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Abstract

We extend the classical Polarizable ITon Model (PIM) to charged clays. We focus
on Na-, Ca-, Sr- and Cs-montmorillonite with two types of structures for the octa-
hedral sheet : trans- and cis-vacant. The full set of parameters of the force field is
determined by density functional theory calculations, using maximally localized Wan-
nier functions with a force- and dipole-optimization procedure. Simulation results for
our polarizable force field are compared to the state-of-the-art non-polarizable flexible
force field named Clay Force Field (ClayFF), in order to assess the importance of tak-
ing polarization effects into account for the prediction of structural properties. This
force field is validated by comparison with experimental data. We also demonstrate the
transferability of this force field to other aluminosilicates by considering faujasite-type
zeolites and comparing the cation distribution for anhydrous Na, Ca, and Sr Y (and

X) faujasites predicted by the PIM model and with experimental data.
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Introduction

Clay minerals and zeolites are nanoporous aluminosilicate materials extensively used due to
their industrial importance in gas adsorption and separation. Clay minerals'™ are layered
with a large lateral extension compared with their width (~1 nm). Zeolites®® consist of
three-dimensional crystalline frameworks. Both are used in several areas, including health
(drugs), domestic products (detergents and water softener), energy and environmental engi-
neering (hydrocarbons cracking for fuel production, retention barrier preventing the release
of toxic radioactive species or COs into the biosphere), etc. These applications are made
possible thanks to their high specific surface that confer them remarkable physicochemical
properties, such as adsorption, retention, cationic exchange, etc. All these properties are
modulated by the charge of the mineral framework, compensated by interlayer (clays) or
extraframework (zeolites) counterions, and the presence of adsorbed molecules (the location

15711 and

of which depends on the position of compensating cations). Many experimenta
computational *>"!7 studies have been performed in order to understand their physicochem-
ical properties. Whereas macroscopic descriptions are abundant (adsorption and exchange

isotherm, macroscopic diffusion, etc.),1823

a detailed understanding at the microscopic scale
may be difficult to obtain. Nevertheless, combining experimental with molecular simulations
can provide insights into the local description of the cationic and molecular adsorption sites,
of the environment of counterions, or of the fine structure of the clay and zeolite frameworks.

The reliability of molecular dynamics is based on the correct description of interaction be-
tween atoms. In the case of zeolites, most of the available force fields consider the framework
as rigid and therefore require prior knowledge of the position of atoms and sites, obtained
from experiments. As an example, some of us recently conducted a joint experimental and
simulation study of the cation distribution in partially Ni-exchanged Y-faujasite. It was
found that the migration of cations upon dehydration is strongly coupled with the frame-

work deformation. This underlines the need for force fields accounting for the framework

flexibility. In the case of clays, the force fields available in the literature are able to repro-
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duce qualitatively the structural properties,'™?* 27 the thermodynamics,'®?®3! the dynam-
ics, 252732734 the hydrophilic/hydrophobic properties,?® or the sorption of counterions.13:35:36
Quantitative agreement with experiments remains however a challenge. Overall, force fields

37-39 (

tend to underestimate the interlayer distance in particular for the bivalent couterions),

25,29,39,40

to overestimate the diffusion coefficient of water molecules, and to overestimate the

contact angle between a clay surface and a drop of water.2?¢ The force fields available in

the litterature do not take into account the polarizability of molecules,?"443

which may
contribute to the organization of ions and water molecules near the mineral surface where
an electric field exists. Such effects were shown to be very important in other fields such as
biomolecular simulations.* % We have recently extended the force field based on the Po-
larizable Ion Model (PIM) to study clay minerals and demonstrated its ability to correctly
describe the microstructure of two neutral clays: pyrophyllite and talc.*”

In the present work, we extend the PIM to charged clay minerals. To parametrize the
PIM force field, we follow the same strategy described in our previous study,*” which does
not require any experimental input. We focus on different charged clays of the smectite
family, namely Na-, Ca-, Sr- and Cs-montmorillonite. Then, we assess the transferability of
the PIM force field to other aluminosilicates by considering two different zeolites: MX and
MY faujasites (M = Na, Ca and Sr). The manuscript is organized as follows. Sections ”Po-
larizable Ton Model” and ”Parametrization of the Force Field” describe the different terms
of the polarizable force field and succinctly the parametrization procedure. Then, section
”Validation of the Force Field” introduces the microscopic structure of montmorillonites and
the force field is validated by comparison between experimental and simulated results. Fi-
nally, in Section ”Transferability to Zeolites”, after a brief introduction of the structure of

zeolites, we demonstrate the transferability of the PIM force field to faujasite-type zeolites

by studying the cationic distribution.
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Polarizable Ion Model

In the PIM model, the potential energy is decomposed into four different terms:

Vtotal - VCharge + VDispersion + vRepulsion + VPolarization- (1)

The charge term corresponds to the Coulomb interaction (here in atomic units) between two

atoms,
q. .
VCharge = Z (;_;1])7 (2)
1<)
where g; and q; are the charges of each atom and rj; is the distance between them. In our

case, formal charges are used: 0%, OH~, Mg?*, AI** and Si**. Charge transfer within

the hydroxyl group, of total charge -1, is modelled by partial charges on the corresponding

atoms: 0(021;5)_ and HSI;(SH.

The dispersion term in Eq. 1 is due to the instantaneous correlations of density fluctuations
between the electronic clouds. It is given by: 4850

vDis ersion — Z fij (rl)C—g + fij (rl)c—g (3)
p i< 6\ (rij)ﬁ 8 \1 (rij)S )

where Ciﬁj and Cisj are the dipole-dipole and dipole-quadrupole dispersion coefficients. The

Tang-Toennies damping function {9 is used to correct the short-range interaction as:5!

ij —bly; - (bgri')k
fi(rg) = 1 - ot 37 Bl ()

k=0

where bi is the range of the damping. The repulsion term in Eq. 1 is modelled using a simple

1)
n

decaying exponential:

_ B
VRepulsion = § Aije T (5)

i<j

where Aj;; and Bj; are two parameters. Finally, the polarization term in Eq. 1 is composed of
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3 contributions: charge-dipole and dipole-dipole interactions, as well as the energy cost for

deforming the electronic cloud of the atom:

Qilsj * My i Hi* T34 i pic gy 3 (e ) (x50 )
VPOlarization :Z l%gi (I'ij) - I‘?’.J Jgi(rij) + 3 ] _ ) = j ) (6)
i<j 1 1j ij ij

2
T8

where o/ is the polarizability of ion 4, p; and p; are the induced dipoles, gV is the short-range
correction to the multipolar expansion by the Tang-Toennies damping function:
X
(bprij)*

g (ry) = 1 — ¢e” oM Z Tl (7)

k=0

The polarization term includes many-body electrostatic effects since the induced dipoles
fluctuate along the simulation depending on the positions of all the ions. They are calculated

at each molecular dynamics step by minimizing the polarization energy:

(aVPolar.ization) —0. (8)
Opg,

The purpose of the present work is to derive all the parameters of the PIM repulsion and
polarization terms for the atomic interactions between cations and clay layers. The parame-
ters for the interactions between the atoms constituting the sheets and between the cations
are taken from preliminary studies.*”*? We now briefly describe the procedure for obtaining
the parameters from ab initio calculations, and refer the reader to our previous work*" for a

complete description.

Page 6 of 48



Page 7 of 48

©CoO~NOUITA,WNPE

Parametrization of the Force Field

Optimization Procedure

The optimization procedure aims at finding the set of parameters (A;;, By, ¢ and b%) that
minimize the error made in the classical calculation of the forces and dipoles with respect to
a series of reference DFT calculations. To determine A;; and Bj; parameters for the repulsion
potential (Eq. 5) and c¢;; and bg parameters of the Tang-Toennies function (Eq. 7) for the
polarization potential (Eq. 6), we used exactly the same process as for dry pyrophyllite and

talc.*” The optimization procedure can be summarized as follows:
1. Generation of a series of representative configurations using classical MD
2. DFT calculations on each of these configurations

(i) Determination of the ground-state wavefunction, which provides the DFT forces

(ii) Wannier localization,% from which the DFT induced dipoles are calculated

3. Minimization of the error function on the dipoles x;,.,. with respect to the parameters

of the polarization term (Vpolarization) and of x%,... with respect to the repulsion term

(VRepulsion) :
) B | |“c1ass1cal DFT| ’2
RS 3> )
XDlpoles( D> u) Nconf Natom £t it DFT||2 ’ ( )
) - | |Fclassmal FDFT| |2
A B bY ) = Z Z 10
XForces( 1]y 1) ¥Do CIJ) Nconf Natom poped ‘FDFT| |2 ’ ( )

where Nopn¢ is the number of configurations on which DF'T calculations are performed,

classical

Natom is the number of atoms per configuration, p are the dipoles obtained by
classical molecular dynamics using a given set of parameters. Fessical are the forces

obtained by classical molecular dynamics.
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In this work, we determine the parameters of the repulsion potential (Eq. 5) and of the
Tang-Toennies function (Eq. 7) of the polarization potential (Eq. 6) for the interactions be-
tween cations and the atoms of the clay layer. All the other interactions, including dispersion

terms, are taken from our previous study.*7

Simulation Details

The montmorillonite simulation boxes contain two clay layers of lateral dimensions 20.72
x 17.96 A2, corresponding to 8 unit cells of formula Xg 75/, SigAls 25 Mg 75020(OH)4 per
layer (where X = Na™, Ca®", Sr?" or Cs'™ and n is the formal charge of counterions).
The interlayer spacing is fixed to 9.7 A, 9.5 A, 9.5 A and 10.8 A for Na-montmorillonite,®”
Ca-montmorillonite,®® Sr-montmorillonite® and Cs-montmorillonite®” respectively. To gen-
erate the initial trajectory (i.e. prior to the force field parameterization), the interactions
between cations and basal or hydroxyl oxygen atoms are chosen empirically and taken equal
to the interaction between the same cations and the oxygen atom of water from our previ-
ous work.??® The short-range cation-cation interactions are treated by the Lennard-Jones
potential,® but it should be noted that such short-range interactions are not crucial due
to the strong electrostatic repulsion between cations. The parameters Cig, Cigj et b of the
cation-oxygen interactions, of the dipersion potential (Eq. 3), are taken equal to the oxygen-
X4 (where X = Al, Mg or Si). The bond between the hydrogen and the oxygen atoms of
the hydroxyl group is rigid. During subsequent iterations of the procedure described above,
new configurations used for the dipole- and force-matching are generated using PIM with
the current values of these parameters. Molecular dynamics simulations are performed with
the version 2.4 of the CP2K simulation package.% Periodic boundary conditions are used in
the three directions of space. The temperature T' = 300 K is controlled via a Martyna et

t61

al. thermostat® with a time constant equal to 1 ps. Electrostatic interactions are computed

62,63

using dipolar Ewald summation, with a tolerance of 10~7. For each system, we perform

an equilibration of 50 ps followed by a 50 ps production run, using a time step of 0.5 fs.
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From the classical MD trajectories we sample equilibrium configurations which should be
sufficiently separated in order to be independent from each other. The parametrization of
the force field is achieved using N.,,; = 6 representative configurations per montmorillonite
(3 tv-Na-montmorillonite and 3 cv-Na-montmorillonite, see below for their descriptions). We
have tried to use more configurations when adjusting the parameters, and we observed that
it did not influence further the value of the parameters. Density Functional Theory (DFT)
calculations are performed on these configurations with the PBE® functional for all the

65-67 pseudopotentials are used with the DZVP plane-wave

systems. Goedecker-Teter-Hutter
basis sets% and an energy cutoff of at least 400 Ry. After determining the ground-state
wavefunctions, the forces acting on each atom are computed and the dipoles are calculated
from the Maximally Localized Wannier Functions®"6%7 (MLWFs). All these calculations

are performed with the CP2K simulation package.%® The numerical minimization of forces

and dipoles are performed with the Minuit library.™

Force Field Parameters

Figures 1 and 2 illustrate the comparison between the dipoles and the forces for one of the
montmorillonite configurations calculated with the classical force field and from the DFT

calculations. The corresponding error functions, Xfyeies A1d Xforees are shown in Table 1.

Table 1: 2 for the dipoles and the forces for charged clays

Systems XDipoles XForees
Na-montmorillonite 0.229 0.787
Ca-montmorillonite 0.073 0.815
Sr-montmorillonite 0.061 0.790
Cs-montmorillonite 0.076 0.887

Most of the errors on the forces come from the forces exerted on the aluminum, silicon,
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magnesium and apical oxygen atoms. All errors observed on the dipoles come from the
oxygen atoms of the hydroxyl groups. X%ipoles and Y2 .., obtained for the charged clays are
larger than those for the neutral pyrophyllite clay (0.029 and 0.25, respectively®”). Most of
these relative errors are due to very small values of forces and dipoles. As we will see later,
the resulting force field is however able to capture the structural feature of the studied clays.
All the parameters are summarized in Tables 2, 3 and 4. The parameters of atoms layer are
reported in the supporting information.*” The relevance of including polarization into the
force field to capture many-body effects can be demonstrated by considering the dipoles of
different oxygen types in the mineral structure. Specifically, we show in the Supplementary
Figure S1 that the dipoles of apical and surface oxygen atoms are very different. Therefore,
including the polarizability of these atoms in the force field allows a transferable description
of both types of oxygen atoms with the same set of parameters. In a non-polarizable model,
these different types of oxygen atoms would typically require different set of parameters.
Moreover, we note that, even in that case, such a description would not allow capturing the
change in the charge distribution around surface atoms in the presence of cations, which
can be significant in particular with multivalent ions and influences their adsorption at the

surface.

Validation of the Force Field

Structure of Montmorillonites

Montmorillonite is a charged clay belonging to the same family as pyrophyllite, namely dioc-
tahedral clays. They are composed of layers piled on top of each other to form particles. Each
layer consists of two tetrahedral sheets sandwiching an octahedral sheet (TOT structure).
In neutral pyrophyllite, these sheets are thus made from two crystallographic units: SiO,
tetrahedra and AlO,(OH), octahedra, represented in Figure 3a and b. Tetrahedral sheets

are composed of basal oxygen (Oy), apical oxygen (O,) and silicium (Si) atoms. The octa-
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Na-montmorillonite
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0 100

Figure 1: Forces for each atom for one of the montmorillonite configurations. The predictions
of the classical force field (black lines) for the force components (Fy, Fy and F,) are compared

to the DFT results (red lines).
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Figure 2: Dipoles for each atom for one of the montmorillonite configurations. The predic-
tions of the classical force field (black lines) for the dipole components (jiy, py and pu,) are
compared to the DFT results (red lines).
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Table 2: Parameters of the PIM force field for the repulsion and polarization terms for the
18 interactions between the cations and the oxygen atoms from the sheet. § is the transferred
19 charge (0 = + 0.8983).

22 Damping interaction
. Ajj Bj; CJ Cy bl between ¢; and 4
o5 Ton pair (ij) )

26 (Ha) (A-1)  (Ha.A%) (Ha.A®) (A1) b Cij

28 (A1) )

30 O* -Na* 30.002 3.300 0.048 0.156 4.168 4.330 2.133

32 0?~-Ca?t 20.004 2543 0.048  0.156 4168 5999  0.028
34 02-Sr2+ 20.064 2520  0.048  0.156  4.168 5769  2.178
36 02-Cs* 20.001  2.748  0.048  0.156 4168 5943  0.219
38 Ol -Na* 4019.112 5998 0048 0156  4.168  5.678  3.468
40 00 -Cat 4998.674 5654  0.048  0.156  4.168 5999  0.001
42 08,0 7-Sr2t 4994966 5.419  0.048  0.156 4168 5992  0.001
44 08”7 -Cst  4000.000 5100  0.048  0.156  4.168 5686  0.006
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Table 3: Polarization damping parameters of the PIM force field. ¢ is the transferred charge
(0 = + 0.8983).

Charge Dipole

by, (A1) ¢y ()
Ton (i) Ion (j)
APBF 3.702 3.344
Sit+ 3.663 3.774
Nat | Mg 2.150 0.013
02~ 3.648 1.762
089~ 3.009 4.870
HE, Ot 2.716 3.916
AR 2.956 4.919
Sitt 5.399 2.581
ca2t Mgt 5.774 3.652
02~ 5.479 4.770
089~ 4153 4983
HG O 3.630 4.996
ARt 2.765 4.999
Sit+ 4.504 4.789
g2t Mgt 5.669 4516
02~ 4.461 2.112
08~ 2.957 1.828
HY O 2.058 4.994
ARt 2.001 0.932
Sit+ 3.383 3.609
Ot Mg2* 2.007 3.901
02~ 2.865 0.599
082~ 2.449 4.945

1-8)+
H, " 5.872 2.404
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Table 4: Atomic polarizabilities.

Tons 0%~ oH Na* Ca?* Sr2*+ Cs*t

ol (A3) 0.91 2.39 0.18 0.44 0.81 2.02

hedral sheet contains apical oxygen and aluminium (Al) atoms, as well as hydroxyl groups
(OH). In montmorillonite, some octahedral Al are replaced by magnesium (Mg), resulting
in a negative charge of the sheet compensated by counterions located in the interlayer space

(here Na™, Ca*", Sr** or Cs™).

a b c

Hou

0,(1)

0,(2)  0,(1)

0,(3) cis-vacant
site

Oon cis-vacant

0,(2)
b site

trans-vacant

b site

Oon

How 0,(1° 0,(2)

O Cation (Al or Mg) O Hydrogen ® oxygen O Ssilicium

Figure 3: Nomenclature of the atoms. a) tetrahedron, b) octahedron and ¢) tv- and cv-sites
(trans- and cis-vacant respectively).

Each tetrahedron is linked to adjacent tetrahedra by basal oxygen atoms (Oy) to form
an infinite hexagonal basal plane (Figure 4a). The tetrahedral and octahedral sheets are
connected by the apical oxygen (O,). Within the octahedral sheet, each octahedron shares
two hydroxyl oxygens (Oon) and four apical oxygens (O,). An octahedral site can be oc-
cupied by a six-fold coordinated cation. In montmorillonite, a dioctahedral clay type, two
thirds of these sites are occupied by trivalent ions A3t or divalent ions Mg?*, as illustrated
in Figures 4b and 4c. Depending on the location of the vacancy there are two types of
octahedral sheets:™ i) the two octahedra occupied by AI** cations share an edge with two
hydroxyl groups, i.e. occupy so called cis sites, and the remaining trans site is vacant — such

an octahedral sheet is thus called trans-vacant (tv-, illustrated in Figures 3c and 4b); ii)
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the two octahedra occupied by AI** cations share an edge with one hydroxyl group and one
apical oxygen, i.e. occupy one cis and one trans sites, so that one cis site remains vacant —
such an octahedral sheet is called cis-vacant (cv-, illustrated in Figures 3¢ and 4c). Vantelon
et al ™ have shown that substitution occurred predominantly in cis sites for a Wyoming-type
montmorillonite. This clay is the one that we have used for our cv--montmorillonite systems,
except that we have slightly simplified the system by substituting only the ”cis” sites. For
this study, we worked with tv-montmorillonite and cv-montmorillonite in order to assess the
ability of the polarizable force field to differentiate them. A side view of the montmorillonite

systems are given in Figure 5.

Top view

Side view

O Aluminium C Hydrogen © Magnesium ® Oxygen O Silicium

Figure 4: Top and side views of a) tetrahedral, b) tv-octahedral and ¢) cv-octahedral sheet.

Systems and Simulation Details

We now proceed to the validation of the force field against experimental data pertaining to
the structure of montmorillonite. We consider three sizes of montmorillonite simulation cells
for each tv- and cv-clay to assess the possible influence of finite-size effects. Table 5 indicates
the different box lengths A, B and C. The simulation details are the same as above. The
simulations are first performed in the NVT ensemble during 100 ps in order to equilibrate

each system. Then, simulations are performed in the anisotropic NPT ensemble (all box

Page 16 of 48
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i

Layer sep.

ATet.

A

A(Z)cta. Layer

ATet.

O Aluminium @ cation O Hydrogen © Magnesium ® Oxygen O Silicium

Figure 5: Side view of the ideal tv-montmorillonite layers. h is the average interlayer
distance, Apayer sep. 18 the average thickness of the layer separation, Are. and Apeta. are the
average thicknesses of the tetrahedral and octahedral sheets, while Ap,ye, is that of the layer.

lengths and angles are allowed to evolve independently) under a pressure of 1 bar during
150 ps of equilibration followed by 150 ps of production. The pressure is controlled by an

1617 with a barostat and

extension of the Nose-Hoover barostat developed by Martyna et a
a thermostat time constant respectively equal to 2 ps and 1 ps. Simulations under the same
conditions were performed for both our new polarizable force field and the state-of-the-art
non-polarizable force field ClayFF.%' The simulations with the PIM are only around 5 times

more computationally expensive than with ClayFF. Further improvements could be obtained

by using approaches such as the predictor-corrector algorithm of Kolafa™.

Lattice Parameters

The unit cell parameters obtained for the equilibrated systems are summarized in Table 6
and the lattice parameters are exposed on the Figure 6. Since the effect of system size is very
limited, we report here averages over all the systems. The results obtained for the elementary

unit cell parameters a, b, «, 5, and v with ClayFF or PIM, for all clays, are in good agreement
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Table 5: Simulated systems for montmorillonite: A, B and C are the initial box sizes.

Systems Supercell A B C Number

tv- and cv- dimensions (A)  (A)  (A) of atoms
8x4x2 35.88 2608
Na-montmorillonite 8XHX2 41.28 44.85 19.40 3260
8x6x2 53.82 3912
8x4x2 35.88 2584
Ca-montmorillonite  8x5x2  41.28 44.85 19.00 3230
8x6x2 53.82 3876
8x4x2 35.88 2584
Sr-montmorillonite 8xhx2  41.28 44.85 19.00 3230
8x6x2 53.82 3876
8x4x2 35.88 2608
Cs-montmorillonite  8x5x2  41.28 44.85 21.60 3260
8x6x2 53.82 3912

Page 18 of 48
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with the experimental data. Both force fields ensure the integrity of the elementary cell.
Experimentally, the distance h ranges between 9.5-9.7 A for Na-montmorillonite, 57680 9 5
11.65 A for Ca-montmorillonite, 77 9.5-10.0 A for Sr-montmorillonite®®76787 and 10.7-
12.0 A for Cs-montmorillonite. 5”78 The PIM reproduces the experimental h distance more
accurately than the ClayFF for most of cations, i.e. Na™, Ca?™ and Sr?", while both for force
fields predict simular values in good agreement with experiments for Cs*. These different
values obtained with PIM and ClayFF may come from the structure of the cavities, as

discussed below.

Table 6: Unit cell parameters of montmorillonite (averaged over tv- and cv-montmorillonite
and over the various supercells): lattice parameters a, b, ¢ and cell angles «, /3, 7. Standard
errors (SE) of 0.04 A and 0.8 degres, respectively, are calculated by the block averaging
method. 52:83

Force field ~ Counterion a (A) b(A) ¢(A) hA) a(®) B(C) ~(°)

Na+t 519  9.00 9.77 961 899 989 90.1

S Ca2* 521 897 1008 10.00 888 972  90.2
Sr2+ 522 9.0l 10.15 10.04 90.0 983  90.1

Cs* 522 896 1094 10.69 89.9 985  90.0

Na‘t 520 9.00 954 941 885 972  90.0

ClayFF Ca2* 521 9.04 959 941  90.8 98.6 89.8
Sr2+ 520  9.04 9.82 959  90.8 99.0 90.1

Cs+ 519  9.00 1098 1075 90.0 99.5  90.0

Exp. ™ Na‘t 518  8.98 90.0  99.5  90.0

Exp, 57:76-80 Nat 9.5-9.7

Internal Structure of the Layers

The average bond lengths and angles obtained by both force fields for tv- and cv-montmorillonites

are summarized in Supplementary Tables S2 and S3, respectively. The average thickness of
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Figure 6: Lattice parameters.

the tetrahedral (A, ) and octahedral (Aocta.) sheets, the layer (Apayer), the layer separation
(ALayer sep.), the silicium-apical oxygen distance®” Ag;_o,, the angles®” ay, as, the tilt
and the rotation angle” of tetrahedra a,.;. obtained for the various systems are summarized

in Table 7 and shown in Figure 7.

Table 7: Average thickness of the tetrahedral Are and octahedral Agcsa. sheets, layer Ap,yer
and layer separation Ap,yer sep. (see Figure 5), silicium-apical oxygen distance Ag;_o,, angles
aq, Qg tilt v and rotation angle of tetrahedra ayo . Standard errors (SE) of 0.07 A and 1 de-

gres for distances and angles, respectively, are calculated by the block averaging method. 5283

Force field Ame. Aocta. Arayer Aragerssep.  Asi—0, Mt Q1 Q2 Ouo.

G T VR AN VI C RN O RO IS
PIM 2.16 2.22 6.54 3.06 1.58 7 110 132 11
ClayFF 2.10 2.27 6.47 2.94 1.58 4 119 121 1

Octahedral Sheet

We now examine the differences between tv- and cv-montmorillonite by looking at the struc-
ture of the octahedral sheet and investigate the ability of the force fields to capture such
differences. More precisely, we analyze the distance d on—Ob between the oxygens of the
hydroxyl groups of the same edge of an octahedron (Figure 3). Experimentally, Wilson et
al. have shown that do, _op differs in fv- and cv-montmorillonite. This difference could

possibly be due to the orientation of these hydroxyl groups: towards the center of the cav-
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Figure 7: (a) Definition of the tilt angle of tetrahedra, (b) and (c) bottom-up view of the
tetrahedral sheet ; a; = 120 + 2 X yor and ag = 120 - 2 X ot

ity for cv-montmorillonite, in contrast to fv-montmorillonite (Figures 3 and 4). In order
to minimize the interaction between these two hydroxyl groups, the dg T distance is
larger in cv-montmorillonite (2.85-2.88 A) than in the tv-montmorillonite (2.40-2.50 A). By
simulation, the distances dg on—0B,, are well reproduced for both clay types with the PIM
force field, with do, _op = 2.89(5) and 2.42(4) A for cv- and tv-montmorillonite, respec-
tively. In the case of ClayFF, the distance dg on—ob,, 18 reproduced in cv-montmorillonite
(2.92(5) A) whereas it is overestimated in tv-montmorillonite (2.85(4) A). Thus, the PIM

force field better describes the difference between tv- and cv-montmorillonite.

Tetrahedral Sheet

For both ClayFF and PIM, the average bond lengths and angles in Supplementary Tables
S2 and S3 are similar to the results obtained on pyrophyllite.*” Specifically, in contrast to

ClayFF the PIM force field is able to capture the deformation of the tetrahedral sheets
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characterized by the following features: i) the angle O,-Si-Oy(2) is slightly wider than
the two others O,~Si-Oy(1) and O,—Si-Oy(3), ii) the tetrahedral sheet adjusts its lateral
dimensions, thus causing changes in structure (rotation and tilt of the tetrahedra, which
modify the shape of the cavities; this important difference with ClayFF is illustrated in
Figure 8) and iii) the average thickness of the tetrahedral layers (Are. ) is comparable to
that in pyrophyllite. Experimentally, on montmorillonites and clays belonging to the same
family, Tsipursky et al.”™ and Drits et al.® reported values of Ar..) between 2.20 and
2.26 A, a tilt angle (i) between 6.6 and 7.8°, and a rotation angle of tetrahedra (ayor.)
equal to 11°. By simulation, as we observed on the neutral clay,*” the PIM force field
predicts values of Arge, Ve and oo, in good agreement with experimental ones while
the ClayFF force field underestimates these properties. The experimental shape of the
cavities is ditrigonal.®”"8486 Tt is well reproduced with the PIM force field whereas with
the non-polarizable one we obtain hexagonal cavities. These different results are illustrated
in Figure 8. This success of the PIM force field is permitted by its better account of the
flexibility of the structure. The flexibility also has a crucial impact on the local structure
and properties of the interlayer species at the surface of the layer, for example the position

of the cations beside the hexagonal cavities.

ClayFF PIM
.\V}uh}u;’\u}u}u “ %}g&c&&h}b ’-U
*a+uo+vo+-0 690 p.0op.0 po
Pt L’\, /u.,.u;.\' }h;.‘\.. }, u}b ..uh} h}c&,uh}uh
PR EERER; o o pieep.cet
l\_)’ "“\‘;" "L\J" u‘:\_:"' “ "u" "}Jb‘ V&O&y@&} v
*u.o*uo +-’ +u'. *»o*uc o peo
e N o N o N
@ 6“0 6.0 6 o 9% @ .0 .o b.ood

O Aluminium @ Cation O Hydrogen © Magnesium @ Oxygen O Silicium

Figure 8: Ring arrangements of montmorillonites obtain with the ClayFF et the PIM force
field.
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Cation adsorption

As we previously mentioned, the interlayer distance h is underestimated with the ClayFF
force field, whereas it is quite well reproduced with the PIM force field. These differences
can now be explained by the shape and dimensions of the cavities and the cations size.
Indeed, the shape of the cavities is hexagonal with ClayFF and ditrigonal with PIM. In the
hexagonal cavities formed by six basal oxygens, the distance between two opposite basal
oxygens is equal to 5.11(8) A and the diameter of the inscribed circle (®gjpee in Figure 9) to
4.42(8) A. The specific shape of ditrigonal cavities results in a smaller space limited by three
basal oxygens pointing to the center. The height of this triangular cavity is 3.61(7) A and the
diameter of the inscribed circle is only 2.41(7) A. These different sizes of cavities are shown
in Figure 9. The cation is located in the center of the inscribed circle (Figure 10). Depending
on the shape of the cavity, the interlayer ion may enter more or less deeply (Figure 10). The
radii®” of the considered ions are equal to 1.02 A (Na®), 1.00 A (Ca?t), 1.16 A (Sr*>*) and
1.70 A (Cs™). The sodium, calcium and strontium cations may enter easily into the hexagonal
cavities, whereas in the case of the ditrigonal cavities they are positioned just above. Because
cesium is too large, it remains above the cavities in both cases: the results obtained with
both force fields are therefore similar for this cation (see Supplementary Figure S2). For all
systems, the larger the size of the cation (Na™ < Ca?T < Sr*T < Cs™) the farther it is from
surface. The wider hexagonal cavities predicted by ClayFF can accommodate all cations
except for the larger cesium. In contrast, the PIM force field predicts that all ions reside
above the narrower di-trigonal cavities, at an increassing distance from the tetrahedral sheet
with increasing ionic radius (see Figures S2 and S3). Overall, we can conclude that the better
agreement with experiments for the interlayer distance h obtained with PIM compared to
ClayFF is due to the better description of the adsorption of the cations inside the cavities,
which in turn is permitted by the better account of the framework flexibility. We now

investigate the transferability of the PIM to other aluminosilicates, namely zeolites.
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Figure 9: Form and size of the hexagonal and ditrigonal cavity. The blue dotted lines
represent the periphery of the cavity.

Transferability to Zeolites

Unlike two-dimensional phyllosilicates such as clays, zeolites display a three-dimensional
framework, consisting only of tetrahedral units, with a diversity of topologies for their as-
sembly.* Subsitutions of Si** by AI3* ions result as for clays in a negative charge compensated
by counterions. Multivalent counterions may deform locally the mineral framework and such
deformation impacts the distribution of the cations among the crystallographic sites where
they can reside.

Zeolites therefore provide a stringent test on the ability of the PIM force field to correctly
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29 Figure 10: Top and side view of the position of the Na cation above the cavity.

32 describe i) the three-dimensional framework, which displays a more open structure than clay
34 layers and ii) its local deformation by multivalent counterions. It is important to keep in
36 mind, beyond the issue of transferability of the PIM, that there is a need for classical force
38 fields able to accurately describe the flexibility of the framework,®® since standard force
40 fields typically consider the latter as rigid.?89%* This further implies the knowledge of the
42 structure from prior experiments. Specifically, we consider here faujasite (FAU) which is the
44 most widely studied zeolite type.? Their crystal structure and the corresponding cationic
46 sites are well known, even though their precise position and occupancy can differ depending

48 on the cations nature and content.®

52 Simulation Detalils

55 The cubic simulation box contains one unit cell (space group Fd3m) of composition M, /,Siig2—zAl;O3s4

57 (see Figure 11), where M™* refers to sodium (Na™), calcium (Ca*"), or strontium (Sr?*).
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We consider here two different zeolites, Y-faujasite with a Si/Al ratio of 2.3 (x = 58) and
X-faujasite with a Si/Al of 1 (x = 96). The distribution of susbstitutions complies with
Loewenstein’s rule (-Al-O-Al- sequences are prohibited), so that they are alternated in the
latter case, but is otherwise random in the former case since it was shown that there is no

preferential organization in Y-faujasite.

e oxygen (a) .;v;‘ ( b)

o cation 4 s
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Figure 11: (a) Framework structure of faujasite zeolites. % There are 4 nonequivalent oxygen
atom types, labelled from 1 to 4 (see text). Extraframework cationic sites are labelled I, I’,
I1, I and III. (b) Snapshot of faujasite structure used for molecular simulations.

Molecular dynamics simulations with the PIM force field are performed using the CP2K
package. After a preliminary test, it was found that the parameters describing the interaction
of AI*T in octahedral units, as obtained in the previous section for clays, were not able to
stabilize the zeolite structure in which AI*" experiences a tetrahedral environment. For a
direct transferability, it would have been necessary to also include such a case (substitutions

in the tetrahedral sheet). Rather, here we simply use for aluminum the same parameters as
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for silicon, except of course for the formal charge. As we now proceed to show, this ansatz,
physically motivated by the fact that both ions are isoelectronic, is sufficient to achieve our
goals.

In order to properly sample all relevant configurations of counterions at 300 K, which
are separated by much larger energy barriers than in the case of clays, we use the simulated
annealing method.®"% The cations move significantly away from their initial configurations
only at very high temperature. In practice, we perform simulations at 2000 K. However, at
such a temperature the framework is not stable, at least as described by the PIM. Therefore,
during simulations at 2000 K the framework is kept rigid (NVT simulation, during 50 ps).
Then, the structure is relaxed at a temperature of only 700 K (NPT ensemble at a pressure
of 1 bar, during 50 ps). The temperature is then brought back to 300 K where equilibrum
properties are sampled, before starting a new annealing cycle (to check the convergence of
the cation distribution). The thermostat and barostat time constants are respectively equal
to 1 ps and 5 ps.

The extraframework cations may be found in various sites, indicated in Figure 11. In
order to assign a given cation to a type of site (I, I’, I, II” or III, see below), we use a new
method that we introduced recently.® Contrary to standard approaches, which requires the
knowledge of the precise location of the crystallographic sites from experiments, this method
also applies to the case of flexible structures, as it is based on the local environment of the

cation (coordination by the different types of oxygen atoms, see Figure 11a).

Framework Structure

The faujasite structure contains three distinct types of cages which are known as supercages,
sodalites, and hexagonal prisms (Figure 11). Four distincts oxygen atoms can be found
in faujasite. O1 bridging oxygens form the edges of the lateral faces of hexagonal prisms.
02 and O3 are alternatively found along the edges of the hexagonal faces of these prisms,

which connect them to the neighbouring cuboctahedral sodalite cages. More precisely, O3
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belong to the square faces of the sodalite cages, while O2 belong to the hexagonal windows
between the sodalite and supercages. Lastly, O4 oxygen atoms are located on the shared
edges between the square faces and sodalite-supercage hexagonal windows.

As a first test of the performance of the PIM model, we analyze the structure of the
mineral framework. More precisely, Tables 8 and 9 report the average TO distances (with
T=Al or Si) and TOT angles for the various oxygen types, as well as the lattice parameter,
for Y and X faujasite, respectively. In each table, the simulation results are compared with
experimental data, when available. 7:89:99-101

The lattice parameter is in good agreement with experiments, within ~ 2 % for both
Si/Al ratios and all counterions. In addition, the PIM force field is able to capture the
lattice contraction with increasing Si/Al ratio (from X to Y). In NaY, all angles and distances
are approximately equal (~ 140° and ~ 1.7 A, respectively) and in good agreement with
experiments. The bond lengths are slightly shorter, in CaY and SrY compared to NaY.
In addition, the tetrahedra are now distorted, with different TOT angles depending on the
considered oxygen type. In particular, the TO(1)T, TO(2)T and TO(3)T angles decrease,
while the TO(4)T angle slightly increases from NaY to Ca/SrY, in line with the experimental
results. This local deformation of the structure may be at the origin of the larger standard
deviation on the bond lengths (compared to NaY), as well as of the 1-2 % difference in the
lattice parameter with respect to experiments. Consistently with the evolution of the lattice
parameter with Si/Al ratio, one observes a slight shortening of the TO bond lengths from
CaX to CaY and from SrX to SrY. Overall, the PIM model which was not parametrized on
zeolites is able to correctly describe the structure of the faujasite framework, including its
evolution with Si/Al ratio (at least in the considered range, i.e. 1-2.3) and its deformation

induced by divalent cations. This is in itself a significant achievement of the present PIM.
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Distribution of Extraframework Cations

Another key feature of zeolites, particularly important for their applications, is the distribu-
tion of the extraframework cations among the various sites illustrated in Figure 11a: Site I
is at the center of the hexagonal prism; site I’ is the image of site I in the sodalite cage; site
I’ is also inside the sodalite cage, near the center of hexagonal windows; site II is the image
of site II” inside the supercage; finally, site III/IIT’ is inside the supercage at/near the center
the four-ring placed between two other four-rings.

The results obtained with the PIM force field are reported in Tables 10 and 11 for Y and
X-faujasites, respectively. These tables also report corresponding experimental data, when
available. As can be seen in both tables, the results of the simulations with the PIM model
are in excellent agreement with the experimental results for the cation distribution. In NaY
almost all sites IT (32 sites per unit cell) are occupied by Na™ cations, while sites II” and
III/TIT" are generally empty. The remaining cations occupy sites I and I’. In Ca- and Sr-
exchanged Y and X-faujasites, the more confined sites I (and I') are occupied preferentially
(16 hexagonal prisms), while the remaining cations reside in sites II.

Finally, we note that in the dry states considered in the present study, the cationic distri-
bution is dominated by interionic repulsion. A more stringent test of the performance of the
PIM force field would be the case of hydrated zeolites, which would requires the parametriza-
tion of the water-aluminosilicate interaction. We therefore leave this for further investiga-
tion. A recent study of cation migration upon (de)hydration in partially Ni-exchanged
Na-faujasite?® demonstrated the importance of accounting for the framework deformation to
properly predict the distribution of cations among the various sites and its evolution with
water content. Even though the purpose of the present work was to demonstrate the trans-
ferability of the PIM force field, the results are also promising for future studies dedicated

to zeolites.
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Conclusion

We have successfully extended the PIM polarizable force field to montmorillonites. We
used exactly the same procedure as for neutral clays?” in order to obtain the force field
parameters. The PIM force field was built and validated for two charged clays: tv- and
cv-montmorillonites with four different cations (Na™, Ca?*, Sr** and CsT). A structural
description of the atomic clay structure is obtained with the new polarizable ion model
(PIM) and compared, together with the state-of-the-art non-polarizable force field for clays
(ClayFF), to experimental data. The global structure of the unit cell is well reproduced by
both force fields. However, introducing the polarization allows for a better description of the
structural flexibility and the physisorption of cations at the tetrahedral sheet surface.
Moreover, we have demonstrated the transferability of the PIM model for other alumi-
nosilicates, at the price of a slight adjustement of the force field, namely using the Si-O short
range interactions for tetrahedral Al, instead of the parameters determined for octahedral
Al in montmorillonite clay. To this end, we considered the most widely studied zeolites, of
faujasite-type. Specifically, we investigated NaY and completely exchanged X and Y fauj-
asites with Ca?* and Sr?** cations. A good agreement with experiments was obtained for
the mineral framework structure, including the variations with Si/Al ratio and change in ex-
traframework cation, which is already an achievement in itself. Furthermore, the predicted
distribution of extraframework cations is also in excellent agreement with experiments.
The next step in the development of the polarizable force field consists in extending the
present approach to hydrated Na-, Cs-, Ca- and Sr-montmorillonites. The PIM force field
should then provide a more accurate description of liquid-solid interfaces in such systems.
In turn, this will improve our understanding of the interaction of clay minerals with water,
including swelling and wettability. Moreover, owing the good performance of the PIM force
field for dry Faujasite-type zeolites, we can expect that the parametrization of water-mineral
interactions will allow the full study of the simultaneous migration of the cations and the

deformation of the framework upon hydration. This approach could also be extended to

Page 34 of 48



Page 35 of 48

©CoO~NOUITA,WNPE

other aluminosilicates and multivalent ions of industrial and environmental interest (f-block

elements, rare Earths, etc.).

Supporting Information Available

Parameters of the PIM force field obtained on pyrophyllite and talc, Trans- and Cis-vacant
Na-, Ca~, Sr- and Cs-montmorillonite sheets structures details, Cations adsorption on the
tetrahedral sheet surface, and the parameters of the ClayFF force field.

This material is available free of charge via the Internet at http://pubs.acs.org/.
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