
HAL Id: hal-01515640
https://hal.science/hal-01515640v1

Submitted on 29 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

WILDCAT: Weakly Supervised Learning of Deep
ConvNets for Image Classification, Pointwise

Localization and Segmentation
Thibaut Durand, Taylor Mordan, Nicolas Thome, Matthieu Cord

To cite this version:
Thibaut Durand, Taylor Mordan, Nicolas Thome, Matthieu Cord. WILDCAT: Weakly Supervised
Learning of Deep ConvNets for Image Classification, Pointwise Localization and Segmentation. IEEE
Conference on Computer Vision and Pattern Recognition (CVPR 2017), IEEE, Jul 2017, Honolulu,
HI, United States. pp.5957-5966, �10.1109/CVPR.2017.631�. �hal-01515640�

https://hal.science/hal-01515640v1
https://hal.archives-ouvertes.fr


WILDCAT: Weakly Supervised Learning of Deep ConvNets for Image
Classification, Pointwise Localization and Segmentation

Thibaut Durand(1)?, Taylor Mordan(1,2)?, Nicolas Thome(3), Matthieu Cord(1)

(1) Sorbonne Universités, UPMC Univ Paris 06, CNRS, LIP6 UMR 7606, 4 place Jussieu, 75005 Paris
(2) Thales Optronique S.A.S., 2 Avenue Gay Lussac, 78990 Élancourt, France

(3) CEDRIC - Conservatoire National des Arts et Métiers, 292 rue St Martin, 75003 Paris, France
{thibaut.durand, taylor.mordan, nicolas.thome, matthieu.cord}@lip6.fr

Abstract

This paper introduces WILDCAT, a deep learning
method which jointly aims at aligning image regions for
gaining spatial invariance and learning strongly localized
features. Our model is trained using only global image la-
bels and is devoted to three main visual recognition tasks:
image classification, weakly supervised pointwise object lo-
calization and semantic segmentation. WILDCAT extends
state-of-the-art Convolutional Neural Networks at three
major levels: the use of Fully Convolutional Networks for
maintaining spatial resolution, the explicit design in the net-
work of local features related to different class modalities,
and a new way to pool these features to provide a global im-
age prediction required for weakly supervised training. Ex-
tensive experiments show that our model significantly out-
performs the state-of-the-art methods.

1. Introduction
Over the last few years, deep learning and Convolu-

tional Neural Networks (CNNs) have become state-of-the-
art methods for visual recognition, including image classifi-
cation [34, 56, 28], object detection [21, 20, 10] or semantic
segmentation [8, 42, 9]. CNNs often require a huge number
of training examples: a common practice is to use models
pre-trained on large scale datasets, e.g. ImageNet [53], and
to fine tune them on the target domain.

Regarding spatial information, there is however a large
shift between ImageNet, which essentially contains cen-
tered objects, and other common datasets, e.g. VOC or
MS COCO, containing several objects and strong scale and
translation variations. To optimally perform domain adap-
tation in this context, it becomes necessary to align infor-
mative image regions, e.g. by detecting objects [44, 29],
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(a) original image (b) final predictions

(c) dog heatmap 1 (head) (d) dog heatmap 2 (legs)
Figure 1. WILDCAT example performing localization and seg-
mentation (b), based on different class-specific modalities, here
head (c) and legs (d) for the dog class.

parts [68, 69, 70, 35] or context [23, 13]. Although some
works incorporate more precise annotations during training,
e.g. bounding boxes [43, 21], the increased annotation cost
prevents its widespread use, especially for large datasets
and pixel-wise labeling, i.e. segmentation masks [3].

In this paper, we propose WILDCAT (Weakly super-
vIsed Learning of Deep Convolutional neurAl neTworks),
a method to learn localized visual features related to class
modalities, e.g. heads or legs for a dog – see Figure 1(c)
and 1(d). The proposed model can be used to perform im-
age classification as well as weakly supervised pointwise
object localization and segmentation (Figure 1(b)).

The overall architecture of WILDCAT (Figure 2) im-
proves existing deep Weakly Supervised Learning (WSL)
models at three major levels. Firstly, we make use of the
latest Fully Convolutional Networks (FCNs) as back-end
module, e.g. ResNet [28] (left of Figure 2). FCNs have
recently shown outstanding preformances for fully super-



Figure 2. WILDCAT architecture. It is based on FCN ResNet-101 to extract local features from whole images with good spatial resolution
(Section 3.1). All regions are encoded into multiple class modalities with a WSL multi-map transfer layer (Section 3.2). Feature maps are
then combined separately to yield class-specific heatmaps that can be globally pooled to get a single probability for each class, using a new
spatial aggregation module (Section 3.3). WILDCAT is trained with image-level labels in a WSL way and is applied to complex scene
understanding, WSL object detection and semantic segmentation (Section 3.4).

vised object detection [10] and semantic segmentation [9],
and we adapt their ability to preserve spatial information in
our WSL context.

Secondly, we incorporate a new multi-map WSL transfer
layer (middle of Figure 2), which explicitly learns multiple
localized features related to complementary class modali-
ties, e.g. head and legs for dogs in Figure 1. Our multi-
map strategy is not specifically designed for any particular
kind of feature, e.g. part or view-based features, as some
approaches are [16, 22, 10, 9].

Finally, we address the problem of aggregating spatial
scores into a global prediction, which is a crucial issue for
WSL training. We propose a new pooling strategy (right of
Figure 2) which generalizes several approaches in the liter-
ature, including (top) max pooling [44, 39], global average
pooling [70] or negative evidence models [47, 12, 13].

We also present a thorough evaluation of the WILDCAT
model on six datasets, reporting outstanding performances
on classification, WSL pointwise detection and segmenta-
tion tasks.

2. Related Work

Despite excellent performances, deep ConvNets [34, 56,
28] carry limited invariance properties, i.e. small shift in-
variance through pooling layers [62, 55, 7]. This is ques-
tionable for object or scene databases with strong scale
and translation variations. One option to detect informa-
tive image regions is to revisit the Bag of Words (BoW)
model [57, 2], by using deep features as local region activa-

tions [27, 25, 24] or by designing specific BoW layers, e.g.
NetVLAD [1].

Another option to gain strong invariance is to consider a
Weakly Supervised Learning framework (WSL), where we
can explicitly align image regions. An important paradigm
for WSL is Multiple Instance Learning (MIL) [11], which
considers an image as a bag of instances (regions). The
main issue concerns the aggregation function to pool in-
stance scores into a global prediction. Different strategies
have been explored to combine deep models and MIL. Max
pooling [44] only selects the most informative region for
the MIL prediction. Recent alternatives include Global Av-
erage Pooling (GAP) [70], soft max in LSE pooling [58],
Learning from Label Proportion (LLP) [65, 36], and top
max scoring [39]. Negative evidence models [47, 12, 13]
explicitly select regions accounting for the absence of the
class. In WILDCAT, we propose to incorporate negative
evidence insights, but with a differentiate positive and neg-
ative contribution process.

Concerning the WSL localization task, [5] uses la-
bel co-occurrence information and a coarse-to-fine strat-
egy based on deep feature maps to predict object loca-
tions. ProNet [58] uses a cascade of two networks: the first
generates bounding boxes and the second classifies them.
Similarly, [6] proposes an specific architecture with two
branches dedicated to classification and detection. Another
important WSL application is segmentation. Many meth-
ods are based on MIL framework: MIL-FCN [49] extends
MIL to multi-class segmentation, MIL-Base [50] introduces



a soft extension of MIL, EM-Adapt [45] includes an adap-
tive bias into the MIL framework, and Constrained CNN
(CCNN) [48] uses a loss function optimized for any set of
linear constraints on the output space of a CNN.

Similarly to WSL, the attention-based models [63, 29,
66, 64] select relevant regions to support decisions. How-
ever the WSL methods usually include some structure on
the selection process while it is implicit in attention-based
approaches.

Different semantic categories are often characterized by
multiple localized attributes corresponding to different class
modalities (see for example head and legs for the dog class
in Figure 1). The seminal DPM model [16] including sev-
eral template regions for decision has been extensively stud-
ied [54, 46], optionally incorporating priors, e.g. sparsity
or diversity, in order to learn sensible models [30, 59].
While [22, 60] are direct generalizations of DPM to CNN,
R-FCN [10] improves performances by explicitly learning
several part models and using a part-based pooling of fea-
tures designed for accurate spatial localization and directly
inserted at the top of the network. MR-CNN [19] exploits
several modalities by modeling objects with a fixed set of
few local features (e.g. parts, context) and incorporating
segmentation cues. Combining different regions has also
recently been addressed through explicit context model-
ing [23], or by modeling region correlations as in RRSVM
[61]. For fine-grained recognition, multi-feature detection
has been tackled in the fully supervised setting [67, 40, 68],
and in WSL [33].

When computing local features with deep models, the
most naive approach is to rescale each region into a fixed-
size vector adapted to the CNN architecture, as done in early
works for detection, e.g. R-CNN [21], or scene understand-
ing [27, 25, 43, 12]. Since this approach is highly ineffi-
cient, there have been extensive attempts for using convolu-
tional layers to share feature computation, for image classi-
fication [44, 13, 70], object detection [22, 20, 52] or image
segmentation [8, 42]. However, fully connected layers are
beneficial in standard deep architectures, e.g. AlexNet [34]
or VGG [56]. Recently, the huge success of Fully Convo-
lutionnal Networks (FCNs) for image classification, e.g.
ResNet [28], has been driving successful approaches us-
ing FCN for fully supervised object detection [10] and im-
age segmentation [9], which enable complete feature shar-
ing and state-of-the-art performances. Our approach adapts
these insights from these latest FCNs to the WSL setting.

3. WILDCAT Model
The overall WIDLCAT architecture (Figure 2) is based

on a FCN which is suitable for spatial predictions [42], a
multi-map WSL transfer layer encoding modalities associ-
ated with classes, and a global pooling for WSL that learns
accurate localization. We now delve into each of the three

Figure 3. WILDCAT local feature encoding and pooling. Class
modalities are encoded with a multi-map WSL transfer layer and
pooled separately for all classes. Local features are then aggre-
gated with a global spatial pooling to yield a single score per class.

parts of the model.

3.1. Fully convolutional architecture

The selection of relevant information within feature
maps is a major issue in WSL. It impacts the localization
of the learned representation and the precision of the results
(e.g. semantic segmentation or object detection). We thus
expect the resolution of the feature maps to be a key compo-
nent for WILDCAT: finer maps keep more spatial resolution
and lead to more specific regions (e.g. objects, parts).

To this end we exploit the recently introduced FCN
ResNet-101 [28] (left of Figure 2) that naturally preserves
spatial information throughout the network. It also com-
putes local features from all the regions in a single forward
pass, without resizing them. Besides, ResNet architectures
are effective at image classification while being parameter-
and time-efficient [28]. This kind of architecture has been
exploited to speed up computation and to produce accurate
spatial predictions in fully supervised setups, e.g. in object
detection [10] and semantic segmentation [9].

We use the publicly released model pre-trained on Ima-
geNet dataset [53] and remove the last layers (global aver-
age pooling and fully connected) to replace them with WSL
transfer and wildcat pooling layers (Figure 3) described in
the following.

3.2. Multi-map transfer layer

We introduce a multi-map WSL transfer layer that learns
multiple class-related modalities, encoded into M feature
maps per class through 1 × 1 convolutions (middle of Fig-
ure 2). The modalities are learned in a WSL fashion with
only the image-level labels and the transfer layer keeps spa-
tial resolution, key in WSL. We note w × h × d the size of
conv5 maps of ResNet-101, which is W

32 ×
H
32 × 2048 for an

original image of size W ×H × 3 [28]. The transfer output
is then of size w × h×MC (Figure 3).

The M modalities aim at specializing to different class-
specific features, e.g. parts [9, 10] (head and legs of dog in
Figure 1) or views [16, 22]. We highlight differences with



some specific encoding approaches: position-sensitive RoI
pooling in R-FCN [10] forces position-based specialization
(relative to the object) while our method can also learn other
kind of features, e.g. semantic parts (Figure 1). In the same
way DPM [16] learns only discriminating parts where our
multi-map transfer model can find more general features,
e.g. context. Furthermore, contrarily to the DPM where a
different model is learned for each view, we share most of
the computation within the FCN, which is more efficient.
We note that when M = 1 this reduces to a standard classi-
fication layer, i.e. into C classes.

3.3. Wildcat pooling

WILDCAT learns from image-level labels so we need a
way to summarize all information contained in the feature
maps for each class (right of Figure 2). We note that there
are no more learned parameters in this pooling layers, which
means we can directly interpret and visualize feature maps
at this level [70, 10].

We perform this in two steps (Figure 3): a class-wise
pooling (Equation (1)) that combines the M maps from
the multi-map transfer layer, then a spatial pooling mod-
ule (Equation (2)) that selects relevant regions within the
maps to support predictions. This leads to wildcat pooling,
a two-stage pooling operation to compute the score sc of
class c: 

z̄ci,j = Cl.Pool
m∈{1,...,M}

zc,mi,j

sc = Sp.Pool
(i,j)∈{1,...,w}×{1,...,h}

z̄ci,j

(1)

(2)

where z is the output of the transfer layer, Cl.Pool is the
chosen class-wise pooling function and Sp.Pool is the spa-
tial aggregation process.

Class-wise pooling. The first step consists in combining
the M maps for all classes independently, and is described
in Equation (1) with a generic pooling function Cl.Pool.
We use average pooling in the following. The maps are
transformed from w × h ×MC to w × h × C (Figure 3).
When M = 1 this operation is not needed as each class is
already represented by a single map.

We note that even if a multi-map followed by an aver-
age pooling is functionally equivalent to a single convolu-
tion (i.e. M = 1), the explicit structure it brings with M
modalities has important practical advantages making train-
ing easier. We empirically show that M > 1 yields better
results than regular M = 1.

Spatial pooling. We now introduce our new spatial ag-
gregation method implementing the second, spatial pooling
step in Equation (2) for each map c:

sc= max
h∈Hk+

1

k+

∑
i,j

hi,j z̄
c
i,j+α

min
h∈Hk−

1

k−

∑
i,j

hi,j z̄
c
i,j

 (3)

k+ k− α Pooling
1 0 0 Maximum [44]

k / ρn 0 0 Top instances [39] / LLP [65]
n 0 0 Average [70]
k k 1 WELDON [13]

Table 1. Generalization of wildcat spatial pooling to other exist-
ing MIL approaches with corresponding parameters. n is the total
number of regions, ρ is the proportion of positive labels in LLP, k
is an arbitrary number of regions to choose.

where Hk is such that h ∈ Hk satisfies hi,j ∈ {0, 1} and∑
i,j hi,j = k. It consists in selecting for each class c the

k+ (resp. k−) regions with the highest (resp. lowest) acti-
vations from input z̄c. The output sc for class c of this layer
is the weighted average of scores of all the selected regions.
We only consider regions defined by single neurons in the
convolutional feature maps.

Several similar MIL approaches have been used but our
proposed model generalizes them in numerous of ways. The
corresponding parameters are described in Table 1. The
standard max-pooling MIL approach [44] is obtained with
only one element, and both top instance model [39], Learn-
ing with Label Proportion [65] and global average pool-
ing [70] can be obtained with more. Drawing from negative
evidence [47, 12, 13] we can incorporate minimum scor-
ing regions to support classification and our spatial pooling
function can reduce to the kMax+kMin layer of [13].

Maximum and minimum scoring regions both are im-
portant for good results [12, 13], but do not bring the same
kind of information. We explore relative weighting of both
types of regions by introducing a factor α which trades off
relative importance between both terms. We hypothesize
that maximum scoring regions are more useful for classi-
fication as they directly support the decision, while mini-
mum scoring regions essentially act as regularization. With
α < 1 WILDCAT should focus more on discriminating re-
gions and then better localize features than with α = 1.

Discussion

WILDCAT architecture is composed of a transfer layer
followed by pooling. Since there are no parameters to learn
in the pooling module, the transfer layer performs classifi-
cation and it is easy to visualize heatmaps with direct local-
ization of discriminating regions. We note that this kind
of architecture is reversed in [70] where pooling is per-
formed before the last fully connected layer, as in the origi-
nal ResNet architecture [28] for example. However this or-
der requires an unnatural way of visualizing class-specific
heatmaps [70].

It is shown in [70] that if the spatial aggregation method
is linear, e.g. global average pooling, then the order of both
layers is not important, but the two configurations can be-
have differently with a non linear pooling function such as



wildcat spatial pooling. The difference is more significant
when k+ + k− is low, i.e. when wildcat spatial pooling
really differs from global average pooling. We evaluate the
impact of this design choice and of the chosen pooling func-
tion in the experiments and show that our architecture yields
better results.

3.4. WILDCAT applications

Training phase. Our WILDCAT model is based on the
backbone architecture ResNet-101 [28]. We initialize it
from a model pre-trained on ImageNet [53] and train it with
Stochastic Gradient Descent (SGD) with momentum with
image-level labels only. All the layers of the network are
fine tuned. The input images are warped to a square size at
a given scale. We use a multi-scale setup where a different
model is learned for each scale and they are combined with
Object Bank [38] strategy.

WILDCAT is designed to learn from image-level super-
vision only: the same training procedure is used for image
classification, weakly supervised pointwise object detection
and weakly supervised semantic segmentation. When learn-
ing WILDCAT, the gradients are backpropagated through
the wildcat layer only within the k+ + k− selected regions,
all other gradients being discarded [13]. The selection of
right regions for backpropagation is key to learn precisely
localized features without any spatial supervision [58].

Inference phase. Predictions differ according to the task
at hand. For image classification, prediction simply takes
the single-value output of the network (like in training).
Object detection and semantic segmentation require spatial
predictions so we extract the class-specific maps before spa-
tial pooling to keep spatial resolution. They are at resolution
1
32 with respect to the input image for ResNet-101 architec-
ture [28]. For weakly supervised pointwise object detection,
we extract the region (i.e. neuron in the feature map) with
maximum score for each class and use it for point-wise lo-
calization, as it is done in [44, 5]. For weakly supervised
semantic segmentation we compute the final segmentation
mask either by taking the class with maximum score at each
spatial position independently or by applying a CRF for spa-
tial prediction as is common practice [8, 48].

4. Classification Experiments
We evaluate WILDCAT for classification tasks. Our

model is implemented with Torch7 (http://torch.ch/). To
show the robustness of our method in very different recog-
nition contexts, we evaluate it on six datasets: object recog-
nition (VOC 2007 [14], VOC 2012 [15]), scene categoriza-
tion (MIT67 [51] and 15 Scene [37]), and visual recogni-
tion where the context plays an important role (MS COCO
[41], VOC 2012 Action [15]). The performances on MIT67,
15 Scene, VOC 2007 and 2012 are evaluated following the

standard protocol. On MS COCO dataset (resp. VOC 2012
Action), we follow the protocol of [44] (resp. [13]). De-
tailed information is available in section 1 of Supplemen-
tary. We first compare our model to state-of-the-art meth-
ods, then we analyze our contributions.

4.1. Comparison with state-of-the-art methods

We compare WILDCAT with several state-of-the-art ob-
ject classification models. The parameters of our model are
fixed at M = 4 and α = 0.7. The results for object clas-
sifications (Table 2) show that WILDCAT outperforms all
recent methods by a large margin. We can point out a large
improvement compared to deep features computed on the
whole image with ResNet-101 [28]: 5.2 pt on VOC 2007
and 4.2 pt on VOC 2012. Note that these differences di-
rectly measure the relevance of the proposed WSL method,
because WILDCAT is based on ResNet-101. We also com-
pare our model to region selection approaches: DeepMIL
[44], WELDON [13] and RRSVM [61]. Although using
multiple regions as in [44, 13, 61] is important, we show
here that we can further significantly improve performances
by learning multiple modalities per category.

Method VOC 2007 VOC 2012
VGG16 [56] 89.3 89.0
DeepMIL [44] - 86.3
WELDON [13] 90.2 -
ResNet-101 (*) [28] 89.8 89.2
ProNet [58] - 89.3
RRSVM [61] 92.9 -
SPLeaP [35] 88.0 -
WILDCAT 95.0 93.4

Table 2. Classification performances (MAP) on object recogni-
tion datasets. We used VOC evaluation server to evaluate on
VOC 2012. (*) means that results are obtained with online code
https://github.com/facebook/fb.resnet.torch.

In Table 3, we compare WILDCAT results for scene cat-
egorization with recent global image representations used
for image classification: deep features [71, 28], and global
image representation with deep features computed on im-
age regions: MOP CNN [25] and Compact Bilinear Pooling
[18]. Again, WILDCAT gets the best results, showing the
capacity of our model to seek discriminative part regions,
whereas background and non-informative parts are incor-
porated into image representation with other approaches.
We also compare WILDCAT to existing part-based models
including negative evidence during training [47] and non-
linear part classifiers combined with part-dependent soft
pooling [35]. WILDCAT also outperforms recent WSL
models with different spatial pooling strategies: 17 pt with
respect to GAP GoogLeNet [70] which uses a global aver-
age pooling and 6 pt with respect to WELDON [13] which

http://torch.ch/
https://github.com/facebook/fb.resnet.torch


uses a kMax+kMin pooling. This validates the relevance of
our spatial pooling.

Method 15 Scene MIT67
CaffeNet Places [71] 90.2 68.2
MOP CNN [25] - 68.9
Negative parts [47] - 77.1
GAP GoogLeNet [70] 88.3 66.6
WELDON [13] 94.3 78.0
Compact Bilinear Pooling [18] - 76.2
ResNet-101 (*) [28] 91.9 78.0
SPLeaP [35] - 73.5
WILDCAT 94.4 84.0

Table 3. Classification performances (multi-class accuracy) on
scene datasets.

Finally, we report the excellent performances of WILD-
CAT on context datasets in Table 4. We compare our model
to ResNet-101 deep features [28] computed on the whole
image and recent WSL models for image classification:
DeepMIL [44], WELDON [13] and ProNet [58]. WILD-
CAT outperforms ResNet-101 by 8 pt on both datasets,
again validating our WSL model in this context.

Method VOC 2012 Action MS COCO
DeepMIL [44] - 62.8
WELDON [13] 75.0 68.8
ResNet-101 (*) [28] 77.9 72.5
ProNet [58] - 70.9
WILDCAT 86.0 80.7

Table 4. Classification performances (MAP) on context datasets.

4.2. Further analysis

We detail the impact of our contributions on three
datasets: VOC 2007, VOC 2012 Action and MIT67. We
present results for an input image of size 448 × 448 and
k+ = k− = 1, but similar behaviors are observed for other
scales and larger k+ and k−. By default, our model param-
eters α and M are fixed to 1.

Deep structure. Firstly, to validate the design choice of
the proposed WILDCAT architecture, we evaluate two dif-
ferent configurations (see discussion before Section 3.4):
(a) conv5 + conv + pooling (our architecture);
(b) conv5 + pooling + conv (architecture proposed in
[70]).These two configurations are different for the non-
linear WILDCAT pooling scheme described in Section 3.3,
and their comparison is reported in Table 5. We can see that
our architecture (a) leads to a consistent improvement over
architecture (b) used in GAP [70] on all three datasets, e.g.
1.7 pt on VOC07.

Method VOC07 VOC12Action MIT67
Architecture (a) 89.0 78.9 69.6
Architecture (b) 87.3 77.5 68.1

Table 5. Classification performances for architectures (a) and (b).

Note that the strategy of architecture (a) has a very dif-
ferent interpretation from (b): (a) classifies each region in-
dependently and then pools the region scores, whereas (b)
pools the output of the convolution maps and then performs
image classification on the pooled space.

Impact of parameter α. We investigate the effect of the
parameter α on classification performances. From the re-
sults in Figure 4, it is clear that incorporating negative evi-
dence, i.e. α > 0, is beneficial for classification, compared
to standard max pooling, i.e. α = 0. We further note that
using different weights for maximum and minimum scores,
i.e. α 6= 1, yields better results than with α = 1 from [13],
with best improvement of 1.6 pt (resp. 2 and 1.8) with
α = 0.6 (resp. 0.7 and 0.8) on VOC 2007 (resp. VOC
2012 Action and MIT67). This confirms the relevance of
using a relative weighting for negative evidence. Moreover
our model is robust with respect to the value of α.

Figure 4. Analysis of parameter α.

Number of modalities. Another important hyper-
parameter of our model is the number of modalities (M )
used in the multi-map transfer layer. The performances for
different values of M are reported in Table 6. Explicitly
learning multiple modalities, i.e. M > 1, yields large
gains with respect to a standard classification layer, i.e.
M = 1 [13]. However encoding more modalities than
necessary (e.g. M = 16) might lead to overfitting since
the performances decrease. The best improvement is 3.5 pt
(resp. 4.3 and 3.5) with M = 8 (resp. 8 and 12) on VOC
2007 (resp. VOC 2012 Action and MIT 67). Examples of
heatmaps for the same category are shown in Figure 6.

Ablation study. We perform an ablation study to illustrate
the effect of each contribution. Our baseline is a WSL trans-
fer with M = 1 and the spatial pooling with α = 1. The



M 1 2 4 8 12 16
VOC 2007 89.0 91.0 91.6 92.5 92.3 92.0
VOCAction 78.9 81.5 82.1 83.2 83.0 82.7
MIT67 69.6 71.8 72.0 72.8 73.1 72.9

Table 6. Analysis of multi-map transfer layer.

results are reported in Table 7. From this ablation study, we
can draw the following conclusions:
– Both α = 0.7 and M = 4 improvements result in large
performance gains on all datasets;
– Combining α = 0.7 and M = 4 improvements further
boost performances: 0.4 pt on VOC 2007, 0.8 pt on VOC
2012 Action and 0.8 on MIT67. This shows the comple-
mentarity of both these contributions.

max+min α=0.7 M = 4 VOC07 VOCAc MIT67
X 89.0 78.9 69.6
X X 90.3 80.9 71.3
X X 91.6 82.1 72.0
X X X 92.0 82.9 72.8

Table 7. Ablation study on VOC 2007, VOC 2012 Action (VO-
CAc) and MIT67. The results are different from results of section
4.1 because only one scale is used for this analysis.

5. Weakly Supervised Experiments
In this section, we show that our model can be applied

to various tasks, while being trained from global image
labels only. We evaluate WILDCAT for two challenging
weakly supervised applications: pointwise localization and
segmentation.

5.1. Weakly supervised pointwise localization

We evaluate the localization performances of our model
on PASCAL VOC 2012 validation set [15] and MS COCO
validation set [41]. The performances are evaluated with the
point-based object localization metric introduced by [44].
This metric measures the quality of the detection, while be-
ing less sensitive to misalignments compared to other met-
rics such as IoU [15], which requires the use of additional
steps (e.g. bounding box regression).

WILDCAT localization performances are reported in Ta-
ble 8. Our model significantly outperforms existing weakly
supervised methods. We can notice an important im-
provement between WILDCAT and MIL-based architecture
DeepMIL [44], which confirms the relevance of our spatial
pooling function. In spite of its simple and multipurpose
architecture, our model outperforms by a large margin the
complex cascaded architecture of ProNet [58]. It also out-
performs the recent weakly supervised model [5] by 3.2 pt
(resp. 4.2 pt) on VOC 2012 (resp. MS COCO), which use
a more complex strategy than our model, based on search-
trees to predict locations.

Method VOC 2012 MS COCO
DeepMIL [44] 74.5 41.2
ProNet [58] 77.7 46.4
WSLocalization [5] 79.7 49.2
WILDCAT 82.9 53.4

Table 8. Pointwise object localization performances (MAP) on
PASCAL VOC 2012 and MS COCO.

Note that since the localization prediction is based on
classification scores, good classification performance is im-
portant for robust object localization. In Figure 5, we eval-
uate the classification and localization performances with
respect to α on VOC 2012. Both classification and local-
ization curves are very similar. The best localization per-
formances are obtained for α ∈ [0.6, 0.7], and the improve-
ment between α = 1 and α = 0.7 is 1.6 pt. We can note that
the worst performance is obtained for α = 0, which con-
firms that the contextual information brought by the mini-
mum is useful for both classification and localization.

Figure 5. Classification and localization performances with respect
to α on VOC 2012.

5.2. Weakly supervised segmentation

We evaluate our model on the PASCAL VOC 2012 im-
age segmentation dataset [15], consisting of 20 foreground
object classes and one background class. We train our
model with the train set (1,464 images) and the extra an-
notations provided by [26] (resulting in an augmented set
of 10,582 images), and test it on the validation set (1,449
images). The performance is measured in terms of pixel
Intersection-over-Union (IoU) averaged across the 21 cate-
gories. As in existing methods, we add a fully connected
CRF (FC-CRF) [32] to post-process the final output label-
ing.

Segmentation results. The result of our method is pre-
sented in Table 9. We compare it to weakly supervised
methods that use only image labels during training. We
can see that WILDCAT without CRF outperforms existing
weakly supervised models by a large margin. We note a



(a) original image (b) ground truth (c) heatmap1 (d) heatmap2 (e) WILDCAT prediction
Figure 6. Segmentation examples on VOC 2012. Our prediction is correct except for the train (last row) where our model aggregated rails
and train regions. For objects as bird or plane, one can see how two heatmaps (heatmap1 (c) and heatmap2 (d) representing the same class:
respectively bird, aeroplane, dog and train) succeed to focus on different but relevant parts of the objects.

large gain with respect to MIL models based on (soft-)max
pooling [49, 50], which validates the relevance of our pool-
ing for segmentation. The improvement between WILD-
CAT with CRF and the best model is 7.1 pt. This confirms
the ability of our model to learn discriminative and accu-
rately localized features. We can note that all the methods
evaluated in Table 9 have comparable complexity.

Method Mean IoU
MIL-FCN [49] 24.9
MIL-Base+ILP+SP-sppxl [50] 36.6
EM-Adapt +FC-CRF [45] 33.8
CCNN + FC-CRF [48] 35.3
WILDCAT 39.2
WILDCAT + FC-CRF 43.7

Table 9. Comparison of weakly supervised semantic segmentation
methods on VOC 2012.

With a quite more complex strategy, the very recent pa-
per [31] presents impressive results (50.7 MIoU). The train-
ing scheme in [31] incorporates different terms, which are
specifically tailored to segmentation: one enforces the seg-
mentation mask to match low-level image boundaries, an-
other one incorporates prior knowledge to support predicted
classes to occupy a certain image proportion. In contrast,
WILDCAT uses a single model which is trained in the same
manner for the three tasks, i.e. classification, localization

and segmentation.

Qualitative Results. In Figure 6, we show predicted seg-
mentation masks for four images. Compared to ground truth
((b) column), we can see that our predicted segmentation
masks ((e) column) are always relevant, except for the last
example where the rails and the train are glued together.
The heatmaps from the same class (columns (c) and (d))
show different modalities learned by our model. When suc-
cessful, they focus on different parts of the objects. For ex-
ample, on the first row, the heatmap (c) focuses on the head
of the bird whereas the heatmap (d) focuses on the legs and
the tail.

6. Conclusion

We propose WILDCAT, a new weakly supervised learn-
ing dedicated to learn discriminative localized visual fea-
tures by using only image-level labels during training. Ex-
tensive experiments have shown the effectiveness of WILD-
CAT on three main visual recognition tasks: image classifi-
cation, for which we report outstanding performances on six
challenging datasets, and WSL localization and segmenta-
tion, using a single and generic training scheme for all tasks.

Future works include adapting WILDCAT for semantic
applications where localized features are crucial, e.g. Visual
Question Answering [64, 4] or Visual Grounding [17].
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