 − B2 f2 − B3 f3, R2 = f2 and R3 = f3

so that, according to Eq. (37), the external second-order work is expressed as:

W ext
2 = U̇1

(
ḟ1 − B2 ḟ2 − B3 ḟ3

)
. (46)

Furthermore, over this quasi-static loading program, the internal second-order work is expressed as W int
2 =

t ˙̄U �
s ˙̄U . As L̇2 = 0 and L̇3 = 0, ˙̄U is normal to both vectors v̄1 = t

[
B2 1 0

]
and v̄2 = t

[
B3 0 1

]
.

Thus, ˙̄U = α v̄1 × v̄2, with v̄1 × v̄2 = B̄, where B̄ is the eigenvector associated with the negative eigenvalue

of �
s
. The internal second-order work is therefore negative. As W int

2 = W ext
2 , Eq. (46) implies that R1 =

f1 − B2 f2 − B3 f3 follows a descending branch (Ṙ1 < 0).
The loading control can be changed into a force control, as follows:

C1 = f1 − B2 f2 − B3 f3, with Ċ1 > 0 (force control parameter), (47a)

L2 =
3∑

i=1

A1
i Ui = B2 U1 +U2, with L̇2 = 0 (loading path), (47b)

L3 =
3∑

i=1

A2
i Ui = B3 U1 +U3, with L̇3 = 0 (loading path). (47c)

The loading path is unchanged, which guarantees that the internal second-order work is unchanged as well.
Furthermore, Eq. (46) shows that the external second-order work, due to the force control imposed by the
experimentalist, is strictly positive.

As a result, Eq. (6) reveals that an increase (outburst) in kinetic energy should occur. In fact, the response of
the specimen is no longer quasi-static, but turns out to be dynamic. This transition characterizes the occurrence
of an effective failure [36]. This transition was ascertained from numerical simulations based on a discrete
element model (open-source code YADE, [37]). A triaxial loading path was prescribed to a numerical granular
specimen made up of an assembly of contacting spheres. For the sake of simplicity, axisymmetric conditions
were imposed, and the particular isochoric loading direction was considered: B2 = B3 = 1. Then, as shown
by different authors [12,21,25], when turning the loading conditions from a strain-controlled mode to a stress-
controlled mode, an abrupt increase in kinetic energy is observed until the total collapse of the specimen
(Fig. 2). As can be seen in Fig. 3, the increase in kinetic energy stems from the difference between both
external and internal second-order works. The external second-order work increases with positive values,
whereas the internal second-order work decreases (on average) with negative values (Fig. 3) (Table 1).
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Fig. 2 DEM simulation of an undrained triaxial test: kinetic energy explosion under stress-controlled conditions (after [21])

Fig. 3 DEM simulation of an undrained triaxial test: kinetic energy explosion under stress-controlled conditions (after [21])

4.2 The case of a shallow foundation

A non-homogeneous boundary value problem is considered in this section. We analyze the behavior of a
soil body loaded by a shallow foundation. The problem is assumed to be two-dimensional and is modeled as
described in Fig. 4. A rectangular domain of soil is considered; one part JK of length L of the upper side is
subjected to a controlled downward vertical displacement denoted U1, whereas the two deformable adjoining
parts (IJ and KL) are free: f5 = f6 = 0 (zero tensile force is prescribed). The other three rigid sides (LM,MN
and IN) are restricted from undergoing displacement: Horizontal and vertical displacements are nil.

The following loading program is therefore prescribed to the system:
The reaction force applied by the soil to the foundation is denoted f1. This force evolves continuously with

the vertical displacement U1. According to the loading path applied, the external second-order work takes the
straightforward form

12



Table 1 Definition of the loading program

Boundary section Boundary condition Loading program

JK C1 = U1, Ċ1 > 0 Kinematic control
IN L2 = U2, L̇2 = 0 Loading path
MN L3 = U3, L̇3 = 0 Loading path
LM L4 = U4, L̇4 = 0 Loading path
IJ L5 = f5, L̇5 = 0 Loading path
KL L6 = f6, L̇6 = 0 Loading path

I 

J 

L 

N 

K 

M 

1f

10=MN m 

4=IN m 

4=IJ m 4=KL m 
2=JK m 

1U 1U

Fig. 4 Simulation of the settlement under a shallow foundation

W ext
2 = U̇1 ḟ1. (48)

In order to compute the evolution of the external second-order work over the loading path, this problem was
simulated by means of a finite element method [16] using the PLASOL elastic–plastic model for soil [1]. A
comprehensive review of this method can be found in Prunier et al. [30], and Lignon et al. [19]. The curve
f1 (U1) increases until a peak is reached, and then decreases (Fig. 5). After the peak, ∂ f1/∂U1 < 0. As
ḟ1 = (∂ f1/∂U1) U̇1, we have ḟ1 < 0, which requires that the external second-order work W ext

2 be negative
(Fig. 6). As the loading path is kinematically controlled, the internal second-orderworkW int

2 equals the external
second-order work. W int

2 is therefore negative along this loading path, irrespective of the control adopted.
Imagine that after the peak (point C, Figs. 5, 6), the loading turns out to be force-controlled: A rate force

ḟ1 is imposed on the foundation, with ḟ1 > 0. From a practical point of view, this situation arises when
additional materials (soil or structure) are deposited above the foundation. The response parameter,U1, is such
that U̇1 > 0. As a result, the external second-order work given by Eq. (48) is strictly positive, whereas the
internal second-order work remains unchanged and negative.

As a result, the kinetic energy is strictly positive. The soil fails under the foundation. This was ascertained
from a numerical simulation based on a finite element method using the PLASOL elastoplastic model for soil.
Given that LAGAMINE software considers static balance equations, omitting inertial terms, the software is
no longer able to converge toward a solution. This numerical divergence is in fact related to a transition from a
static to a dynamic regime (with a sudden increase in kinetic energy) that cannot be simulated by the software.
This absence of convergence demonstrates the occurrence of a failure, as predicted from the second-order
work approach.

5 Concluding remarks

This manuscript has revisited the notion of the second-order work, introduced more than half a century ago,
by developing a global approach for continuous systems based on the relation between the second-order time
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Fig. 5 Reaction force applied to the foundation

Fig. 6 Normalized external second-order work

derivative of the kinetic energy and the difference between the external second-order work and the internal
second-order work.

The external second-order work involves the loading variables acting on the boundary of the system. For
continuous systems, in a quite natural way, these variables make a so-called system stiffness tensor emerge, by
relating external displacements and forces. In homogenous situations, when the external loading is balanced
by the internal stress, this tensor is proportional to the usual constitutive tensor.

The destabilization of a continuous system by divergence can be provoked by adequate loading path and
control variables that make the mechanical response of the system follow various critical directions. These
directions are defined from the eigenvectors related to the negative eigenvalues of the symmetric part of the
system’s stiffness tensor.

The advantage of this approach, involving the boundary stiffness tensor, is that only the loading variables
acting on the boundary of the system are necessary. No internal information (internal stress or strain fields) is
required. Usually, failure analysis for boundary value problems requires computing the internal second-order
work, and therefore both internal stress and strain fields. It is notable that the stability analysis of any system can
be carried out from only the boundary information (velocity and rate force distribution). From a practical point
of view, this method is generally very convenient, since the dimension of the problem (number of boundary
variables) is usually not very large.

14



Finally, the notions of local (in the small) and asymptotic (in the large) instability were distinguished. In the
general case of (rate-independent) incrementally nonlinear systems, the approach proposed in this manuscript
can only arbitrate on the stability features in the small, namely over a finite, short time range. For most civil
engineering applications, the notion of instability in the small is sufficient, since failure affecting soil bodies
or structures occurs mainly over small time ranges.
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