François Nicot 
email: francois.nicot@irstea.fr
  
Jean Lerbet 
  
Félix Darve 
  
  
  
  
  

come    

Introduction

In rate-independent solid mechanics, from a historical perspective, the question of stability has been considered mainly from two different points of view. The first one has focused its analyses on discrete elastic systems ( [START_REF] Bolotin | Nonconservative Problems of the Theory of Elastic Stability[END_REF][START_REF] Thompson | Elastic Instability Phenomena[END_REF][START_REF] Ziegler | Principles of Structural Stability[END_REF] among many others) with, for instance, the emblematic Ziegler column, while the second one was developed within a continuous mechanics framework usually at a specimen or representative volume element (R.V.E.) scale (e.g., [START_REF] Hill | A general theory of uniqueness and stability in elastic-plastic solids[END_REF] and [START_REF] Bigoni | Uniqueness and localization, I. Associative and non-associative elastoplasticity[END_REF][START_REF] Hill | Some basic principles in the mechanics of solids without a natural time[END_REF][START_REF] Petryk | Theory of bifurcation and instability in time-independent plasticity[END_REF][START_REF] Rice | The localisation of plastic deformation[END_REF][START_REF] Vardoulakis | Formation of shear bands in sand bodies as a bifurcation problem[END_REF]). For continuous systems, strains and stresses are related by a constitutive tensor. More recently (e.g., [START_REF] Challamel | Stability of non-conservative elastic structures under additional kinematics constraints[END_REF][START_REF] Lerbet | Additional constraints may soften a non-conservative structural system: buckling and vibration analysis[END_REF][START_REF] Nicot | Bifurcation in granular materials: an attempt at a unified framework[END_REF]), some common conclusions have been exhibited when the constitutive operator is not symmetric and linear combinations of strains are applied as loading conditions. See also Bigoni [4] for a thorough review on the second-order work approach for non-symmetric plasticity.

Let us restrict this paper to divergence instabilities (i.e., suddenly monotonously increasing displacements or strains), to quasi-static loading conditions and to the stability "in the small." The first restriction implies that flutter instabilities (i.e., displacements or strains increasing cyclically; see Bigoni and Noselli [START_REF] Bigoni | Experimental evidence of flutter and divergence instabilities induced by dry friction[END_REF], for a practical example) are not considered here (see [START_REF] Lerbet | Additional constraints may soften a non-conservative structural system: buckling and vibration analysis[END_REF][START_REF] Nicot | On the divergence and flutter instabilities of some constrained two-degree of freedom systems[END_REF], for instance, for more general considerations). Secondly, only quasi-static loading paths until reaching the unstable state are taken into account. Of course, as soon as the instability is effective, the post-collapse displacement/strain regime usually becomes dynamic with a burst of kinetic energy [START_REF] Daouadji | Instability in granular materials, an experimental evidence of diffuse mode of failure for loose sands[END_REF][START_REF] Nicot | Second order work, kinetic energy and diffuse failure in granular materials[END_REF]. However, the pre-collapse behavior (including the bifurcation state) remains in static conditions and it allows a purely static analysis of this class of instabilities. Finally, the third limit of this paper is given by the fact that only the stability "in the small" is analyzed, leaving asymptotic ("in the large") stability as introduced by [START_REF] Lyapunov | Le problème général de la stabilité des mouvements[END_REF] beyond its scope. Stability in the small means that a mechanical state is considered stable as soon as any incremental loading included inside an arbitrarily small ball centered on this state in the loading space leads to an incremental response included in a given finite ball in the response space.

Experiments and theoretical considerations show that the constitutive tensor can be non-symmetric for continuous elastoplastic bodies in the non-associative case (yield surface and plastic potential do not coincide, as in the case of Coulombian frictional materials). In this situation, experiments and theoretical analyses show that some "paradoxical" instabilities can be repeatedly observed [START_REF] Burghardt | Non-uniqueness and instability of classical formulations of non-associated plasticity, I: effect of nontraditional plasticity features on the Sandler-Rubin instability[END_REF][START_REF] Darve | Failure in geomaterials, continuous and discrete analyses[END_REF][START_REF] Lerbet | Additional constraints may soften a non-conservative structural system: buckling and vibration analysis[END_REF][START_REF] Pucik | Non-uniqueness and instability of classical formulations of non-associated plasticity, I: case study[END_REF]. Paradoxical instability here means that the collapse appears strictly before any limit state of the stress-controlled elastoplastic body. Moreover, these instabilities can be described using the second-order work criterion. Indeed, the second-order work criterion (i.e., loss of definite positiveness of the constitutive matrix) constitutes a lower bound of all possible instability diagrams, and is thus considered as the "optimal" criterion [START_REF] Lerbet | Additional constraints may soften a non-conservative structural system: buckling and vibration analysis[END_REF]. The main results are as follows:

-First, there is a bifurcation domain delimited by the singularities of the symmetric part of the constitutive tensor (corresponding to the loss of definite positiveness) as a lower bound and the singularities of the tensor itself as the upper bound. -Second, in this bifurcation domain, the negative values of internal second-order work are obtained in the "isotropic cone" (according to linear algebra vocabulary) of the tensor. This "instability cone" (according to a mechanical point of view) gathers the potentially unstable loading directions associated with the mixed loading paths. The instability will become effective for proper control loading variables [START_REF] Sibille | Granular plasticity, a contribution from discrete mechanics[END_REF].

According to experiments [START_REF] Daouadji | Instability in granular materials, an experimental evidence of diffuse mode of failure for loose sands[END_REF][START_REF] Gajo | The influence of system compliance on collapse of triaxial sand samples[END_REF] and to numerical computations using finite element or discrete element methods [START_REF] Sibille | Material instability in granular assemblies from fundamentally different models[END_REF][START_REF] Wan | Diffuse instabilities with transition to localization in loose granular materials[END_REF], once the instability state is reached after a quasi-static loading path, and for a proper control variable, instability becomes effective for some ad hoc perturbations, such as an arbitrarily small additional loading applied at the extremum of the critical load. If so, a burst of kinetic energy is generally observed at this bifurcation point, with an abrupt transition from a static regime of deformation to a dynamic one [START_REF] Nicot | Second order work, kinetic energy and diffuse failure in granular materials[END_REF]. Thus a link can be expected between kinetic energy and second-order work items. This is the link that gives the proper mechanical interpretation of the predictive capacity of the second-order work criterion with respect to divergence instabilities. However, these analyses of the stability in the small cannot give any indication about the asymptotic stability of the elastoplastic body. Indeed, the notion of asymptotic stability disappears in elastoplasticity because of the history dependence of this mechanical behavior (except in 1D or for drastic assumptions about the loading path considered; [START_REF] Raniecki | Bounds to bifurcation stresses in solids with non-associated plastic flow law at finite strain[END_REF]). So far, most investigations have dealt with the material point scale, or with homogeneous specimens subjected to homogeneous loading paths. Extending the second-order work formalism to more general boundary value problems remains an open, and important, issue. At the same time, this challenge is of paramount importance in view of making this approach efficient for engineering purposes. In this paper, we demonstrate how the second-order work approach can be conveniently extended to boundary value problems. First, the basic second-order work equation is recalled, showing how the increase in kinetic energy is related to the difference between both external and internal second-order works. Omitting body forces, a global method is then given to compute the second-order work terms directly. The capability of this formalism is shown by considering two engineering situations: a laboratory test and a shallow foundation problem.

Throughout this paper, all materials are assumed to be rate independent and are simple materials [START_REF] Noll | A mathematical theory of the mechanical behaviour of continuous media[END_REF][START_REF] Truesdell | The Nonlinear Field Theories of Mechanics[END_REF][START_REF] Truesdell | Introduction à la mécanique rationnelle des milieux continus[END_REF]. Moreover, vectors will be denoted with a single overbar ( Ā), and second-order tensors will be denoted with a double overbar (A). Generic terms of any vector Ā are noted A i . Likewise, generic terms of any second-order tensor A are noted A ij . Einstein convention on summation of repeated indices (underscript position) is used only when there is no ambiguity. Otherwise, the summation is indicated explicitly using the summation symbol.

Kinetic energy and second-order work

Consider a material body of volume V o and density ρ o enclosed by boundary ( o ) in an initial configuration C o at time t o . Following a certain loading history, the body is in a strained configuration C and occupies a volume V of boundary ( ), in equilibrium under a prescribed external loading. This loading is defined by specific static or kinematic parameters, referred to as the loading parameters [START_REF] Klisinski | Structure of constitutive equations in plasticity for different choices of state and control variables[END_REF][START_REF] Nova | Controllability of the incremental response of soil specimens subjected to arbitrary loading programs[END_REF][START_REF] Runesson | A note on nonassociated plastic flow rules[END_REF].

We query in this paper the conditions in which the kinetic energy of the system is a convex function over time, that is Ëc > 0, at least over a finite time range of amplitude t. [START_REF] Nicot | Some insights into structure instability and the second-order work criterion[END_REF][START_REF] Nicot | Failure in rate-independent granular materials as a bifurcation toward a dynamic regime[END_REF].

Adopting a semi-Lagrangian formulation (each material point x of the current configuration C corresponds (through bijective mapping) to a material point X of the initial configuration C o ), and in absence of body forces, the evolution of each material point of the system is given by the equation

ρ o üi - ∂ ij ∂ X j = 0, (1) 
where is the first Piola-Kirchoff stress tensor and ū is the displacement field. The kinetic energy of the whole system reads

E c = 1 2 V o ρ o u2 dV o , (2) 
where u( X ) is the Lagrangian velocity field.

A double time differentiation of Eq. ( 2) yields1 :

Ëc = V o ρ o ü2 dV o + V o ρ o u • ... ū dV o . (3) 
Combining Eq. (3) with Eq. (1) gives:

Ëc = V o ρ o ü2 dV o + V o ui ∂ ˙ ij ∂ X j dV o . ( 4 
)
By virtue of the Green formula, Eq. ( 4) can be rewritten as:

Ëc = V o ρ o ü2 dV o + ∂ V o ui ˙ ij N j dS o - V o ˙ ij ∂ ui ∂ X j dV o . ( 5 
)
The result is that the second-order time derivative of the kinetic energy is the sum of three terms:

-The first term

I 2 = V o ρ o ü2
dV o is an inertial term. This is the quadratic average of the acceleration; this term is therefore always positive. -The second term -The third term explicitly introduces the second-order work, which is expressed following a semi-Lagrangian formalism [START_REF] Hill | A general theory of uniqueness and stability in elastic-plastic solids[END_REF] as

∂ V o ui ˙ ij N j dS o = ∂ V o ui ṡi
V o ˙ ij ∂ ui ∂ X j dV o = V o ˙ ij Ḟij dV o ,
where F is the tangent linear transformation. This term is related to the constitutive behavior of the material and is therefore referred to as the internal secondorder work W int 2 . It should be noted that at any material point of the system, both the stress rate tensor ˙ and velocity gradient tensor Ḟ are related by the constitutive relation ˙ ij = L ijkl Ḟkl , where the fourth-order tensor 4 L is the tangent constitutive tensor for rate-independent materials. It follows that Eq. ( 5) can be expressed as:

Ëc = I 2 + W ext 2 -W int 2 . ( 6 
)
When the loading conditions and the constitutive behavior of the material make it possible that W int 2 < W ext 2 from a given time t o , then the second-order time derivative of the kinetic energy is strictly positive after time t o . Starting from an equilibrium configuration at time t o , Ėc (t o ) = 0, the kinetic energy of the system is a growing function over a certain time range [t o , t o + t[. Until now, the second-order work criterion [START_REF] Nicot | Failure in rate-independent granular materials as a bifurcation toward a dynamic regime[END_REF] has been applied essentially to the material point scale (or for homogeneous specimens under homogeneous loading conditions). In this manuscript, we extend this approach to any material system. Both strain and stress fields may no longer be homogeneous, and the computation of both internal and external second-order works can be demanding, essentially because the internal second-order work requires determining both stress and strain fields. In the following sections, we propose an approach in which internal and external second-order works are computed based on the mechanical parameters (forces, displacements) acting on the boundary of the system only, without requiring any information inside the system. This is highly advantageous, since these boundary parameters are generally accessible.

External and internal second-order works

External second-order work

Let us consider that the system introduced in Sect. 2 is initially at rest. We associate a Galilean frame with the physical space, in which all subsequent derivations will be expressed. A force or displacement loading can be applied to the boundary ( o ) of the system. If incremental displacements are prescribed to the whole boundary, then boundary incremental forces develop as a response to the kinematic loading. We assume hereafter that the loading is directed by either forces or displacements applied to the boundary of the system. Body forces will be neglected. Thus, the boundary is composed of n parts 'k' subjected to either a rigid body velocity uk or to an external rate force ḟ k . By renumbering, any boundary loading is therefore defined from a set of N = 3n components u i or f i . When ui is imposed, ḟi stands as the dual rate force response of the system. Likewise, when ḟi is imposed, ui stands as the dual velocity response of the system. In these conditions, the external second-order work reads:

W ext 2 = N i=1 ui ḟi . ( 7 
)
More broadly, the loading can be defined by selecting p control variables C i , together with Np loading conditions L j . See also Khalil [15] for a thorough review on the theory of control in nonlinear systems. If a purely strain loading is considered (as will be done in this section), the p control variables C i can be the displacement components:

C 1 = u 1 , . . .C p = u p .
The loading conditions L i are given by Np independent linear combinations of displacement components, as follows [START_REF] Klisinski | Structure of constitutive equations in plasticity for different choices of state and control variables[END_REF][START_REF] Nicot | Second order work, kinetic energy and diffuse failure in granular materials[END_REF][START_REF] Nova | Controllability of the incremental response of soil specimens subjected to arbitrary loading programs[END_REF][START_REF] Runesson | A note on nonassociated plastic flow rules[END_REF]:

L i = A i-p,1 u 1 + • • • + A i-p,N u N , for i = p + 1, . . . N , ( 8 
)
where A is a rate-independent matrix of dimension

((N -p) × N ). t A is composed of N -p vectors Āi = t (A i,1 , . . . , A i,N ) of R N .
Thus, the loading program can be defined as follows:

Ċi = const. (>0) for i = 1, . . . p, (9a) Li = 0 for i = p + 1, . . . N . ( 9b 
)
In an analogous manner, the response can be expressed in terms of N independent linear combinations R i of force components, as follows:

R i = B i,1 f 1 + • • • + B i,N f N for i = 1, . . . p, (10a) R i = f i for i = p + 1, . . . N , ( 10b 
)
where B is a rate-independent matrix of dimension ( p × N ). t B is composed of p vectors Bi = t (B i1 , . . . , B i N ) of R N . These vectors are chosen so that the following condition holds [START_REF] Darve | Failure in geomaterials, continuous and discrete analyses[END_REF][START_REF] Nova | Controllability of the incremental response of soil specimens subjected to arbitrary loading programs[END_REF]:

N i=1 ui ḟi = p i=1 Ċi Ṙi + N i= p+1 Li Ṙi . ( 11 
)
Combining Eqs. ( 9) and [START_REF] Darve | Failure in geomaterials, continuous and discrete analyses[END_REF] with Eq. ( 11) yields:

N i=1 ui ḟi = p i=1 B i,1 ui ḟ1 + • • • + B i,N ui ḟN + N i= p+1 A i-p,1 u1 ḟi + • • • + A i-p,N u N ḟi , ( 12 
)
which gives, after some algebraic transformations: 13) is rewritten as:

N i=1 ui ḟi = p i=1 p j=1 B i,j ui ḟ j + p i=1 N j= p+1 B i,j ui ḟ j + N j= p+1 p i=1 A j-p,i ui ḟ j + N i= p+1 N j= p+1 A j-p,i ui ḟ j . ( 13 
) Noting that N i=1 ui ḟi = N i=1 N j=1 δ ij ui ḟ j , Eq. (
p i=1 p j=1 B i,j -δ ij ui ḟ j + N i= p+1 N j= p+1 A j-p,i -δ ij ui ḟ j + p i=1 N j= p+1 B i,j + A j-p,i ui ḟ j = 0. ( 14 
)
As Eq. ( 14) must be verified whatever u i and f j , the following relations hold:

i = 1, . . . p and j = 1, . . . p B i,j = δ ij , ( 15a 
) i = p + 1, . . . N and j = p + 1, . . . N A j-p,i = δ ij , (15b) i = 1, . . . p and j = p + 1, . . . N B i,j = -A j-p,i . ( 15c 
)
Property 1 The column vectors of matrices A and t B are orthogonal to one another.

Proof For any pair of vectors Āk = t (A k,1 , . . . , A k,N ) and Bl = t (B l1 , . . . , B l N ), with k = 1, . . . Np and l = 1, . . . p, we have:

t Āk Bl = N i=1 A k i B l i = N i=1 A ki B li = p i=1 A ki B li + N i= p+1 A ki B li . ( 16 
)
Taking advantage of relations [START_REF] Khalil | Nonlinear Systems[END_REF], Eq. ( 16) yields:

t Āk Bl = p i=1 A ki δ li - N i= p+1 δ k+ p,i A i-p,l = A kl -A kl = 0. ( 17 
)
Any two vectors Āk and Bl , with k = 1, . . . Np and l = 1, . . . p, are therefore orthogonal, which establishes the property.

Moreover, we have:

L i = p j=1 A i-p, j u j + u i for i = p + 1, . . . N , ( 18 
)
R i = f i - N j= p+1 A j-p,i f j for i = 1, . . . p. ( 19 
)
Taking advantage of Eqs. ( 8), [START_REF] Gajo | The influence of system compliance on collapse of triaxial sand samples[END_REF], and ( 19), the external second-order work can be expressed as:

W ext 2 = p i=1 ui ⎛ ⎝ ḟi - N j= p+1 A j-p,i ḟ j ⎞ ⎠ (20) 
under the loading conditions p j=1 A i-p, j u j + ui = 0, for i = p + 1, . . . N . The physical meaning of Eq. ( 20) is as follows: When W ext 2 is nil, at least one of the p terms Ṙi is negative (say Ṙα ), and the corresponding response parameter R α = f α -N j= p+1 A j-p,α f j follows a descending branch ( Ṙα < 0).

The system stiffness operator

Let a velocity of loading t ū = ( u1 , . . . , u N ) be prescribed to the system. The response of the system is defined by the boundary force rates ( ḟ1 , . . . , ḟN ). These force rates (vector ḟ ) constitute the quasi-static response of the system to the loading defined by vector u.

Given a mechanical system composed of a material considered as a simple medium in the sense of [START_REF] Noll | A mathematical theory of the mechanical behaviour of continuous media[END_REF], the principle of determinism implies that the force response f (t) at a given time t is a functional of the strain history at this point up to this time. Thus, as an assumption when heterogeneous conditions hold, we can conceive that a functional exists such that:

f (t) = ( ū (τ ) , τ ≤ t) . ( 21 
)
This is an extension of the general framework that holds on the material point scale [START_REF] Darve | Geomaterials, constitutive equations and modeling[END_REF]. As soon as plastic irreversibilities occur, the functional is not differentiable, making the global formulation ( 21) inappropriate.

It is more convenient to adopt an incremental formulation, as follows:

H ḟ, u, h = 0, ( 22 
)
where H is a nonlinear tensorial function of arguments ḟ , u and h, h being a set of parameters characterizing the previous loading history of the system. Moreover, by restricting the subject at hand to non-viscous materials, and assuming the tensorial function H to be sufficiently regular, Eq. ( 22) is written as

ḟ = G h u , ( 23 
)
where G h is a tensorial function that depends on the previous loading path history through state variables and memory parameters h. Because of the rate-independency condition, G h is a homogeneous function of degree 1 (for positive values of the multiplicative parameter):

∀λ ∈ R + : G h λ u = λ G h u . ( 24 
)
Euler's identity for homogeneous functions implies that ḟ = ∂G h ∂( u) u. Thus the system stiffness matrix can be defined as:

ḟ = ( ēu ) u, (25) 
where is a homogeneous function of degree 0, of ēu = u/ u . As will be shown in a later section, the system stiffness matrix concept stands as an extension of the constitutive operator that holds on the material point scale or for homogeneous volumes (subjected to a uniform loading). This extended framework is much more general, as it applies to any system, subjected to any kinematically controlled loading. It is worth noting that characterizes the behavior of the system through the accessible variables acting on the system's boundary.

It is immediate that, according to Eq. ( 7), the external second-order work reads:

W ext 2 = t u u = t u s u. ( 26 
)
As a result, when the loading path is strain-controlled, the external second-order work is a quadratic form associated with the symmetric part s of the system stiffness matrix. This property no longer holds when the loading is statically (force) controlled. In this case, the system stiffness matrix cannot be defined, because the response of the system may no longer be quasi-static but is likely to be dynamic.

The internal second-order work

The internal second-order work reads Thus, the internal second-order work reads:

W int 2 = V o ˙ ij Ḟij dV o ,
W int 2 = V o t Ḟ K Ḟ dV o = V o t Ḟ K s Ḟ dV o , ( 27 
)
where K s is the symmetric part of K . When the loading is kinematically controlled, the mechanical response of the system is quasi-static, without any (prominent) inertial effects. No outburst in kinetic energy occurs, and Eq. ( 6) yields:

W ext 2 -W int 2 = 0. (28) 
Equation ( 28) means that both internal and external second-order works, in this kinematic control context, coincide. Thus, according to Eq. ( 18), the internal second-order work also reads:

W int 2 = p i=1 ui ⎛ ⎝ ḟi - N j= p+1 A j-p,i ḟ j ⎞ ⎠ . ( 29 
)
We conjecture the following proposition:

Proposition 1 Starting from an equilibrium configuration, the internal second-order work of a given system subjected to any loading program depends only on the infinitesimal loading path and not on the control mode adopted.

At a given mechanical state, the incremental response of a material depends on the loading direction, not on the control mode, that can be static or kinematic. This is not true over a finite time range, since inertial effects can occur for a stress control path, modifying therefore the response of the system, and the corresponding value of the internal second-order work. Limiting our analysis to the initiation of failure, the internal second-order work of the system, under a given loading path, can be computed by adopting a kinematical control (W int,kc

2

), as assumed in the previous section. In this case, Eq. ( 28) holds, and by virtue of Eq. ( 26) it follows that:

W int 2 = W int,kc 2 = W ext 2 = t u s u. (30) 
The loading path is defined by the Np relations p j=1 A i-p, j u j + ui = 0, for i = p + 1, . . . N , [START_REF] Pucik | Non-uniqueness and instability of classical formulations of non-associated plasticity, I: case study[END_REF] and is controlled by the p kinematical variables C 1 = u 1 , …C p = u p ; the p velocities ui are imposed as constant: ui = v i (v i being a real constant).

Equations [START_REF] Pucik | Non-uniqueness and instability of classical formulations of non-associated plasticity, I: case study[END_REF] mean that vector u is normal to the Np vectors Āi = t (A i-p,1 , . . . , A i-p,N ). As both matrices A and t B are orthogonal to one another, u can be decomposed on the basis formed by the vectors Bl = t (B l1 , . . . , B l N ), with l = 1, . . . p. Taking Eq. ( 15) into account finally gives

u = p l=1 α l
Bl , with α l being any real scalar [START_REF] Raniecki | Bounds to bifurcation stresses in solids with non-associated plastic flow law at finite strain[END_REF] or ui = α i for i = 1, . . . p and ui = -

p l=1 α l A i-p,l for i = p + 1, . . . N . ( 33 
)
Finally, the N kinematical variables can be expressed as a function of both the (constant) parameters v i and A ij as follows:

ui = v i for i = 1, . . . p, ( 34a 
) ui = - p l=1 v l A i-p,l for i = p + 1, . . . N . ( 34b 
)
As a symmetric, real matrix, s is diagonalizable with all eigenvalues being real. If all eigenvalues of s are strictly positive, W int 2 is a strictly positive quadratic form. If s admits p negative eigenvalues λ k , let Bk be the p-associated eigenvectors. Then, by selecting the Np vectors Āi orthogonal to the p vectors Bk , if the Np kinematic loading conditions Li = 0 are prescribed, with 10a) hold. By virtue of Eq. ( 32), the internal second-order work, given by Eq. ( 30), reads:

L i = A i1 u 1 + • • • + A i N u N for i = p + 1, . . . N , Eq. (
W int 2 = N k=1 N l=1 s kl uk ul = p k=1 p l=1 α k α l s ij B k j B li (35) 
which gives, as

s ij B k j = s ij B k j = λ k B k i = λ k B ki : W int 2 = p k=1 p l=1 α k α l λ k B ki B li . ( 36 
)
As the vectors Bk are orthogonal to one another (the eigen subspaces of a symmetric, real matrix are orthogonal), then

B ki B li = δ kl |B k | |B l |
, where δ kl is the Kronecker symbol. Finally, Eq. ( 36) is expressed as:

W int 2 = p k=1 λ k α 2 k B k 2 = p k=1 λ k v 2 k B k 2 . ( 37 
)
As the p eigenvalues λ k are negative, W int 2 is strictly negative. Thus, in these loading conditions, with this choice of control parameters, both external and internal second-order works are equal (Eq. 30) and negative.

If the same loading conditions are applied ( Li = 0 are prescribed, with

L i = A i1 u 1 +• • •+ A i N u N for i = p + 1, . . . N ), but by changing the control parameters C i (for i = 1, . . . p) into C i = f i -N
j= p+1 A j-p,i ḟ j , with Ċi being constant (positive), proposition 1 implies that the expression of the internal second-order work is unchanged and is still given by Eq. (37). The internal second-order work is negative.

On the other hand, this choice of control parameters results in both force rates and velocities no longer being related by the boundary operator. Thus, the external second-order work is no longer given by Eq. ( 26). It is given by Eq. ( 20): W ext 2 = p i=1 ui ( ḟi -N j= p+1 A j-p,i ḟ j ). The control parameters C i (for i = 1, . . . p) are prescribed. As we consider loading conditions, the terms Ċi are constant and positive (they would be negative if unloading conditions were considered). The p kinematical terms ui constitute a part of the response of the system. As the terms ui are positive (as a result of the loading conditions), the external second-order work is strictly positive as well.

According to Eq. ( 6), if W ext 2 > 0 and W int 2 < 0, the second-order time derivative of the kinetic energy of the system is strictly positive. The response of the system is no longer quasi-static. The system evolves with inertial effects. The kinetic energy increases, with undefined (and possibly unbounded) values for the velocities ui (i = 1, . . . p).

Practical method

The second-order work formalism developed in the subsections above can be applied to any boundary value problem. Given a system, the question that arises is to determine whether a loading program exists that could lead to negative values of the internal second-order work. If so, an adequate choice of control parameters will lead the system to failure (characterized by an outburst in kinetic energy).

If the dimension (N ) of the problem at hand is small enough (typically N = 3), the boundary stiffness operator can be specified and its spectral properties can be investigated. This enables checking whether this operator admits negative eigenvalues. However, for larger N -values, this method is certainly not convenient. In this case, the spectral properties of the boundary stiffness operator can be investigated indirectly, using a directional analysis. This method is exactly the same as what is done on the material point scale to characterize the spectral properties of K s (see [START_REF] Nicot | Bifurcation in granular materials: an attempt at a unified framework[END_REF][START_REF] Nicot | Second order work, kinetic energy and diffuse failure in granular materials[END_REF][START_REF] Nicot | Failure in rate-independent granular materials as a bifurcation toward a dynamic regime[END_REF]). Boundary velocities ui are prescribed to the system, with the same norm ( u = const), in all the directions within the related space. The rate force response ḟi is determined, and the external second-order work is computed as W ext 2 = N i=1 ui ḟi . Then the sign of the external second-order work can be explored as a function of the loading direction, and the existence of negative eigenvalues is examined. If the second-order work takes negative values along certain loading directions, at least one negative eigenvalue exists. Then the existence of a proper loading program leading to an increase in kinetic energy is guaranteed.

This approach was presented in a general framework including any p control parameters, with p possibly larger than 1. This situation may arise in complex systems, particularly in civil engineering where the loading can be controlled (that is to say, the evolution of the loading over time can be controlled) by different variables operating at different areas of the structure.

However, for the sake of simplicity, the approach is exemplified in the following section by considering the usual case p = 1. Two examples are presented: a homogeneous laboratory test and an engineering boundary value problem.

Engineering applications

The homogeneous triaxial laboratory test

The particularization of this framework to the case of homogeneous material specimens is worthy of interest, because it corresponds to the laboratory specimen scale where (for instance) parallelepiped-like specimens subjected, on each wall, to a prescribed force or displacement directing both stress and strain fields are studied. Investigating this elementary scale can be useful in, for example, the interpretation of the derived results of experimental tests. Both strain and stress fields are homogeneous. The external forces applied to the boundary of the specimen are related to the average stress tensor, and the displacements of each point of the boundary are related to the average strain tensor. Both strain and stress states are fully characterized with both forces and displacements measured on the boundary.

Experimental tests with homogeneous specimens allow a constitutive relation to be developed, expressed on the material point scale, when the internal fields are directly related to accessible boundary variables.

Let a parallelepiped specimen be considered. Each side 'i' admits a normal N i that coincides with the directions vi of a fixed reference frame. The initial area of each side 'i' is denoted S i and the initial length of each edge is denoted L i , with i = 1, . . . 3. Index '1' refers to the axial direction, whereas indices '2' and '3' refer to the two lateral directions perpendicular to the axial direction (Fig. 1). When a static condition is assigned to a side 'i', it is convenient to introduce the resultant external force f i acting on this side. This force is assigned to be normal to the side considered. The uniform external Lagrangian stress vector distribution s i acting on side 'i' and related to f i is also introduced: s i = f i /S i . The displacement of each side 'i', along the direction vi , is denoted U i . No tangential displacement is assumed to take place. When a kinematic condition is assigned to a side 'i', the resultant external force f i (or the stress vector distribution s i ) acting on this side corresponds to the external loading that must be applied to ensure the prescribed displacement U i .

In these conditions, the displacement ū of any point M(X 1 , X 2 , X 3 ) reads in the frame {O, v1 , v2 , v3 }:

ū = 3 i=1 X i L i U i vi , ( 38 
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Parallelepiped specimen and definition of the axes which gives, as

F ij = δ ij + ∂u i /∂ X j : Ḟ = ⎡ ⎣ U1 /L 1 0 0 0 U2 /L 2 0 0 0 U3 /L 3 ⎤ ⎦ . ( 39 
)
Thus, in homogeneous conditions Eq. ( 6) is written:

Ëc = I 2 + ḟ1 U1 + ḟ2 U2 + ḟ3 U3 -W int 2 . (40) 
Furthermore, the internal second-order work simplifies in homogeneous conditions as:

W int 2 = V o ˙ 11 Ḟ11 + ˙ 22 Ḟ22 + ˙ 33 Ḟ33 . ( 41 
)
Recalling that V o = S 1 L 1 = S 2 L 2 = S 3 L 3 and by virtue of Eq. ( 39), combining Eqs. ( 40) and (41) yields:

Ëc = I 2 + 3 i=1 ḟi -˙ ii S i Ui . ( 42 
)
As already pointed out by Nicot [START_REF] Nicot | Failure in rate-independent granular materials as a bifurcation toward a dynamic regime[END_REF], the increase in kinetic energy is related to a conflict between the loading ( ḟ ) applied to the boundary of the specimen and the internal stress ( ˙ ) that the material can develop in relation with its constitutive properties. During a quasi-static evolution, no increase in kinetic energy is expected. The different lateral walls are in equilibrium, which gives ḟi = ˙ ii S i (for i = 1, . . . 3). External forces are exactly balanced by the internal forces resulting from the internal stress, which also means that the internal stress can be assessed from the measurement of forces acting on the boundary. In this situation, the system stiffness matrix can be defined. According to Eq. ( 38), we have:

K = S L (43) with S = ⎡ ⎣ 1/S 1 0 0 0 1/S 2 0 0 0 1/S 3 ⎤ ⎦ and L = ⎡ ⎣ L 1 0 0 0 L 2 0 0 0 L 3 ⎤ ⎦ .
The system stiffness tensor is proportional to the standard constitutive tensor K . In particular, both matrices have the same eigen properties.

As an illustration, the following example can be considered. We assume that the constitutive operator K is known, and that the symmetric part K s admits one negative eigenvalue λ. The associated eigen subspace is assumed to be a vectorial line, defined by the vector B = (1, -B 2 , -B 3 ). According to Eqs. (15a-c), B can be completed by the vectors Ā1 = (B 2 , 1, 0) and Ā2 = (B 3 , 0, 1) to form a base of R 3 , with t B Ā1 = 0 and t B Ā2 = 0. Then, as developed in Sect. 3, let the following loading program be defined (N = 3, p = 1):

C 1 = U 1 , with U1 = const. (kinematic control parameter), (44a) 
L 2 = 3 i=1 A 1 i U i = B 2 U 1 + U 2 , with L2 = 0 (loading path), (44b) 
L 3 = 3 i=1 A 2 i U i = B 3 U 1 + U 3 , with L3 = 0 (loading path). ( 44c 
)
This loading program corresponds to the standard proportional strain loading path. Indeed, according to Eq. ( 39), we have:

Ḟ11 = const, (45a) B 2 Ḟ11 + Ḟ22 = 0, (45b) B 3 Ḟ11 + Ḟ33 = 0. ( 45c 
)
The response parameters are:

R 1 = f 1 -A 1 1 f 2 -A 2 1 f 3 = f 1 -B 2 f 2 -B 3 f 3 , R 2 = f 2 and R 3 = f 3
so that, according to Eq. ( 37), the external second-order work is expressed as:

W ext 2 = U1 ḟ1 -B 2 ḟ2 -B 3 ḟ3 . ( 46 
)
Furthermore, over this quasi-static loading program, the internal second-order work is expressed as W int 2 = t U s U . As L2 = 0 and L3 = 0, U is normal to both vectors v1 = t B 2 1 0 and v2 = t B 3 0 1 .

Thus, U = α v1 × v2 , with v1 × v2 = B, where B is the eigenvector associated with the negative eigenvalue of s . The internal second-order work is therefore negative. As W int 2 = W ext 2 , Eq. ( 46) implies that R 1 = f 1 -B 2 f 2 -B 3 f 3 follows a descending branch ( Ṙ1 < 0).

The loading control can be changed into a force control, as follows:

C 1 = f 1 -B 2 f 2 -B 3 f 3 , with Ċ1 > 0 (force control parameter), (47a) 
L 2 = 3 i=1 A 1 i U i = B 2 U 1 + U 2 , with L2 = 0 (loading path), (47b) 
L 3 = 3 i=1 A 2 i U i = B 3 U 1 + U 3 , with L3 = 0 (loading path). ( 47c 
)
The loading path is unchanged, which guarantees that the internal second-order work is unchanged as well. Furthermore, Eq. ( 46) shows that the external second-order work, due to the force control imposed by the experimentalist, is strictly positive.

As a result, Eq. ( 6) reveals that an increase (outburst) in kinetic energy should occur. In fact, the response of the specimen is no longer quasi-static, but turns out to be dynamic. This transition characterizes the occurrence of an effective failure [START_REF] Sibille | Granular plasticity, a contribution from discrete mechanics[END_REF]. This transition was ascertained from numerical simulations based on a discrete element model (open-source code YADE, [37]). A triaxial loading path was prescribed to a numerical granular specimen made up of an assembly of contacting spheres. For the sake of simplicity, axisymmetric conditions were imposed, and the particular isochoric loading direction was considered: B 2 = B 3 = 1. Then, as shown by different authors [START_REF] Hadda | Micromechanical analysis of second-order work in granular media[END_REF][START_REF] Nguyen | Kinetic energy and collapse of granular materials[END_REF][START_REF] Nicot | Failure in rate-independent granular materials as a bifurcation toward a dynamic regime[END_REF], when turning the loading conditions from a strain-controlled mode to a stresscontrolled mode, an abrupt increase in kinetic energy is observed until the total collapse of the specimen (Fig. 2). As can be seen in Fig. 3, the increase in kinetic energy stems from the difference between both external and internal second-order works. The external second-order work increases with positive values, whereas the internal second-order work decreases (on average) with negative values (Fig. 3) (Table 1). 

The case of a shallow foundation

A non-homogeneous boundary value problem is considered in this section. We analyze the behavior of a soil body loaded by a shallow foundation. The problem is assumed to be two-dimensional and is modeled as described in Fig. 4. A rectangular domain of soil is considered; one part JK of length L of the upper side is subjected to a controlled downward vertical displacement denoted U 1 , whereas the two deformable adjoining parts (IJ and KL) are free: f 5 = f 6 = 0 (zero tensile force is prescribed). The other three rigid sides (LM, MN and IN) are restricted from undergoing displacement: Horizontal and vertical displacements are nil.

The following loading program is therefore prescribed to the system: The reaction force applied by the soil to the foundation is denoted f 1 . This force evolves continuously with the vertical displacement U 1 . According to the loading path applied, the external second-order work takes the straightforward form In order to compute the evolution of the external second-order work over the loading path, this problem was simulated by means of a finite element method [START_REF] Khoa | Modélisations des glissements de terrains comme un problème de bifurcation[END_REF] using the PLASOL elastic-plastic model for soil [START_REF] Barnichon | Finite element modeling in structural and petroleum geology[END_REF]. A comprehensive review of this method can be found in Prunier et al. [START_REF] Prunier | Bifurcation modeling in geomaterials, from the second order work criterion to spectral analyses[END_REF], and Lignon et al. [START_REF] Lignon | Hydromechanical modelling of landslides with a material instability criterion[END_REF]. The curve f 1 (U 1 ) increases until a peak is reached, and then decreases (Fig. 5). After the peak, ∂ f 1 /∂U 1 < 0. As ḟ1 = (∂ f 1 /∂U 1 ) U1 , we have ḟ1 < 0, which requires that the external second-order work W ext 2 be negative (Fig. 6). As the loading path is kinematically controlled, the internal second-order work W int 2 equals the external second-order work. W int 2 is therefore negative along this loading path, irrespective of the control adopted. Imagine that after the peak (point C, Figs. 5,6), the loading turns out to be force-controlled: A rate force ḟ1 is imposed on the foundation, with ḟ1 > 0. From a practical point of view, this situation arises when additional materials (soil or structure) are deposited above the foundation. The response parameter, U 1 , is such that U1 > 0. As a result, the external second-order work given by Eq. ( 48) is strictly positive, whereas the internal second-order work remains unchanged and negative.

C 1 = U 1 , Ċ1 > 0 Kinematic control IN L 2 = U 2 , L2 = 0 Loading path MN L 3 = U 3 , L3 =
As a result, the kinetic energy is strictly positive. The soil fails under the foundation. This was ascertained from a numerical simulation based on a finite element method using the PLASOL elastoplastic model for soil. Given that LAGAMINE software considers static balance equations, omitting inertial terms, the software is no longer able to converge toward a solution. This numerical divergence is in fact related to a transition from a static to a dynamic regime (with a sudden increase in kinetic energy) that cannot be simulated by the software. This absence of convergence demonstrates the occurrence of a failure, as predicted from the second-order work approach.

Concluding remarks

This manuscript has revisited the notion of the second-order work, introduced more than half a century ago, by developing a global approach for continuous systems based on the relation between the second-order time The external second-order work involves the loading variables acting on the boundary of the system. For continuous systems, in a quite natural way, these variables make a so-called system stiffness tensor emerge, by relating external displacements and forces. In homogenous situations, when the external loading is balanced by the internal stress, this tensor is proportional to the usual constitutive tensor.

The destabilization of a continuous system by divergence can be provoked by adequate loading path and control variables that make the mechanical response of the system follow various critical directions. These directions are defined from the eigenvectors related to the negative eigenvalues of the symmetric part of the system's stiffness tensor.

The advantage of this approach, involving the boundary stiffness tensor, is that only the loading variables acting on the boundary of the system are necessary. No internal information (internal stress or strain fields) is required. Usually, failure analysis for boundary value problems requires computing the internal second-order work, and therefore both internal stress and strain fields. It is notable that the stability analysis of any system can be carried out from only the boundary information (velocity and rate force distribution). From a practical point of view, this method is generally very convenient, since the dimension of the problem (number of boundary variables) is usually not very large.

Finally, the notions of local (in the small) and asymptotic (in the large) instability were distinguished. In the general case of (rate-independent) incrementally nonlinear systems, the approach proposed in this manuscript can only arbitrate on the stability features in the small, namely over a finite, short time range. For most civil engineering applications, the notion of instability in the small is sufficient, since failure affecting soil bodies or structures occurs mainly over small time ranges.

  dS o is a boundary term involving the loading parameters (the displacements ū and the current external forces f with d f = s dS o ) acting on the boundary of the initial (reference) configuration of the system. It is hereafter called the external second-order work W ext 2 .
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 23 Fig. 2 DEM simulation of an undrained triaxial test: kinetic energy explosion under stress-controlled conditions (after [21])
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 446614 Fig. 4 Simulation of the settlement under a shallow foundation
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 56 Fig. 5 Reaction force applied to the foundation

  Starting from an equilibrium configuration at time t o , Ėc (t o ) = 0. Thus, if ∀t ∈ [t o , t o + t[, Ëc (t) > 0. Both E c (t) and Ėc (t) are thereby strictly positive over [t o , t o + t[. The kinetic energy of the system increases over the time range [t o , t o + t[. It will be seen hereafter that the stability analysis cannot be carried out in an asymptotical way for elastoplastic materials, contrary to linear systems. Thus the analysis should be restricted to a finite time range. Herein, the notion of local stability (in the small) at time t o contrasts with that of Lyapunov's asymptotic stability (in the large), in that only the time range [t o , t o + t[ is considered from an equilibrium configuration

  or equivalently, condensing both (3×3) matricesF and in six component vectors F and ¯ , W int 2 = V o ˙ i Ḟi dV o . At each material point, the constitutive relation ˙ i = K ij Ḟj (stemming from the constitutive relation ˙ ij = L ijkl Ḟkl ,)applies, where K is the constitutive tensor operating at the material point considered.

Table 1

 1 Definition of the loading program

	Boundary section	Boundary condition	Loading program
	JK		

The advantage of the Lagrangian formulation is that all integrals are expressed with respect to a fixed domain (corresponding to the initial configuration).
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