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Abstract

We improve the result obtained by one of the authors, [Bie], and establish the well
posed-ness of the Cauchy problem for some nonlinear equations of Schrédinger type in
the usual Sobolev space H*(R") for s > § + 2 instead of s > 5 + 3 in [Bie]. We also
improve the smoothing effect of the solution and obtain the optimal exponent.

1 Introduction

Consider the following nonlinear Cauchy problem :

{ O = i.Lu+ F(u, Vou, @, V,a), teR xR, "

u(z,0) = ug(x) € H*(R™),

where the function F is sufficiently regular in C x C" x C x C", the operator .Z has the form
_ 2 2
2L = Zaﬂb’ Zaﬂ@i’
J<jo J>Jjo
with a fixed jo € {1,2,...,n}, and H*(R"), s € R, is the usual Sobolev space on R™. Thus,
% generalizes the Laplace operator but is not elliptic unless jo = n. Hence, such equations
are generalizations of the nonlinear Schrodinger (NLS) equations.

In this paper, we continue the work undertaken in [Bie] and study the local existence and

the smoothing effect of the solutions of the Cauchy problem (1) with essentially the following
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goal : to obtain the optimal index s of regularity for which (1) is well posed. In fact, the
partial differential equation being of second order and semi-linear the optimal condition on s
should be s > 7 +1. Unfortunately, up to now and due to issues that occur when estimating
the remainder obtained after the linearization of the non linear equation, we have not been
able to prove the wished result under such a condition. In any case, we shall return to this

question in a future work. In this paper, we establish the following :

Theorem 1.1 Assume that F vanishes to the third order at 0, that is, F' and their partial
derivatives up to the second order vanishes at 0. Then, for every s > 3 + 2 and every initial
data up € H°(R™), there exists a real number T' > 0 such that the Cauchy problem (1) has
a unique solution u which is defined on the interval [0, T] and satisfies

ue C([0,T); H*(R™))

and

T 3
17l sup ( I |<a:—u>-”0JS+2u<x,t>|2da:dt) < oo,
0 n

REZL™

where J = (1—A)Y/2, A = Zﬁjf 92 and oo > 3 Is fixed. Moreover, given a bounded subset
B of H*(R™), there exists a real number T > 0 such that, for every uy € B, the associated
solution u of (1) exists on the interval [0, T] and the map which associates u to ug is Lipschitz
continuous from B into the space

{w e C([0,T]; H*(R")) ; [|7° 2wy < oo}

In [Bie], this theorem is proved under the assumption s > % + 3. We also improve the
result of [Bie] with respect to the smoothing effect of the solution since oy = 2 there. Note
that the assumption oy > % in the above theorem seems to be sharp; we refer for example
to the survey article [Rob] on the subject of Kato’s smoothing effect. Recall that at the
origin of [Bie] was the significant work of C. E. Kenig, G. Ponce and L. Vega, [KePoVe], who
first studied (1) and established the local existence and the smoothing effect of the solutions
assuming that F' is a polynomial and s > sy, the index sg being sufficiently large. These
authors also studied the case where F' (is a polynomial and) vanishes to the second order at

0. However, it seems that in that case we need to work in weighted Sobolev spaces.

The Cauchy problem (1) has been extensively studied in the nineties mainly when % =
A, that is, in the case of the Schrédinger equation. See the references in [KePoVe]. The
case .Z # A is less well known. Nevertheless, it is motivated by several equations coming
from the applications such as Ishimori’s type equations or Davey-Stewartson’s type systems.
For more details, we refer the reader to the very instructive introduction of [KePoVe]. Let
us now quote some papers which are more or less related to this subject. In [KePoVe2],
2004, the authors extended their results of 1998 to the quasilinear case assuming essentially
that the corresponding dispersive operator .Z is elliptic and non trapping. The non elliptic
case is treated in [KePoRoVel], 2005, and [KePoRoVe2], 2006. In [BeTal, 2008, the authors



solved the Cauchy problem (1) for s > % + 1 in modified Sobolev spaces and assuming
F(u,V,u,u, V,a) bilinear. More recently, in [MaMeTal], 2012, and [MaMeTa2], 2014, the

authors considered the quasilinear Schrodinger equation

i+ g7 (u, Vou);0pu = F(u, Vou)
j.k
and obtained the local well-posedness of the associated Cauchy problem for s > £ + 3 in
the quadratic case (with modified Sobolev spaces) and for s > & + % in the non quadratic
case. However, they assume the smallness of the data and they do not seem to obtain the

smoothing effect of the solutions.

The proof of Theorem 1.1 follows the same ideas as that of [KePoVe] or [Bie]. Of course,
the general plan is unoriginal : linearization of the non linear equation, then, establishing
energy estimates for solutions of the linear equation, and finally, solving the non linear
equation by means of an appropriate fixed point theorem. Like [Bie], we start by applying a
para-linearization, that is a linearization in the sense of Bony, [Bon], instead of the classical
linearization. This leads us to the use of the para-differential calculus whose main interest lies
in the fact that it eliminates the usual losses of regularity due to commutators. One obtains
a para-linear equation and most of the proof of the theorem is concerned with the study of
such an equation, that is, the well-posedness in the Sobolev spaces of the associated Cauchy
problem by means of energy and smoothing effect estimates. As did Kenig, Ponce and Vega,
we establish the smoothing effect estimate by using Doi’s argument, [Doi], via Garding’s
inequality, and we prove the energy estimates by following an idea of Takeuchi [Tak], that
is, by constructing a non classical invertible pseudo-differential operator C which allows
estimates for Cu if u is a solution of the para-linear equation. At last, we solve the non
linear Cauchy problem (1) by applying these estimates to an integro-differential equation
which is equivalent to (1) and obtain the solution as the fixed point of an appropriate
contraction in an appropriate complete metric space.

Now, in order to give a more precise idea about our proof, let us indicate the differences
with that given in [Bie|. In fact, there are three main differences :

— We simplify certain arguments of [Bie]; for example, we no longer need to use the
general Hormander symbol spaces S7's, we only use ST, and Sgj,. Also, we only use the
original para-differential operators (see Section 2) and not the variant introduced in [Bie].

— The linear theorem, that is, Theorem 3.1 (see Section 3), is proved for general para-
differential operators T3, and T3, of order 0 instead of para-multiplication operators. Note
also that we allow the operators C'; and (5 to be abstract bounded operators.

— The third difference lies in the non linear part (see Section 4) and is crucial for our
improvement of the result of [Bie| : we use anisotropic Sobolev spaces and an interpolation

inequality (see Lemma 7.3) to estimate the remainder of the para-linearized equation.



2 Notations and preliminary results

Some notations used in the paper :

— J*=(1—A)*?=(D)* is the operator whose symbol is (£)* = (1 4 £2)3/2.
— Dy, = —id,,, D, =—i0,.

— o] = gla] if aeN"

— Av=(Avy,...,Av,) and Vv = (Vuy,..,Vu,) if v=(v,..,0,).

— (R™) denotes the Schwartz space of rapidly decreasing functions in R™.
— Z(R") denotes the space of smooth functions with compact support in R™.
— 2'(R™) denotes the space of distributions in R".

— ’(R") denotes the space of tempered distributions in R”.

— @ or #(u) denotes the Fourier transform of wu.

— H*R")={ue€ Y’(R")' (€)st € L*(R™)} is the usual Sobolev space of regularity s.
— ulls = (fen (€)*|0(€)]? d€)*/* denotes the norm of w in H*(R™).

— |lul|g denotes the norm of u in the space E.

— Hormander’s classes of symbols : If m € R and ~,4d € [0, 1],
7= {a € CR" < RY); Va, BN, |9207a(z, €)] < Aaplg) ML

— If p > 0 is an integer, C?(R") denotes the set of functions in R™ which are bounded,
of class C"™ and their derivatives up to m are bounded. If p > 0 is not an integer, C?(R")
denotes the Holder class, that is, the set of u in Cl¢(R™) such that

3C € R, Y(z,y) € R" x R", |0%(x) — 0%u(y)| < Cla — y|27 1.

— Op S denotes the set of pseudodifferential operators whose symbols belong to S.

The following statement summarizes the pseudodifferential calculus associated to

Hormander’s classes of symbols ST :

Theorem 2.1 Ifa € ST b€ ST 5,mm eER, and0 <0 <y<1lor0<<~vy<1, then:

(1) a(z,D)b(z,D) = ¢(x, D) with ¢ € Sfyr,““m . Moreover,

dy dn
(2m)™

= S Pz DI )+ Sy / (1= 0N py o2, €) db

(. €) = / e a2, € + )bz + 1, £)

dy dn
(2m)"”

and the S;n =N gemi-norms of T, are bounded by products of semi-norms of a and b
uniformly in 6 € [0, 1].

where 1,4(z,§) = /e‘iy'"(‘)g (x, &+ 60n)Dib(x + y, &)



(i) a(z, D)* = a*(z, D) with a* € SIs. Moreover,

dy dn
(2m)"

o () = / (e +y €+ )

= > sopa g+ X b [ 00 e

<N w=n "
dy dn
(2m)"”

and the S:::”é_ N0 semi-norms of 179 are bounded by semi-norms of a uniformly in 6 € [0, 1].

where 1} 4(x, ) = /G_iy'nagDZ (z +y,&+0n)

See [Tay|, par exemple, for the proof. We shall also often need the following version of

Calderén-Vaillancourt theorem :

Theorem 2.2 Leta:R"”xR"™ — C be a bounded function. Assume that, for all a, 3 € N"
such that |a| 4+ |B] < n + 1, there exists a constant C, 3 > 0 such that |8°‘86 (x,8)| <
C,p in R?". Then, the pseudod1ﬁ”erent1a] operator a(x, D) is bounded in L2(]R”) and its
operator norm is estimated by

sup | 8?85’8&"@0 :
o] +[B8]<n+1
See [CoMe] for the proof.
The following technical lemma which is a consequence of Theorem 2.1 will be very useful

in many of our proofs :

Lemma 2.1 Let a € 57, m,0 € R and p € R". Then,

(i) we have (v — p)?a(z, D)(x — p)~7 = a,(z, D), where a, € Sgy and the semi-norms
of a,, are bounded by semi-norms of a uniformly in p.

(1) if o > 0 and if, in addition, a(x,§) is rapidly decreasing with respect to = — u, we
have (v — p)?a(x, D){(x — p)° = by(x, D), where b, € S}, b, is also rapidly decreasing in
x — p and the semi-norms of b, are estimated uniformly in p by expressions of the form

sup (& — ) (€)"" O Dfal e
o] +[BI<N

Here, the fact that the symbol a(z, £) is rapidly decreasing with respect to x — p means

that, for every integer N and all multi-indices a, 3, the function (z — u)V <5>_m8§‘D€’B a is

bounded in R™ x R", and we shall often meet such symbols in this paper.

Proof : (i) When ¢ > 0, we can use Theorem 2.1(¢) and integrations by parts to obtain

0 (2,€) = (& — p)°(2m) " / e (z, € + 1) (z + y — p)~7 dy dy

— (o= em) ™ [ ) Valo, 4 ) ) NN e+ y - )Ny



where NV is a large and even integer. Hence, by taking derivatives and bounding, and next

by applying Peetre’s inequality,

|au(2,8)] < C[(€) Malen(z — 1)” /(n)‘N E+m™(y) "Mz +y — )~ dydy

ot|m| —m m m|— o— m —m
<272 Ce)"alen(8) /<n>' )N dydip = O (€)™ [(6) M alew,
where C' and C" are constants which are independent of p, and N is taken for example such
that N > |m|+ o0+ n+ 1. Of course, the derivatives of a, are treated in the same manner.

The case 0 < 0 follows from the preceding case by considering the adjoint
a(x, D)" = & — u)~"ala, D)* (& - )"

and by applying Theorem 2.1(i1).

(77) By using the formula in Theorem 2.1(7i) once more, it is easy to see that, if a is
rapidly decreasing with respect to x — i, then the symbol a* is also rapidly decreasing with
respect to x — p and that, for all N € N, «, f € N”, there exist M € N and a non negative

constant Cy o g which does not depend on p such that

[z = )™ (€) " Dfa" | < Cnap sup o = m)V(€)""0y DY al o~ .
o |+18"| <M

Now, by following the same argument as that used in the first part, one can check that the
same claim holds exactly when we replace a* by a, in the above assertion; in particular, we

have the estimate

[z = m)™(€) "0 Dfauli < Crnap  sup o — )™ (€)™ Dy al=,
o/ |+]B'[<M

and since we can write obviously b, (x,&) = (x — p)*?a,(z,&), this achieves the proof of the

lemma. O

When studying the non linear equation, the following result is important in order to

explain the assumption made on the non-linearity F'.

Lemma 2.2 For all s > 0 and all o > %, there exists a constant C' > 0 such that, for all
v € H*(R™), the sequence p — |[{x — pu)~v|, is in (*(Z") and

D e = wl2 < C ol
I

In particular, if s > %, u,v € H*(R") and x is a smooth and rapidly decreasing function,

then, p+— | x(z — p) uv|s is in £1(Z™) and

> Ix@ = pwyuv]s < C ol -
I



Proof : The case s = 0 is obvious and follows from the fact that ) (x — )~ is a
bounded function. The case where s is a positive integer reduces to the case s = 0 by taking
derivatives via Leibniz formula. The general case is obtained by interpolation. Indeed, the
map v — (x — u) v being linear and bounded from H*® into ¢*(Z", H*) for integral indices
s = 51, 59, it will be also bounded from H* into ¢*(Z", H*') for any real s’ between s; and

$o. This follows from the fact that
[(Z", HY), (2(Z", H™))y = 2(Z", [H*', H*]y),

for 0 < 6 < 1. See for example [BeL6], Theorem 5.1.2, page 107.
The second part is a consequence of the first one and the fact that H*(R") is an algebra
if s > 7. O

Let us now recall some results on paradifferential operators.

Definition 2.1 We define the class ¥.7" where m € R and ¢ > 0 to be the class of symbols
a(x, &) defined on R™ x R™ which are C* in ¢ and C?° in z, in the sense that

Va € N", |92a(z,€)| (&)™ e C?*(R* x R),

C? being replaced by L> when ¢ = 0. If a € ¥.7', m Is the order of a and g Is its regularity.
Following J.-M. Bony, we associate to a symbol a in X" the paradifferential operator Ty,
defined by the expression

—

Toil€) = 20)" [ (€= ) Fi@) (€~ nom)it) d

where x is what one calls a para-truncature, that is a C*° function in R" x R" satisfying the
following properties :

(1) Je >0 suchthat ¢ <1 and x(&n) =0 if [ >¢eln|, &n e R™

(i) Fe'>0, & >0, suchthat ¢ <e and x(&,n) =1 if |£| <&'|n| and |n| >&".
(i) Va € N, A, >0, VCeR™, (O)0°x(¢)| < Aq.

The first important result on paradifferential operators is that, even if one can show that
T,y = a(z,D) with some a € S, they are bounded in the Sobolev spaces in the usual

manner. In fact, we have :

Theorem 2.3 Assume that y satisfies only the first and third property among the above
ones. Then, for every real s, T,, is bounded from H*(R") into H*~™(R™) and its operator
norm is estimated by a semi-norm of a in ¥7'. In particular, if a = a(z) € L>(R"), then,
for every real s, T, , is bounded in H*(R™) with an operator norm bounded by a constant
times |al po.

Proof : See [Bon], [Me2] or [Tay].
Concerning the dependence with respect to the para-truncature y, one can say the fol-

lowing :



Theorem 2.4 If o > 0 and X1, X2 are para-truncatures, then, the operator T, ,, — T, , is
bounded from H*(R™) into H*~™*¢(R™) and its operator norm is estimated by a semi-norm
of a in X7

Proof : See [Bon], [Me2] or [Tay].

This result shows that the dependance of T;,, on x is less important than that on a. It
also explains why the remainders in the paradifferential theory are only p-regularizing. From
now on, we shall write T, instead of 77, , unless it is needed.

Note also that a possible choice of the para-truncature that we shall often use in the
sequel is given by

x(&m) = xa(&/Inl) (1 = ¥i(n)),

where 11, x1 € C*®(R"), ¢y = 1 in a neighbourhood of 0, ¥y = 0 out of B(0,¢”), and
x1 = 1 on B(0,&), supp(x) C B(0,¢), with € and &’ satisfying 0 < ¢’ < ¢ < 1. In this case,

Toy = a(z, D) with the following expression of a :

a(x, ) = (1 —¢1())I¢]" /Rn F )€l (@ =) aly, §)dy. (2)
The following lemma gives some properties of @ which will be needed in the sequel and often
used implicitly.
Lemma 2.3 Let o> 0 and a € E;”. Then, a is smooth and
10 0Yalz, €)] < Aas (€)1 il Ja| < o, (3)

10¢0%a(z,€)| < Aag ()P if a] > o, (4)

where A, 3 are non negative constants; more precisely, the A, g can be estimated by semi-
norms of a in X', In particular, a € ST

Moreover, if 6 is a smooth function with support in some compact subset of R" and
0,(x) =0(x —p), p € Z", then, for all N € N, we have

(@ — YN0 Gua (2,6)| < Aapn (™ if o] < o, (5)

(@ — V007 Gua (2, 6)] < Aay ()P i o] > o, (6)
where the A, g N do not depend on p and are estimated by semi-norms of a in 37"

Proof : For the first part we refer to [Me2] or [Tay]. The second part follows from the

first one by using for example for even N the decomposition

o = 3 gy

together with the expression (2). O

When dealing with non linear terms, we shall frequently use the following classical result :
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Proposition 2.1 If F' is a C* (or sufficiently regular) function in C™, F(0) = 0 and
U1, ..., Uy, are functions in H*(R"), s > %, then, F(uy, ..., u,) € H*(R™) and we have precisely

[E(urs o tm) s < C ((uas oo tm) [2oe) [(un, s tm) s,
where £ — C(§) is a non negative and non decreasing function.

An important property of the paradifferential operators consists in the fact that they are

necessary to write down Bony’s linearization formula, a formula that we recall here.

Theorem 2.5 (Bony’s linearization formula) For all real functions uj,...,u, €
H2te(R"), o > 0, and every function F' of m real variables which is C™ (or sufficiently
regular) and vanishes in 0, we have

F(up, .oup) = Y _ T, pu;+7r  with 1€ H2P2(R"),

i=1
Proof : See [Bon], [Me2] or [Mey].

The remainder r in the above formula depends of course on (uy, ..., u,,). The following

result essentially shows that r is a locally Lipschitz function of (uy, ..., u,,). More precisely :

Theorem 2.6 If u = (uy,...,un) € H*(R",R™), s = § 4+ 0, 0 > 0, let us denote by r(u)
the remainder in Bony’s formula. For all u,v € H*(R™ R™), we have then

lr(u) = (W) lste < Olulls, l[olls) lu = vlls,

where 0(]|ulls, ||v]||s) is bounded if u and v vary in a bounded subset of H*(R",R™).

Proof : See [Bie].

Remark : In the case of our equation, that is (1), even if v has complex values, we shall
be able to apply Bony’s formula to the non linear expression F'(u, Vu, @, Vu) where u €

Hzt1*e(R™). Indeed, we can write
F(u,Vu,u,Vu) = G(Re(u), VRe(u), Im(u), VIm(u))

where G(z1, 2, Y1, y2) = F(x1 41y, Ta +1iya, T1 —iyy, T2 — iyo) Which is a function from R?"*2

into C. We apply then Bony’s formula to G and obtain that
F(u, Vu,u,Vu) =Ty, aRe(u) + Ty, oV Re(u) + Ty, cIm(u) + T, o VIm(u) + r(u).

At last, by using the fact that Re(u) = 2%, Im(u) = %%, 0. = 5 (0, —i0,) and 9 =
% (0y +1i0,), and then the linearity of 7, with respect to b, we obtain the formula used in

this paper :
F(u,u, Vu,Vu) = Ty, pu+ Ty pti + Tog, pVu + Ty p VT + (1)
with r(u) € H272¢(R") if u € H2+1He(R").

We shall also often need the following result similar to Lemma 2.1 :
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Lemma 2.4 Let a € XZ)(R"), § € 2(R"), ,(x) = 0(x — p), p € R* and s € R, and
consider the paradifferential operator Ty, = Tp,a,y (where the para-truncature x does not
necessarily satisfy the second property of Definition 2.1). Then, for all o > 0, the operator
(# — p)°Ty,a(x — p)? is bounded in H*(R") and there exist N € N and a non negative
constant C' such that, for every p € R,

[{& = 1) Tgya (v — 1) | ey < C SUp. [€)! "ol -

Proof : First, one can assume that o is an integer and even an even integer. Let us denote
by a, the symbol 6,,a and consider first the operator T, (x —)?. Recall that T;,, = a,(x, D)
with

(2, §) = (1—¢1(€))|§|"/ T )€z = y) au(y, §)dy. (7)

n

where ¥y, x1 € C*(R"), ¢y = 1 in a neighbourhood of 0, 1)1 = 0 out of B(0,£"), and x; =1
on B(0,¢"), supp(x) C B(0,¢), with ¢ and &’ satisfying 0 < ¢’ < ¢ < 1. Hence, we can write
for arbitrary u € . (R"),

T, (- p)°u(z) = (2m) " / 6 G, (2, €).F (& — 1)) (€) d

— (2m)™ / ¢, (2, €) (De + ) a(€) dé = (2m) ™" / (D — (6% i, €)] (€ de

= (2m) " Y Do — ) [ 0 (0, 0(6) de,

07

where we have applied integrations by parts and Leibniz formula. So, we have proved that

T,y (o= 17 = 3~ DSl — 1)) (2,0 (x, D),

«

where the sum is of course finite. Now, let us consider the operator (9¢a,)(x, D) and let us

remark that, for example,

Doyt (,€) = (1~ (©))[€]" / €N — ) Beyap (. €) dy

~ =@l [ F el = 1) oyl ©) ez dy

=0 @I [ F 0l — ) oo €) d

where x2(1) = >_7_; 7;0;x1(n). This shows that

(8&@“ x, D ZTG al,xt

where the a! are symbols in ¥;' and the x' are para-truncatures which satisfy the first and

third properties of Definition 2.1. By induction, (0¢a,)(z, D) is then a finite sum of operators

10



of the same form as Tj,, = T, , (of order < —|a|), and note also that the semi-norms of the
associated symbols are bounded uniformly in p by a semi-norm of a. Hence, T,, {(x — j)°
is a finite sum of operators of the form P(x — p)T;,, where P is a polynomial (of degree
< o), and consequently the problem is reduced to the study of the operator (z — u)°T,,
only. Now, the symbol of the latter can be written as

(&= ) au(x,€) = é(l—wl@)l&!” R(I—y)af_l(xl)(\fl(fc =) Oy — )T au(y, &) dy

n
la|<o

= 3 - n@IE [ F el - ) 8 - a0, dy

la|<L

where x{ and 6% are similar to x; and 6 respectively, and a® € X, ! With semi-norms

o

bounded by those of a. Hence, (z — )T, is a finite sum of operators of the same form as

T,, whose symbols have semi-norms bounded uniformly in x4 by a semi-norm of a. Eventually,
the lemma follows from Theorem 2.3. 0J

Let us also recall the Garding’s inequality which will be used crucially to prove the

smoothing effect estimate.

Theorem 2.7 (Sharp Garding’s inequality for systems) Let a(z,£) be a kxk matrix
whose elements are in ST\, and which satisfies

((a(x, &) +a"(2,8))¢,¢) = 0

for all ¢ € C* and all (z, &) such that || > Ao, where a* denotes the adjoint matrix of a and
(.,.) is the usual hermitian scalar product of C*. Then, there exist a non negative constant
A and an integer N such that, for all u € .7 (R",C¥), we have

Fefa(z, Dyu,u) > —A sup ()P 7"020 al = Julius
laf+|8I<N 2

where A depends only on n, k and Aj.

Proof : See [Tay] or [Tat] for example.

3 The paralinear equation

In this section, we solve the Cauchy problem for the paralinear equation, that is, the linear
equation obtained from (1) by applying Bony’s linearization formula (Theorem 2.5).

Recall that @, is the cube p + [0,1]", p € Z" and that Qj, is a larger cube with side
length 2, for example, u + [—1/2,3/2]™.

Theorem 3.1 Given s € R, consider the following linear Cauchy problem :

ou =1.Lu+ Ty, .Vou+ T, .Vou+ Cru+ Cou + f(z,t) (8)
u(z,0) = up € H*(R")

11



We assume that Cy and Cy are bounded operators in H*(R™) and in H*"?(R"), that by, by €
Y75, 0> 0, and more precisely that

bk(xaf) = Z Ok, (Pk,,u(xag)a Z |Oék,,u‘ < Aka k= 172

WEL™

o
supp(z — (7, €)) € Q7 S 110 rplce < 1,
<No

(9)

and | Ci| sy, |Ckll ciast2y < Ar, B = 1,2, Ny being a large and fixed integer. We further
assume that by(x, &) is even in . Then, the problem (8) has a unique solution w which is in
C(R, H*(R™)) and satisfies, for all T > 0,

sup Ju(t)|? < A (Juol? + Lr(J°f, J*u)) (10)
—T<t<T
1754 2l < A (Juo|? + Ir(J* £, J*w)) , (11)

where the constant A depends only onn, s, o, T, Ay, and As, and the expression I7(v,w) is
a finite sum of terms of the form

T
sup / (G, w)|dt

pneZ™ J —-T

with G, € OpS&O and the semi-norms of its symbol (up to Ny) are uniformly bounded by a
constant that depends only on s, n, o, A; and As.

T
Recall that |Jul|% = sup/ / (x — py 7> lu(x, t)[*dtdz, where o > 3 is fixed.
poJor Jrn

Proof : Let us start by noting that the uniqueness is an obvious matter. Indeed, if u; and
ug are solutions of (8), then, u; — ug is a solution of (8) with uy = 0 and f = 0, and the
conclusion follows from (10).

As for the existence, as is customary with linear differential equations, it will follow from
the a priori estimates (10) and (11) by using more or less standard arguments of functional
analysis, and the proof of Theorem 3.1 will consist essentially in establishing them.

Another useful remark is that it will be sufficient to prove the theorem in C'(R,, H*(R"))
instead of C'(R, H*(R™)) and the estimates (10) and (11) on [0, 7] instead of [—T, T]. In fact,
if the theorem is proved on R, , one can apply it to v(t) = u(—t) which satisfies a Cauchy
problem of the same type as (8). The result is then that v(—t) will extend u to R_ and
satisfy (8) on R_, in addition to the fact that the estimates (10) and (11) are also extended
to [T, 0.

So, let us assume that v € C([0,T]; H*(R")) is a solution of the Cauchy problem (8).

In what follows, it will be quite convenient to use the following notation

vn(p) = sup  sup (10507 ol ,
1IN [al+18I<N

and note that such a quantity is not a norm in general but it is well defined for ¢ € S?,o-
Note also that, if M > 1, vn(0)™ < vyu(p), a remark that will be often used implicitly.
In fact, the inequalities (10) and (11) will be deduced from the following ones :

12



Proposition 3.1 Assume that the functions yy, , defining the by, are C'*°, that is, @y, € S?,O,
k = 1,2. Then, there exist a positive real number A and an integer N such that, for all
R > 1, there exists a pseudodifferential operator C € OpSg’O such that, for all T > 0, any
solution u € C([0,T]; H*(R™)) of the Cauchy problem (8) satisfies

T
sup [Cu(®)[? < [Cuol? +2 / (CJ* . I di
0<t<T 0

A sup v (n) (RT sup Ju(®)]? + |||Js+2uu|T) .
0<t<T

k,p

Moreover, regarding the operator C, we have the following precise bounds, for v € H*(R") :

||CU||5 < Asup VN(QOLM) ”UHSa
I

A
[ols < A'sup vn(pr,)[Cols + 5 sup N (p10)?[0]s-
B B

Proposition 3.2 Under the same assumptions as above and with the same elements A, R,
C and N, there exist also pseudodifferential operators ¢;(x, D) € OpS} 0,7 =1,2,3,4, such
that, for all T > 0, any solution u € C([0,T]; H*(R™)) of the Cauchy prob]em (8) satisfies

T
|||J8+5u|||T < A(l + 7T+ Tsup vn @k, u)> [sup |l + AZ sup / |(Yj(x — p, D)J*f, J*u)| dt

1 WELM
and
T
|\|Js+2CuH]T <A<1—|—T+Tsup vn (@r, ub sup |Cul? + AZsup (Y (x—p, D)CJ*f, CJ u)|dt
o,T j=1 H*JO

1 1
+A sup vn(Qru) (RT sup [u(t)]3 + EHIJ”?U!H%) :
0<t<T

ke,
Admitting these propositions (see Section 5 and Section 6 for their proofs), let us go on
and finish the proof of Theorem 3.1. In order to apply the above inequalities we have to

regularize the by, k = 1,2, by setting

(pk,u,m(xa f) =m" X(m(LE - y)) (Pk,,u<y7 g) dy and bk,m = Z AL P, p,m

Rn

where x is a non negative C'*° function with support in the unit ball and whose integral is
equal to 1. Note that ¢y, has its support (with respect to ) in a compact set which is

slightly larger that ()}, but this has no effect on the proofs. Since we can write
Gtu =1ZLu —+ Tbl’m.qu + TbQ’m.Vza -+ C’lu + CQIITL + fm,

where fo, = f+ Ty, s, ,,-Vu+ Ty, s, ..V, we can apply Proposition 3.1 to obtain

T
sup |Cort]? < [Cortig? +2 / {(Con* fons Con )| d
[0,T] 0

1 1
+A sup vn(Prpum) (RT sup |ul? + }_3H|JS+2U|||2T> ;
(0,77

k,p
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where the operator C is denoted here by C,, to indicate its dependence on m. Now, clearly,

we have Uy (g um) < Am™ sup <oy sup|g<n | <§>|ﬁ‘a§<ﬂk,u|‘jw < Am™. Hence,
T T
sup |Cpul? < [|Chuo|? + 2/ (CnJ° f, CpJu)| dt + 2/ (Crn Ty, s, ,,, Vu, Cp JPu)| dt
[0,T] 0 0
r 2 1 \
22 [ G i, 90 Con ) di A ( RTsup uf? + 1775l )
0 (0,71

and the problem now is to estimate the third and fourth terms in the right hand side of this

inequality. This is done in the following lemma.

Lemma 3.1 Let @ stand for u or u, and 0 = inf{p,1}. Then, there exists a constant A
such that, for all k € {1,2}, m > 1, R>1 and m' > m,

T A 2N?2 A 13N?
/O !<chSTbk_bk,mva,cmfu>}dts( el Piae "

m'e R

A
+AmMN Tsup Jul2 + — |72 Crull
[0,T] m
See Section 7 for the proof of this lemma. Applying this lemma yields

T
A !
sup |Cul < |Cunuol +2/ {(Cond*f, Crn )| dt + — | T2 Cppul7
0,T 0

m

+
m'e R

A 2N?2 A 13N?2
+ ( “ ) 1 R ulz + AmN R T sup Jul?
[0,T]

an inequality that we can improve, thanks to Proposition 3.2, as follows

T A 4 T
sup |Cpe]? < |Ctio)? + 2 [(Cr*f, CpoJ*u)| dt + — > sup | |[(¥;,,Cp* f, CpJou)| dt
[0,T7 0 =1

0

Al +TmVN
—I—w sup |Cpul? +
[0,7]

(AmzN2 Am3N?

+ J )2+ Am* R T sup |ul?
e 7 >||| Il Sup [

T A 4 T
< |Chuo)? + 2/ (CpJ®f, CpJou)]| dt + — > sup| [(¥;,,Cpn* f, CoJou)| dt
0 j=1 HJO

[O,T] m/a R

A(1 + TmVN Am2N? ANt A T
AT ol + (A A ) S w0, 7
m =1 mJo

Am2N A 13N2
| o S ) (1 T sup ful? + Am ™ RT sup Jul?,
m R [0,T] [0,7]

where U, , = ;(x — p1, D). Next, by taking m such that, for example, m? > 44 and T such
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that Tm" < 1, we get

T 4 T
sup |Cpu|? < 2|Cpauo|? + 4| (CJf, CmJSu>\dt+Zsup (U, CnJ®f,CpJu)|dt
[0,T7] 0 ©Jo

j=1

2AM2N? 24 m/3N? 4 T
+ + sup [ (U, J°f, J°u)|dt
( m/a R ]Zl . Jo |< I >|

Am2N? A m/3N?
+ m, + 2 L AWSYNRT | sup Jul?
m'e R (0,7

and by using the second part of Proposition 3.1, we obtain

(0,77 0

T 4 T
sup Jul? < Am?’ <m2N2||u0||§ + / (Cond* f, Cr T u)|dt + > sup [ [(T;,,Cpn* [ CmJSu>|dt>
0 =1 M

Am4N2 Am/5N2 4 T
+ + sup [ [(¥;,,°f, Ju|dt + C(m,m', R, T) sup Jul?,
( m'e R ; wto " 0.7]

AmAN? A m/PN? A mAN?
- e AMTVRT £

2
(and depending only on A), we take m’ such that A:Zfiv < %, then we take R such that

! 2 2 .
AmPT 1 gpq Am? 1 and last we take T such that Am N’ RT < %. With these

R = B8 RZ = 8’
choices, we have of course C'(m,m/, R, T) < § which allows to bound supy, 1 |u|2 and to get

(10) (and also (11), thanks to Proposition 3.2) with

where C'(m,m', R, T) =

Finally, m being fixed

T 4 T T
Tr(v, w) = / (CrCo,w) dt+ Y sup [ [(C;,Co,w)ldt +sup [ (0,0, w)dt
0 = nJo wJo
In fact, we have proved (10) and (11) only for T = T, and Tj is sufficiently small. Let us
show, if Ty < T, that they hold true in the whole interval [0,7] where the solution w is
defined. Indeed, note first that the Ty as determined above depends only on the constant
A (so, only on n, s, o, A; and As) but not on the given function (or distribution) f. Next,
take a T} < Tg such that 73 = T/ny, with some integer ny > 2. Then, if we consider the
function v(x,t) = u(x,t + T1), we note that v is a solution (defined at least in [0, T — T1]) of
(8) with v(0) = w(71) and g(z,t) = f(x,t 4+ T}) instead of f(z,t). It follows from the above
arguments that v satisfies (10) and (11) for 7' = Tj and hence for T'= T}. Since

sup ul? = sup ol < A (T2 + (7. 70) < A ((TE + o (°F, ')

S A (A"U,Q”g + AITl(JSf, JSU) + [QTl(Jsf, Jsu)) S (A2 + A) (”UQ”i + IQTI(JSf, JSU)) s

we obtain that u satisfies (10) and (11) for 7' = 2T} and with the constant A% + A instead
of A. Repeating this argument, we obtain that u satisfies (10) and (11) on [0,n,7}] = [0, T]
and with the constant ) 71 A7 ~ AT/Tr instead of A.
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As for the existence, let us consider the following approximating Cauchy problem :

{ Opu = iLu+ Ty, V h(eD)u+ Th,V h(eD)a + Cyu + Coti + f(z,1) 12

u(z,0) = up € H*(R")

where h is a non negative C'* function on R"™ which is equal to 1 near 0 and has a compact
support. It is easy to see, if T" is such that supjy 7y || f|ls < +00, that the above problem has a
unique solution, denoted by u., which is in C([0, T]; H*(R™)). Indeed, the Cauchy problem

(12) is clearly equivalent to the integral equation
t
u = ey + / =2 (T, V h(eD)u + T,V h(eD)t 4+ Cyu + Coti + f(x, 1)) dt’
0

and one can easily show that the map defined by the right handside of this equation is a
contraction in C([0,7:]; H*(R™)) with some T. > 0 sufficiently small, which allows one to
apply the fixed point theorem and to get a solution u.. Now, since 7. does not depend on
the data ug and f, one can extend u. to a solution of (12) on the whole interval [0, 7.

The idea now is to let € tend to 0. This is possible because u. satisfies the estimates (10)
and (11) and even uniformly with respect to €. Indeed, it is sufficient to remark that the

Cauchy problem (12) is of the same type as (8) because we can write
Tka h(ED) = Tbk’EV

where by . (z,&) = bi(z, £)h(e€) and by satisfies the assumptions of Theorem 3.1 uniformly

in . Hence, we have in particular

sup [uc |3 < Aluol? + Alr(J°f, JPue),
[0,7]
and it follows from Calderon-Vaillancourt theorem that

T 1 1 / T 2
AL(7 5.5 < A sl [T 1l < Gswll+ 5aa ([ 1Lar) |
[0,T7] 0 [0,T7] 0

so that,
T
suplucf, < Afu.+4 [ |71, d (13
[0,7] 0

Next, to check the convergence of u., let us consider v = u. — u.. It is clear that v is the
solution of (12) with ug = 0 and

f =1,V (h(eD)— h(e'D))us + T,V (h(eD) — h(¢'D)) ..

Therefore, it follows from (13) that
T
sup |vf|s < A/ 1Ty, V (h(eD) — h(e'D)) usr + T,V (h(eD) — h(e'D)) 1|5 dt, (14)
[0,7] 0
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and from the boundedness of the Tj, in the Sobolev spaces that
T

sup |vfs < Ale - E'!/ e |52 dt < Ale — €| T'sup Jue |42, (15)

[0,7] 0 (0,77
that is, thanks to (13),

T
sup i — e, < Al =&/ (Tuolusa + [ [flsedt). (16)
0

(0,7]

which proves that (u.) is a Cauchy sequence in C([0,T]; H*(R™)) if one assumes that ug €
H*2(R") and f € L'([0,T); H**2(R")). In this case, u. — w in C([0,T]; H*(R™)) when
e — 0, and by passing to the limit in (12), we obtain that u is a solution of (8). Moreover,
by passing to the limit in (13), we get

T
sup[ul. < A(Juol. + [ 1], ). (1)
[0,T] 0

Now, if we have only uy € H*(R") and f € L'([0,T]; H*(R")), by density of the smooth
functions, we can take sequences () in H*T2(R") and (f7) in L'([0, T]; H***(R™)) such that
|l — ugls — 0 and fOT |f? — f|s dt — 0, and we can consider the solution u’ of (8) associated
to the data u} and f/. Then, v/ — u* is the solution of (8) associated to the data u} — uf
and f7 — f*. Hence, thanks to (17),

T
sup o — o, < A(Juf — ol + [ 157 = 141.dt),
[0,7] 0

which shows that (u?) is a Cauchy sequence in C([0,T]; H*(R™)) which is then convergent
to some u € C([0,T]; H*(R™)). Of course, u is a solution of (8) and satisfies the estimates
(10), (11) and also (17). This achieves the proof of Theorem (3.1).

4 The nonlinear equation

Consider the nonlinear Cauchy problem :
ou=1Lu+ F(u,Vyu,u,V,u), teR zeR, (18)
u(x,0) = ug(x) € H*(R™),
where the function F(u,v,u,v) is sufficiently regular in C x C" x C x C™ and vanishes to
the third order at 0, the operator .Z has the form

_ 2 2
2 = Zaﬂia‘ N Zaxj’
i<k >k
with a fixed k € {1,2,...,n}, H*(R") is the usual Sobolev space on R", and s = § + 2 + o,

0 > 0. Using Bony’s linearization formula, (18) is equivalent to

{ Opu = i.Lu + Ty, Vou + Ty, Vol + Toyu + To,T + R(u, Vou, @, V, 1) (19)

u(x,0) = ug(x) € H?(R™)
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where R(u, V,u,u, V,u) is Bony’s remainder and

by = 0, F(u, Vyu,w,V,a), by = 0:F(u,Vyu,u, V),

a; = 0, F(u, Vyu,u, Vi), as=0F(u,Vyu,u,V,a).
Recall that R(u, V,u, @, V,u) € H* D73 (R") if u € H*(R"), s > 2 + 1. Note also that it
follows from Proposition 2.1 that the b; and a;, j = 1 or 2, are in H*'(R") if u € H*(R"),
s> 2+ 1, and that

[61s—1 < Clllulze, [Vulze) [uls; lajls—1 < C(lulze, [Vulz<) Juls, 5= 1,2

Moreover, by introducing the notations
b = 0y F(uo, Vi, To, Valo), by = O5F (ug, Vo, To, VaTio),
a/(l] - auF(UO, vaO, ﬂo, vmﬂ())a ag - 8E-FV(U/O) Vaiu()a H07 V:EEO)?

the above Cauchy problem is in fact equivalent to

{ Ou = iLu+ Ty Vu+ Ty V0 + Tyou + T, + R(u, Vyu, @, V1) 20)

u(z,0) = ug(x) € H*(R™)
where

R(u7 Vmu, H, Vxﬂ) = Tbl_b(l)vxu + Tb2_bgvlﬂ + T

ai—a

ou+To,_qg U+ R(u, Vou,u, Vyu). (21)

Clearly, the last Cauchy problem is of the same type as (8) which is studied in Theorem
3.1 and in fact we are going to apply that theorem to

(22)

ou =1L+ Tbg)vmu + Tbgvxﬂ + Ta? U+ Tag u+f
u(z,0) = ug(x) € H*(R™).

This is possible because b9 and b satisfy the assumptions of Theorem 3.1. Indeed, it follows

from the Taylor formula and the assumptions on F' that one can write for example
b(l) = &,F(zo) = Up G1 (Zo) + V;EU() GQ(Z(]) + ﬂ0 G3(ZO) + V:ﬂo G4(20>7 (23)

where zg = (ug, Vaug, o, ViUo) and G, Gy, Gz and G4 are sufficiently regular and vanish
at 0. Since s —1 > 2, we know that the G;(z) are in H*~'(R") and it follows from (23) and

Lemma 2.2 that ) satisfies the assumption (9) of Theorem 3.1, that is, one can write
b(l) = Z Q1 Plp
o

o1y Q1= qubi/a,, and 37 g, = 1is asmooth partition of unity

where ay, = ||q, 09|

with g,(z) = ¢(x — ) and supp(q) C Q5. Note that we have precisely the bound

Z‘|%b(1)|

I

gs—1 < C(|Juo]

Hs—1 HGl(ZO)\

ot + |Vl

Hs—1HG2(ZO)\

Hs—1

-+l

ms-1]|G3(20)|

Hs—1 + HVIEOI

ms-1]|Ga(20)]

Hs—l),
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with some positive constant C. Of course, the same is true for b3. Moreover, since a? and

ay are bounded (they are in H*~'(R")), the paramultiplication operators T,o and T, are

bounded in H*(R").

Now, by application of Theorem 3.1 to (22), let us consider the unique solution of (22)
with f = 0 and denote it by U (t)uo.

Next, for T' > 0, let us define the norms A\ (w), Ag(w), A\3(w) and A(w) by

1
M(w) =supllwlls,  da(w) =7 2wllz . As(w) = sup [|Gw]—2
[0,7] [0,T]

Aw) = max \;(w),

1<i<3

the space Z by
Z ={we C([0,T]; H*(R")) : w(x,0) = up(x) and AN(w) < K}

where the positive constant K is to be determined later, and, for w € C ([0, T]; H*(R™)), the
operator T by

t ~
Tw(t) = U(t)ug —I—/ Ut —t)R(w(t"), Vow(t), w(t"), Vw(t"))dt'.
0
Let us first remark that Tw satisfies

{ 0 Yw =i LYTw + Ty V, Tw + Ty Vi Yw + Ty Yw + Tpo Tw + R(w, Vow, @, V,0) (24)

YTw(0) = ug

and that a fixed point of T will be a solution of (20), hence, a solution of (18). So, in
what follows, we are going to study A(Tw) in order to prove that T has a fixed point in the
complete metric space (Z,A). Let us also note that since the life time 7" will be small, we
can assume from now on that 7' < 1.

We start by applying Theorem 3.1 to (24). It follows from (10) and (11) that

max { A (Tw)2, Ay (Tw)?} < A (||u0||§ + Ir(J°R, JSTw)) : (25)

where, for simplicity, B = é(w, V.w,w,V,w) and Ip(u,v) is a finite sum of terms of the

form

T
sup / (G u,v)|dt
0

peEZn
where G, € OpS&O and the semi-norms of its symbol are uniformly bounded with respect
to pu. Recall that the constant A depends only on n, s and uy and we remark right now a
fact that will be useful later : if we let ug vary in a bounded subset of H*(R"), it follows
from the linear theory that we can take the constant A in the above inequality that depends
only on that bounded set. The same remark holds for sup, [G[(z2) or the semi-norms of

the operators G, uniformly in p.
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Thus, we have to estimate uniformly in p the following sum

T T
/ ‘<GHJSTb1,b(1)wa, JSTU)>|dt + / ‘<GHJsTb2,bngw, JsTw)|dt
0 0
T T
b [ MG Ty gw st [ G T, g w Yl (26)
0 0

T
+ / (G, J°R(w, V,w, @, V, @), JTw)|dt.
0

First, let us consider the third term. It follows from the preceding remark, Cauchy-Schwarz

inequality, Calderon-Vaillancourt theorem and Theorem 2.3 that
T T
|G T T Ywlat < Al = il [ ol Y
and from Proposition 2.1 that

lar — ailz < C(lwlo)wls + C(luols)uols < CUK)K + C(fuols)|uols < 2C(K)K .

Hence,

a;—a

/T (G T, —a0 w, P Tw)|dt < AT C(K) M(w) M (Tw) < AT C(K) Aw) A(Yw), (27)

with a modified constant C'(K).

The fourth term of (26) is treated in the same manner.

Now, let us estimate the first term of (26). Using a smooth partition of unity 1 =
Y vezn Xvs With x,(2) = x(x — v) and x has a compact support, we can write

(G Ty o Vow, JYw) = Y (J72G, I Ty 0y Vew, T2 Tw)

v

= Z(GW,(x = V)T, 40y (T — V)" H (2 — 1/>’“°Js+%w, (x — V)"’OJ”%TU))

where G, = (x — 1)°J 2G,J*(x — v)~° and H, = (x — v)~7J*"2V(z — v/)°. Next, it
follows from the pseudodifferential composition formula and from Lemma 2.1 that G, is in
OpS&B%, H, is in OpSéO_ °. and that their semi-norms are uniformly bounded with respect
to p and v. Going back to the first term of (26), these considerations in addition to Lemma

2.4 allow us to estimate it as follows :

T
/ (G Ty g Vi, JT )t
0

J+3Yw

(x — v)oo

1
Js+§2U

(x — v)oo

T
< Z/ ||G;L,l/<‘r - V>00Txy(b1—b(l))<$ - V>UOHV||£(L2) dt
v 0

0 0
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T 3 3
o o JS+2’LU Js+2Tw
<4 Z/ [ = )" T o1 -9) (2 = )| £ o1, (x—v)oo| |(z—v)o «
v 0 0 0
J5+%w JSJF%TUJ
<A Z/ ”XV ||L°° <£L‘ _ V)ao <x — l/>U0
0 0

1 ot l
<Ay sup [ (1 = )l 17°* bully 1774wl

)

Now, it follows from the Taylor formula that we can write
by — b = 0,F(2) — 0,F(20) = (w — up) G1(20, 2) + Vau(w — ug) Ga(20, 2)

+ (@ — ﬂo) Gg(ZQ, Z) + Vx(w — ﬂo) G4(Zo, Z),

where, for simplicity, zo = (uo, Vo, Ug, Vi) and z = (w, V,w, w, V,w), and the G’s are

functions of the form .
/ Fi(z0 + 7(2 — 20))dT,
0

F}. being a second order partial derivative of F'. Next, it follows from the assumption on F'
that Gx(0,0) = 0 for all k£, from which one deduces easily that

Ix (b1 = b)) e < C([(20, 2)|22¢) |x0 (20, 2) | e 1X0 (20, 2) | L

where Y, is similar to x,, and, by using the Sobolev injection, that is, Proposition 7.3 (i),
that

[0 (b1 = 00z < C(I(20, 2)12%) Ixo (20, 2o o 21282+ X0 (20, 2) g o0+

< C(K) I (wo, )l o o,y +1) X0 (0, W) o qo gy

where 0 > £ and s’ > 2. Thus, to obtain the summability in v of |x, (b — b9)| L, it is
sufficient to prove that |x, (uo, )| e (jo 7, 1+1) I square summable in v. To this end and to
get an explicit bound for the sum, let us apply the interpolation inequality of Proposition

7.3. This yields, by taking 1 < o < 1,

I (10, ) o o 2yetr+1) < Al (w0, W)l oy 1X0 (0, W) G 0.1 1057

[

< A (1w, 0) gy sy + Do (i, )18 g IXs D0l )

where s” is such that (1 —0)(s' +2) +0s” = s’ 41, that is, " = s’ +2 — =. One can choose
s’ and o such that s” = s — 2, that is, such that s’ = s —4 + % In fact, if 0 = % + ¢, then

=5+0—7 +€2 which is larger that 7 if € is small enough. With such a choice, we also
have s’ +2 < s, so, the expressions |x, (uo, w)| 2o, rp.m++2) and [ X0 0w 2o 1,11+ are both

square summable in v, which shows that |x, (1o, w)| oo rp.m++1) 18 itself square summable

in v and that, by applying Holder’s inequality,

Z ”XV(UO,w)”i]a([oﬂ;ys’ﬂ) <A Z "XV(Uwa)"%Q([O,T];HS)
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o

l1-0
+A (Z I (wo, w)”%Q([o,T};Hs)) (Z ||Xl/atw”2L2([0,T};Hs—2))

< A (T M(w)? + (T M (w)*)' (T A3 (w)?)°)
< AT Mw)?,

where, of course, the constant A changes from one inequality to the other. Consequently,

D Ixalbr = )| < AC(K) T A(w)?,
which allows us finally to bound the first term of (26) as follows :

/T ‘<G#J8Tblfbgvxw, JsTw>’ dt < AC(K)T Mw)2ho(w) Mo(Tw)
O < AC(K)K?*T Mw) AM(Tw).

(28)

The second term of (26) is treated in the same manner.

Let us now consider the last term of (26). As above, let z stand for (w, V,w,w, V, ).
As z € H*"Y(R") = Hz+1¢(R"), it follows from Bony’s formula, that is, Theorem 2.5, that
R(z) € H**=D=2(R") = H**¢(R") and that

[R(2)ls4e < C(K) [2]s-1 < C(K) Jw]s -

Hence,
T T T
| G rG) Tud < 4 [ IRELITolde < ACE) [ ol tul.a
0 0 0
(29)
<ACK)T M(w) M (TYw) < AC(K)T Mw) A(Tw).
Thus, we have bounded all the terms of (26), which leads to the estimate
max { A (Tw), Ao(Tw)} < Alugls + /AC(K) T Aw) A(Yw), (30)

where the constants A and C'(K') have changed of course.
It remains to estimate A3(Tw). Recall that Tw satisfies the Cauchy problem (24). Hence,
applying Theorem 2.3 yields

[0 Cw]s—z < | Twls+ A0 e + 10512 ) [T ]s—1+Allab |z + a3 ] )| Tw] s
+A(br = b oe +1b2 — Byl oe) Jwls-1+ A(lar — @l +[az — a3 o) Jwls—2+ [ R(2)]s-2

< A[Twl+A([br — Bl +[b2 = bolre+lar — aif e +laz — agl ) [wls+ [ R(2) s
(31)
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Now, as before, it follows from Proposition 7.3 that

[B; — O3z < Alb; = b}l ooy < Alb; — U3l 50 [b; —

0
L2([0,T);Hs'+1) —b; ||H1 ([o,T);Hs") >

where j = 1,2, 0 > 1, §' > 2 and s” is such that (1 — 0)(s' + 1) + 0s” = &'. In fact, we can
take s” :s—3wh1chcorrespondstos’:s+§—4:%+Q+}7—2; so, 8 <s—2andif o

is close enough to 1 , then, s’ > §. Therefore, with such a choice, we have
[6; = b5l < Alb; = BN L2qo.ysrrs—1) + Albs = 51 12 Go ey 10031 2o -
Next, applying Proposition 2.1 yields
T T )
02 042
16; = 5122 0.0 105-1) = /0 [b; = b5l5-1dt < /0 (Clzl)lzls—1 + C(l 20l ) 20]s-1)" dt

< O(K)?T M (w)?,

and

T
mm@@ﬂmg=/|@Fﬂ>@mgw<A/ (OuFY ()2 ol0r]? it

< [ 1R ROl st < AT U A

which imply that
[b; — 02100 < AC(K) VT M\ (w) + AC(K) VT M (w)' = Xs(w)” < AC(K) VT Mw).

Of course, the same inequality holds for |a; — a?” =, j = 1,2. Note that we have applied

the following classical lemma :
Lemma 4.1 If s > % and |r| < s, then, H"(R").H*(R") C H"(R") with continuous
injection.

Finally, it follows from Theorem 2.5 and Theorem 2.6 that

IR(:)-2 = IR(:)30 < 1RE) = RCo) g0+ 1RG40
< Collehages bl nge) |2 = Zollage + Callzol age) [0l oge
< Cullluge , Polage ) 1o = ol e oy + Callto]age 1) Pl s
< CUR) = ol sge o + Al age

and, using once again Proposition 7.3, we obtain

sup [w — uolv < Afw = uol o o 11y < Alw = o,

0,7] L%( [0 T);Hs'+1) e~ “OHiI%[o,T];Hs”)

< Alw = ol 2oy rer+1) + Alw — ol 5

L2( [0 T);H* /41 “ath(lTﬂ([O,T};HS”)
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([0,7);:H*)

< Alw — ol 2o,y + Alw = uol 2 Qw72 o 1 1-2)

< AVT M(w) + AVT M (w) " As(w)” < AVT Aw),

Wheres’:nTﬂ+1<s,J>%,s”:nT+g+2—§ands”gs—QifUisclosetO%. Hence,

sup [R(2)lls=2 < Aluolnzey + AC(K) VT AMw) .
0,7

Thus, we have bounded all the terms of (32) and the result is that

As(Tw) < AN (Yw) + AC(K) VT Mw) M (w) + Aluolnse .y + AC(K) VT Aw)  (32)

< Aluols + VACEK) T Mw) A(Tw) + AC(K) VT A(w)

where, of course, we have used (30). Therefore,

ATw) < Augls + VAC(K) T Mw) A(Tw) + AC(K) VT Mw)

< Aluols + %AC(K) T \w) + % AMTw) + AC(K) VT Mw),

which leads to
ATw) < 24 Jug|s + AC(K) T Mw) + 24 C(K) VT Aw),
that is, an estimate which is, by changing the constants and taking 7" < 1, of the form
A(Tw) < Alugls + AC(K) VT Aw). (33)

This is the main non linear estimate. In fact, when ug # 0, by taking K = 2A |uy|s for
example, and then, T" > 0 such that

2 2
po (Al V(1Y
“\AC(K)K 2AC(K)
it follows from (33) that A(Yw) < K when A(w) < K, that is, Y(Z) C Z. When uy = 0, it
suffices to take K > 0 and T' < 1/A%C/(K)? to obtain the same result.
Let us now show that Y : Z — Z is a contraction mapping. In fact, the arguments are

similar to the above ones and we shall be brief. If wy,ws € Z, then, W = Tw; — Tw, satisfies

the following Cauchy problem

{ QW =iLW + Ty VoW + Ty VoW + T,oW + TsW + R(21) — R(2) (34)

W(0) =0
where, as before, z; = (w;, V,w;, w;, V,0;), j = 1,2. Applying Theorem 3.1 to (34) gives

max { Ay ()%, \a(W)?} < ATy (JS(E(zl) ~ R(z)), sz) , (35)
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and, consequently, we have to estimate uniformly in u the integral
T o~ o~
| UG (Fie) = e, W) .
0

It follows from (21) that

R(z1) — R(22) = Ty, (21) -0 V(w01 — W2) + Ty (21) b1 (20) VW2
+ Ty (21)— V(W1 — Wa) + Thy (1) by (20) VW2
F T 21y —a0 (W1 — W2) + Loy (21) a1 (0) W2 (36)
+T s (21)=ag (W1 — Wa) + Ty (21)—an(22) W2

+R(Zl) — R(Zg) 3

and we have to estimate the integral corresponding to each term of the above sum. Let us
first consider the terms of the third line in (36). By the same argument as that used to
obtain (27), we have

T
/ ‘<G#Js (Tal(zl),ag (wy — ws) + Tal(zl)_al(zz)w2> ,JSW>) dt < AT C(K) Mw,—ws) \(W),
0

where we also applied Proposition 2.1 for the second term. Of course, we have the same
estimate for the integral corresponding to the terms of the fourth line in (36).

As for the terms of the first line in (36), applying an argument similar to that yielding
(28), one obtains

T
/ ‘<GMJ5 <Tb1(zl)_b9V(w1 —wy) + Tbl(zl)_bl(ZQ)Vw2> , JSW>‘ dt
0

S A C(K) T ()\(wl)2)\2(w1 - wg) -+ )\(wl - wg)(/\<w1) + /\(UJQ))/\Q(U)Q)) )\Q(W)
< AC(K) T()\(wl)2+)\(w1) )\(wg)Jr/\(wg)Q))\(wl —wy) A(W)
S AC(K)KQT)\(wl — wg) )\(W),

and the same estimate holds for the terms of the second line in (36).
Last, for the terms of the fifth line in (36), applying Theorem 2.6 and estimating as in
(29), we obtain

T

T
l/K%P@mermJWNﬁSA/Na—MkMWM
0 0

< AC(K) /0 Tﬂwl—wQHSHWHSdt < AC(K)T M (w1—ws) M (W) < AC(K) T MNaw, —ws) \(W).
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Summing up and going back to (35), we can conclude that
max {)\1(W)2, )\Q(W)Q} S A O(K) T )\(wl — ’wz) )\(W)

It remains to estimate A3(W). Using the fact that W satisfies the Cauchy problem (34)

and an argument similar to that yielding (32), we obtain

< AM(W) + AC(K) VT (Mw:) + AMws))Mwy — wy) + AC(K) VT Mw; — w,)
< VAC(K) T Mwy — wy) A\(W) + AC(K) VT Mwy — ws).

Summing up, we have obtained

AW) < /AC(K) T Mw;y — ws) A\(W) 4+ AC(K) VT AMw;, — ws),

hence,
AW < %A C(K)T A(wy — ws) + %)\(W) + AC(K) VT Mw; — ws),

that is,
AW) = X(Twy — Twsy) < AC(K) VT Mwy — ws),

with modified constants. This clearly implies, if 7" is taken small enough, that T : 7 — Z
is a contraction mapping and, thus, it has a unique fixed point u in Z which is a solution
of (18). In fact, this is the solution of (18) in C([0,T], H*(R™)) because the above method
gives the local uniqueness and we obtain eventually the full uniqueness by applying a classical
bootstrap argument. This proves the first part of Theorem 1.1.

The second part of Theorem 1.1 concerns the continuity of the solution operator ug — u
and we start its proof by remarking that this operator maps bounded subsets of H*(R")
into bounded subsets of C([0,T], H*(R")). In fact, if B is a bounded subset of H*(R"), as
remarked at the beginning of this section, the constant A et the bounds of the semi-norms
of the operators G, can be taken to depend only on B, that is, if ug € B, the estimates

proven above and satisfied by T can be rewritten as

A(Yw) < A(B) |uo|s + A(B) C(K) VT A(w), (37)
MYw; — Yws) < A(B) C(K) VT Mwy — ws), (38)

where A(B) depends only on n, s and B, which implies that the constants K and T can
be chosen depending only on B. Hence, for all ug € B, the associated solutions u are all
defined on the same interval [0, 7] and are all in the ball of radius K. As for the continuity,
let B be a bounded subset of H*(R"), ug,u; € B, u,u* the respective associated solutions

and w = u — u*. Then, w satisfies the following Cauchy problem :

{ dw = i.Lw + Du— D*u* + R — R* = i%w+ Dw + (D — D*)u* + R — R* (39)

w(z,0) = up(z) — ui(x)
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where Dw =Ty Vw+TyVu+Tow+Tyow, D'w= Tb?,*ijLTbg,*Vw—l— Ta(l),* w —|—Tag,* w,

R=R(u,Vu,u,Vu) and R*= R(u*,Vu*, o, V).

0,%

Of course, the b?, a? correspond to uy whereas the bg’*, a;” correspond to ug. Applying

Theorem 3.1 gives us the inequality
mac {As (w)?, Ao(w)?} < AB)luo—ugl2+A(B) Ir (J° ((D = Dy + R~ ') J'w)., (40)

As it can be seen easily by going back to (21), we can write

R—-FR" = Tbl(ﬂ)—b(fvw + Ty ()=t () VU + Tb(f’*—b?vu*
+Tb2(u)fbng + TbQ(u)_bQ(u*)Vﬁ + Tbg’*fbg vm

+Ta1 (u)—a(l) w + Tal(u)fcu(u*) u* + Ta(l)y*_ 0 u* (41)

ay

+Ta2 (u)—a) w + Tag(u)—ag (u*) u* + Tag’* o u*

—ay

+R(u, Vu,u, Vu) — R(u*, Vu*, u*, Vu*)
and we also have
(D—D")u" = Tb?—bg’*vu* + Tbg_bgv*V? + Ta?—a?’* u + Tag—ag’* ur

Using the same arguments as before to estimate the integrals corresponding to each of the

above terms yields
max {1 (w)?, A (w)*} < A(B)|uo — ug|2 + A1(B) CL(K) T (Aw)luo — uglls + A(w)?) , (42)
which becomes, after a change of the constants and assuming 7" < 1,
max {A (w), Ao (w)} < A(B)uo — ug|s + A(B) C(K)VT Aw). (43)
Next, using (39) and similar arguments, one can easily get
As(w) < A(B) C(K) (Juo = ugls + Aa(w)),
which becomes, after use of (43) and a possible change of the constants,
Ns(w) < A(B) C(K) (luo — uills + VTAw))
Hence,
Mw) < A(B) () Jug — ugls + A(B) C(E)VT A(w), (44)
which, by taking T < (1/2A(B) C(K))? (for example), leads to the Lipschitz estimate
Aw) = A(u —u*) < 2A(B) C(K)[uo = ugls, (45)

and this achieves the proof of Theorem 1.1.
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5 Proof of Proposition 3.1

We shall only give the main steps for the convenience of the reader and refer to [Bie| for the
full details.
Let us start by remarking that it is sufficient to treat the case s = 0. Indeed, if v = J*u

and vy = J®uy, it is easy to see that u is a solution of (8) if and only if v satisfies

{ Opv = i.L0 + Ty, Vv + Ty, Vo0 + Crv + Cov + f(, 1) (46)

v(z,0) = vy € L*(R")

where f = J*f and Cp = JCJ ™ + [J5,T},.V.]J %, k = 1 ou 2, and, thanks to the
paradifferential calculus, the C,, are bounded operators in L*(R™).

The idea of proof is that of [KePoVe|, inspired by [Tak], and consists in constructing a
pseudodifferential operator C which is bounded and invertible in L?(R™) and to estimate
supjo 1) [Culo instead of estimating directly supyy 1y |ufo. Since £(Cu, Cu) = (Cou, Cu)+
(Cu,Cowu) and u is a solution of (8), we obtain that

%HCuH% = (iC%u, Cu) + (CTy, Vu, Cu) + (CT}, Vi, Cu)
+(CCiu, Cu) + (CCsu, Cu) + (Cf, Cu) (47)
+(Cu, iCZu) + (Cu, CTy, Vu) + (Cu, CT},Vu)
+(Cu, CCu) + (Cu, CCyu) + (Cu, Cf),

and since

(1.2 Cu, Cu) + (Cu,1.Z2Cu) = 0,

we have finally

%"Cu”% = 2%e((1|C, Z] + CT,,V)u, Cu) + 2%e(CTy,Vu, Cu)
+2%e(Cu, Cf) + 2%e ((CCru, Cu) + (CCyt, Cu)) .

The idea of [KePoVe] is precisely to choose C so that the operator i[C,.#]| + CT,,V will be
small in some sense. Here, we will make a refinement by writing b; = b} + ib] with real b/,
b, and by considering the operator i[C,.Z] + iCT;,V instead. This has been already used
by [Bie] and essentially allows one to construct a real operator C, that is, with the property

Cu = Cu, which will be convenient in certain arguments. Now, clearly,
2% ((CCyu, Cu) + (CCot, Cu))| < 2(As + A2)|Clo (g2 lul,

and integrating on [0, 7"], T" < T, yields

T T’
|Cu(T)]3 < |Cuo| + 2 %e/ ((i[C, Z) + iCTy V)u, Cu)dt| + 2 %/ (CTy, Vu, Cu)dt
0 0
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T/
+2(A1 + )[Clig e | Tu®)5dt, (48)

0

T T’
+2 92@/ (CT,,, Vi, Cu)dt| + 2 92@/ (Cu, Cf)dt
0 0

and our task will be to estimate appropriately each of the terms in the right hand side of

this inequality. The most difficult one is

/0 (€, 2] +1CTy V). Cu>dt'

and C will be constructed so that this term will be small with respect to some parameters
to be defined later. To this end, let us denote by ¢ the symbol of C and define

p(z,€) = —26".V,e(x, &) — oz, b (z,€).£ (49)

where & = (&1,...,&y, —Ejot1y - —En) and b is such that Ty = b/ (z,D); see (2). The
problem lies essentially in the fact that p(x, &) is not the true principal symbol of the pseu-
dodifferential (or paradifferential) operator i[C, Z]+iCT},V since C will be merely in the

class OpSg . Nevertheless, the constructed C will allow us to obtain good estimates.

Set c(z,&) = exp(v(x,§)) and v(x,§) = Zuezn a1, (2, §), where the oy, are the
coefficients of b in its decomposition with respect to the ¢q, (see Theorem 8), and the

Yu(z, &) are defined a little later. Note here that one can assume the a; , real (and even non

negative) without loss of generality. We can then write
p(x,8) = c(x,6) Y oy (28 Vi@, §) — Gru(e,).£) |
o
and this suggests to consider the following function

1 [ .
mle &) =5 [ S+ s 0L ds
0
One can show that such a function is smooth and satisfies, for all multi-indices «, 3,

00w, )] < Aws sup OO0 1 lim iz = )M, (50)

and, moreover,
—288 NV omu(2, &) — Im(pr ) (w,6).6 =0. (51)
See [KePoVe| or [Bie| for the proof. To get an even function, we replace 7, by

Cu(xuf) = (77“<JZ,§) + nu(xv _§>>/2’

which satisfies the same properties as 7, and then set

e =0 () () 6w,

where 6 and v are smooth (real) functions on R such that 6(¢t) = 1ift > 2,0(t) =0ift <1,
Y(x) = 1if [t| < 1, ¢ = 0 outside some compact set and R is a large parameter that will
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be fixed later. One can easily check that 7, € S§, and that its semi-norms are uniformly
bounded with respect to p and R. The following lemma gives the main properties of the

operator C and its symbol
c(z,§) = exp (v(z,§)) = exp (Z V(s 5)) :
m

Lemma 5.1 (i) The symbol c(z,£) is real and even in .
(#1) The symbol c(z, &) is in the class S ,. More precisely, for all o, 3 € N,

a A / o / ; Aawg
Lo ) < it o Nl < it o i)
SIS |~ SO0 S

(ii7) There exist N € N and A > 0 such that, for all R > 1 and all v € L*(R"),

|Cv]o < A sup vn(p1,u)[v]os
o

A
and  |vfo < A sup vy (1,,)| Colls + 5 sup vn (P1)?[0]s-
I3 B

(iv) The symbol p(z,€) = —2E8.V,c(z, &) — c(z, OV (x,€).€ is in St and its semi-norms
(of order < M) are estimated by A R sup,, Var1(¢1,,) -

Even if here the function ¢, , is more general, the proof follows the same lines as that
of [Bie] (Lemme 3.5 and Lemme 3.6) and we refer to it. These properties are sufficient to

allow us to get the following estimates :

Lemma 5.2 Let b(z,€) be a symbol satisfying

7,8 =Y oupu(,€), pu€ Sy D laul < A,
pEZ™ H (52)
x = p,(x,€) is rapidly decreasing in x — p,
and let u stand for u or u. Then, there exist N € N and A > 0 such that, for all T > 0,
T €[0,T), R > 1 and every H = h(z, D) in OpSg,o, the following estimates hold true :

T/
. ~ . A 1
(2) / (((CTN — (cb)(z, D)V), Hu>( dt < - [hlev sup vy (o) sup foufox || 7 2ul|7.
0 H M

1
} (i[C, Z] +iCTy V)u, Hu)‘ dt < A|h|cv sup va(p1,) <RT sup |ul + §|||J§u|||2T)
i 0,7]

Tl

S 75 ~ J2ul|2
(id) [ 1(1C, Ty V)i, Hud dt < A bl sup (914 sup gl (T sup ol + me)
0 o H s

Remark 1 The case s # 0 in (iii) is needed in Section 7.
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Proof : Using the pseudodifferential calculus, we can write the symbol e(x, £) of the operator
E =CT,V — (cb)(z, D)V as e= Z# a,e, where e, is given by

eu(x,€) = —iyn Oc,c(x,§ +1n) Op, pu(x +y,€).§ dy dn dt, (53)

and we first remark that e, € OpSol,0 and that using the fast decrease of ¢, (z,§) in v — p
and integrations by parts yields the fact that e,(x,&) is itself rapidly decreasing in z — p.

Next, setting £, = e,(x, D), we can write

(Bi, Hu) =Y o, (E,i, Hu) = a,(H*E,ii,u)

= o (o= ) e — ) — )™ Bl — 1) i, )

where H = J~'\2H*JY? E,=J V2E,J7'? and wu, = (x — )~ J"?u. Now, it follows
from the pseudodifferential calculus (Theorem 2.1) that H and E, are in OpSy and that
we can estimate the semi-norms of H and Eu by those of H and FE|, respectively. Moreover,
it is easy to see that the symbol of E“ inherits the fast decrease in © — p which implies, by
virtue of Lemma 2.1, that the operator (z — p)?E,(x — ) is also in OpSy, and that its
semi-norms are estimated by those of £, uniformly in p. The same property hold for the
operator (x — p)?°H (x — 1)~ as it follows also from Lemma 2.1. This allows us to apply

Calderon-Vaillancourt’s theorem to obtain

T/
(Ba Huldt < 3l / o=y H(w—p) = Le) =)™ Bube =) L Ll
0
1
< Alhllovsup Y [ — ) 0000, e, | o< Il T2 ull
B ol +181< M
A 1o
<3 |Alen sup v, (01.) sup [eulen: |72 ull 7, (54)
I H

which proves ().
To prove (i7), note first that the symbol of i[C,.Z] is given by

—2¢6* V,c(z,8) 4 (ZLe)(z, €)

and that of 1CTy,V can be written as
. n . 1 - ! —1 n .
ic(w, O (v, )4 + === > "W O ¢, & + tn) Dy, b (w + y, €) i€ dy dn dt.
(271')" o B J J

Thus, the symbol of the operator i[C,.Z] +iCTy'V is given by
(sz)(,CE, 6) + p(ﬂf, 5) + i€<337 5)7
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where p(z, §) is given by (49), e =3_ a,e, and e, (z,§) is given by (53) with a,, = oy, and
0, = Im(p1,). Hence, applying Lemma 5.1 and Calderon-Vaillancourt’s theorem yields

the estimate
T/
/ [(((Zzc)(x, D) + p(x, D))u, Hu)| dt < ART |hfcw, sup VNl(tpl,u)Q[SuP] Jul?
0 m 0,7
and applying part (i) gives the estimate

"o A .
| Wt Dy Hu)lde < 5 e sup v, (1,01 ol
0 H

which proves (i7).

To prove (iii), we first treat the case s = 0 and note that the symbol of [C,T,V] =
CT,)V — T,VC can be written simply as e(x,§) — eg(x,&) where e(z,€) is the symbol of
the operator E studied in (7) and

1
(2m

n 1
ole.8) = G > / / e 91 3. (B, € + tn).(€ + n)) D c(x + . €) dy diydi.
j=1

Since O, (b(z, €).€) is of order 0, the symbol eg(z, &) is in fact in S§, and the semi-norms of
eo are estimated by a product of semi-norms of b and c. Hence, by using the decomposition

of b as above, we get
Tl
/ |(eo(x, D)u, Hu)| dt < AT |h]cn sup |@uloms sup v, (91,) sup Jul?
0 p " 0,T

which, together with (54), yields (éi7) in the case s = 0. If s # 0, it follows from the
pseudodifferential and paradifferential calculi that J*T,J~* = Tj» where b# = > .ty and
1, is given by

1
(2m)"

which implies that 1, is also rapidly decreasing in  — ;o and that it is in S?,o with semi-norms

U, €) = / eT(E 1 )0, ( + y, E)(E) ™ dy dy,

estimated by those of ¢,. This shows that the the case s # 0 follows from the case s = 0

and achieves the proof of Lemma 5.2. O

Lemma 5.3 Let b be as in the preceding lemma. Then, there exist N € N and A > 0 such
that, for all T > 0, T" € [0,T] and R > 1, the following estimates hold true :
(1) If b(x, &) is even in &, then,

Tl
1, 1
[ Henva cold < Asw (o) swlodos (T sup 10l + 1kl ).
0 I I 0<t<T

(17) If b is real, then,

T 1
‘«% / (CTyVu, Cu)dt| < A supvn(p1,) sup [eulen (T sup Jul§ + §|||J5u|||T> :
0 iz Iz 0<t<T
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Proof : Since C is real, we can write
(CT,Vi,Cu) = (T,VCu, Cu) + ([C, T, V]u, Cu) = (T,VCu, Cu) + ([C, T, V], Cu).

Now, the integral corresponding to ([C,T,V]u, Cu) is treated by Lemma 5.2(iii). As for
the other term, we note that it is of the form (T,Vo,v), so, it suffices to study such a term.

Since b(x, &) is even in £, we have
(TyV5,0) = (0, TV = (6, T;V0) = (TyV)'5,0),
and it follows from the pseudodifferential (or paradifferential) calculus that
(I;V)" = -1,V + E, (55)

where E is of type 5?,0 and its semi-norms (up to some finite order) are estimated by those
of b. Hence,
<TbV’l_),U> = —<TbV?7,U> + <E11_J, U),

and (T,Vo,v) = $(E10,v), that is, (I,VCu, Cu) = 1(E;Cu, Cu), and (i) follows just by
applying Calderon-Vaillancourt’s theorem and Lemma 5.1.

To prove (ii), we write as before
(CT,Vu, Cu) = (I,VCu, Cu) + ([C, T, V]u, Cu),

and then apply Lemma 5.2(¢ii) to reduce the problem to the study of Ze(T,VCu, Cu).
Now, it follows from (55) and the fact that b is real that we have

2%e(T,V Cu, Cu) = (I, VCu, Cu) +(Cu, T,VCu) = ((T,V+ (1, V)*)Cu, Cu) = (E;Cu, Cu)

and the proof ends like that of (¢). The lemma is thus proved. O
It is clear now that applying Lemma 5.1, Lemma 5.2 and Lemma 5.3 to the inequality
(48) yields Proposition 3.1.

6 Proof of Proposition 3.2

By the same argument as that used in the beginning of the proof of Proposition 3.1, it is
sufficient to establish the first estimate in the case s = 0.

The proof follows the same ideas as that of [KePoVe| or [Bie|. The difference is that
here the T, , k = 1,2, are general paradifferential operators of order 0 instead of merely
multiplication or paramultiplication operators.

Since ou =1iLu+ Ty, Vu+ T, Viu+ Ciu+ Cou + f

and O = —iLu+ Ty, Nu+ Ty, Vu + Cra + Cou + f,
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where the operators C}, are defined by Cu = Cia, one starts by remarking that the vector

unknown w = (g) satisfies the following system

ow =1Hw+ Bw+ Cw+ F, (56)
where
<z 0 Ty, V 1,V Gy Cy f
H = Y B = ? C = Y F = Y
0 -2 .,V T,V C, Cs f

and the idea then is to estimate the expression (Ww,w) by means of Garding’s inequality

for systems via Doi’s argument. Here,

and W, is an appropriate pseudodifferential operator in OpS?,O to be chosen a little later.

By using (56), one gets easily

O (Yw,w) = (Vow,w) + (Yw, dw)

= ((@|V,H|+ B*Y + VB + C*V + ¥C)w, w) + (VF,w) + (Yw, F), (57)

and, as one can check also easily, the principal symbol of the first order operator
ilV,H|+ BV + VB +C"V +v(C
is given by

26" Vot (x,€) — 26.5m(b) (w, €) (. €) 2i€.by(, €) Yo(, €)
Mo=| ~
—225[)2(1', 6) wo(% 6) Qfﬁvx%(% f) - fom(b1)<$7 5) %(337 5)

where 1)y denotes the symbol of ¥,. Now, for 1y, we shall make the following choice which
follows the idea of Doi (see [Doi]). Define

P9 = (7 o) with (0 = [ ()7,

pu,€) = pla — 1, &) + Ao Y (Jaw,w| + lazl)ple = 1, €),

wen
and  o(,§) = Yu(z,§) = exp(—pu(z, §)).
Here, the o v and s, are the coefficients of b; and by in their decompositions with respect

to the ¢y, and ¢,/ respectively (see Theorem 8), A, is a large constant that will be
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determined later and p € Z" is fixed for the moment. However, from now on, we shall write
VU, and v, instead of ¥y and vy to emphasize the dependance on p. First, note that p, and
1, are in S?,o and that their semi-norms are uniformly bounded with respect to u. Next,

with these notations, the symbol M (z, &) can be rewritten as

—& . Vopu(z, &) — &.Im(by) (2, €) i€.by(z,€)
M(ZL’,f) :2¢M<I7£) B
—i€.by(z, ) — & Voupu(w, &) — £.Im(by)(x, &)

Consider now the matrix  Z(z,§) = —M(x,&) — V(x,§) where

ol (1 0
V“f)@xm—mM(01)

Z(x,€) is a matrix of symbols in 511’0 and, in order to apply Garding’s inequality, we are

going to show that, for large &, it is a non negative matrix, that is, (Z(x, £)v,v) > 0, Vo € C2

In fact, Z(z,€) is of the form
o

where

€2
(&) (x — )20

and it is sufficient to show that the two eigenvalues o & || of (g g ) are non negative, or,

o= §ﬁ.pr“(x,£) — + £.fm(51)(m,§) and (= —if.gg(a:,ﬁ),

equivalently, that a > ||, that is,

€1
() (x — p)?e0

Now, the main reason for the choice of the symbol p, is that it allows to get the following

& Vapu(x,&) — + & Im(by)(x, &) > | — i€ bo(x, ). (58)

inequality :
€ﬁ~vxpu(x7€) = gﬁvxp(x - U?g) + AO Z (‘041,//| + |O‘2,u”) éﬁvxp(x - ,U/,f)
nenn
Y g Ao Y (ol + )Y
216y — e T 2 (el o) 2 e e
S Y < PN TN P | (59)
T o T S PTG (o — ryre
that is,
S8 — =5 A S (el + an e (60)
W#:8) ~ T = 2 wl oz ) e

w'ezn

Besides, we have

6k(x7€) = Z ak“u,’@k#ﬂ(x, 5)7 k = 1727

W ez
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and it follows from Lemma 2.3 that

(@ = 1)*7|Grpw (2, )] < An)

with a constant A(n) which depends only on the dimension. Hence,

\ffl2
i€ bi(x, )| < A(n) |aku| >200 < n) > ya,w| e k=1,2,

wezn pezn

if |£| > 1, which, together with (60), implies (58) by taking Ay > v/2A(n). Thus, the matrix
symbol Z(x,&) is non negative, and since it is also hermitian, Z(z,§) + Z(z,£)* is also non

negative and we can apply Garding’s inequality for systems :

e (Z(x, D)yw, w) > —A (1 + sup sup| (£>'B'3§3§¢k,w\lm> [wlg (61)

| +|BISN kop!

where the constant A depends only on Ay, A; and the dimension n and the integer N depends

only on the dimension n. Now, going back to (57), we can rewrite it as
O(Yw,w) = ((—Z(x,D) — V(z,D) + E)w,w) + (VF, w) + (Yw, F),

where F is a bounded operator in L?(R"), and integrating it on [0, 7] yields

/o (V(z, D)w,w)dt = (Yw(0),w(0)) — (Yw(T),w(T)) — /0 (Z(z, D)w,w)dt

T T T
+/ (Ew,w)dt—l—/ <\IJF,w>dt—|—/ (Vw, F)dt.
0 0 0

Taking the real part, using (61) and estimating, we obtain

T
%’e/ (V(x, D)w,w)dt < A sup |w| + AT (1 + sup I/N(gpk#/)) sup |wl;
0 [0,7] ! [0,7]

+ /0T<\I/F,w)dt'+ /OT<\Ifw,F>dt :

and since 9, (z, &) > exp(—A) and, for [£| > 1,

Vi et (),

a second application of Garding inequality gives us

%/ (JY2(x — p) =20 gV 2 w)dt < A sup |w]? (1 + T+Tsup U (©k, ))

/0T<w, w)dt' 4
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with a modified constant A. Since we can write (VF, w) = (¥, f,u) — (¥, f, u) and a similar

expression for (Ww, F'), by going back to u, we get eventually

T
/ |{x — u>_°°J1/2u||(2)dt < A sup ||u||(2) (1 + T + T sup VN(gpk#/))
0 [0,7] k,p!

T

T T T
n / (0, f )t + / (T, f )t + / (U £ )|t + / (T f.u)dr

which yields the first part of Proposition 3.2 by taking the supremum over all p € Z".
As for the second estimate of Proposition 3.2, we first remark that, since C is real, Cu
satisfies
8,Cu = i2Cu + Ty . VCu + Tp,.VCu + C,Cu + C,Cu + |

where k = 1,2, by = b} + b with real b, b/, and
f=(i[C. 2]+ CTyV) u+[C, Ty .V]u+ [C,T;,.V]a + [C, CiJu + [C, Cs)a + Cf.

Hence, we can apply the first estimate of Proposition 3.2 to Cu obtaining
4 T _
|75+ 2Cul)% < A(l + T + T sup I/N(<plw)> sup |Cul? + Z sup/ (U, T f, JCu))dt,
ko (0,77 =1 * Jo
(62)
where W, , =1;(x — i, D). Thus, we are led to estimate essentially the following terms

T T
/O (2 [C, 2] + CTy N )u, U, J*Cuddi + /0 |(J°[C. Ty, V])u, W2, J°Cu e

T
+ / (J°[C. Ty, V0, U, J*Cu dt.
0

Indeed, since the operators ¥, ,J*[C, C4]J~* and U, ,J*[C, Cs]J~* are bounded in L* (and

so is J*CJ %), the corresponding terms are easily estimated by
AT sup vy () sup Ju(t)[
I 0<t<T

We need now for the other terms the following simple lemma :
Lemma 6.1 If a € 5y, then, for any real s,
JPa(x,D)J * = a(z,D) + e(z, D)
where e € 5’670_1 and the semi-norms of e are bounded by those of a.
Proof : It suffices to apply the pseudodifferential calculus and to remark that

(271r)" Z/o / e Og, ((€ + tm)*) Doyl + y, €)(€) ™" dy dn dt .

e(r,§) =
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We apply the lemma successively with a(z, D) = i [C, Z] + CTwV, a(x,D) = [C,Ty V]
and a(x,D) = [C,T},,.V]. Since here m = 1, we obtain that at each time the operator
e(x, D) is bounded in L? and that its operator norm is estimated by the semi-norms of a.
Next, it follows from the pseudodifferential calculus that W7 € OpS?’O and their semi-
norms are uniformly bounded with respect to u, and, consequently, also that W7 J°CJ™* €
OpS&0 and their semi-norms are uniformly estimated by those of C. Hence, the integrals

corresponding to the operators e(z, D) are easily estimated by
ARTsup vy (pr,) sup [u(®)]? .
Joo g 0<t<T
Thus, it remains to estimate the sum

T T
/O (1 [C. 2] + CTyV)J*u, U, J*Cu di + /O ((C, Ty V) Ju, W, J*C)dt

T
+ / ([C, Ty, V)J*a, W7, J* Cu)|dt
0

to which we apply Lemma 5.2 with § = W7 J*CJ~*. We obtain eventually

4 T N 4 T
S sup / (0,0 F, JoCupldt < 3 sup / (W, J*Cf, J*Cu)|dt
j=1 0 0

% =

1 1
+A sup vy (@) (RT sup [ul? + EIHJS*QUIII%)
[0,7]

ko

which, together with (62), implies the second estimate of Proposition 3.2.

38



7 Appendix

7.1 Proof of Lemma 3.1 :

We need the following general estimate :

Lemma 7.1 Let b satisfy

b(x,8) = Y apeu(r,€), Y layl < Ao,

HEZ™

supp(z — 9. (2,€)) € Q. sup sup ()10 g1~ < o0,
©o|BI<Ng

(63)

where Ny is a sufficiently large integer, and let u stand for u or u. Then, there exist N € N
and A > 0 such that, for all T > 0 and every Sy = s1(z, D), So = sy(x, D) in OpSp,, we
have

T
s~ 1
/O [(S1T°Ty T ~* Vi, Syu)| dt < Alsi|ox|salon sup sup [(€)707 @l e 123

o |BIEN

Proof : One can write

(LI Ty Vi, Sou) = >, (S1T°T,, J Vi, Spu) = Y, (S350 J° T, J Vi, u)

B B

= Z ay, ((z — u>”°J_I/QS;‘SlJST%J_SVJ_1/2<x — )%z — )"0 TV, ( — u>_UOJ1/2u>

m

= Z u (Sulz — 1) T, (@ — 1) s, )
n

where S, = (z — p)o0J V28581 J%(x — w)=0, J, = {(x — p)"0J VI Y2z — p)oo
and u, = (v — p)~°°JY?u. Now, it follows from the pseudodifferential calculus (Theo-
rem 2.1) and from Lemma 2.1 that S, and J, are in OpSS’E/2 and OpS&/O%S respectively,
and that we can estimate their semi-norms uniformly in p. Next, it follows from Lemma
2.4 that the operator norm of (z — p)?T,, (z — p)°° acting in H*~'/?(R") is estimated by
sup|gj<n (€ )B |8? ©u| £eo uniformly in 4. Hence, the application of Cauchy-Schwarz inequality
and Calderon-Vaillancourt’s theorem allows us to obtain

T
/ (S, J T, T Vi, Syu)| dt
0

T
<Dl 1Sl g i) 1 = 07 Ty, (2 = 1) ey Ml e o112 / Ju, Jodt
0

m

1
< Alsilen|szlon sup sup (107 ]z T2 ull3,
b |BIEN

which proves the lemma. O
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Now, let us write Ty, . = Ty, v, , + 1o, , b, and apply Lemma 7.1 first to b =
by, — bgmy with 51 = S5 = C,,,. We obtain

T T
/\(CmJ‘STbk_bkm,V&, Cszqut:/|<CmJ8Tbk_bkm,J_SV17, Cmvﬂdt
0 ' 0 '

1
< Asup vy (@1m)? sup sup WO (0rp — Grguim ) 172 0]|7,
I3 B |BISN
2N? 5 L mzN2
— sup sup [(€)7107orulce |72 ullf < A
m po|BIEN

<A

1
e L

where v = J°u and ¢ = inf{p, 1}. As for the study of the other term, we write
(CondTh, 1ty Vi, Crn Jou) = (Cr STy, iy, ] V0, Cpv)
= (ST, s-bpm) "VCu0, Cpv) +([Cp, STy, -y, *VI]D, Crrv), (64)

and then apply Lemma 5.2(i4i) to the second term in (64) to obtain

T
/|<[Cm>JSTbkm/—bka_sV]f),CmUHdt
. =,
2 9o 11
< A sup vn(@1,m)° SUP [k pimt — Crpmlov | Tsup [o]§ + <[ J20]17
g " [0,7] R

1 1
< A ' -4m) (Tsup Jul? + Einfﬂum%) < AV (T sup Jul? + E|||JS+5UI||2T) .
[0,T7] [0,T]

Finally, recalling that C,,u = C,,u and applying Lemma 7.1 to the first term in (64) with
S1 =99 = 1d, we get

T
s - 1
/ |<J8Tbk7m/—bk,,m<] chva Cmv>| dt S A supsup ” <§>‘B|a?(90k,u,m’ - ¢k’,,u,m)||L°° |||‘]2 Cmvm’%
0

B |BISN

1
<A (SUPSUP )P0 (Prpme — D) | + supsup [()710] (o — Sﬁk,u,m)HLw) 72 Convll7
o |BISN m|BISN

A A 1
< ( ; —) sup sup [€)#1020p e 173 ool

lo o
m m mo|BISN

- m/a me

A A 1 A
< (5 + 2 ) 13Cutl} < 1 Gl

It remains to compare ||.J2C,v||2 = [|J2CpJoul|2 with |[J5+2Cyul|2. Of course, one can
write J 2 C,.J°u = J”%J_SCszu and it follows from Lemma 6.1 that J—°C,,,J*—-C,,, = E,,
isin OpSOf é and the semi-norms of F,, are bounded by those of C,,,. Hence, since J SJF%EmJ =
is in OpSyy/°,

T T
1752 Bul)2 = sup / / [z — p) =0T 2 B, ul?da dt < / / |52 B, u)2da dt
®oJo 0
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T
< A sup VN(QOLM’W)Q/ /|J8u|2dx dt < AT m?N? sup ||u||§
1 0 [0,7]

and 172 C]|2 < 21752 Cru]|2 + 24T MmN sup ul?,
(0,7

which implies that
g ~ A z 2 2N? 2
| I Thy b0 oV €, Gt e < 1T 5Cpulf + AT 2 sup ul?,
0 ’ ’ me 0,7]
where, of course, the constant A has changed. Summing up, we have proven that
T
/ | <CmJSTbk_bk,mv2~L, CmJSU> |dt
0

Am?2N?

- m/O’

)

il 9 1 s+ L A S+
’”J +2u|‘|%+Am/2N +N (T[Sug ”qu + Eml] +2u|”2T) + %NJ +QCmu|||2T; (65)

that is, we have proven Lemma 3.1.

7.2 Anisotropic Sobolev spaces

There are several notions of anisotropic Sobolev space in the literature. However, we have
not been able to find a reference with the results we need in this paper. Therefore, we are
going to define our spaces and next prove the results we need.

We denote by (z,%) the variable in R x R” and by (£,7) its Fourier dual variable.

Definition 7.1 Ifs,s' € R, we denote by H** (R" xR™) the space of tempered distributions
w in R" x R" such that the integral

[ e it mPdgan (66)
R xR™
is finite.

We call this space an anisotropic Sobolev space. Note that this is different, for example,
from the classical space H™* of Lions and Magenes, [LiMa], Vol 2. Clearly, H** (R" x R™)
is a Hilbert space when it is provided with the obvious scalar product. We also denote by
|u|s,s the norm of w in this space and, of course, it is equal to the square root of (66).
Note also that the space H** (R™ x R™) in the above definition coincides with the space
H*(R™ H*(R™)) and, by symmetry, with H* (R™, H*(R")).
In this paper, we need the following two results on anisotropic Sobolev spaces. The first

one is the Sobolev injection :

Proposition 7.1 If s > § and s > %/, then, H>*(R" x R") C L®(R" x R") with
continuous injection.
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Proof: If u € H*>*, then, a(&,n) = (€)~*(n)~* (&)*(n)*0(&,n); hence, @ € L?.L? C L' and

|lufre < C | < C"|u|ss, where C'and C” are constants which are independent of u. [

The other result is an interpolation inequality :

Proposition 7.2 If s = (1 —0)s; +0sy and s = (1 — 0)s| + 0s),, where 6 € [0,1],
51,859,588, €R, then, for any u € H**1(R"* x R") N H*2%(R" x R"), we have

lulls. < Tullyr g Tuls, o -

Proof: Indeed, we have

Hu”is, = /Rn i <§>2(1—9)81+2982 <n>2(1—0)s’1+293’2 |a(§’ 77) |2d§d7]
/ 2(1-0) , 20
= [ (@raaent)” " (o maeml)” dedy
R7 xR"™

, 1-0 , 9
< ([ mianrdsn) ([ @ iaemPasn) = .

where we have applied Holder’s inequality. U

Actually, we need the above results for anisotropic Sobolev spaces on domains 2 in
R™ x R", and since the theory of such spaces is less simple, we shall restrict ourselves to the
case that arises in this paper, that is, the case {0 = I x R™ where [ is a bounded interval in

R, and only to the case s > 0. First, let us set, by definition,
H>*'(Q) = H*(I, H* (R™)),

in the sense that u(x,y) is in H5*(Q) if and only if

a 78’ 2
OpJyu e L7 () for |af <s

ans’u z, _8aJs’u .CE/, 2
and / 9 (|y) 2y )l dedr'dy < oo if 0<o=s—[s] <Ll
IXIxR™

T — $/|1+2U

Of course, the norm in this space is defined by

’u”s s, = Z ”an; UH%Q(Q) if seN,

|| <s

dxdz’'dy otherwise.

/ |02 T u(z,y) — 02 T3 w2, y)|?
I

’w_xllechr

and [ul? 0= 10775 ulf2q

l|<[s] X I xR™

Now, we can prove for H%* (Q) the results analogous to the above ones.
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Proposition 7.3 (i) If s > 1 and s > 2, then, H**(Q) C L>(Q) with continuous
injection.

(i7) If s = (1 —6)s; +0sy and s = (1 —0)s| + 0s, where 6 € [0,1], s > 0,59 >
0,sh,s, € R, then, there exists a constant C such that, for any u € H**1(Q) N H*2%2()),
we have

[ulls.r0 < Clull;,

ull?
S1 sl,ﬂ ” 827527

Proof: Since we can not use directly the Fourier transformation, the idea is to construct a

bounded linear extension operator
Py H¥(Q) — H> (R x R"), (67)

that is, which satisfies Poulq = u, for all u € H*>* (). Indeed, assume that such a Py, exists.
Then, for u € H>*' () with s > 1 and s > 2,

|| o) = [Pauf =) < |Pou|re@xrr) < C | Poulsy < C'ulss,

where we have applied Proposition 7.1 and the boundedness of Py, and this proves (7).

Furthermore, under the assumptions of (i), we have

luls.so = [Paulsso < | Pouls,srxrn,

and it is a classical fact that there exists a constant C' such that, for all v € H*(R?),

le% A« |2
S 10l + [ OO doar < ol

<[] dyRd ’l’ — I’|d+2”

now, applying this inequality to v(z) = J;/Pgu(x,y), with d = 1, and integrating with
respect to y gives
| Poul? g pxen < C | Pauli,

Finally, applying Proposition 7.2 and the boundedness of P, yields

[ulsse < VC|Paulss < VC|Paul ) |1 Paul?, , < Clulis o lull a0

which establishes (7).
It remains to construct Py as in (67). In fact, the classical theory of Sobolev spaces

already provides a bounded linear extension operator
Pr: H*(I) — H*(R), (68)
such that Pru|; = u, for all w € H*(I). If u € H>* (Q), let us set
Pou(z,y) = (Pr)zu(z, y).

Clearly, this defines a linear operator such that Pou|q = u. Let us show the boundedness
of Po : H*() — H*(R x R"). It follows from the definition that = — J3 u(z,y) is in
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the Sobolev space H*(I) for almost all y € R". Hence, z ~— (Pr),J5 u(x,y) is in H*(R) for
almost all y € R™ and there exists a constant C' which depends neither on u nor on y such
that

(Pr)oT3 ule, ey < C 1 u(,w)]

ey, for ae. yeR"™

Since (Pj)xsz/u = J:j/PQU/, this inequality can be written more explicitly as

/|JSJS Pou(z,y)Pdr < C’2 /|8O‘JS u(z, y)|*dr

|| <Is]

drdx’ for a.e.y e R",

+Cz/ \8§‘Jy5/u(:v,y) - a:?‘]gj’u(xla y)’2
IxI

‘l’ —ZE,|1+2U

Integrating over R™ with respect to y gives

[ Paulie < C*lul v 0,

which proves the boundedness of P, and achieves the proof of the proposition. O
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