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Abstract

We improve the result obtained by one of the authors, [Bie], and establish the well
posed-ness of the Cauchy problem for some nonlinear equations of Schrödinger type in
the usual Sobolev space Hs(Rn) for s > n

2 + 2 instead of s > n
2 + 3 in [Bie]. We also

improve the smoothing effect of the solution and obtain the optimal exponent.

1 Introduction

Consider the following nonlinear Cauchy problem :{
∂tu = iL u+ F (u,∇xu, u,∇xu), t ∈ R, x ∈ Rn,

u(x, 0) = u0(x) ∈ Hs(Rn),
(1)

where the function F is sufficiently regular in C×Cn×C×Cn, the operator L has the form

L =
∑
j≤j0

∂2
xj
−
∑
j>j0

∂2
xj
,

with a fixed j0 ∈ {1, 2, ..., n}, and Hs(Rn), s ∈ R, is the usual Sobolev space on Rn. Thus,

L generalizes the Laplace operator but is not elliptic unless j0 = n. Hence, such equations

are generalizations of the nonlinear Schrödinger (NLS) equations.

In this paper, we continue the work undertaken in [Bie] and study the local existence and

the smoothing effect of the solutions of the Cauchy problem (1) with essentially the following
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goal : to obtain the optimal index s of regularity for which (1) is well posed. In fact, the

partial differential equation being of second order and semi-linear the optimal condition on s

should be s > n
2

+1. Unfortunately, up to now and due to issues that occur when estimating

the remainder obtained after the linearization of the non linear equation, we have not been

able to prove the wished result under such a condition. In any case, we shall return to this

question in a future work. In this paper, we establish the following :

Theorem 1.1 Assume that F vanishes to the third order at 0, that is, F and their partial
derivatives up to the second order vanishes at 0. Then, for every s > n

2
+ 2 and every initial

data u0 ∈ Hs(Rn), there exists a real number T > 0 such that the Cauchy problem (1) has
a unique solution u which is defined on the interval [0, T ] and satisfies

u ∈ C([0, T ];Hs(Rn))

and

|||Js+
1
2u|||T

def
= sup

µ∈Zn

(∫ T

0

∫
Rn
|〈x− µ〉−σ0Js+

1
2u(x, t)|2dxdt

) 1
2

<∞ ,

where J = (1−∆)1/2, ∆ =
∑k=n

k=1 ∂
2
xk

and σ0 >
1
2

is fixed. Moreover, given a bounded subset
B of Hs(Rn), there exists a real number T > 0 such that, for every u0 ∈ B, the associated
solution u of (1) exists on the interval [0, T ] and the map which associates u to u0 is Lipschitz
continuous from B into the space

{w ∈ C([0, T ];Hs(Rn)) ; |||Js+
1
2w|||T <∞}.

In [Bie], this theorem is proved under the assumption s > n
2

+ 3. We also improve the

result of [Bie] with respect to the smoothing effect of the solution since σ0 = 2 there. Note

that the assumption σ0 >
1
2

in the above theorem seems to be sharp; we refer for example

to the survey article [Rob] on the subject of Kato’s smoothing effect. Recall that at the

origin of [Bie] was the significant work of C. E. Kenig, G. Ponce and L. Vega, [KePoVe], who

first studied (1) and established the local existence and the smoothing effect of the solutions

assuming that F is a polynomial and s > s0, the index s0 being sufficiently large. These

authors also studied the case where F (is a polynomial and) vanishes to the second order at

0. However, it seems that in that case we need to work in weighted Sobolev spaces.

The Cauchy problem (1) has been extensively studied in the nineties mainly when L =

∆, that is, in the case of the Schrödinger equation. See the references in [KePoVe]. The

case L 6= ∆ is less well known. Nevertheless, it is motivated by several equations coming

from the applications such as Ishimori’s type equations or Davey-Stewartson’s type systems.

For more details, we refer the reader to the very instructive introduction of [KePoVe]. Let

us now quote some papers which are more or less related to this subject. In [KePoVe2],

2004, the authors extended their results of 1998 to the quasilinear case assuming essentially

that the corresponding dispersive operator L is elliptic and non trapping. The non elliptic

case is treated in [KePoRoVe1], 2005, and [KePoRoVe2], 2006. In [BeTa], 2008, the authors
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solved the Cauchy problem (1) for s > n
2

+ 1 in modified Sobolev spaces and assuming

F (u,∇xu, u,∇xu) bilinear. More recently, in [MaMeTa1], 2012, and [MaMeTa2], 2014, the

authors considered the quasilinear Schrödinger equation

i∂tu+
∑
j,k

gj,k(u,∇xu)∂j∂ku = F (u,∇xu)

and obtained the local well-posedness of the associated Cauchy problem for s > n
2

+ 3 in

the quadratic case (with modified Sobolev spaces) and for s > n
2

+ 5
2

in the non quadratic

case. However, they assume the smallness of the data and they do not seem to obtain the

smoothing effect of the solutions.

The proof of Theorem 1.1 follows the same ideas as that of [KePoVe] or [Bie]. Of course,

the general plan is unoriginal : linearization of the non linear equation, then, establishing

energy estimates for solutions of the linear equation, and finally, solving the non linear

equation by means of an appropriate fixed point theorem. Like [Bie], we start by applying a

para-linearization, that is a linearization in the sense of Bony, [Bon], instead of the classical

linearization. This leads us to the use of the para-differential calculus whose main interest lies

in the fact that it eliminates the usual losses of regularity due to commutators. One obtains

a para-linear equation and most of the proof of the theorem is concerned with the study of

such an equation, that is, the well-posedness in the Sobolev spaces of the associated Cauchy

problem by means of energy and smoothing effect estimates. As did Kenig, Ponce and Vega,

we establish the smoothing effect estimate by using Doi’s argument, [Doi], via G̊arding’s

inequality, and we prove the energy estimates by following an idea of Takeuchi [Tak], that

is, by constructing a non classical invertible pseudo-differential operator C which allows

estimates for Cu if u is a solution of the para-linear equation. At last, we solve the non

linear Cauchy problem (1) by applying these estimates to an integro-differential equation

which is equivalent to (1) and obtain the solution as the fixed point of an appropriate

contraction in an appropriate complete metric space.

Now, in order to give a more precise idea about our proof, let us indicate the differences

with that given in [Bie]. In fact, there are three main differences :

— We simplify certain arguments of [Bie]; for example, we no longer need to use the

general Hörmander symbol spaces Smρ,δ , we only use Sm1,0 and Sm0,0. Also, we only use the

original para-differential operators (see Section 2) and not the variant introduced in [Bie].

— The linear theorem, that is, Theorem 3.1 (see Section 3), is proved for general para-

differential operators Tb1 and Tb2 of order 0 instead of para-multiplication operators. Note

also that we allow the operators C1 and C2 to be abstract bounded operators.

— The third difference lies in the non linear part (see Section 4) and is crucial for our

improvement of the result of [Bie] : we use anisotropic Sobolev spaces and an interpolation

inequality (see Lemma 7.3) to estimate the remainder of the para-linearized equation.
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2 Notations and preliminary results

Some notations used in the paper :

— Js = (1−∆)s/2 = 〈D〉s is the operator whose symbol is 〈ξ〉s = (1 + ξ2)s/2.

— Dxk = −i∂xk , Dx = −i∂x.
— |α| =

∑j=n
j=1 αj if α ∈ Nn.

— ∆v = (∆v1, ...,∆vn) and ∇v = (∇v1, ...,∇vn) if v = (v1, ..., vn).

— S (Rn) denotes the Schwartz space of rapidly decreasing functions in Rn.

— D(Rn) denotes the space of smooth functions with compact support in Rn.

— D ′(Rn) denotes the space of distributions in Rn.

— S ′(Rn) denotes the space of tempered distributions in Rn.

— û or F (u) denotes the Fourier transform of u.

— Hs(Rn) = {u ∈ S ′(Rn); 〈ξ〉sû ∈ L2(Rn)} is the usual Sobolev space of regularity s.

— ‖u‖s = (
∫
Rn〈ξ〉

2s|û(ξ)|2 dξ)1/2 denotes the norm of u in Hs(Rn).

— ‖u‖E denotes the norm of u in the space E.

— Hörmander’s classes of symbols : If m ∈ R and γ, δ ∈ [0, 1],

Smγ,δ =
{
a ∈ C∞(Rn × Rn); ∀α, β ∈ Nn, |∂αx∂

β
ξ a(x, ξ)| ≤ Aα,β〈ξ〉m−γ|β|+δ|α|

}
.

— If % > 0 is an integer, C%(Rn) denotes the set of functions in Rn which are bounded,

of class Cm and their derivatives up to m are bounded. If % > 0 is not an integer, C%(Rn)

denotes the Hölder class, that is, the set of u in C [%](Rn) such that

∃C ∈ R, ∀(x, y) ∈ Rn × Rn, |∂αu(x)− ∂αu(y)| ≤ C|x− y|%−[%].

— OpS denotes the set of pseudodifferential operators whose symbols belong to S.

The following statement summarizes the pseudodifferential calculus associated to

Hörmander’s classes of symbols Smγ,δ :

Theorem 2.1 If a ∈ Smγ,δ, b ∈ Sm
′

γ,δ, m,m
′ ∈ R, and 0 ≤ δ < γ ≤ 1 or 0 ≤ δ ≤ γ < 1, then :

(i) a(x,D)b(x,D) = c(x,D) with c ∈ Sm+m′

γ,δ . Moreover,

c(x, ξ) =

∫
e−iy.ηa(x, ξ + η) b(x+ y, ξ)

dy dη

(2π)n

=
∑
|ν|<N

1

ν!
∂νξ a(x, ξ)Dν

xb(x, ξ) +
∑
|ν|=N

1

ν!

∫ 1

0

(1− θ)N−1rν,θ(x, ξ) dθ,

where rν,θ(x, ξ) =

∫
e−iy.η∂νξ a(x, ξ + θη)Dν

xb(x+ y, ξ)
dy dη

(2π)n
,

and the S
m+m′−N(γ−δ)
γ,δ semi-norms of rν,θ are bounded by products of semi-norms of a and b

uniformly in θ ∈ [0, 1].
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(ii) a(x,D)∗ = a∗(x,D) with a∗ ∈ Smγ,δ. Moreover,

a∗(x, ξ) =

∫
e−iy.ηa(x+ y, ξ + η)

dy dη

(2π)n

=
∑
|ν|<N

1

ν!
∂νξD

ν
xa(x, ξ) +

∑
|ν|=N

1

ν!

∫ 1

0

(1− θ)N−1r∗ν,θ(x, ξ) dθ,

where r∗ν,θ(x, ξ) =

∫
e−iy.η∂νξD

ν
xa(x+ y, ξ + θη)

dy dη

(2π)n
,

and the S
m−N(γ−δ)
γ,δ semi-norms of r∗ν,θ are bounded by semi-norms of a uniformly in θ ∈ [0, 1].

See [Tay], par exemple, for the proof. We shall also often need the following version of

Calderón-Vaillancourt theorem :

Theorem 2.2 Let a : Rn×Rn → C be a bounded function. Assume that, for all α, β ∈ Nn

such that |α| + |β| ≤ n + 1, there exists a constant Cα,β > 0 such that |∂αx∂
β
ξ a(x, ξ)| ≤

Cα,β in R2n. Then, the pseudodifferential operator a(x,D) is bounded in L2(Rn) and its
operator norm is estimated by

sup
|α|+|β|≤n+1

||∂αx∂
β
ξ a||L∞ .

See [CoMe] for the proof.

The following technical lemma which is a consequence of Theorem 2.1 will be very useful

in many of our proofs :

Lemma 2.1 Let a ∈ Sm0,0, m,σ ∈ R and µ ∈ Rn. Then,
(i) we have 〈x− µ〉σa(x,D)〈x− µ〉−σ = aµ(x,D), where aµ ∈ Sm0,0 and the semi-norms

of aµ are bounded by semi-norms of a uniformly in µ.
(ii) if σ ≥ 0 and if, in addition, a(x, ξ) is rapidly decreasing with respect to x − µ, we

have 〈x − µ〉σa(x,D)〈x − µ〉σ = bµ(x,D), where bµ ∈ Sm0,0, bµ is also rapidly decreasing in
x− µ and the semi-norms of bµ are estimated uniformly in µ by expressions of the form

sup
|α|+|β|≤N

||〈x− µ〉2σ〈ξ〉−m∂αxD
β
ξ a||L∞ .

Here, the fact that the symbol a(x, ξ) is rapidly decreasing with respect to x−µ means

that, for every integer N and all multi-indices α, β, the function 〈x − µ〉N〈ξ〉−m∂αxD
β
ξ a is

bounded in Rn × Rn, and we shall often meet such symbols in this paper.

Proof : (i) When σ ≥ 0, we can use Theorem 2.1(i) and integrations by parts to obtain

aµ(x, ξ) = 〈x− µ〉σ(2π)−n
∫

e−iy.ηa(x, ξ + η) 〈x+ y − µ〉−σ dy dη

= 〈x− µ〉σ(2π)−n
∫

e−iy.ηJNη [〈η〉−Na(x, ξ + η)] 〈y〉−NJNy [〈x+ y − µ〉−σ] dy dη
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where N is a large and even integer. Hence, by taking derivatives and bounding, and next

by applying Peetre’s inequality,

|aµ(x, ξ)| ≤ C ||〈ξ〉−ma||CN 〈x− µ〉σ
∫
〈η〉−N 〈ξ + η〉m 〈y〉−N〈x+ y − µ〉−σ dy dη

≤ 2
σ+|m|

2 C ||〈ξ〉−ma||CN 〈ξ〉m
∫
〈η〉|m|−N 〈y〉σ−N dy dη = C ′ 〈ξ〉m ||〈ξ〉−ma||CN ,

where C and C ′ are constants which are independent of µ, and N is taken for example such

that N ≥ |m|+ σ + n+ 1. Of course, the derivatives of aµ are treated in the same manner.

The case σ < 0 follows from the preceding case by considering the adjoint

aµ(x,D)∗ = 〈x− µ〉−σa(x,D)∗〈x− µ〉σ

and by applying Theorem 2.1(ii).

(ii) By using the formula in Theorem 2.1(ii) once more, it is easy to see that, if a is

rapidly decreasing with respect to x− µ, then the symbol a∗ is also rapidly decreasing with

respect to x− µ and that, for all N ∈ N, α, β ∈ Nn, there exist M ∈ N and a non negative

constant CN,α,β which does not depend on µ such that

||〈x− µ〉N〈ξ〉−m∂αxD
β
ξ a
∗||L∞ ≤ CN,α,β sup

|α′|+|β′|≤M
||〈x− µ〉N〈ξ〉−m∂α′x D

β′

ξ a||L∞ .

Now, by following the same argument as that used in the first part, one can check that the

same claim holds exactly when we replace a∗ by aµ in the above assertion; in particular, we

have the estimate

||〈x− µ〉N〈ξ〉−m∂αxD
β
ξ aµ||L∞ ≤ CN,α,β sup

|α′|+|β′|≤M
||〈x− µ〉N〈ξ〉−m∂α′x D

β′

ξ a||L∞ ,

and since we can write obviously bµ(x, ξ) = 〈x−µ〉2σaµ(x, ξ), this achieves the proof of the

lemma. �

When studying the non linear equation, the following result is important in order to

explain the assumption made on the non-linearity F .

Lemma 2.2 For all s ≥ 0 and all σ > n
2
, there exists a constant C > 0 such that, for all

v ∈ Hs(Rn), the sequence µ 7→ ||〈x− µ〉−σv||s is in `2(Zn) and∑
µ

||〈x− µ〉−σv||2s ≤ C ||v||2s .

In particular, if s > n
2
, u, v ∈ Hs(Rn) and χ is a smooth and rapidly decreasing function,

then, µ 7→ ||χ(x− µ)u v||s is in `1(Zn) and∑
µ

||χ(x− µ)u v||s ≤ C ||u||s||v||s .
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Proof : The case s = 0 is obvious and follows from the fact that
∑

µ〈x − µ〉−2σ is a

bounded function. The case where s is a positive integer reduces to the case s = 0 by taking

derivatives via Leibniz formula. The general case is obtained by interpolation. Indeed, the

map v 7→ 〈x− µ〉−σv being linear and bounded from Hs into `2(Zn, Hs) for integral indices

s = s1, s2, it will be also bounded from Hs′ into `2(Zn, Hs′) for any real s′ between s1 and

s2. This follows from the fact that

[`2(Zn, Hs1), `2(Zn, Hs2)]θ = `2(Zn, [Hs1 , Hs2 ]θ),

for 0 < θ < 1. See for example [BeLö], Theorem 5.1.2, page 107.

The second part is a consequence of the first one and the fact that Hs(Rn) is an algebra

if s > n
2
. �

Let us now recall some results on paradifferential operators.

Definition 2.1 We define the class Σm
% where m ∈ R and % ≥ 0 to be the class of symbols

a(x, ξ) defined on Rn × Rn which are C∞ in ξ and C% in x, in the sense that

∀α ∈ Nn, |∂αξ a(x, ξ)| 〈ξ〉−m+|α| ∈ C% (Rn × Rn) ,

C% being replaced by L∞ when % = 0. If a ∈ Σm
% , m is the order of a and % is its regularity.

Following J.-M. Bony, we associate to a symbol a in Σm
% the paradifferential operator Ta,χ

defined by the expression

T̂a,χu(ξ) = (2π)−n
∫
Rn
χ (ξ − η, η) F1(a)(ξ − η, η)û(η) dη,

where χ is what one calls a para-truncature, that is a C∞ function in Rn×Rn satisfying the
following properties :

(i) ∃ ε > 0 such that ε < 1 and χ(ξ, η) = 0 if |ξ| ≥ ε|η|, ξ, η ∈ Rn.

(ii) ∃ ε′ > 0, ε′′ > 0, such that ε′ < ε and χ(ξ, η) = 1 if |ξ| ≤ ε′|η| and |η| ≥ ε′′.

(iii) ∀α ∈ N2n, ∃Aα > 0, ∀ζ ∈ R2n, 〈ζ〉|α||∂αχ(ζ)| ≤ Aα.

The first important result on paradifferential operators is that, even if one can show that

Ta,χ = ã(x,D) with some ã ∈ Sm1,1, they are bounded in the Sobolev spaces in the usual

manner. In fact, we have :

Theorem 2.3 Assume that χ satisfies only the first and third property among the above
ones. Then, for every real s, Ta,χ is bounded from Hs(Rn) into Hs−m(Rn) and its operator
norm is estimated by a semi-norm of a in Σm

% . In particular, if a = a(x) ∈ L∞(Rn), then,
for every real s, Ta,χ is bounded in Hs(Rn) with an operator norm bounded by a constant
times ||a||L∞ .

Proof : See [Bon], [Me2] or [Tay].

Concerning the dependence with respect to the para-truncature χ, one can say the fol-

lowing :
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Theorem 2.4 If % > 0 and χ1, χ2 are para-truncatures, then, the operator Ta,χ1 − Ta,χ2 is
bounded from Hs(Rn) into Hs−m+%(Rn) and its operator norm is estimated by a semi-norm
of a in Σm

% .

Proof : See [Bon], [Me2] or [Tay].

This result shows that the dependance of Ta,χ on χ is less important than that on a. It

also explains why the remainders in the paradifferential theory are only %-regularizing. From

now on, we shall write Ta instead of Ta,χ unless it is needed.

Note also that a possible choice of the para-truncature that we shall often use in the

sequel is given by

χ(ξ, η) = χ1(ξ/|η|) (1− ψ1(η)),

where ψ1, χ1 ∈ C∞(Rn), ψ1 = 1 in a neighbourhood of 0, ψ1 = 0 out of B(0, ε′′), and

χ1 = 1 on B(0, ε′), supp(χ) ⊂ B(0, ε), with ε and ε′ satisfying 0 < ε′ < ε < 1. In this case,

Ta,χ = ã(x,D) with the following expression of ã :

ã(x, ξ) = (1− ψ1(ξ))|ξ|n
∫
Rn

F−1(χ1)(|ξ|(x− y)) a(y, ξ)dy. (2)

The following lemma gives some properties of ã which will be needed in the sequel and often

used implicitly.

Lemma 2.3 Let % ≥ 0 and a ∈ Σm
% . Then, ã is smooth and

|∂βξ ∂
α
x ã(x, ξ)| ≤ Aα,β 〈ξ〉m−|β| if |α| ≤ % , (3)

|∂βξ ∂
α
x ã(x, ξ)| ≤ Aα,β 〈ξ〉m−|β|+|α|−% if |α| > % , (4)

where Aα,β are non negative constants; more precisely, the Aα,β can be estimated by semi-
norms of a in Σm

% . In particular, ã ∈ Sm1,1.
Moreover, if θ is a smooth function with support in some compact subset of Rn and

θµ(x) = θ(x− µ), µ ∈ Zn, then, for all N ∈ N, we have

〈x− µ〉N |∂βξ ∂
α
x θ̃µa (x, ξ)| ≤ Aα,β,N 〈ξ〉m−|β| if |α| ≤ %, (5)

〈x− µ〉N |∂βξ ∂
α
x θ̃µa (x, ξ)| ≤ Aα,β,N 〈ξ〉m−|β|+|α|−% if |α| > %, (6)

where the Aα,β,N do not depend on µ and are estimated by semi-norms of a in Σm
% .

Proof : For the first part we refer to [Me2] or [Tay]. The second part follows from the

first one by using for example for even N the decomposition

〈x− µ〉N =
∑
α

(x− y)α

α!
∂αy 〈y − µ〉N

together with the expression (2). �

When dealing with non linear terms, we shall frequently use the following classical result :
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Proposition 2.1 If F is a C∞ (or sufficiently regular) function in Cm, F (0) = 0 and
u1, ..., um are functions in Hs(Rn), s > n

2
, then, F (u1, ..., um) ∈ Hs(Rn) and we have precisely

||F (u1, ..., um)||s ≤ C (||(u1, ..., um) ||L∞) ||(u1, ..., um)||s,

where ξ 7→ C(ξ) is a non negative and non decreasing function.

An important property of the paradifferential operators consists in the fact that they are

necessary to write down Bony’s linearization formula, a formula that we recall here.

Theorem 2.5 (Bony’s linearization formula) For all real functions u1, ..., um ∈
H

n
2

+%(Rn), % > 0, and every function F of m real variables which is C∞ (or sufficiently
regular) and vanishes in 0, we have

F (u1, ..., um) =
i=m∑
i=1

T∂uiFui + r with r ∈ H
n
2

+2%(Rn).

Proof : See [Bon], [Me2] or [Mey].

The remainder r in the above formula depends of course on (u1, ..., um). The following

result essentially shows that r is a locally Lipschitz function of (u1, ..., um). More precisely :

Theorem 2.6 If u = (u1, ..., um) ∈ Hs(Rn,Rm), s = n
2

+ %, % > 0, let us denote by r(u)
the remainder in Bony’s formula. For all u, v ∈ Hs(Rn,Rm), we have then

‖r(u)− r(v)‖s+% ≤ θ(‖u‖s, ‖v‖s) ‖u− v‖s,

where θ(‖u‖s, ‖v‖s) is bounded if u and v vary in a bounded subset of Hs(Rn,Rm).

Proof : See [Bie].

Remark : In the case of our equation, that is (1), even if u has complex values, we shall

be able to apply Bony’s formula to the non linear expression F (u,∇u, ū,∇ū) where u ∈
H

n
2

+1+%(Rn). Indeed, we can write

F (u,∇u, ū,∇ū) = G(Re(u),∇Re(u), Im(u),∇Im(u))

where G(x1, x2, y1, y2) = F (x1 +iy1, x2 +iy2, x1−iy1, x2−iy2) which is a function from R2n+2

into C. We apply then Bony’s formula to G and obtain that

F (u,∇u, ū,∇ū) = T∂x1GRe(u) + T∂x2G∇Re(u) + T∂y1GIm(u) + T∂y2G∇Im(u) + r(u).

At last, by using the fact that Re(u) = u+u
2

, Im(u) = u−u
2i

, ∂z = 1
2

(∂x − i∂y) and ∂z =
1
2

(∂x + i∂y), and then the linearity of Tb with respect to b, we obtain the formula used in

this paper :

F (u, u,∇u,∇u) = T∂uFu+ T∂uFu+ T∂∇uF∇u+ T∂∇uF∇u+ r(u)

with r(u) ∈ H n
2

+2%(Rn) if u ∈ H n
2

+1+%(Rn).

We shall also often need the following result similar to Lemma 2.1 :
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Lemma 2.4 Let a ∈ Σ0
0(Rn), θ ∈ D(Rn), θµ(x) = θ(x − µ), µ ∈ Rn and s ∈ R, and

consider the paradifferential operator Tθµa = Tθµa,χ (where the para-truncature χ does not
necessarily satisfy the second property of Definition 2.1). Then, for all σ ≥ 0, the operator
〈x − µ〉σTθµa〈x − µ〉σ is bounded in Hs(Rn) and there exist N ∈ N and a non negative
constant C such that, for every µ ∈ Rn,

||〈x− µ〉σTθµa 〈x− µ〉σ||L(Hs) ≤ C sup
|α|≤N

||〈ξ〉|α|∂αξ a||L∞ .

Proof : First, one can assume that σ is an integer and even an even integer. Let us denote

by aµ the symbol θµa and consider first the operator Taµ 〈x−µ〉σ. Recall that Taµ = ãµ(x,D)

with

ãµ(x, ξ) = (1− ψ1(ξ))|ξ|n
∫
Rn

F−1(χ1)(|ξ|(x− y)) aµ(y, ξ)dy. (7)

where ψ1, χ1 ∈ C∞(Rn), ψ1 = 1 in a neighbourhood of 0, ψ1 = 0 out of B(0, ε′′), and χ1 = 1

on B(0, ε′), supp(χ) ⊂ B(0, ε), with ε and ε′ satisfying 0 < ε′ < ε < 1. Hence, we can write

for arbitrary u ∈ S (Rn),

Taµ 〈x− µ〉σu(x) = (2π)−n
∫

eixξ ãµ(x, ξ)F (〈x− µ〉σu)(ξ) dξ

= (2π)−n
∫

eixξ ãµ(x, ξ) 〈Dξ + µ〉σû(ξ) dξ = (2π)−n
∫
〈Dξ − µ〉σ[eixξ ãµ(x, ξ)] û(ξ) dξ

= (2π)−n
∑
α

1

α!
Dα
x [〈x− µ〉σ]

∫
eixξ ∂αξ ãµ(x, ξ) û(ξ) dξ,

where we have applied integrations by parts and Leibniz formula. So, we have proved that

Taµ 〈x− µ〉σ =
∑
α

1

α!
Dα
x [〈x− µ〉σ] (∂αξ ãµ)(x,D),

where the sum is of course finite. Now, let us consider the operator (∂αξ ãµ)(x,D) and let us

remark that, for example,

∂ξk ãµ(x, ξ) = (1− ψ1(ξ))|ξ|n
∫
Rn

F−1(χ1)(|ξ|(x− y)) ∂ξkaµ(y, ξ) dy

− (1− ψ1(ξ))|ξ|n
∫
Rn

F−1(χ2)(|ξ|(x− y)) aµ(y, ξ)
ξk
|ξ|2

dy

− ∂kψ1(ξ)|ξ|n
∫
Rn

F−1(χ1)(|ξ|(x− y)) aµ(y, ξ) dy,

where χ2(η) =
∑n

j=1 ηj∂jχ1(η). This shows that

(∂ξk ãµ)(x,D) =
3∑
l=1

Tθµal,χl ,

where the al are symbols in Σ−1
0 and the χl are para-truncatures which satisfy the first and

third properties of Definition 2.1. By induction, (∂αξ ãµ)(x,D) is then a finite sum of operators
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of the same form as Taµ = Taµ,χ (of order ≤ −|α|), and note also that the semi-norms of the

associated symbols are bounded uniformly in µ by a semi-norm of a. Hence, Taµ 〈x − µ〉σ

is a finite sum of operators of the form P (x − µ)Taµ , where P is a polynomial (of degree

≤ σ), and consequently the problem is reduced to the study of the operator 〈x − µ〉σTaµ
only. Now, the symbol of the latter can be written as

〈x−µ〉σãµ(x, ξ) =
∑
|α|≤σ

1

α!
(1−ψ1(ξ))|ξ|n

∫
Rn

(x−y)αF−1(χ1)(|ξ|(x− y)) ∂αy [〈y−µ〉σ] aµ(y, ξ) dy

=
∑
|α|≤L

1

α!
(1− ψ1(ξ))|ξ|n

∫
Rn

F−1(χα1 )(|ξ|(x− y)) θα(y − µ) aα(y, ξ) dy,

where χα1 and θα are similar to χ1 and θ respectively, and aα ∈ Σ
−|α|
0 with semi-norms

bounded by those of a. Hence, 〈x− µ〉σTaµ is a finite sum of operators of the same form as

Taµ whose symbols have semi-norms bounded uniformly in µ by a semi-norm of a. Eventually,

the lemma follows from Theorem 2.3. �

Let us also recall the G̊arding’s inequality which will be used crucially to prove the

smoothing effect estimate.

Theorem 2.7 (Sharp G̊arding’s inequality for systems) Let a(x, ξ) be a k×k matrix
whose elements are in Sm1,0 and which satisfies

〈(a(x, ξ) + a∗(x, ξ))ζ, ζ〉 ≥ 0

for all ζ ∈ Ck and all (x, ξ) such that |ξ| ≥ A0, where a∗ denotes the adjoint matrix of a and
〈., .〉 is the usual hermitian scalar product of Ck. Then, there exist a non negative constant
A and an integer N such that, for all u ∈ S (Rn,Ck), we have

Re〈a(x,D)u, u〉 ≥ −A sup
|α|+|β|≤N

||〈ξ〉|β|−m∂αx∂
β
ξ a||L∞ ||u||

2
m−1

2

where A depends only on n, k and A0.

Proof : See [Tay] or [Tat] for example.

3 The paralinear equation

In this section, we solve the Cauchy problem for the paralinear equation, that is, the linear

equation obtained from (1) by applying Bony’s linearization formula (Theorem 2.5).

Recall that Qµ is the cube µ + [0, 1]n, µ ∈ Zn and that Q∗µ is a larger cube with side

length 2, for example, µ+ [−1/2, 3/2]n.

Theorem 3.1 Given s ∈ R, consider the following linear Cauchy problem :{
∂tu = iL u+ Tb1 .∇xu+ Tb2 .∇xū+ C1u+ C2ū+ f(x, t)
u(x, 0) = u0 ∈ Hs(Rn)

(8)
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We assume that C1 and C2 are bounded operators in Hs(Rn) and in Hs+2(Rn), that b1, b2 ∈
Σm
% , % > 0, and more precisely that

bk(x, ξ) =
∑
µ∈Zn

αk,µ ϕk,µ(x, ξ),
∑
µ

|αk,µ| ≤ Ak, k = 1, 2

supp(x 7→ ϕk,µ(x, ξ)) ⊆ Q∗µ, sup
|β|≤N0

||〈ξ〉|β|∂βξ ϕk,µ||C% ≤ 1,
(9)

and ||Ck||L(Hs), ||Ck||L(Hs+2) ≤ Ak, k = 1, 2, N0 being a large and fixed integer. We further
assume that b2(x, ξ) is even in ξ. Then, the problem (8) has a unique solution u which is in
C(R, Hs(Rn)) and satisfies, for all T > 0,

sup
−T≤t≤T

||u(t)||2s ≤ A
(
||u0||2s + IT (Jsf, Jsu)

)
, (10)

|||Js+
1
2u|||2T ≤ A

(
||u0||2s + IT (Jsf, Jsu)

)
, (11)

where the constant A depends only on n, s, %, T , A1, and A2, and the expression IT (v, w) is
a finite sum of terms of the form

sup
µ∈Zn

∫ T

−T
|〈Gµv, w〉|dt

with Gµ ∈ OpS0
0,0 and the semi-norms of its symbol (up to N0) are uniformly bounded by a

constant that depends only on s, n, %, A1 and A2.

Recall that |||u|||2T = sup
µ

∫ T

−T

∫
Rn
〈x− µ〉−2σ0|u(x, t)|2dtdx, where σ0 >

1
2

is fixed.

Proof : Let us start by noting that the uniqueness is an obvious matter. Indeed, if u1 and

u2 are solutions of (8), then, u1 − u2 is a solution of (8) with u0 = 0 and f = 0, and the

conclusion follows from (10).

As for the existence, as is customary with linear differential equations, it will follow from

the a priori estimates (10) and (11) by using more or less standard arguments of functional

analysis, and the proof of Theorem 3.1 will consist essentially in establishing them.

Another useful remark is that it will be sufficient to prove the theorem in C(R+, H
s(Rn))

instead of C(R, Hs(Rn)) and the estimates (10) and (11) on [0, T ] instead of [−T, T ]. In fact,

if the theorem is proved on R+, one can apply it to v(t) = u(−t) which satisfies a Cauchy

problem of the same type as (8). The result is then that v(−t) will extend u to R− and

satisfy (8) on R−, in addition to the fact that the estimates (10) and (11) are also extended

to [−T, 0].

So, let us assume that u ∈ C([0, T ];Hs(Rn)) is a solution of the Cauchy problem (8).

In what follows, it will be quite convenient to use the following notation

νN(ϕ) = sup
1≤j≤N

sup
|α|+|β|≤N

||〈ξ〉|β|∂αx∂
β
ξ ϕ||

j
L∞ ,

and note that such a quantity is not a norm in general but it is well defined for ϕ ∈ S0
1,0.

Note also that, if M ≥ 1, νN(ϕ)M ≤ νNM(ϕ), a remark that will be often used implicitly.

In fact, the inequalities (10) and (11) will be deduced from the following ones :
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Proposition 3.1 Assume that the functions ϕk,µ defining the bk are C∞, that is, ϕk,µ ∈ S0
1,0,

k = 1, 2. Then, there exist a positive real number A and an integer N such that, for all
R ≥ 1, there exists a pseudodifferential operator C ∈ OpS0

0,0 such that, for all T > 0, any
solution u ∈ C([0, T ];Hs(Rn)) of the Cauchy problem (8) satisfies

sup
0≤t≤T

||Cu(t)||2s ≤ ||Cu0||2s + 2

∫ T

0

|〈CJsf,CJsu〉| dt

+A sup
k,µ

νN(ϕk,µ)

(
RT sup

0≤t≤T
||u(t)||2s +

1

R
|||Js+

1
2u|||2T

)
.

Moreover, regarding the operator C, we have the following precise bounds, for v ∈ Hs(Rn) :

||Cv||s ≤ A sup
µ

νN(ϕ1,µ) ||v||s ,

||v||s ≤ A sup
µ

νN(ϕ1,µ)||Cv||s +
A

R
sup
µ

νN(ϕ1,µ)2||v||s.

Proposition 3.2 Under the same assumptions as above and with the same elements A, R,
C and N , there exist also pseudodifferential operators ψj(x,D) ∈ OpS0

1,0, j = 1, 2, 3, 4, such
that, for all T > 0, any solution u ∈ C([0, T ];Hs(Rn)) of the Cauchy problem (8) satisfies

|||Js+
1
2u|||2T ≤ A

(
1 + T + T sup

µ,k
νN(ϕk,µ)

)
sup
[0,T ]

||u||2s + A
4∑
j=1

sup
µ∈Zn

∫ T

0

|〈ψj(x− µ,D)Jsf, Jsu〉| dt

and

|||Js+
1
2 Cu|||2T ≤A

(
1+T+T sup

µ,k
νN(ϕk,µ)

)
sup
[0,T ]

||Cu||2s + A
4∑
j=1

sup
µ

∫ T

0

|〈ψj(x−µ,D)CJsf,CJsu〉|dt

+A sup
k,µ

νN(ϕk,µ)

(
RT sup

0≤t≤T
||u(t)||2s +

1

R
|||Js+

1
2u|||2T

)
.

Admitting these propositions (see Section 5 and Section 6 for their proofs), let us go on

and finish the proof of Theorem 3.1. In order to apply the above inequalities we have to

regularize the bk, k = 1, 2, by setting

ϕk,µ,m(x, ξ) = mn

∫
Rn
χ(m(x− y))ϕk,µ(y, ξ) dy and bk,m =

∑
µ

αk,µ ϕk,µ,m

where χ is a non negative C∞ function with support in the unit ball and whose integral is

equal to 1. Note that ϕk,µ,m has its support (with respect to x) in a compact set which is

slightly larger that Q∗µ but this has no effect on the proofs. Since we can write

∂tu = iL u+ Tb1,m .∇xu+ Tb2,m .∇xū+ C1u+ C2ū+ fm,

where fm = f + Tb1−b1,m .∇u+ Tb2−b2,m .∇ū, we can apply Proposition 3.1 to obtain

sup
[0,T ]

||Cmu||2s ≤ ||Cmu0||2s + 2

∫ T

0

|〈CmJ
sfm,CmJ

su〉| dt

+A sup
k,µ

νN(ϕk,µ,m)

(
RT sup

[0,T ]

||u||2s +
1

R
|||Js+

1
2u|||2T

)
,
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where the operator C is denoted here by Cm to indicate its dependence on m. Now, clearly,

we have νN(ϕk,µ,m) ≤ AmN2
sup1≤j≤N sup|β|≤N ||〈ξ〉|β|∂

β
ξ ϕk,µ||

j
L∞ ≤ AmN2

. Hence,

sup
[0,T ]

||Cmu||2s ≤ ||Cmu0||2s + 2

∫ T

0

|〈CmJ
sf,CmJ

su〉| dt+ 2

∫ T

0

|〈CmJ
sTb1−b1,m∇u,CmJ

su〉| dt

+2

∫ T

0

|〈CmJ
sTb2−b2,m∇ū,CmJ

su〉| dt+ AmN2

(
RT sup

[0,T ]

||u||2s +
1

R
|||Js+

1
2u|||2T

)
,

and the problem now is to estimate the third and fourth terms in the right hand side of this

inequality. This is done in the following lemma.

Lemma 3.1 Let ũ stand for u or ū, and σ = inf{%, 1}. Then, there exists a constant A
such that, for all k ∈ {1, 2}, m ≥ 1, R ≥ 1 and m′ ≥ m,∫ T

0

∣∣〈CmJ
sTbk−bk,m∇ũ,CmJ

su〉
∣∣ dt ≤ (Am2N2

m′σ
+
Am′3N

2

R

)
|||Js+

1
2u|||2T

+Am′3N
2

T sup
[0,T ]

||u||2s +
A

mσ
|||Js+

1
2 Cmu|||2T .

See Section 7 for the proof of this lemma. Applying this lemma yields

sup
[0,T ]

||Cmu||2s ≤ ||Cmu0||2s + 2

∫ T

0

|〈CmJ
sf,CmJ

su〉| dt+
A

mσ
|||Js+

1
2 Cmu|||2T

+

(
Am2N2

m′σ
+
Am′3N

2

R

)
|||Js+

1
2u|||2T + Am′3N

2

RT sup
[0,T ]

||u||2s

an inequality that we can improve, thanks to Proposition 3.2, as follows

sup
[0,T ]

||Cmu||2s ≤ ||Cmu0||2s + 2

∫ T

0

|〈CmJ
sf,CmJ

su〉| dt+
A

mσ

4∑
j=1

sup
µ

∫ T

0

|〈Ψj,µCmJ
sf,CmJ

su〉| dt

+
A(1 + TmN)

mσ
sup
[0,T ]

||Cmu||2s +

(
Am2N2

m′σ
+
Am′3N

2

R

)
|||Js+

1
2u|||2T + Am′3N

2

RT sup
[0,T ]

||u||2s

≤ ||Cmu0||2s + 2

∫ T

0

|〈CmJ
sf,CmJ

su〉| dt+
A

mσ

4∑
j=1

sup
µ

∫ T

0

|〈Ψj,µCmJ
sf,CmJ

su〉| dt

+
A(1 + TmN)

mσ
sup
[0,T ]

||Cmu||2s +

(
Am2N2

m′σ
+
Am′3N

2

R

)
4∑
j=1

sup
µ

∫ T

0

|〈Ψj,µJ
sf, Jsu〉| dt

+

(
Am2N2

m′σ
+
Am′3N

2

R

)(
1 + TmN

)
sup
[0,T ]

||u||2s + Am′3N
2

RT sup
[0,T ]

||u||2s ,

where Ψj,µ = ψj(x− µ,D). Next, by taking m such that, for example, mσ ≥ 4A and T such
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that TmN ≤ 1, we get

sup
[0,T ]

||Cmu||2s ≤ 2||Cmu0||2s + 4

∫ T

0

|〈CmJ
sf,CmJ

su〉| dt+
4∑
j=1

sup
µ

∫ T

0

|〈Ψj,µCmJ
sf,CmJ

su〉| dt

+

(
2Am2N2

m′σ
+

2Am′3N
2

R

)
4∑
j=1

sup
µ

∫ T

0

|〈Ψj,µJ
sf, Jsu〉| dt

+

(
Am2N2

m′σ
+
Am′3N

2

R
+ Am′3N

2

RT

)
sup
[0,T ]

||u||2s ,

and by using the second part of Proposition 3.1, we obtain

sup
[0,T ]

||u||2s ≤ Am2N2

(
m2N2||u0||2s +

∫ T

0

|〈CmJ
sf,CmJ

su〉|dt+
4∑
j=1

sup
µ

∫ T

0

|〈Ψj,µCmJ
sf,CmJ

su〉|dt

)

+

(
Am4N2

m′σ
+
Am′5N

2

R

)
4∑
j=1

sup
µ

∫ T

0

|〈Ψj,µJ
sf, Jsu〉|dt+ C(m,m′, R, T ) sup

[0,T ]

||u||2s,

where C(m,m′, R, T ) =
Am4N2

m′σ
+
Am′5N

2

R
+Am′5N

2

RT +
Am4N2

R2
. Finally, m being fixed

(and depending only on A), we take m′ such that Am4N2

m′σ
≤ 1

8
, then we take R such that

Am′5N
2

R
≤ 1

8
and Am4N2

R2 ≤ 1
8
, and last we take T such that Am′5N

2
RT ≤ 1

8
. With these

choices, we have of course C(m,m′, R, T ) ≤ 1
2

which allows to bound sup[0,T ] ||u||2s and to get

(10) (and also (11), thanks to Proposition 3.2) with

IT (v, w) =

∫ T

0

|〈C?Cv, w〉| dt+
4∑
j=1

sup
µ

∫ T

0

|〈C?Ψj,µCv, w〉|dt+ sup
µ

∫ T

0

|〈Ψj,µv, w〉|dt .

In fact, we have proved (10) and (11) only for T = T0 and T0 is sufficiently small. Let us

show, if T0 < T , that they hold true in the whole interval [0, T ] where the solution u is

defined. Indeed, note first that the T0 as determined above depends only on the constant

A (so, only on n, s, %, A1 and A2) but not on the given function (or distribution) f . Next,

take a T1 ≤ T0 such that T1 = T/n1, with some integer n1 ≥ 2. Then, if we consider the

function v(x, t) = u(x, t+ T1), we note that v is a solution (defined at least in [0, T − T1]) of

(8) with v(0) = u(T1) and g(x, t) = f(x, t+ T1) instead of f(x, t). It follows from the above

arguments that v satisfies (10) and (11) for T = T0 and hence for T = T1. Since

sup
[T1,2T1]

||u||2s = sup
[0,T1]

||v||2s ≤ A
(
||u(T1)||2s + IT1(J

sg, Jsv)
)
≤ A

(
||u(T1)||2s + I2T1(J

sf, Jsu)
)

≤ A
(
A||u0||2s + AIT1(J

sf, Jsu) + I2T1(J
sf, Jsu)

)
≤ (A2 + A)

(
||u0||2s + I2T1(J

sf, Jsu)
)
,

we obtain that u satisfies (10) and (11) for T = 2T1 and with the constant A2 + A instead

of A. Repeating this argument, we obtain that u satisfies (10) and (11) on [0, n1T1] = [0, T ]

and with the constant
∑n1

j=1A
j ' AT/T1 instead of A.
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As for the existence, let us consider the following approximating Cauchy problem :{
∂tu = iL u+ Tb1∇h(εD)u+ Tb2∇h(εD)ū+ C1u+ C2ū+ f(x, t)

u(x, 0) = u0 ∈ Hs(Rn)
(12)

where h is a non negative C∞ function on Rn which is equal to 1 near 0 and has a compact

support. It is easy to see, if T is such that sup[0,T ] ‖f‖s < +∞, that the above problem has a

unique solution, denoted by uε, which is in C([0, T ];Hs(Rn)). Indeed, the Cauchy problem

(12) is clearly equivalent to the integral equation

u = eitL u0 +

∫ t

0

ei(t−t
′)L (Tb1∇h(εD)u+ Tb2∇h(εD)ū+ C1u+ C2ū+ f(x, t′)) dt′

and one can easily show that the map defined by the right handside of this equation is a

contraction in C([0, Tε];H
s(Rn)) with some Tε > 0 sufficiently small, which allows one to

apply the fixed point theorem and to get a solution uε. Now, since Tε does not depend on

the data u0 and f , one can extend uε to a solution of (12) on the whole interval [0, T ].

The idea now is to let ε tend to 0. This is possible because uε satisfies the estimates (10)

and (11) and even uniformly with respect to ε. Indeed, it is sufficient to remark that the

Cauchy problem (12) is of the same type as (8) because we can write

Tbk∇h(εD) = Tbk,ε∇

where bk,ε(x, ξ) = bk(x, ξ)h(εξ) and bk,ε satisfies the assumptions of Theorem 3.1 uniformly

in ε. Hence, we have in particular

sup
[0,T ]

||uε||2s ≤ A ||u0||2s + AIT (Jsf, Jsuε),

and it follows from Calderon-Vaillancourt theorem that

AIT (Jsf, Jsuε) ≤ AA′ sup
[0,T ]

||uε||s
∫ T

0

||f ||s dt ≤
1

2
sup
[0,T ]

||uε||2s +
1

2
(AA′)2

(∫ T

0

||f ||s dt
)2

,

so that,

sup
[0,T ]

||uε||s ≤ A ||u0||s + A

∫ T

0

||f ||s dt (13)

Next, to check the convergence of uε, let us consider v = uε − uε′ . It is clear that v is the

solution of (12) with u0 = 0 and

f = Tb1∇ (h(εD)− h(ε′D))uε′ + Tb2∇ (h(εD)− h(ε′D)) ūε′ .

Therefore, it follows from (13) that

sup
[0,T ]

||v||s ≤ A

∫ T

0

||Tb1∇ (h(εD)− h(ε′D))uε′ + Tb2∇ (h(εD)− h(ε′D)) ūε′||s dt, (14)
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and from the boundedness of the Tbk in the Sobolev spaces that

sup
[0,T ]

||v||s ≤ A |ε− ε′|
∫ T

0

||uε′ ||s+2 dt ≤ A |ε− ε′|T sup
[0,T ]

||uε′ ||s+2, (15)

that is, thanks to (13),

sup
[0,T ]

||uε − uε′||s ≤ A |ε− ε′|
(
||u0||s+2 +

∫ T

0

||f ||s+2 dt

)
, (16)

which proves that (uε) is a Cauchy sequence in C([0, T ];Hs(Rn)) if one assumes that u0 ∈
Hs+2(Rn) and f ∈ L1([0, T ];Hs+2(Rn)). In this case, uε → u in C([0, T ];Hs(Rn)) when

ε→ 0, and by passing to the limit in (12), we obtain that u is a solution of (8). Moreover,

by passing to the limit in (13), we get

sup
[0,T ]

||u||s ≤ A
(
||u0||s +

∫ T

0

||f ||s dt
)
. (17)

Now, if we have only u0 ∈ Hs(Rn) and f ∈ L1([0, T ];Hs(Rn)), by density of the smooth

functions, we can take sequences (uj0) in Hs+2(Rn) and (f j) in L1([0, T ];Hs+2(Rn)) such that

||uj0−u0||s → 0 and
∫ T

0
||f j−f ||s dt→ 0, and we can consider the solution uj of (8) associated

to the data uj0 and f j. Then, uj − uk is the solution of (8) associated to the data uj0 − uk0
and f j − fk. Hence, thanks to (17),

sup
[0,T ]

||uj − uk||s ≤ A
(
||uj0 − uk0||s +

∫ T

0

||f j − fk||s dt
)
,

which shows that (uj) is a Cauchy sequence in C([0, T ];Hs(Rn)) which is then convergent

to some u ∈ C([0, T ];Hs(Rn)). Of course, u is a solution of (8) and satisfies the estimates

(10), (11) and also (17). This achieves the proof of Theorem (3.1).

4 The nonlinear equation

Consider the nonlinear Cauchy problem :{
∂tu = iL u+ F (u,∇xu, u,∇xu), t ∈ R, x ∈ Rn,

u(x, 0) = u0(x) ∈ Hs(Rn),
(18)

where the function F (u, v, u, v) is sufficiently regular in C × Cn × C × Cn and vanishes to

the third order at 0, the operator L has the form

L =
∑
j≤k

∂2
xj
−
∑
j>k

∂2
xj
,

with a fixed k ∈ {1, 2, ..., n}, Hs(Rn) is the usual Sobolev space on Rn, and s = n
2

+ 2 + %,

% > 0. Using Bony’s linearization formula, (18) is equivalent to{
∂tu = iL u+ Tb1∇xu+ Tb2∇xu+ Ta1u+ Ta2u+R(u,∇xu, u,∇xu)

u(x, 0) = u0(x) ∈ Hs(Rn)
(19)
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where R(u,∇xu, u,∇xu) is Bony’s remainder and

b1 = ∂vF (u,∇xu, u,∇xu), b2 = ∂vF (u,∇xu, u,∇xu),

a1 = ∂uF (u,∇xu, u,∇xu), a2 = ∂uF (u,∇xu, u,∇xu).

Recall that R(u,∇xu, u,∇xu) ∈ H2(s−1)−n
2 (Rn) if u ∈ Hs(Rn), s > n

2
+ 1. Note also that it

follows from Proposition 2.1 that the bj and aj, j = 1 or 2, are in Hs−1(Rn) if u ∈ Hs(Rn),

s > n
2

+ 1, and that

||bj||s−1 ≤ C(||u||L∞ , ||∇u||L∞) ||u||s, ||aj||s−1 ≤ C(||u||L∞ , ||∇u||L∞) ||u||s, j = 1, 2.

Moreover, by introducing the notations

b0
1 = ∂vF (u0,∇xu0, u0,∇xu0), b0

2 = ∂vF (u0,∇xu0, u0,∇xu0),

a0
1 = ∂uF (u0,∇xu0, u0,∇xu0), a0

2 = ∂uF (u0,∇xu0, u0,∇xu0),

the above Cauchy problem is in fact equivalent to{
∂tu = iL u+ Tb01∇xu+ Tb02∇xu+ Ta01u+ Ta02u+ R̃(u,∇xu, u,∇xu)

u(x, 0) = u0(x) ∈ Hs(Rn)
(20)

where

R̃(u,∇xu, u,∇xu) = Tb1−b01∇xu+ Tb2−b02∇xu+ Ta1−a01 u+ Ta2−a02 u+R(u,∇xu, u,∇xu). (21)

Clearly, the last Cauchy problem is of the same type as (8) which is studied in Theorem

3.1 and in fact we are going to apply that theorem to{
∂tu = iL u+ Tb01∇xu+ Tb02∇xū+ Ta01 u+ Ta02 ū+ f

u(x, 0) = u0(x) ∈ Hs(Rn).
(22)

This is possible because b0
1 and b0

2 satisfy the assumptions of Theorem 3.1. Indeed, it follows

from the Taylor formula and the assumptions on F that one can write for example

b0
1 = ∂vF (z0) = u0G1(z0) +∇xu0G2(z0) + u0G3(z0) +∇xu0G4(z0), (23)

where z0 = (u0,∇xu0, u0,∇xu0) and G1, G2, G3 and G4 are sufficiently regular and vanish

at 0. Since s− 1 > n
2
, we know that the Gi(z0) are in Hs−1(Rn) and it follows from (23) and

Lemma 2.2 that b0
1 satisfies the assumption (9) of Theorem 3.1, that is, one can write

b0
1 =

∑
µ

α1,µ ϕ1,µ

where α1,µ = ‖qµ b0
1‖Hs−1 , ϕ1,µ = qµ b

0
1/α1,µ , and

∑
µ qµ = 1 is a smooth partition of unity

with qµ(x) = q(x− µ) and supp(q) ⊂ Q∗0. Note that we have precisely the bound∑
µ

‖qµ b0
1‖Hs−1 ≤ C(‖u0‖Hs−1‖G1(z0)‖Hs−1 + ‖∇xu0‖Hs−1‖G2(z0)‖Hs−1

+‖u0‖Hs−1‖G3(z0)‖Hs−1 + ‖∇xu0‖Hs−1‖G4(z0)‖Hs−1),
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with some positive constant C. Of course, the same is true for b0
2. Moreover, since a0

1 and

a0
2 are bounded (they are in Hs−1(Rn)), the paramultiplication operators Ta01 and Ta02 are

bounded in Hs(Rn).

Now, by application of Theorem 3.1 to (22), let us consider the unique solution of (22)

with f = 0 and denote it by U(t)u0.

Next, for T > 0, let us define the norms λ1(w), λ2(w), λ3(w) and λ(w) by

λ1(w) = sup
[0,T ]

‖w‖s , λ2(w) = |||Js+
1
2w|||T , λ3(w) = sup

[0,T ]

‖∂tw‖s−2 ,

λ(w) = max
1≤i≤3

λi(w),

the space Z by

Z = {w ∈ C ([0, T ];Hs(Rn)) : w(x, 0) = u0(x) and λ(w) ≤ K}

where the positive constant K is to be determined later, and, for w ∈ C ([0, T ];Hs(Rn)), the

operator Υ by

Υw(t) = U(t)u0 +

∫ t

0

U(t− t′)R̃(w(t′),∇xw(t′), w(t′),∇xw(t′))dt′.

Let us first remark that Υw satisfies{
∂tΥw = iL Υw + Tb01∇xΥw + Tb02∇xΥw + Ta01Υw + Ta02Υw + R̃(w,∇xw,w,∇xw)

Υw(0) = u0

(24)

and that a fixed point of Υ will be a solution of (20), hence, a solution of (18). So, in

what follows, we are going to study λ(Υw) in order to prove that Υ has a fixed point in the

complete metric space (Z, λ). Let us also note that since the life time T will be small, we

can assume from now on that T ≤ 1.

We start by applying Theorem 3.1 to (24). It follows from (10) and (11) that

max
{
λ1(Υw)2, λ2(Υw)2

}
≤ A

(
||u0||2s + IT (JsR̃, JsΥw)

)
, (25)

where, for simplicity, R̃ = R̃(w,∇xw,w,∇xw) and IT (u, v) is a finite sum of terms of the

form

sup
µ∈Zn

∫ T

0

|〈Gµu, v〉|dt

where Gµ ∈ OpS0
0,0 and the semi-norms of its symbol are uniformly bounded with respect

to µ. Recall that the constant A depends only on n, s and u0 and we remark right now a

fact that will be useful later : if we let u0 vary in a bounded subset of Hs(Rn), it follows

from the linear theory that we can take the constant A in the above inequality that depends

only on that bounded set. The same remark holds for supµ ||Gµ||L(L2) or the semi-norms of

the operators Gµ uniformly in µ.
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Thus, we have to estimate uniformly in µ the following sum∫ T

0

|〈GµJ
sTb1−b01∇xw, J

sΥw〉|dt +

∫ T

0

|〈GµJ
sTb2−b02∇xw, J

sΥw〉|dt

+

∫ T

0

|〈GµJ
sTa1−a01 w, J

sΥw〉|dt +

∫ T

0

|〈GµJ
sTa2−a02 w, J

sΥw〉|dt

+

∫ T

0

|〈GµJ
sR(w,∇xw,w,∇xw), JsΥw〉|dt.

(26)

First, let us consider the third term. It follows from the preceding remark, Cauchy-Schwarz

inequality, Calderon-Vaillancourt theorem and Theorem 2.3 that∫ T

0

|〈GµJ
sTa1−a01 w, J

sΥw〉|dt ≤ A ||a1 − a0
1||L∞

∫ T

0

||w||s ||Υw||s dt,

and from Proposition 2.1 that

||a1 − a0
1||L∞ ≤ C(||w||s)||w||s + C(||u0||s)||u0||s ≤ C(K)K + C(||u0||s)||u0||s ≤ 2C(K)K .

Hence,∫ T

0

|〈GµJ
sTa1−a01 w, J

sΥw〉|dt ≤ AT C(K)λ1(w)λ1(Υw) ≤ AT C(K)λ(w)λ(Υw), (27)

with a modified constant C(K).

The fourth term of (26) is treated in the same manner.

Now, let us estimate the first term of (26). Using a smooth partition of unity 1 =∑
ν∈Zn χν , with χν(x) = χ(x− ν) and χ has a compact support, we can write

〈GµJ
sTb1−b01∇xw, J

sΥw〉 =
∑
ν

〈J−
1
2GµJ

sTχν(b1−b01)∇xw, Js+
1
2 Υw〉

=
∑
ν

〈Gµ,ν〈x− ν〉σ0Tχν(b1−b01)〈x− ν〉σ0Hµ〈x− ν〉−σ0Js+
1
2w, 〈x− ν〉−σ0Js+

1
2 Υw〉

where Gµ,ν = 〈x− ν〉σ0J− 1
2GµJ

s〈x− ν〉−σ0 and Hν = 〈x− ν〉−σ0J−s− 1
2∇〈x− ν〉σ0 . Next, it

follows from the pseudodifferential composition formula and from Lemma 2.1 that Gµ,ν is in

OpS
s− 1

2
0,0 , Hν is in OpS

1
2
−s

1,0 , and that their semi-norms are uniformly bounded with respect

to µ and ν. Going back to the first term of (26), these considerations in addition to Lemma

2.4 allow us to estimate it as follows :∫ T

0

|〈GµJ
sTb1−b01∇xw, J

sΥw〉|dt

≤
∑
ν

∫ T

0

||Gµ,ν〈x− ν〉σ0Tχν(b1−b01)〈x− ν〉σ0Hν ||L(L2)

∣∣∣∣∣
∣∣∣∣∣ Js+

1
2w

〈x− ν〉σ0

∣∣∣∣∣
∣∣∣∣∣
0

∣∣∣∣∣
∣∣∣∣∣ Js+

1
2 Υw

〈x− ν〉σ0

∣∣∣∣∣
∣∣∣∣∣
0

dt
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≤ A
∑
ν

∫ T

0

||〈x− ν〉σ0Tχν(b1−b01)〈x− ν〉σ0 ||L(Hs− 1
2 )

∣∣∣∣∣
∣∣∣∣∣ Js+

1
2w

〈x− ν〉σ0

∣∣∣∣∣
∣∣∣∣∣
0

∣∣∣∣∣
∣∣∣∣∣ Js+

1
2 Υw

〈x− ν〉σ0

∣∣∣∣∣
∣∣∣∣∣
0

dt

≤ A
∑
ν

∫ T

0

||χν(b1 − b0
1)||L∞

∣∣∣∣∣
∣∣∣∣∣ Js+

1
2w

〈x− ν〉σ0

∣∣∣∣∣
∣∣∣∣∣
0

∣∣∣∣∣
∣∣∣∣∣ Js+

1
2 Υw

〈x− ν〉σ0

∣∣∣∣∣
∣∣∣∣∣
0

dt

≤ A
∑
ν

sup
[0,T ]

||χν(b1 − b0
1)||L∞ |||Js+

1
2w|||T |||Js+

1
2 Υw|||T .

Now, it follows from the Taylor formula that we can write

b1 − b0
1 = ∂vF (z)− ∂vF (z0) = (w − u0)G1(z0, z) +∇x(w − u0)G2(z0, z)

+ (w − u0)G3(z0, z) +∇x(w − u0)G4(z0, z),

where, for simplicity, z0 = (u0,∇xu0, u0,∇xu0) and z = (w,∇xw,w,∇xw), and the Gk’s are

functions of the form ∫ 1

0

Fk(z0 + τ(z − z0))dτ ,

Fk being a second order partial derivative of F . Next, it follows from the assumption on F

that Gk(0, 0) = 0 for all k, from which one deduces easily that

||χν(b1 − b0
1)||L∞ ≤ C(||(z0, z)||L∞) ||χν(z0, z)||L∞ ||χ̃ν(z0, z)||L∞ ,

where χ̃ν is similar to χν , and, by using the Sobolev injection, that is, Proposition 7.3 (i),

that

||χν(b1 − b0
1)||L∞ ≤ C(||(z0, z)||L∞) ||χν(z0, z)||Hσ([0,T ];Hs′ ) ||χ̃ν(z0, z)||Hσ([0,T ];Hs′ )

≤ C(K) ||χν(u0, w)||Hσ([0,T ];Hs′+1) ||χ̃ν(u0, w)||Hσ([0,T ];Hs′+1) ,

where σ > 1
2

and s′ > n
2
. Thus, to obtain the summability in ν of ||χν(b1 − b0

1)||L∞ , it is

sufficient to prove that ||χν(u0, w)||Hσ([0,T ];Hs′+1) is square summable in ν. To this end and to

get an explicit bound for the sum, let us apply the interpolation inequality of Proposition

7.3. This yields, by taking 1
2
< σ < 1,

||χν(u0, w)||Hσ([0,T ];Hs′+1) ≤ A ||χν(u0, w)||1−σ
L2([0,T ];Hs′+2)

||χν(u0, w)||σ
H1([0,T ];Hs′′ )

≤ A
(
||χν(u0, w)||L2([0,T ];Hs′+2) + ||χν(u0, w)||1−σ

L2([0,T ];Hs′+2)
||χν∂tw||σL2([0,T ];Hs′′ )

)
where s′′ is such that (1− σ)(s′+ 2) + σs′′ = s′+ 1, that is, s′′ = s′+ 2− 1

σ
. One can choose

s′ and σ such that s′′ = s − 2, that is, such that s′ = s − 4 + 1
σ
. In fact, if σ = 1

2
+ ε, then

s′ = n
2

+ % − 4ε
1+2ε

which is larger that n
2

if ε is small enough. With such a choice, we also

have s′ + 2 < s, so, the expressions ||χν(u0, w)||L2([0,T ];Hs′+2) and ||χν∂tw||L2([0,T ];Hs′′ ) are both

square summable in ν, which shows that ||χν(u0, w)||Hσ([0,T ];Hs′+1) is itself square summable

in ν and that, by applying Hölder’s inequality,∑
ν

||χν(u0, w)||2
Hσ([0,T ];Hs′+1)

≤ A
∑
ν

||χν(u0, w)||2L2([0,T ];Hs)
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+A

(∑
ν

||χν(u0, w)||2L2([0,T ];Hs)

)1−σ(∑
ν

||χν∂tw||2L2([0,T ];Hs−2)

)σ

≤ A
(
T λ1(w)2 + (T λ1(w)2)1−σ(T λ3(w)2)σ

)
≤ AT λ(w)2,

where, of course, the constant A changes from one inequality to the other. Consequently,∑
ν

||χν(b1 − b0
1)||L∞ ≤ AC(K)T λ(w)2,

which allows us finally to bound the first term of (26) as follows :∫ T

0

∣∣∣〈GµJ
sTb1−b01∇xw, J

sΥw
〉∣∣∣ dt ≤ AC(K)T λ(w)2λ2(w)λ2(Υw)

≤ AC(K)K2 T λ(w)λ(Υw).

(28)

The second term of (26) is treated in the same manner.

Let us now consider the last term of (26). As above, let z stand for (w,∇xw,w,∇xw).

As z ∈ Hs−1(Rn) = H
n
2

+1+%(Rn), it follows from Bony’s formula, that is, Theorem 2.5, that

R(z) ∈ H2(s−1)−n
2 (Rn) = Hs+%(Rn) and that

||R(z)||s+% ≤ C(K) ||z||s−1 ≤ C(K) ||w||s .

Hence,∫ T

0

|〈GµJ
sR(z), JsΥw〉|dt ≤ A

∫ T

0

||R(z)||s||Υw||sdt ≤ AC(K)

∫ T

0

||w||s||Υw||sdt

≤ AC(K)T λ1(w)λ1(Υw) ≤ AC(K)T λ(w)λ(Υw).

(29)

Thus, we have bounded all the terms of (26), which leads to the estimate

max {λ1(Υw), λ2(Υw)} ≤ A ||u0||s +
√
AC(K)T λ(w)λ(Υw), (30)

where the constants A and C(K) have changed of course.

It remains to estimate λ3(Υw). Recall that Υw satisfies the Cauchy problem (24). Hence,

applying Theorem 2.3 yields

||∂tΥw||s−2 ≤ ||Υw||s+A(||b0
1||L∞+||b0

2||L∞)||Υw||s−1+A(||a0
1||L∞+||a0

2||L∞)||Υw||s−2

+A(||b1 − b0
1||L∞+||b2 − b0

2||L∞)||w||s−1+A(||a1 − a0
1||L∞+||a2 − a0

2||L∞)||w||s−2+||R(z)||s−2

≤ A ||Υw||s+A(||b1 − b0
1||L∞+||b2 − b0

2||L∞+||a1 − a0
1||L∞+||a2 − a0

2||L∞)||w||s+||R(z)||s−2.

(31)
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Now, as before, it follows from Proposition 7.3 that

||bj − b0
j ||L∞ ≤ A ||bj − b0

j ||Hσ([0,T ];Hs′ ) ≤ A ||bj − b0
j ||1−σL2([0,T ];Hs′+1)

||bj − b0
j ||σH1([0,T ];Hs′′ )

,

where j = 1, 2, σ > 1
2
, s′ > n

2
and s′′ is such that (1− σ)(s′ + 1) + σs′′ = s′. In fact, we can

take s′′ = s− 3 which corresponds to s′ = s+ 1
σ
− 4 = n

2
+ %+ 1

σ
− 2; so, s′ < s− 2 and if σ

is close enough to 1
2
, then, s′ > n

2
. Therefore, with such a choice, we have

||bj − b0
j ||L∞ ≤ A ||bj − b0

j ||L2([0,T ];Hs−1) + A ||bj − b0
j ||1−σL2([0,T ];Hs−1) ||∂tbj||

σ
L2([0,T ];Hs−3) .

Next, applying Proposition 2.1 yields

||bj − b0
j ||2L2([0,T ];Hs−1) =

∫ T

0

||bj − b0
j ||2s−1dt ≤

∫ T

0

(C(||z||L∞)||z||s−1 + C(||z0||L∞)||z0||s−1)2 dt

≤ C(K)2 T λ1(w)2,

and

||∂tbj||2L2([0,T ];Hs−3) =

∫ T

0

||(∂vF )′(z) ∂tz||2s−3dt ≤ A

∫ T

0

||(∂vF )′(z)||2s−2||∂tz||2s−3dt

≤ A

∫ T

0

||(∂vF )′(z)||2s−2||∂tw||2s−2dt ≤ AT C(K)2 λ3(w)2,

which imply that

||bj − b0
j ||L∞ ≤ AC(K)

√
T λ1(w) + AC(K)

√
T λ1(w)1−σλ3(w)σ ≤ AC(K)

√
T λ(w).

Of course, the same inequality holds for ||aj − a0
j ||L∞ , j = 1, 2. Note that we have applied

the following classical lemma :

Lemma 4.1 If s > n
2

and |r| ≤ s, then, Hr(Rn).Hs(Rn) ⊂ Hr(Rn) with continuous
injection.

Finally, it follows from Theorem 2.5 and Theorem 2.6 that

||R(z)||s−2 = ||R(z)||n
2

+% ≤ ||R(z)−R(z0)||n
2

+% + ||R(z0)||n
2

+%

≤ C1(||z||n+%
2
, ||z0||n+%

2
) ||z − z0||n+%

2
+ C2(||z0||n+%

2
) ||z0||n+%

2

≤ C1(||w||n+%
2

+1, ||u0||n+%
2

+1) ||w − u0||n+%
2

+1 + C2(||u0||n+%
2

+1) ||u0||n+%
2

+1

≤ C(K) ||w − u0||n+%
2

+1 + A ||u0||n+%
2

+1,

and, using once again Proposition 7.3, we obtain

sup
[0,T ]

||w − u0||s′ ≤ A ||w − u0||Hσ([0,T ];Hs′ ) ≤ A ||w − u0||1−σL2([0,T ];Hs′+1)
||w − u0||σH1([0,T ];Hs′′ )

≤ A ||w − u0||L2([0,T ];Hs′+1) + A ||w − u0||1−σL2([0,T ];Hs′+1)
||∂tw||σL2([0,T ];Hs′′ )
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≤ A ||w − u0||L2([0,T ];Hs) + A ||w − u0||1−σL2([0,T ];Hs)||∂tw||
σ
L2([0,T ];Hs−2)

≤ A
√
T λ1(w) + A

√
T λ1(w)1−σλ3(w)σ ≤ A

√
T λ(w) ,

where s′ = n+%
2

+ 1 < s, σ > 1
2
, s′′ = n+%

2
+ 2− 1

σ
and s′′ ≤ s− 2 if σ is close to 1

2
. Hence,

sup
[0,T ]

||R(z)||s−2 ≤ A ||u0||n+%
2

+1 + AC(K)
√
T λ(w) .

Thus, we have bounded all the terms of (32) and the result is that

λ3(Υw) ≤ Aλ1(Υw) + AC(K)
√
T λ(w)λ1(w) + A ||u0||n+%

2
+1 + AC(K)

√
T λ(w) (32)

≤ A ||u0||s +
√
AC(K)T λ(w)λ(Υw) + AC(K)

√
T λ(w)

where, of course, we have used (30). Therefore,

λ(Υw) ≤ A ||u0||s +
√
AC(K)T λ(w)λ(Υw) + AC(K)

√
T λ(w)

≤ A ||u0||s +
1

2
AC(K)T λ(w) +

1

2
λ(Υw) + AC(K)

√
T λ(w),

which leads to

λ(Υw) ≤ 2A ||u0||s + AC(K)T λ(w) + 2AC(K)
√
T λ(w),

that is, an estimate which is, by changing the constants and taking T ≤ 1, of the form

λ(Υw) ≤ A ||u0||s + AC(K)
√
T λ(w). (33)

This is the main non linear estimate. In fact, when u0 6= 0, by taking K = 2A ||u0||s for

example, and then, T > 0 such that

T ≤
(

A ||u0||s
AC(K)K

)2

=

(
1

2AC(K)

)2

,

it follows from (33) that λ(Υw) ≤ K when λ(w) ≤ K, that is, Υ(Z) ⊂ Z. When u0 = 0, it

suffices to take K > 0 and T ≤ 1/A2C(K)2 to obtain the same result.

Let us now show that Υ : Z → Z is a contraction mapping. In fact, the arguments are

similar to the above ones and we shall be brief. If w1, w2 ∈ Z, then, W = Υw1−Υw2 satisfies

the following Cauchy problem{
∂tW = iLW + Tb01∇xW + Tb02∇xW + Ta01W + Ta02W + R̃(z1)− R̃(z2)

W (0) = 0
(34)

where, as before, zj = (wj,∇xwj, wj,∇xwj), j = 1, 2. Applying Theorem 3.1 to (34) gives

max
{
λ1(W )2, λ2(W )2

}
≤ AIT

(
Js(R̃(z1)− R̃(z2)), JsW

)
, (35)
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and, consequently, we have to estimate uniformly in µ the integral∫ T

0

|〈GµJ
s(R̃(z1)− R̃(z2)), JsW 〉|dt.

It follows from (21) that

R̃(z1)− R̃(z2) = Tb1(z1)−b01∇(w1 − w2) + Tb1(z1)−b1(z2)∇w2

+Tb2(z1)−b02∇(w1 − w2) + Tb2(z1)−b2(z2)∇w2

+Ta1(z1)−a01(w1 − w2) + Ta1(z1)−a1(z2)w2

+Ta2(z1)−a02(w1 − w2) + Ta2(z1)−a2(z2)w2

+R(z1)−R(z2) ,

(36)

and we have to estimate the integral corresponding to each term of the above sum. Let us

first consider the terms of the third line in (36). By the same argument as that used to

obtain (27), we have∫ T

0

∣∣∣〈GµJ
s
(
Ta1(z1)−a01(w1 − w2) + Ta1(z1)−a1(z2)w2

)
, JsW

〉∣∣∣ dt ≤ AT C(K)λ(w1−w2)λ(W ),

where we also applied Proposition 2.1 for the second term. Of course, we have the same

estimate for the integral corresponding to the terms of the fourth line in (36).

As for the terms of the first line in (36), applying an argument similar to that yielding

(28), one obtains∫ T

0

∣∣∣〈GµJ
s
(
Tb1(z1)−b01∇(w1 − w2) + Tb1(z1)−b1(z2)∇w2

)
, JsW

〉∣∣∣ dt
≤ AC(K)T

(
λ(w1)2λ2(w1 − w2) + λ(w1 − w2)(λ(w1) + λ(w2))λ2(w2)

)
λ2(W )

≤ AC(K)T
(
λ(w1)2+λ(w1)λ(w2)+λ(w2)2

)
λ(w1 − w2)λ(W )

≤ AC(K)K2 T λ(w1 − w2)λ(W ),

and the same estimate holds for the terms of the second line in (36).

Last, for the terms of the fifth line in (36), applying Theorem 2.6 and estimating as in

(29), we obtain∫ T

0

|〈GµJ
s(R(z1)−R(z2)), JsW 〉|dt ≤ A

∫ T

0

||z1 − z2||s−1||W ||sdt

≤ AC(K)

∫ T

0

||w1−w2||s||W ||sdt ≤ AC(K)T λ1(w1−w2)λ1(W ) ≤ AC(K)T λ(w1−w2)λ(W ).
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Summing up and going back to (35), we can conclude that

max
{
λ1(W )2, λ2(W )2

}
≤ AC(K)T λ(w1 − w2)λ(W ).

It remains to estimate λ3(W ). Using the fact that W satisfies the Cauchy problem (34)

and an argument similar to that yielding (32), we obtain

λ3(W ) ≤ Aλ1(W )+AC(K)
√
T (λ(w1)λ1(w1−w2)+λ(w1−w2)λ1(w2))+AC(K)

√
T λ(w1−w2)

≤ Aλ1(W ) + AC(K)
√
T (λ(w1) + λ(w2))λ(w1 − w2) + AC(K)

√
T λ(w1 − w2)

≤
√
AC(K)T λ(w1 − w2)λ(W ) + AC(K)

√
T λ(w1 − w2).

Summing up, we have obtained

λ(W ) ≤
√
AC(K)T λ(w1 − w2)λ(W ) + AC(K)

√
T λ(w1 − w2),

hence,

λ(W ) ≤ 1

2
AC(K)T λ(w1 − w2) +

1

2
λ(W ) + AC(K)

√
T λ(w1 − w2),

that is,

λ(W ) = λ(Υw1 −Υw2) ≤ AC(K)
√
T λ(w1 − w2),

with modified constants. This clearly implies, if T is taken small enough, that Υ : Z → Z

is a contraction mapping and, thus, it has a unique fixed point u in Z which is a solution

of (18). In fact, this is the solution of (18) in C([0, T ], Hs(Rn)) because the above method

gives the local uniqueness and we obtain eventually the full uniqueness by applying a classical

bootstrap argument. This proves the first part of Theorem 1.1.

The second part of Theorem 1.1 concerns the continuity of the solution operator u0 7→ u

and we start its proof by remarking that this operator maps bounded subsets of Hs(Rn)

into bounded subsets of C([0, T ], Hs(Rn)). In fact, if B is a bounded subset of Hs(Rn), as

remarked at the beginning of this section, the constant A et the bounds of the semi-norms

of the operators Gµ can be taken to depend only on B, that is, if u0 ∈ B, the estimates

proven above and satisfied by Υ can be rewritten as

λ(Υw) ≤ A(B) ||u0||s + A(B)C(K)
√
T λ(w), (37)

λ(Υw1 −Υw2) ≤ A(B)C(K)
√
T λ(w1 − w2), (38)

where A(B) depends only on n, s and B, which implies that the constants K and T can

be chosen depending only on B. Hence, for all u0 ∈ B, the associated solutions u are all

defined on the same interval [0, T ] and are all in the ball of radius K. As for the continuity,

let B be a bounded subset of Hs(Rn), u0, u
∗
0 ∈ B, u, u∗ the respective associated solutions

and w = u− u∗. Then, w satisfies the following Cauchy problem :{
∂tw = iLw +Du−D∗u∗ + R̃− R̃∗ = iLw +Dw + (D −D∗)u∗ + R̃− R̃∗

w(x, 0) = u0(x)− u∗0(x)
(39)
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where Dw = Tb01∇w+Tb02∇w+Ta01w+Ta02w, D∗w = Tb0,∗1
∇w+Tb0,∗2

∇w+Ta0,∗1
w+Ta0,∗2

w,

R̃ = R̃(u,∇u, u,∇u) and R̃∗ = R̃(u∗,∇u∗, u∗,∇u∗).

Of course, the b0
j , a

0
j correspond to u0 whereas the b0,∗

j , a0,∗
j correspond to u∗0. Applying

Theorem 3.1 gives us the inequality

max
{
λ1(w)2, λ2(w)2

}
≤ A(B)||u0−u∗0||2s+A(B) IT

(
Js
(

(D −D∗)u∗ + R̃− R̃∗
)
, Jsw

)
, (40)

As it can be seen easily by going back to (21), we can write

R̃− R̃∗ = Tb1(u)−b01∇w + Tb1(u)−b1(u∗)∇u∗ + Tb0,∗1 −b01
∇u∗

+Tb2(u)−b02∇w + Tb2(u)−b2(u∗)∇u∗ + Tb0,∗2 −b02
∇u∗

+Ta1(u)−a01 w + Ta1(u)−a1(u∗) u
∗ + Ta0,∗1 −a01

u∗

+Ta2(u)−a02 w + Ta2(u)−a2(u∗) u∗ + Ta0,∗2 −a02
u∗

+R(u,∇u, u,∇u)−R(u∗,∇u∗, u∗,∇u∗) ,

(41)

and we also have

(D −D∗)u∗ = Tb01−b
0,∗
1
∇u∗ + Tb02−b

0,∗
2
∇u∗ + Ta01−a

0,∗
1
u∗ + Ta02−a

0,∗
2
u∗.

Using the same arguments as before to estimate the integrals corresponding to each of the

above terms yields

max
{
λ1(w)2, λ2(w)2

}
≤ A(B)||u0 − u∗0||2s + A1(B)C1(K)T

(
λ(w)||u0 − u∗0||s + λ(w)2

)
, (42)

which becomes, after a change of the constants and assuming T ≤ 1,

max {λ1(w), λ2(w)} ≤ A(B)||u0 − u∗0||s + A(B)C(K)
√
T λ(w). (43)

Next, using (39) and similar arguments, one can easily get

λ3(w) ≤ A(B)C(K) (||u0 − u∗0||s + λ1(w)) ,

which becomes, after use of (43) and a possible change of the constants,

λ3(w) ≤ A(B)C(K)
(
||u0 − u∗0||s +

√
Tλ(w)

)
.

Hence,

λ(w) ≤ A(B)C(K)||u0 − u∗0||s + A(B)C(K)
√
T λ(w), (44)

which, by taking T ≤ (1/2A(B)C(K))2 (for example), leads to the Lipschitz estimate

λ(w) = λ(u− u∗) ≤ 2A(B)C(K)||u0 − u∗0||s , (45)

and this achieves the proof of Theorem 1.1.
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5 Proof of Proposition 3.1

We shall only give the main steps for the convenience of the reader and refer to [Bie] for the

full details.

Let us start by remarking that it is sufficient to treat the case s = 0. Indeed, if v = Jsu

and v0 = Jsu0, it is easy to see that u is a solution of (8) if and only if v satisfies{
∂tv = iL v + Tb1 .∇xv + Tb2 .∇xv̄ + C̃1v + C̃2v̄ + f̃(x, t)

v(x, 0) = v0 ∈ L2(Rn)
(46)

where f̃ = Jsf and C̃k = JsCkJ
−s + [Js, Tbk .∇x]J

−s, k = 1 ou 2, and, thanks to the

paradifferential calculus, the C̃k are bounded operators in L2(Rn).

The idea of proof is that of [KePoVe], inspired by [Tak], and consists in constructing a

pseudodifferential operator C which is bounded and invertible in L2(Rn) and to estimate

sup[0,T ] ||Cu||0 instead of estimating directly sup[0,T ] ||u||0. Since d
dt
〈Cu,Cu〉 = 〈C∂tu ,Cu〉+

〈Cu ,C∂tu〉 and u is a solution of (8), we obtain that

d

dt
||Cu||20 = 〈iCL u,Cu〉+ 〈CTb1∇u,Cu〉+ 〈CTb2∇ū,Cu〉

+〈CC1u,Cu〉+ 〈CC2ū,Cu〉+ 〈Cf,Cu〉
+〈Cu, iCL u〉+ 〈Cu,CTb1∇u〉+ 〈Cu,CTb2∇ū〉
+〈Cu,CC1u〉+ 〈Cu,CC2ū〉+ 〈Cu,Cf〉,

(47)

and since

〈iL Cu,Cu〉+ 〈Cu, iL Cu〉 = 0,

we have finally

d

dt
||Cu||20 = 2Re〈(i[C,L ] + CTb1∇)u,Cu〉+ 2Re〈CTb2∇ū,Cu〉

+2Re〈Cu,Cf〉+ 2Re (〈CC1u,Cu〉+ 〈CC2ū,Cu〉) .

The idea of [KePoVe] is precisely to choose C so that the operator i[C,L ] + CTb1∇ will be

small in some sense. Here, we will make a refinement by writing b1 = b′1 + ib′′1 with real b′1,

b′′1, and by considering the operator i[C,L ] + iCTb′′1∇ instead. This has been already used

by [Bie] and essentially allows one to construct a real operator C, that is, with the property

Cu = Cū, which will be convenient in certain arguments. Now, clearly,

|2Re (〈CC1u,Cu〉+ 〈CC2ū,Cu〉)| ≤ 2(A1 + A2)||C||2L (L2)||u||20,

and integrating on [0, T ′], T ′ ≤ T , yields

||Cu(T ′)||22 ≤ ||Cu0||20 + 2

∣∣∣∣∣Re
∫ T ′

0

〈(i[C,L ] + iCTb′′1∇)u,Cu〉dt

∣∣∣∣∣+ 2

∣∣∣∣∣Re
∫ T ′

0

〈CTb′1∇u,Cu〉dt

∣∣∣∣∣
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+2

∣∣∣∣∣Re
∫ T ′

0

〈CTb2∇ū,Cu〉dt

∣∣∣∣∣+ 2

∣∣∣∣∣Re
∫ T ′

0

〈Cu,Cf〉dt

∣∣∣∣∣+ 2(A1 +A2)||C||2L (L2)

∫ T ′

0

||u(t)||20 dt , (48)

and our task will be to estimate appropriately each of the terms in the right hand side of

this inequality. The most difficult one is∣∣∣∣∫ T

0

〈(i[C,L ] + iCTb′′1∇)u,Cu〉dt
∣∣∣∣

and C will be constructed so that this term will be small with respect to some parameters

to be defined later. To this end, let us denote by c the symbol of C and define

p(x, ξ) = −2ξ].∇xc(x, ξ)− c(x, ξ)b̃′′1(x, ξ).ξ , (49)

where ξ] = (ξ1, ..., ξj0 ,−ξj0+1, ...,−ξn) and b̃′′1 is such that Tb′′1 = b̃′′1(x,D); see (2). The

problem lies essentially in the fact that p(x, ξ) is not the true principal symbol of the pseu-

dodifferential (or paradifferential) operator i[C,L ] + iCTb′′1∇ since C will be merely in the

class OpS0
0,0. Nevertheless, the constructed C will allow us to obtain good estimates.

Set c(x, ξ) = exp (γ(x, ξ)) and γ(x, ξ) =
∑

µ∈Zn α1,µγµ(x, ξ), where the α1,µ are the

coefficients of b1 in its decomposition with respect to the ϕ1,µ (see Theorem 8), and the

γµ(x, ξ) are defined a little later. Note here that one can assume the α1,µ real (and even non

negative) without loss of generality. We can then write

p(x, ξ) = c(x, ξ)
∑
µ

α1,µ

(
−2ξ].∇xγµ(x, ξ)− ϕ̃1,µ(x, ξ).ξ

)
,

and this suggests to consider the following function

ηµ(x, ξ) =
1

2

∫ ∞
0

Im(ϕ̃1,µ)(x+ sξ], ξ).ξ ds

One can show that such a function is smooth and satisfies, for all multi-indices α, β,∣∣∣∂αx∂βξ ηµ(x, ξ)
∣∣∣ ≤ Aα,β sup

β′≤β
||〈ξ〉|β′|∂αx∂

β′

ξ ϕ1,µ||L∞〈x− µ〉|β|〈ξ〉−|β|, (50)

and, moreover,

−2ξ].∇xηµ(x, ξ)−Im(ϕ̃1,µ)(x, ξ).ξ = 0 . (51)

See [KePoVe] or [Bie] for the proof. To get an even function, we replace ηµ by

ζµ(x, ξ) = (ηµ(x, ξ) + ηµ(x,−ξ))/2 ,

which satisfies the same properties as ηµ, and then set

γµ(x, ξ) = θ

(
|ξ|
R

)
ψ

(
R〈x− µ〉
〈ξ〉

)
ζµ(x, ξ) ,

where θ and ψ are smooth (real) functions on R such that θ(t) = 1 if t ≥ 2, θ(t) = 0 if t ≤ 1,

ψ(x) = 1 if |t| ≤ 1, ψ = 0 outside some compact set and R is a large parameter that will
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be fixed later. One can easily check that γµ ∈ S0
0,0 and that its semi-norms are uniformly

bounded with respect to µ and R. The following lemma gives the main properties of the

operator C and its symbol

c(x, ξ) = exp (γ(x, ξ)) = exp

(∑
µ

α1,µγµ(x, ξ)

)
.

Lemma 5.1 (i) The symbol c(x, ξ) is real and even in ξ.
(ii) The symbol c(x, ξ) is in the class S0

0,0. More precisely, for all α, β ∈ Nn,

|∂αx∂
β
ξ c(x, ξ)| ≤ Aα,β

R|β|
sup

1≤j≤|α|+|β|
sup
µ

sup
α′≤α;β′≤β

||〈ξ〉|β′|∂α′x ∂
β′

ξ ϕ1,µ||jL∞ ≤
Aα,β
R|β|

sup
µ
ν|α|+|β|(ϕ1,µ) .

(iii) There exist N ∈ N and A > 0 such that, for all R ≥ 1 and all v ∈ L2(Rn),

||Cv||0 ≤ A sup
µ

νN(ϕ1,µ) ||v||0 ,

and ||v||0 ≤ A sup
µ

νN(ϕ1,µ)||Cv||s +
A

R
sup
µ

νN(ϕ1,µ)2||v||s.

(iv) The symbol p(x, ξ) = −2ξ].∇xc(x, ξ) − c(x, ξ)b̃′′1(x, ξ).ξ is in S0
0,0 and its semi-norms

(of order ≤M) are estimated by AR supµ νM+1(ϕ1,µ) .

Even if here the function ϕ1,µ is more general, the proof follows the same lines as that

of [Bie] (Lemme 3.5 and Lemme 3.6) and we refer to it. These properties are sufficient to

allow us to get the following estimates :

Lemma 5.2 Let b(x, ξ) be a symbol satisfying b(x, ξ) =
∑
µ∈Zn

αµ ϕµ(x, ξ), ϕµ ∈ S0
1,0,

∑
µ

|αµ| ≤ A0,

x 7→ ϕµ(x, ξ) is rapidly decreasing in x− µ,
(52)

and let ũ stand for u or ū. Then, there exist N ∈ N and A > 0 such that, for all T > 0,
T ′ ∈ [0, T ], R ≥ 1 and every H = h(x,D) in OpS0

0,0, the following estimates hold true :

(i)

∫ T ′

0

∣∣∣〈(CTb∇− (cb̃)(x,D)∇)ũ, Hu〉
∣∣∣ dt ≤ A

R
||h||CN sup

µ
νN(ϕ1,µ) sup

µ
||ϕµ||CN |||J

1
2u|||2T .

(ii)

∫ T ′

0

∣∣〈(i[C,L ] + iCTb′′1∇)u,Hu〉
∣∣ dt ≤ A ||h||CN sup

µ
νN(ϕ1,µ)

(
RT sup

[0,T ]

||u||20 +
1

R
|||J

1
2u|||2T

)
.

(iii)

∫ T ′

0

|〈[C, JsTbJ−s∇]ũ, Hu〉| dt ≤ A ||h||CN sup
µ
νN(ϕ1,µ) sup

µ
||ϕµ||CN

(
T sup

[0,T ]

||u||20 +
|||J 1

2u|||2T
R

)
.

Remark 1 The case s 6= 0 in (iii) is needed in Section 7.
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Proof : Using the pseudodifferential calculus, we can write the symbol e(x, ξ) of the operator

E = CTb∇− (cb̃)(x,D)∇ as e =
∑

µ αµeµ where eµ is given by

eµ(x, ξ) =
1

(2π)n

n∑
j=1

∫ 1

0

∫
e−iyη ∂ξjc(x, ξ + tη) ∂xj ϕ̃µ(x+ y, ξ).ξ dy dη dt, (53)

and we first remark that eµ ∈ OpS1
0,0 and that using the fast decrease of ϕ̃µ(x, ξ) in x − µ

and integrations by parts yields the fact that eµ(x, ξ) is itself rapidly decreasing in x − µ.

Next, setting Eµ = eµ(x,D), we can write

〈Eũ,Hu〉 =
∑
µ

αµ〈Eµũ, Hu〉 =
∑
µ

αµ〈H∗Eµũ, u〉

=
∑
µ

αµ

〈
〈x− µ〉σ0H̃〈x− µ〉−σ0〈x− µ〉σ0Ẽµ〈x− µ〉σ0ũµ, uµ

〉
where H̃ = J−1/2H∗J1/2, Ẽµ = J−1/2EµJ

−1/2 and uµ = 〈x− µ〉−σ0J1/2u. Now, it follows

from the pseudodifferential calculus (Theorem 2.1) that H̃ and Ẽµ are in OpS0
0,0 and that

we can estimate the semi-norms of H̃ and Ẽµ by those of H and Eµ respectively. Moreover,

it is easy to see that the symbol of Ẽµ inherits the fast decrease in x− µ which implies, by

virtue of Lemma 2.1, that the operator 〈x − µ〉σ0Ẽµ〈x − µ〉σ0 is also in OpS0
0,0 and that its

semi-norms are estimated by those of Eµ uniformly in µ. The same property hold for the

operator 〈x − µ〉σ0H̃〈x − µ〉−σ0 as it follows also from Lemma 2.1. This allows us to apply

Calderon-Vaillancourt’s theorem to obtain∫ T ′

0

|〈Eũ,Hu〉|dt ≤
∑
µ

|αµ|
∫ T ′

0

||〈x−µ〉σ0H̃〈x−µ〉−σ0||L (L2) ||〈x−µ〉σ0Ẽµ〈x−µ〉σ0||L (L2) ||uµ||20dt

≤ A ||h||CN1 sup
µ

∑
|α|+|β|≤N1

||〈x− µ〉2σ0∂αx∂
β
ξ eµ||L∞|||J

1
2u|||2T

≤ A

R
||h||CN1 sup

µ
νN2(ϕ1,µ) sup

µ
||ϕµ||CN2 |||J

1
2u|||2T , (54)

which proves (i).

To prove (ii), note first that the symbol of i[C,L ] is given by

−2ξ].∇xc(x, ξ) + (Lxc)(x, ξ)

and that of iCTb′′1∇ can be written as

ic(x, ξ)b̃′′1(x, ξ).iξ +
1

(2π)n

n∑
j=1

∫ 1

0

∫
e−iyη ∂ξjc(x, ξ + tη) ∂xj b̃

′′
1(x+ y, ξ).iξ dy dη dt.

Thus, the symbol of the operator i[C,L ] + iCTb′′1∇ is given by

(Lxc)(x, ξ) + p(x, ξ) + ie(x, ξ),

31



where p(x, ξ) is given by (49), e =
∑

µ αµeµ and eµ(x, ξ) is given by (53) with αµ = α1,µ and

ϕµ = Im(ϕ1,µ). Hence, applying Lemma 5.1 and Calderon-Vaillancourt’s theorem yields

the estimate∫ T ′

0

|〈((Lxc)(x,D) + p(x,D))u,Hu〉| dt ≤ ART ||h||CN1 sup
µ

νN1(ϕ1,µ)2 sup
[0,T ]

||u||20 ,

and applying part (i) gives the estimate∫ T ′

0

|〈(ie(x,D)u,Hu〉|dt ≤ A

R
||h||CN2 sup

µ
νN2(ϕ1,µ)2|||J

1
2u|||2T ,

which proves (ii).

To prove (iii), we first treat the case s = 0 and note that the symbol of [C, Tb∇] =

CTb∇ − Tb∇C can be written simply as e(x, ξ) − e0(x, ξ) where e(x, ξ) is the symbol of

the operator E studied in (i) and

e0(x, ξ) =
1

(2π)n

n∑
j=1

∫ 1

0

∫
e−iyη ∂ξj(b̃(x, ξ + tη).(ξ + tη)) ∂xjc(x+ y, ξ) dy dη dt .

Since ∂ξj(b̃(x, ξ).ξ) is of order 0, the symbol e0(x, ξ) is in fact in S0
0,0 and the semi-norms of

e0 are estimated by a product of semi-norms of b̃ and c. Hence, by using the decomposition

of b as above, we get∫ T ′

0

|〈e0(x,D)ũ, Hu〉| dt ≤ AT ||h||CN1 sup
µ
||ϕµ||CN2 sup

µ
νN2(ϕ1,µ) sup

[0,T ]

||u||20 ,

which, together with (54), yields (iii) in the case s = 0. If s 6= 0, it follows from the

pseudodifferential and paradifferential calculi that JsTbJ
−s = Tb# where b# =

∑
µ αµψµ and

ψµ is given by

ψµ(x, ξ) =
1

(2π)n

∫
e−iyη〈ξ + η〉sϕµ(x+ y, ξ)〈ξ〉−s dy dη ,

which implies that ψµ is also rapidly decreasing in x−µ and that it is in S0
1,0 with semi-norms

estimated by those of ϕµ. This shows that the the case s 6= 0 follows from the case s = 0

and achieves the proof of Lemma 5.2. �

Lemma 5.3 Let b be as in the preceding lemma. Then, there exist N ∈ N and A > 0 such
that, for all T > 0, T ′ ∈ [0, T ] and R ≥ 1, the following estimates hold true :
(i) If b(x, ξ) is even in ξ, then,∫ T ′

0

|〈CTb∇ū,Cu〉| dt ≤ A sup
µ
νN(ϕ1,µ) sup

µ
||ϕµ||CN

(
T sup

0≤t≤T
||u||20 +

1

R
|||J

1
2u|||T

)
.

(ii) If b is real, then,∣∣∣∣∣Re
∫ T ′

0

〈CTb∇u,Cu〉dt

∣∣∣∣∣ ≤ A sup
µ
νN(ϕ1,µ) sup

µ
||ϕµ||CN

(
T sup

0≤t≤T
||u||20 +

1

R
|||J

1
2u|||T

)
.
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Proof : Since C is real, we can write

〈CTb∇ū,Cu〉 = 〈Tb∇Cū,Cu〉+ 〈[C, Tb∇]ū,Cu〉 = 〈Tb∇Cu,Cu〉+ 〈[C, Tb∇]ū,Cu〉.

Now, the integral corresponding to 〈[C, Tb∇]ū,Cu〉 is treated by Lemma 5.2(iii). As for

the other term, we note that it is of the form 〈Tb∇v̄, v〉, so, it suffices to study such a term.

Since b(x, ξ) is even in ξ, we have

〈Tb∇v̄, v〉 = 〈v, Tb∇v̄〉 = 〈v̄, Tb̄∇v〉 = 〈(Tb̄∇)∗v̄, v〉,

and it follows from the pseudodifferential (or paradifferential) calculus that

(Tb̄∇)∗ = −Tb∇+ E1, (55)

where E1 is of type S0
1,0 and its semi-norms (up to some finite order) are estimated by those

of b. Hence,

〈Tb∇v̄, v〉 = −〈Tb∇v̄, v〉+ 〈E1v̄, v〉,

and 〈Tb∇v̄, v〉 = 1
2
〈E1v̄, v〉, that is, 〈Tb∇Cu,Cu〉 = 1

2
〈E1Cu,Cu〉, and (i) follows just by

applying Calderon-Vaillancourt’s theorem and Lemma 5.1.

To prove (ii), we write as before

〈CTb∇u,Cu〉 = 〈Tb∇Cu,Cu〉+ 〈[C, Tb∇]u,Cu〉,

and then apply Lemma 5.2(iii) to reduce the problem to the study of Re〈Tb∇Cu,Cu〉.
Now, it follows from (55) and the fact that b is real that we have

2Re〈Tb∇Cu,Cu〉 = 〈Tb∇Cu,Cu〉+〈Cu, Tb∇Cu〉 = 〈(Tb∇+(Tb∇)∗)Cu,Cu〉 = 〈E1Cu,Cu〉

and the proof ends like that of (i). The lemma is thus proved. �

It is clear now that applying Lemma 5.1, Lemma 5.2 and Lemma 5.3 to the inequality

(48) yields Proposition 3.1.

6 Proof of Proposition 3.2

By the same argument as that used in the beginning of the proof of Proposition 3.1, it is

sufficient to establish the first estimate in the case s = 0.

The proof follows the same ideas as that of [KePoVe] or [Bie]. The difference is that

here the Tbk , k = 1, 2, are general paradifferential operators of order 0 instead of merely

multiplication or paramultiplication operators.

Since ∂tu = iL u+ Tb1 .∇u+ Tb2 .∇ū+ C1u+ C2ū+ f

and ∂tū = −iL ū+ Tb̄1 .∇ū+ Tb̄2 .∇u+ C1ū+ C2u+ f̄ ,
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where the operators Ck are defined by Cku = Ckū, one starts by remarking that the vector

unknown w =
(
u
ū

)
satisfies the following system

∂tw = iHw +Bw + Cw + F, (56)

where

H =

 L 0

0 −L

 , B =

 Tb1∇ Tb2∇

Tb2∇ Tb1∇

 , C =

 C1 C2

C1 C2

 , F =

 f

f

 ,

and the idea then is to estimate the expression 〈Ψw,w〉 by means of G̊arding’s inequality

for systems via Doi’s argument. Here,

Ψ =

 Ψ0 0

0 −Ψ0

 ,

and Ψ0 is an appropriate pseudodifferential operator in OpS0
1,0 to be chosen a little later.

By using (56), one gets easily

∂t〈Ψw,w〉 = 〈Ψ∂tw,w〉+ 〈Ψw, ∂tw〉
= 〈(i[Ψ, H] +B∗Ψ + ΨB + C∗Ψ + ΨC)w,w〉+ 〈ΨF,w〉+ 〈Ψw,F 〉,

(57)

and, as one can check also easily, the principal symbol of the first order operator

i[Ψ, H] +B∗Ψ + ΨB + C∗Ψ + ΨC

is given by

M(x, ξ) =

 2ξ].∇xψ0(x, ξ)− 2ξ.Im(b̃1)(x, ξ)ψ0(x, ξ) 2iξ.b̃2(x, ξ)ψ0(x, ξ)

−2iξ.b̃2(x, ξ)ψ0(x, ξ) 2ξ].∇xψ0(x, ξ)− 2ξ.Im(b̃1)(x, ξ)ψ0(x, ξ)


where ψ0 denotes the symbol of Ψ0. Now, for ψ0, we shall make the following choice which

follows the idea of Doi (see [Doi]). Define

p(x, ξ) = 〈ξ〉−1

n∑
j=1

ξ]j h(xj) with h(t) =

∫ t

0

〈s〉−2σ0ds,

pµ(x, ξ) = p(x− µ, ξ) + A0

∑
µ′∈Zn

(|α1,µ′ |+ |α2,µ′ |)p(x− µ′, ξ),

and ψ0(x, ξ) = ψµ(x, ξ) = exp(−pµ(x, ξ)).

Here, the α1,µ′ and α2,µ′ are the coefficients of b1 and b2 in their decompositions with respect

to the ϕ1,µ′ and ϕ2,µ′ respectively (see Theorem 8), A0 is a large constant that will be
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determined later and µ ∈ Zn is fixed for the moment. However, from now on, we shall write

Ψµ and ψµ instead of Ψ0 and ψ0 to emphasize the dependance on µ. First, note that pµ and

ψµ are in S0
1,0 and that their semi-norms are uniformly bounded with respect to µ. Next,

with these notations, the symbol M(x, ξ) can be rewritten as

M(x, ξ) = 2ψµ(x, ξ)

 −ξ
].∇xpµ(x, ξ)− ξ.Im(b̃1)(x, ξ) iξ.b̃2(x, ξ)

−iξ.b̃2(x, ξ) − ξ].∇xpµ(x, ξ)− ξ.Im(b̃1)(x, ξ)

 .

Consider now the matrix Z(x, ξ) = −M(x, ξ)− V (x, ξ) where

V (x, ξ) =
2ψµ(x, ξ)|ξ|2

〈ξ〉〈x− µ〉2σ0

(
1 0

0 1

)
.

Z(x, ξ) is a matrix of symbols in S1
1,0 and, in order to apply G̊arding’s inequality, we are

going to show that, for large ξ, it is a non negative matrix, that is, 〈Z(x, ξ)v, v〉 ≥ 0, ∀v ∈ C2.

In fact, Z(x, ξ) is of the form

2ψµ(x, ξ)

(
α β

β̄ α

)
where

α = ξ].∇xpµ(x, ξ)− |ξ|2

〈ξ〉〈x− µ〉2σ0
+ ξ.Im(b̃1)(x, ξ) and β = −iξ.b̃2(x, ξ),

and it is sufficient to show that the two eigenvalues α ± |β| of
(
α β
β̄ α

)
are non negative, or,

equivalently, that α ≥ |β|, that is,

ξ].∇xpµ(x, ξ)− |ξ|2

〈ξ〉〈x− µ〉2σ0
+ ξ.Im(b̃1)(x, ξ) ≥ | − iξ.b̃2(x, ξ)|. (58)

Now, the main reason for the choice of the symbol pµ is that it allows to get the following

inequality :

ξ].∇xpµ(x, ξ) = ξ].∇xp(x− µ, ξ) + A0

∑
µ′∈Zn

(|α1,µ′|+ |α2,µ′|) ξ].∇xp(x− µ′, ξ)

=
n∑
j=1

ξ2
j

〈ξ〉〈xj − µj〉2σ0
+ A0

∑
µ′∈Zn

(|α1,µ′ |+ |α2,µ′|)
n∑
j=1

ξ2
j

〈ξ〉〈xj − µ′j〉2σ0

≥ |ξ|2

〈ξ〉〈x− µ〉2σ0
+ A0

∑
µ′∈Zn

(|α1,µ′|+ |α2,µ′|)
|ξ|2

〈ξ〉〈x− µ′〉2σ0
, (59)

that is,

ξ].∇xpµ(x, ξ)− |ξ|2

〈ξ〉〈x− µ〉2σ0
≥ A0

∑
µ′∈Zn

(|α1,µ′|+ |α2,µ′ |)
|ξ|2

〈ξ〉〈x− µ′〉2σ0
. (60)

Besides, we have

b̃k(x, ξ) =
∑
µ′∈Zn

αk,µ′ϕ̃k,µ′(x, ξ), k = 1, 2,
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and it follows from Lemma 2.3 that

〈x− µ′〉2σ0 |ϕ̃k,µ′(x, ξ)| ≤ A(n) ,

with a constant A(n) which depends only on the dimension. Hence,

|iξ.b̃k(x, ξ)| ≤ A(n)
∑
µ′∈Zn

|αk,µ′ |
|ξ|

〈x− µ′〉2σ0
≤
√

2A(n)
∑
µ′∈Zn

|αk,µ′|
|ξ|2

〈ξ〉〈x− µ′〉2σ0
, k = 1, 2,

if |ξ| ≥ 1, which, together with (60), implies (58) by taking A0 ≥
√

2A(n). Thus, the matrix

symbol Z(x, ξ) is non negative, and since it is also hermitian, Z(x, ξ) + Z(x, ξ)∗ is also non

negative and we can apply G̊arding’s inequality for systems :

Re〈Z(x,D)w,w〉 ≥ −A

(
1 + sup

|α|+|β|≤N
sup
k,µ′
||〈ξ〉|β|∂αx∂

β
ξ ϕk,µ′||L∞

)
||w||20 (61)

where the constant A depends only on A1, A2 and the dimension n and the integer N depends

only on the dimension n. Now, going back to (57), we can rewrite it as

∂t〈Ψw,w〉 = 〈(−Z(x,D)− V (x,D) + E)w,w〉+ 〈ΨF,w〉+ 〈Ψw,F 〉,

where E is a bounded operator in L2(Rn), and integrating it on [0, T ] yields∫ T

0

〈V (x,D)w,w〉dt = 〈Ψw(0), w(0)〉 − 〈Ψw(T ), w(T )〉 −
∫ T

0

〈Z(x,D)w,w〉dt

+

∫ T

0

〈Ew,w〉dt+

∫ T

0

〈ΨF,w〉dt+

∫ T

0

〈Ψw,F 〉dt .

Taking the real part, using (61) and estimating, we obtain

Re

∫ T

0

〈V (x,D)w,w〉dt ≤ A sup
[0,T ]

||w||20 + AT

(
1 + sup

k,µ′
νN(ϕk,µ′)

)
sup
[0,T ]

||w||20

+

∣∣∣∣∫ T

0

〈ΨF,w〉dt
∣∣∣∣+

∣∣∣∣∫ T

0

〈Ψw,F 〉dt
∣∣∣∣ ,

and since ψµ(x, ξ) ≥ exp(−A) and, for |ξ| ≥ 1,

V (x, ξ) ≥ e−A
〈ξ〉

〈x− µ〉2σ0

(
1 0

0 1

)
,

a second application of G̊arding inequality gives us

Re

∫ T

0

〈J1/2〈x− µ〉−2σ0J1/2w,w〉dt ≤ A sup
[0,T ]

||w||20
(

1 + T + T sup
k,µ′

νN(ϕk,µ′)

)

+

∣∣∣∣∫ T

0

〈ΨF,w〉dt
∣∣∣∣+

∣∣∣∣∫ T

0

〈Ψw,F 〉dt
∣∣∣∣ ,
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with a modified constant A. Since we can write 〈ΨF,w〉 = 〈Ψµf, u〉− 〈Ψµf, u〉 and a similar

expression for 〈Ψw,F 〉, by going back to u, we get eventually∫ T

0

||〈x− µ〉−σ0J1/2u||20dt ≤ A sup
[0,T ]

||u||20
(

1 + T + T sup
k,µ′

νN(ϕk,µ′)

)

+

∫ T

0

|〈Ψµf, u〉|dt+

∫ T

0

|〈Ψµf, u〉|dt+

∫ T

0

|〈Ψ∗µf, u〉|dt+

∫ T

0

|〈Ψ∗µf, u〉|dt ,

which yields the first part of Proposition 3.2 by taking the supremum over all µ ∈ Zn.

As for the second estimate of Proposition 3.2, we first remark that, since C is real, Cu

satisfies

∂tCu = iL Cu+ Tb′1 .∇Cu+ Tb2 .∇Cu+ C1Cu+ C2Cu+ f̃

where k = 1, 2, b1 = b′1 + ib′′1 with real b′1, b′′1, and

f̃ =
(
i [C,L ] + CTib′′1∇

)
u+ [C, Tb′1 .∇]u+ [C, Tb2 .∇]ū+ [C, C1]u+ [C, C2]ū+ Cf.

Hence, we can apply the first estimate of Proposition 3.2 to Cu obtaining

|||Js+1/2Cu|||2T ≤ A

(
1 + T + T sup

k,µ
νN(ϕk,µ)

)
sup
[0,T ]

||Cu||2s +
4∑
j=1

sup
µ

∫ T

0

|〈Ψj,µJ
sf̃ , JsCu〉|dt,

(62)

where Ψj,µ = ψj(x− µ,D). Thus, we are led to estimate essentially the following terms∫ T

0

|〈Js(i [C,L ] + CTib′′1∇)u,Ψ∗j,µJ
sCu〉|dt+

∫ T

0

|〈Js[C, Tb′1 .∇])u,Ψ∗j,µJ
sCu〉|dt

+

∫ T

0

|〈Js[C, Tb2 .∇]ū,Ψ∗j,µJ
sCu〉|dt.

Indeed, since the operators Ψj,µJ
s[C, C1]J−s and Ψj,µJ

s[C, C2]J−s are bounded in L2 (and

so is JsCJ−s), the corresponding terms are easily estimated by

AT sup
µ

νN(ϕ1,µ) sup
0≤t≤T

||u(t)||2s .

We need now for the other terms the following simple lemma :

Lemma 6.1 If a ∈ Sm0,0, then, for any real s,

Jsa(x,D)J−s = a(x,D) + e(x,D)

where e ∈ Sm−1
0,0 and the semi-norms of e are bounded by those of a.

Proof : It suffices to apply the pseudodifferential calculus and to remark that

e(x, ξ) =
1

(2π)n

n∑
j=1

∫ 1

0

∫
e−iyη ∂ξj(〈ξ + tη〉s) ∂xja(x+ y, ξ)〈ξ〉−s dy dη dt .
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We apply the lemma successively with a(x,D) = i [C,L ] + CTib′′1∇, a(x,D) = [C, Tb′1 .∇]

and a(x,D) = [C, Tb2 .∇]. Since here m = 1, we obtain that at each time the operator

e(x,D) is bounded in L2 and that its operator norm is estimated by the semi-norms of a.

Next, it follows from the pseudodifferential calculus that Ψ∗j,µ ∈ OpS0
1,0 and their semi-

norms are uniformly bounded with respect to µ, and, consequently, also that Ψ∗j,µJ
sCJ−s ∈

OpS0
0,0 and their semi-norms are uniformly estimated by those of C. Hence, the integrals

corresponding to the operators e(x,D) are easily estimated by

ART sup
k,µ

νN(ϕk,µ) sup
0≤t≤T

||u(t)||2s .

Thus, it remains to estimate the sum∫ T

0

|〈(i [C,L ] + CTib′′1∇)Jsu,Ψ∗j,µJ
sCu〉|dt+

∫ T

0

|〈[C, Tb′1 .∇])Jsu,Ψ∗j,µJ
sCu〉|dt

+

∫ T

0

|〈[C, Tb2 .∇]Jsū,Ψ∗j,µJ
sCu〉|dt

to which we apply Lemma 5.2 with S = Ψ∗j,µJ
sCJ−s. We obtain eventually

4∑
j=1

sup
µ

∫ T

0

|〈Ψj,µJ
sf̃ , JsCu〉|dt ≤

4∑
j=1

sup
µ

∫ T

0

|〈Ψj,µJ
sCf, JsCu〉|dt

+A sup
k,µ

νN(ϕk,µ)

(
RT sup

[0,T ]

||u||2s +
1

R
|||Js+

1
2u|||2T

)
,

which, together with (62), implies the second estimate of Proposition 3.2.
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7 Appendix

7.1 Proof of Lemma 3.1 :

We need the following general estimate :

Lemma 7.1 Let b satisfy
b(x, ξ) =

∑
µ∈Zn

αµ ϕµ(x, ξ),
∑
µ

|αµ| ≤ A0,

supp(x 7→ ϕµ(x, ξ)) ⊆ Q∗µ, sup
µ

sup
|β|≤N0

||〈ξ〉|β|∂βξ ϕµ||L∞ <∞,
(63)

where N0 is a sufficiently large integer, and let ũ stand for u or ū. Then, there exist N ∈ N
and A > 0 such that, for all T > 0 and every S1 = s1(x,D), S2 = s2(x,D) in OpS0

0,0, we
have ∫ T

0

|〈S1J
sTbJ

−s∇ũ, S2u〉| dt ≤ A ||s1||CN ||s2||CN sup
µ

sup
|β|≤N

||〈ξ〉|β|∂βξ ϕµ||L∞ |||J
1
2u|||2T .

Proof : One can write

〈S1J
sTbJ

−s∇ũ, S2u〉 =
∑
µ

αµ〈S1J
sTϕµJ

−s∇ũ, S2u〉 =
∑
µ

αµ〈S∗2S1J
sTϕµJ

−s∇ũ, u〉

=
∑
µ

αµ
〈
〈x− µ〉σ0J−1/2S∗2S1J

sTϕµJ
−s∇J−1/2〈x− µ〉σ0〈x− µ〉−σ0J1/2ũ, 〈x− µ〉−σ0J1/2u

〉
=
∑
µ

αµ
〈
Sµ〈x− µ〉σ0Tϕµ〈x− µ〉σ0Jµũµ, uµ

〉
where Sµ = 〈x − µ〉σ0J−1/2S∗2S1J

s〈x − µ〉−σ0 , Jµ = 〈x − µ〉−σ0J−s∇J−1/2〈x − µ〉σ0

and uµ = 〈x − µ〉−σ0J1/2u. Now, it follows from the pseudodifferential calculus (Theo-

rem 2.1) and from Lemma 2.1 that Sµ and Jµ are in OpS
s−1/2
0,0 and OpS

1/2−s
0,0 respectively,

and that we can estimate their semi-norms uniformly in µ. Next, it follows from Lemma

2.4 that the operator norm of 〈x − µ〉σ0Tϕµ〈x − µ〉σ0 acting in Hs−1/2(Rn) is estimated by

sup|β|≤N ||〈ξ〉|β|∂
β
ξ ϕµ||L∞ uniformly in µ. Hence, the application of Cauchy-Schwarz inequality

and Calderon-Vaillancourt’s theorem allows us to obtain∫ T

0

|〈S1J
sTbJ

−s∇ũ, S2u〉| dt

≤
∑
µ

|αµ| ||Sµ||L (Hs−1/2,L2) ||〈x− µ〉σ0Tϕµ〈x− µ〉σ0 ||L (Hs−1/2) ||Jµ||L (L2,Hs−1/2)

∫ T

0

||uµ||20dt

≤ A ||s1||CN ||s2||CN sup
µ

sup
|β|≤N

||〈ξ〉|β|∂βξ ϕµ||L∞ |||J
1
2u|||2T ,

which proves the lemma. �
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Now, let us write Tbk−bk,m = Tbk−bk,m′ + Tbk,m′−bk,m and apply Lemma 7.1 first to b =

bk − bk,m′ with S1 = S2 = Cm. We obtain∫ T

0

|〈CmJ
sTbk−bk,m′∇ũ,CmJ

su〉|dt =

∫ T

0

|〈CmJ
sTbk−bk,m′J

−s∇ṽ,Cmv〉|dt

≤ A sup
µ
νN(ϕ1,µ,m)2 sup

µ
sup
|β|≤N

||〈ξ〉|β|∂βξ (ϕk,µ − ϕk,µ,m′)||L∞ |||J
1
2v|||2T ,

≤ A
m2N2

m′σ
sup
µ

sup
|β|≤N

||〈ξ〉|β|∂βξ ϕk,µ||Cσ |||J
1
2

+su|||2T ≤ A
m2N2

m′σ
|||J

1
2

+su|||2T ,

where v = Jsu and σ = inf{%, 1}. As for the study of the other term, we write

〈CmJ
sTbk,m′−bk,m∇ũ,CmJ

su〉 = 〈CmJ
sTbk,m′−bk,mJ

−s∇ṽ,Cmv〉

= 〈JsTbk,m′−bk,mJ
−s∇Cmṽ,Cmv〉+ 〈[Cm, J

sTbk,m′−bk,mJ
−s∇]ṽ,Cmv〉, (64)

and then apply Lemma 5.2(iii) to the second term in (64) to obtain∫ T

0

|〈[Cm, J
sTbk,m′−bk,mJ

−s∇]ṽ,Cmv〉| dt

≤ A sup
µ

νN(ϕ1,µ,m)2 sup
µ
||ϕk,µ,m′ − ϕk,µ,m||CN

(
T sup

[0,T ]

||v||20 +
1

R
|||J

1
2v|||2T

)

≤ Am′2N
2

(m′N+mN)

(
T sup

[0,T ]

||u||2s +
1

R
|||Js+

1
2u|||2T

)
≤ Am′2N

2+N

(
T sup

[0,T ]

||u||2s +
1

R
|||Js+

1
2u|||2T

)
.

Finally, recalling that Cmū = Cmu and applying Lemma 7.1 to the first term in (64) with

S1 = S2 = Id, we get∫ T

0

|〈JsTbk,m′−bk,mJ
−s∇Cmṽ,Cmv〉| dt ≤ A sup

µ
sup
|β|≤N

||〈ξ〉|β|∂βξ (ϕk,µ,m′ − ϕk,µ,m)||L∞ |||J
1
2 Cmv|||2T

≤ A

(
sup
µ

sup
|β|≤N

||〈ξ〉|β|∂βξ (ϕk,µ,m′ − ϕk,µ)||L∞ + sup
µ

sup
|β|≤N

||〈ξ〉|β|∂βξ (ϕk,µ − ϕk,µ,m)||L∞
)
|||J

1
2 Cmv|||2T

≤
(
A

m′σ
+

A

mσ

)
sup
µ

sup
|β|≤N

||〈ξ〉|β|∂βξ ϕk,µ||Cσ |||J
1
2 Cmv|||2T

≤
(
A

m′σ
+

A

mσ

)
|||J

1
2 Cmv|||2T ≤

A

mσ
|||J

1
2 Cmv|||2T .

It remains to compare |||J 1
2 Cmv|||2T = |||J 1

2 CmJ
su|||2T with |||Js+ 1

2 Cmu|||2T . Of course, one can

write J
1
2 CmJ

su = Js+
1
2J−sCmJ

su and it follows from Lemma 6.1 that J−sCmJ
s−Cm = Em

is in OpS−1
0,0 and the semi-norms of Em are bounded by those of Cm. Hence, since Js+

1
2EmJ

−s

is in OpS
−1/2
0,0 ,

|||Js+
1
2Emu|||2T = sup

µ

∫ T

0

∫
|〈x− µ〉−σ0Js+

1
2Emu|2dx dt ≤

∫ T

0

∫
|Js+

1
2Emu|2dx dt
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≤ A sup
µ

νN(ϕ1,µ,m)2

∫ T

0

∫
|Jsu|2dx dt ≤ AT m2N2

sup
[0,T ]

||u||2s

and |||J
1
2 Cmv|||2T ≤ 2|||Js+

1
2 Cmu|||2T + 2AT m2N2

sup
[0,T ]

||u||2s,

which implies that∫ T

0

|〈JsTbk,m′−bk,mJ
−s∇Cmṽ,Cmv〉| dt ≤

A

mσ
|||Js+

1
2 Cmu|||2T + AT m2N2

sup
[0,T ]

||u||2s,

where, of course, the constant A has changed. Summing up, we have proven that∫ T

0

|〈CmJ
sTbk−bk,m∇ũ,CmJ

su〉|dt

≤ Am2N2

m′σ
|||Js+

1
2u|||2T + Am′2N

2+N

(
T sup

[0,T ]

||u||2s +
1

R
|||Js+

1
2u|||2T

)
+

A

mσ
|||Js+

1
2 Cmu|||2T ; (65)

that is, we have proven Lemma 3.1.

7.2 Anisotropic Sobolev spaces

There are several notions of anisotropic Sobolev space in the literature. However, we have

not been able to find a reference with the results we need in this paper. Therefore, we are

going to define our spaces and next prove the results we need.

We denote by (x, y) the variable in Rn × Rn′ and by (ξ, η) its Fourier dual variable.

Definition 7.1 If s, s′ ∈ R, we denote by Hs,s′(Rn×Rn′) the space of tempered distributions
u in Rn × Rn′ such that the integral∫

Rn×Rn′
〈ξ〉2s〈η〉2s′ |û(ξ, η)|2dξdη (66)

is finite.

We call this space an anisotropic Sobolev space. Note that this is different, for example,

from the classical space Hr,s of Lions and Magenes, [LiMa], Vol 2. Clearly, Hs,s′(Rn × Rn′)

is a Hilbert space when it is provided with the obvious scalar product. We also denote by

||u||s,s′ the norm of u in this space and, of course, it is equal to the square root of (66).

Note also that the space Hs,s′(Rn×Rn′) in the above definition coincides with the space

Hs(Rn, Hs′(Rn′)) and, by symmetry, with Hs′(Rn′ , Hs(Rn)).

In this paper, we need the following two results on anisotropic Sobolev spaces. The first

one is the Sobolev injection :

Proposition 7.1 If s > n
2

and s′ > n′

2
, then, Hs,s′(Rn × Rn′) ⊂ L∞(Rn × Rn′) with

continuous injection.
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Proof : If u ∈ Hs,s′ , then, û(ξ, η) = 〈ξ〉−s〈η〉−s′ .〈ξ〉s〈η〉s′û(ξ, η); hence, û ∈ L2.L2 ⊂ L1 and

||u||L∞ ≤ C ||û||L1 ≤ C ′ ||u||s,s′ , where C and C ′ are constants which are independent of u. �

The other result is an interpolation inequality :

Proposition 7.2 If s = (1 − θ)s1 + θs2 and s′ = (1 − θ)s′1 + θs′2, where θ ∈ [0, 1],
s1, s2, s

′
1, s
′
2 ∈ R, then, for any u ∈ Hs1,s′1(Rn × Rn′) ∩Hs2,s′2(Rn × Rn′), we have

||u||s,s′ ≤ ||u||1−θs1,s′1
||u||θs2,s′2 .

Proof : Indeed, we have

||u||2s,s′ =

∫
Rn×Rn′

〈ξ〉2(1−θ)s1+2θs2〈η〉2(1−θ)s′1+2θs′2 |û(ξ, η)|2dξdη

=

∫
Rn×Rn′

(
〈ξ〉s1〈η〉s′1|û(ξ, η)|

)2(1−θ) (
〈ξ〉s2〈η〉s′2|û(ξ, η)|

)2θ

dξdη

≤
(∫

Rn×Rn′
〈ξ〉2s1〈η〉2s′1|û(ξ, η)|2dξdη

)1−θ(∫
Rn×Rn′

〈ξ〉2s2〈η〉2s′2 |û(ξ, η)|2dξdη
)θ

= ||u||2(1−θ)
s1,s′1

||u||2θs2,s′2 ,

where we have applied Hölder’s inequality. �

Actually, we need the above results for anisotropic Sobolev spaces on domains Ω in

Rn×Rn′, and since the theory of such spaces is less simple, we shall restrict ourselves to the

case that arises in this paper, that is, the case Ω = I × Rn where I is a bounded interval in

R, and only to the case s ≥ 0. First, let us set, by definition,

Hs,s′(Ω) = Hs(I,Hs′(Rn)),

in the sense that u(x, y) is in Hs,s′(Ω) if and only if

∂αxJ
s′

y u ∈ L2(Ω) for |α| ≤ s

and

∫
I×I×Rn

|∂αxJs
′
y u(x, y)− ∂αxJs

′
y u(x′, y)|2

|x− x′|1+2σ
dxdx′dy <∞ if 0 < σ = s− [s] < 1.

Of course, the norm in this space is defined by

||u||2s,s′,Ω =
∑
|α|≤s

||∂αxJs
′

y u||2L2(Ω) if s ∈ N,

and ||u||2s,s′,Ω =
∑
|α|≤[s]

||∂αxJs
′

y u||2L2(Ω) +

∫
I×I×Rn

|∂αxJs
′
y u(x, y)− ∂αxJs

′
y u(x′, y)|2

|x− x′|1+2σ
dxdx′dy otherwise.

Now, we can prove for Hs,s′(Ω) the results analogous to the above ones.
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Proposition 7.3 (i) If s > 1
2

and s′ > n
2
, then, Hs,s′(Ω) ⊂ L∞(Ω) with continuous

injection.
(ii) If s = (1 − θ)s1 + θs2 and s′ = (1 − θ)s′1 + θs′2, where θ ∈ [0, 1], s1 ≥ 0, s2 ≥

0, s′1, s
′
2 ∈ R, then, there exists a constant C such that, for any u ∈ Hs1,s′1(Ω) ∩Hs2,s′2(Ω),

we have
||u||s,s′,Ω ≤ C ||u||1−θs1,s′1,Ω

||u||θs2,s′2,Ω .

Proof : Since we can not use directly the Fourier transformation, the idea is to construct a

bounded linear extension operator

PΩ : Hs,s′(Ω)→ Hs,s′(R× Rn), (67)

that is, which satisfies PΩu|Ω = u, for all u ∈ Hs,s′(Ω). Indeed, assume that such a PΩ exists.

Then, for u ∈ Hs,s′(Ω) with s > 1
2

and s′ > n
2
,

||u||L∞(Ω) = ||PΩu||L∞(Ω) ≤ ||PΩu||L∞(R×Rn) ≤ C ||PΩu||s,s′ ≤ C ′ ||u||s,s′,Ω ,

where we have applied Proposition 7.1 and the boundedness of PΩ, and this proves (i).

Furthermore, under the assumptions of (ii), we have

||u||s,s′,Ω = ||PΩu||s,s′,Ω ≤ ||PΩu||s,s′,R×Rn ,

and it is a classical fact that there exists a constant C such that, for all v ∈ Hs(Rd),∑
|α|≤[s]

||∂αv||2L2(Rd) +

∫
Rd×Rd

|∂αv(x)− ∂αv(x′)|2

|x− x′|d+2σ
dxdx′ ≤ C ||v||2s ;

now, applying this inequality to v(x) = Js
′
y PΩu(x, y), with d = 1, and integrating with

respect to y gives

||PΩu||2s,s′,R×Rn ≤ C ||PΩu||2s,s′ .

Finally, applying Proposition 7.2 and the boundedness of PΩ yields

||u||s,s′,Ω ≤
√
C ||PΩu||s,s′ ≤

√
C ||PΩu||1−θs1,s′1

||PΩu||θs2,s′2 ≤ C ′||u||1−θs1,s′1,Ω
||u||θs2,s′2,Ω ,

which establishes (ii).

It remains to construct PΩ as in (67). In fact, the classical theory of Sobolev spaces

already provides a bounded linear extension operator

PI : Hs(I)→ Hs(R), (68)

such that PIu|I = u, for all u ∈ Hs(I). If u ∈ Hs,s′(Ω), let us set

PΩu(x, y) = (PI)xu(x, y).

Clearly, this defines a linear operator such that PΩu|Ω = u. Let us show the boundedness

of PΩ : Hs,s′(Ω) → Hs,s′(R × Rn). It follows from the definition that x 7→ Js
′
y u(x, y) is in
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the Sobolev space Hs(I) for almost all y ∈ Rn. Hence, x 7→ (PI)xJ
s′
y u(x, y) is in Hs(R) for

almost all y ∈ Rn and there exists a constant C which depends neither on u nor on y such

that

||(PI)xJs
′

y u(x, y)||Hs(R) ≤ C ||Js′y u(x, y)||Hs(I) , for a.e. y ∈ Rn.

Since (PI)xJ
s′
y u = Js

′
y PΩu, this inequality can be written more explicitly as∫

R
|JsxJs

′

y PΩu(x, y)|2dx ≤ C2
∑
|α|≤[s]

∫
I

|∂αxJs
′

y u(x, y)|2dx

+C2

∫
I×I

|∂αxJs
′
y u(x, y)− ∂αxJs

′
y u(x′, y)|2

|x− x′|1+2σ
dxdx′ for a.e. y ∈ Rn.

Integrating over Rn with respect to y gives

||PΩu||2s,s′ ≤ C2||u||2s,s′,Ω,

which proves the boundedness of PΩ and achieves the proof of the proposition. �
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