Thermal stability and hcp–fcc allotropic transformation in supported Co metal catalysts probed near operando by ferromagnetic NMR - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Physical Chemistry Chemical Physics Année : 2015

Thermal stability and hcp–fcc allotropic transformation in supported Co metal catalysts probed near operando by ferromagnetic NMR

Résumé

Despite the fact that cobalt based catalysts are used at the industrial scale for Fischer-Tropsch synthesis, it is not yet clear which cobalt metallic phase is actually at work under operando conditions and what is its state of dispersion. As it turns out, the different phases of metallic cobalt, fcc and hcp, give rise to distinct ferromagnetic nuclear magnetic resonance. Furthermore, within one Co metal particle, the occurrence of several ferromagnetic domains of limited sizes can be evidenced by the specific resonance of Co in multi-domain particles. Consequently, by ferromagnetic NMR, one can follow quantitatively the sintering and phase transitions of dispersed Co metal particles in supported catalysts under near operando conditions. The minimal size probed by ferromagnetic Co NMR is not precisely known but is considered to be in the order of 10 nm for supported Co particles at room temperature and increases to about 35 nm at 850 K. Here, in Co metal Fischer-Tropsch synthesis catalysts supported on beta-SiC, the resonances of the fcc multi-domain, fcc single-domain and hcp Co were clearly distinguished. A careful rationalization of their frequency and width dependence on temperature allowed a quantitative analysis of the spectra in the temperature range of interest, thus reflecting the state of the catalysts under near operando conditions that is without the uncertainty associated with prior quenching. The allotropic transition temperature was found to start at 600-650 K, which is about 50 K below the bulk transition temperature. The phase transition was fully reversible and a significant part of the hcp phase was found to be stable up to 850 K. This anomalous behavior that was observed without quenching might prove to be crucial to understand and model active species not only in catalysts but also in battery materials.
Fichier non déposé

Dates et versions

hal-01515617 , version 1 (27-04-2017)

Identifiants

Citer

Andrey S. Andreev, Jean-Baptiste d'Espinose, Olga B. Lapina, Alexander Gerashenko. Thermal stability and hcp–fcc allotropic transformation in supported Co metal catalysts probed near operando by ferromagnetic NMR. Physical Chemistry Chemical Physics, 2015, 17 (22), pp.14598 - 14604. ⟨10.1039/c4cp05327c⟩. ⟨hal-01515617⟩
125 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More