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En hommage à E. Bishop

Abstract. We show that in a holomorphic family of compact complex connected
manifolds parametrized by an irreducible complex space S, assuming that on a dense
Zariski open set S∗ in S the fibres satisfy the ∂∂̄−lemma, then the algbraic dimen-
sion of each fibre in this family is at least equal to the minimal algebraic dimension
of the fibres in S∗. For instance, if each fibre in S∗ are Moishezon, then all fibres
are Moishezon.

Key words. Family of compact complex manifods, Algebraic dimension, relative
codimension 1 cycle-space, ∂∂̄−lemma.

1 Introduction

In this short article we give a rather elementary proof of the following result which
answers a “classical” question.

Theorem 1.0.1 Let π : X → D be a smooth holomorphic family of compact com-
plex connected manifolds parametrized by the unit disc D in C. Assume that for
each s ∈ D∗ the fiber Xs of π at s satisfies the ∂∂̄−lemma. Let

a := Inf{alg(Xs), s ∈ D∗}

where alg(X) denotes the algebraic dimension of the compact complex connected
manifold X. Then we have alg(X0) ≥ a.
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As a special case (when a = n := dimXs) we obtain that if for any s ∈ D∗ each Xs

is a Moishezon manifold, then X0 is also a Moishezon manifold.
The previous theorem gives easily the following corollary (see [B.15] for details).

Corollary 1.0.2 Let π : X → S be a holomorphic family of compact complex con-
nected manifolds parametrized by a reduced and irreducible complex space S. Let S∗

be a dense Zariski open set in S. Assume that for each s ∈ S∗ the fiber Xs of π at
s satisfies the ∂∂̄−lemma. Let a := Inf{alg(Xs), s ∈ S∗}. Then for any s ∈ S we
have alg(Xs) ≥ a. �

Note that, as in [B.15] the proof shows that the minimum of the algebraic dimension
is obtained at the general point1 in S.

In the first section we show that the existence of a Gauduchon metric on a compact
complex connected manifold X implies the compactness of the connected compo-
nents of the space of divisors in X. This new proof of this classical result is the key
of our proof for the theorem above which appears as a relative version of it.

2 The absolute case

Let me begin by two simple lemmas.

Lemma 2.0.3 Let M be a connected reduced complex space and let T : M → R+ be
a continuous function on M . Assume that T is pluri-harmonic on the smooth part
M ′ of M and that the function T achieves its minimum at a point x0 ∈ M . Then
T is constant on M .

Proof. This is an elementary exercice. �

Lemma 2.0.4 Let X be a compact reduced complex space and let ω be a continuous
real (n, n)−form on X which is strictly positive in the Lelong sense. Let Γ be a
connected component of the reduced complex space of compact n−cycles in X and
define

θ : Γ→ R+ by C 7→ θ(C) :=

∫
C

ω.

Then the continuous function θ achieves its minimum on Γ.

Proof. Note first that θ is continuous thanks to the prop. IV 3.2.1 of [B-M 1].
Let α := min{θ(C), C ∈ Γ}. Then the subset A := {C ∈ Γ / θ(C) ≤ α + 1} is a
compact subset in Γ thanks to Bishop’s theorem [Bi.64], because it is a closed subset
in Γ such that each cycle in A has bounded volume (relative to ω) and support in

1this means on the complement of a countable union of closed nowhere dense analytic subsets
in S.
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the compact space X (see th. IV 2.7.23 in [B-M 1]). Then θ achieves its minimum
on A. �

Proposition 2.0.5 Let X be a compact reduced complex space and let ω be a C 2

real (n, n)−form on X which is strictly positive in the Lelong sense and satisfies
∂∂̄ω = 0 on X. Then any connected component of the reduced complex space Cn(X)
of compact n−cycles in X is compact.

Proof. The function C → θ(C) :=
∫
C
ω is continuous on Cn(X) and ∂∂̄−closed

in the sense of currents; as its achieves its minimum on any connected component
Γ of Cn(X) thanks to lemma 2.0.4 we conclude that it is constant on each Γ, thanks
to lemma 2.0.3, and then any such Γ is compact (see [B-M 1] ch.IV th. 2.7.20). �

Remark. As any compact complex manifold X of dimension n admits a Gaudu-
chon metric (see [G.77]), the proposition above gives a proof of the fact that the
space of divisors of such a X has always compact connected components, which is
a well known classical result (see [C.82] and [Fu.82]).

3 The relative case

Let now consider a holomorphic family π : X → D of compact complex connected
manifolds of dimension n parametrized by the unit disc in C. So X is a smooth
complex manifold of dimension n+ 1, and fix a smooth relative Gauduchon form ω
on X . Then ω is a smooth π−relative differential form on X on type (n− 1, n− 1)
which is positive definite in the fibres and satisfies ∂/π∂̄/πω ≡ 0 on X .

Lemma 3.0.6 For any compact set K in D there exists a constant C > 0 such that
on π−1(K) we have the following inequality, where s is the coordinate in D

|∂ω
∂s
| ≤ C.ω and | ∂̄ω

∂s̄
| ≤ C.ω

between (n − 1, n − 1) relative forms on X over D identified with hermitian forms
on the (n− 1)−th exterior power of vertical tangent space Λn−1(TX/π) restricted to
π−1(K).

Proof. This is just an obvious compactness argument as ω is positive definite
along fibers by assumption. �

Lemma 3.0.7 Let U a bounded domain in C. Assume that there is a point x0 ∈ U
such that any point in U can be joined to x0 by a C 1 path in U with length uniformely



4

bounded by a number L. For instance, we can restrict ourself to U := D∗\A where D∗

is a punctured open disc in C and A a closed discrete subset in D∗. Let η : U → R+∗

be a C 1 function on U such that

|∂η
∂s
| ≤ C.η and | ∂̄η

∂s̄
| ≤ C.η in U (@)

where C > 0 is a given constant. Then this implies that the function η is uniformly
bounded on U by η(x0).exp(2C.L).

Proof. Firstly consider the case of an open interval ]a, b[ in R and let L := b− a.
If η :]a, b[→ R+∗ is a C 1 function such that |η′(x)| ≤ C.η(x) ∀x ∈]a, b[; we have

−C ≤ η′(x)

η(x)
≤ C

which gives, after integration on [x0, x] ⊂]a, b[

−C.|x− x0| ≤ Log
η(x)

η(x0)
≤ C.|x− x0|

and then, for any choice of x0 ∈]a, b[ the estimate η(x) ≤ η(x0). exp(C.L) is valid.
In the case of the bounded domain U ⊂ C, choose for any x ∈ U a C 1 path of
length strictly less than L and consider a parametrization of this path extended a
little around x0 and x :

Φ :]a, b[→ U x := ϕ(t), y := ψ(t) with ϕ′(t)2 + ψ′(t)2 ≡ 1

and Φ(a+ ε) = x0 and Φ(b− ε) = x with 0 < ε� 1.

Then apply the one dimensional case to the function F (t) := η(Φ(t)) which satisfies
|F ′(t)| ≤ 2C.F (t). This gives η(x) ≤ η(x0).exp(2C.L) ∀x ∈ U . �

Proof of the theorem 1.0.1. We shall divide the proof in several steps.

First step. For each s ∈ D∗ we know that Xs admits a strongly Gauduchon
form and then there exists a strongly Gauduchon form for the family over a small
disc around s in the sense of [B.15] def. 3.0.4. So we have a smooth d−closed
2(n − 1)−form such that its (n − 1, n − 1) part is positive definite on each fibre.
This implies that each connected component of the relative cycle space Cn−1(π∗) is
proper on D∗, where π∗ is the restriction of π to π−1(D∗):
in a connected component Γ of the relative cycle space Cn−1(π∗), for any disc ∆ ⊂ D∗

all cycles in π−1(∆)∩Γ are homologuous in π−1(∆) because we have a C∞− relative
isomorphism X ' D ×X0. So if we dispose of a d−closed 2(n − 1)− smooth form
ϕ on π−1(∆) with a positive definite (n − 1, n − 1) part on fibres we see that the
volume for (n− 1)−cycles in Γ ∩ π−1(∆) relative to the “volume” defined by ϕ has
to be constant, proving the properness on ∆ of Γ ∩ π−1(∆).
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Second step. Applying the theorem 1.0.2 of [B.15] we obtain that the minimum
of the algebraic dimension of the fibres over D∗ is obtained on a dense (in fact
complement of a countable subset) in D∗. This implies that it is enough, under
the hypothesis of the theorem 1.0.1, to prove that the conclusion holds on a small
open disc D0 with center 0 in D because this “weak” version of this theorem may
be apply then to a small disc centered at any point point in D∗ and this gives the
theorem 1.0.1.

Thanks to the second step, we may now assume that there exists a positive constant
C such that the inequalities of the the lemma 3.0.7 holds on X .

Step 3. Let Γ be a connected component of Cn−1(π∗) with reduced generic cycle
and such that the projection p : Γ → D∗ is surjective. As the map p is proper, let
τ : π−1(D∗) → S be a Stein factorization (we may assumed that S is normal) of p
and let τ̃ : S → D∗ the corresponding proper finite surjective map.
Now let ω be a smooth π−relative Gauduchon form on X and define on Γ the
function

θ : Γ→ R+∗ C 7→
∫
C

ω.

As the function θ is continuous, pluri-harmonic along the fibres of p as a distribution2

and proper, it is constant in the fibres of τ which are the connected components of
fibres of p over D∗. So it defines a continuous function θ̃ : S → R+∗. This situation
corresponds to the following diagram:

Γ

θ

��

p

��

τ

��

Gp1

oo //

p2

%%

Γ×X
p2

��
X
π
��

R+∗ Sθ̃oo τ̃ // D∗ // D

Step 4. Let Ã0 ⊂ S be the set of points σ ∈ S where the fibre τ−1(σ) is not
contained in the union of the singular set of Γ with the critical set of p : Γ → D∗.
Then Ã0 is a closed analytic subset in S with no interior point. So A0 := τ̃(A0) is
a closed discrete subset in D∗. Let A1 ⊂ D∗ be the ramification set of τ̃ . It is also
closed and discrete in D∗ and finally put A := A0 ∪ A1.
We shall show now that the continuous function

η : D∗ → R+∗, s 7→ η(s) := Traceτ̃ (θ̃)(s)

satisfies the following properties :

i) The partial derivatives ∂η
∂s

and ∂̄η
∂̄s̄

are continuous on D∗ \ A.

2meaning that it is ∂∂̄−closed as a distribution along the fibres of p : Γ→ D∗.
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ii) They satisfy the inequalities |∂η
∂s
| ≤ C.η and | ∂̄η

∂̄s̄
| ≤ C.η on D∗ \ A, where C is

the constant introduced above (see lemma 3.0.6).

Note that it is enough to prove the properties i) and ii) near each point in D∗ \ A.
Choose a point s0 ∈ D∗ \A and fix an open disc ∆0 ⊂ D∗ \A with center s0. Choose
now in p−1(s0) generic point C0 and, as C0 is a smooth point of Γ such that p has
rank 1 at this point, we can find a smooth locally closed curve Σ through C0 in
Γ such that the restriction of p to Σ induces an isomorphism of Σ onto ∆1 where
∆1 ⊂ ∆0 is an open disc with center s0.
Define, for s ∈ ∆1 the cycle Ys as the cycle corresponding to the point p−1

|Σ (s) in

Σ ⊂ Γ. This defines an analytic family of π−relative (n − 1)−cycles. So the func-
tion η1 which is given by s 7→

∫
Ys

ω is continuous on ∆1 (see the proposition IV

2.3.1 in [B-M 1]) and coincides with 1
δ
.η where δ is the degree of the map τ̃ . We

shall compute now the partial derivatives in the distribution sense of this function η1.

Let Y ⊂ ∆1×X be the graph of the analytic family (Ys)s∈∆1 and let ϕ be in C∞c (∆1).
Then we have

〈η1,
∂ϕ

∂s
.ds ∧ ds̄〉 =

∫
Y
ω ∧ π∗(∂ϕ

∂s
.ds ∧ ds̄)

=

∫
Y
ω ∧ π∗(dϕ ∧ ds̄) =

∫
Y
ω ∧ d(π∗(ϕ.ds̄))

As our computation is local on D∗ we may assume that the support of ϕ is a small
disc ∆ around a point s in D∗. Now we can assume that we have an open finite
covering the compact manifold Xs by π−relative charts defined on open sets Ωj onto
products ∆× Uj where Uj is a polydisc in Cn, such that on ∆× Uj the π−relative
form ω|Ωj

is given by a form ωj which is smooth and of type (n − 1, n − 1) on Uj
with smooth coefficients in ∆ × Uj. Let ρj be a smooth partition of unity relative
to the covering (Ωj of π−1(∆). Then we obtain,

〈η1,
∂ϕ

∂s
.ds ∧ ds̄〉 = −

∑
j

∫
Y
ρj.d(ωj) ∧ π∗(ϕ.ds̄) + dρj ∧ ωj ∧ π∗(ϕ.ds̄).

But at the generic points of Y ∩ (∆×Uj) the restriction of a section of Ωn
Uj

vanishes,

so we can replace d(ωj) and dρj respectively by
∂ωj

∂s
.ds and

∂ρj
∂s
.ds in the previous

formula, thanks to the lemma 3.0.8 below. Then, using the vanishing of the sum∑
j

∂ρj
∂s
≡ 0

and the fact that the π−relative forms
∂ωj

∂s
are the images in the charts of the

π−relative form ∂ω
∂s

which is well defined globally, we obtain:
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〈η1,
∂ϕ

∂s
.ds ∧ ds̄〉 =

∫
XΣ

∂ω

∂s
∧ π∗(ϕ.ds ∧ ds̄).

As the (n−1, n−1) relative form ∂ω
∂s

is C∞ on X , we conclude that the distribution
∂η1

∂s
is equal to a continuous function. We have the analogous result for ∂̄η1

∂s̄

Now using the inequality of the lemma 3.0.6 we obtain, assuming that the test
function ϕ is non negative:

|〈∂η1

∂s
, i.ϕ.ds ∧ ds̄〉| ≤ C.

∫
XΣ

ω ∧ π∗(i.ϕ.ds ∧ ds̄)

which implies the inequality |∂η1

∂s
| ≤ C.η1 on ∆1. The inequality | ∂̄η1

∂s̄
| ≤ C.η1 is

obtained in a similar way.
So the lemma 3.0.7 applies and the function θ on Γ is uniformely bounded. Then
the closure of Γ in Cn−1(π) is proper over D.

Lemma 3.0.8 Let D ⊂ C and U ⊂ Cn a disc and a polydisc. Let π : D × U → D
the projection and consider an irreducible hypersurface H ⊂ D × U such that the
projection p : H → D is open. Let α be a smooth π−relative (n − 1) holomorphic
form on D × U . Then we have at the generic point in H the equality

∂α|H = (
∂α

∂s
.ds)|H .

Proof. Near the generic point in H we may assume that

H := {(s, t) ∈ D × U / t1 = 0}

because if f = 0 is a local reduced equation of H near such a point we can assume
that df ∧ ds 6= 0 and then we may choose s, f as first and second coordinnates in a
neighbourhood. Then we may write

α :=
n∑
j=1

aj(s, t).dt1 ∧ · · · ∧ d̂tj ∧ · · · ∧ dtn

and this gives

d∂α =
∂a1

∂s
(s, t).ds ∧ dt2 ∧ · · · ∧ dtn + dt1 ∧ β

which induces on H the form
Now

∂α

∂s
∧ ds := ds ∧

n∑
j=1

∂aj
∂s

.dt1 ∧ · · · ∧ d̂tj ∧ · · · ∧ dtn



8

induces on H = {t1 = 0} the form

∂a1

∂s
.ds ∧ dt2 ∧ · · · ∧ dtn

and the lemma is proved. �

Final step. Consider now any irreducible component Γ̃ of Cn−1(π). Then either
Γ̃ is contained in some Cn−1(Xs) for some s ∈ D, and then it is an irreducible closed
subset in Cn−1(Xs) and then it is compact, or it surjects to D∗ and then Γ̃ \ p−1(0)
is a closed irreducible subset in Cn−1(π∗) and then we may apply the previous result
to conclude that Γ̃ (which is the closure of Γ̃ \ p−1(0)) is proper over D.
As any irreducible component of Cn−1(π) is proper over D, the conclusion follows
from [B.15]. �

We conclude by noticing that there exists an analytic family of smooth complex
compact surfaces of the class VII (not Kähler) parametrized by a disc such that the
central fibre has algebraic dimension 0 and all other fibres have algebraic dimension
equal to 1, see [F-P.09].
This shows that in our theorem 1.0.1 some “Kähler type” assumption on the general
fibre Xs cannot be avoided in order that the general algebraic dimension gives a lower
bound for the algebraic dimensions of all fibres.
Note that our assumption that the generic fibres satisfy the ∂∂̄−lemma (in fact for
the type (n, n− 1)) is a rather weak such assumption.
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2. [B-M 1] Barlet, D. et Magnússon, J. Cycles analytiques complexes. I. Théorèmes
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Paris, Ser. A 285 (1977), 387-390.


