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Estimation of Lateral Motorcycle Dynamics and Rider Action with

Luenberger Observer

P-M Damon, H. Dabladji, D. Ichalal, L. Nehaoua and H. Arioui

Abstract— This paper deals with lateral dynamics estimation

of powered two-wheeled (PTW) vehicles. A linear parameter-

varying (LPV) model of the motorcycle is presented and then

transformed into a Takagi-Sugeno (TS) form in order to design

the observer under the variation of the longitudinal velocity.

This paper presents a new way to estimate every motorcycle

dynamic states including unknown input (UI) by keeping a

simple observer structure with a Luenberger observer in TS

form. The observer convergence study is based on the Lyapunov

theory associated with LMI tools and L2-gain to guaranty

boundedness of the state estimation error. The effectiveness

of the proposed solution is illustrated for a nominal and an

uncertain simulation cases.

Index Terms— Motorcycle, Observation, LMI, Luenberger

Observer, Augmented System, TS model, L2-gain

I. INTRODUCTION

What if motorcycle could be an alternative to individ-

ual car transportation? Considering that the transport field

represents 25% of greenhouse gases (GHG) emissions in

France for the year 2014, solutions have to be figured out to

reduce the use of individual car and improve traffic flow. By

securing motorcycle travel, a renewed option could emerge

by preserving the comfort of individual transportation while

minimizing the ground space and the associated issues of

congestion and emissions of GHG. Moreover, more and

more PTW are equipped with electric powertrain making

it free of carbon emission. Thus the number of single

track vehicles is constantly increasing. Unfortunately, this

expansion resulted in a growth of traffic fatalities. Statistics

endorse this statement and riders are considered as the most

vulnerable road users. In 2014, the French Agency of Road

Safety made an official finding of around 660 deaths (24%

of global traffic fatalities), while the rate of motorcycles in

the national traffic does not exceed 1.5% [1].

Many research projects as [2] or [3] are initiated to

solve this issue in order to improve security through the

development of preventive and active safety systems which

consists for the main part to quantify the risk. This risk is

calculated with dedicated functions which enable to detect

dangerous situations such as excessive velocity in cornering,

changes in road adhesion, etc. They directly depend on

the vehicle dynamics motion. So it is necessary to identify

pertinent and useful dynamic states to quantify the risk.

During the last half century motorcycle modelling have been
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largely studied. In the literature one can find well-known

models: [4], [5] and one of the most used is the one given

by Sharp in [6].

Two kind of models exist, one dedicated to the vehicle

design which is generally complex and aims to be as possible

in adequation with the real dynamic behaviour of the PTW.

Often this model works out-of-line. For example the well-

known simulator program called BikeSim is based on the

Sharp’s model [7] where the motorcycle is divided into 8

different bodies allowing 16 degrees of freedom. BikeSim

gives results of simulation very near from the reality under

an important condition: user have to known all motorcycle

static and dynamic parameters as the mass, the inertia of each

body, the tire parameters,... In practice only the motorcycle

maker have the whole of parameters. But the software pro-

posed defined motorcycle configurations allowing to perform

simulations. The second kind is the model derived to perform

in-line simulation and is used to develop on-board semi-

active and active safety systems for vehicle. It aims to be

the best compromise between complexity and difference of

computed results with the real dynamic behaviour in order

to be implementable inside the vehicle without powerful

computer platform.

To simulate vehicle dynamics the model needs measures.

The definition of pertinent combination of measuring sensors

of motorcycle dynamic states is inherent to prevent from

massive instrumentation leading to overpriced new vehicles.

Moreover according to common technologies on the market

we have to consider the difficulty to measure some dynamic

states as the rider torque and noisy measures can seriously

compromise the results computed with the model. So the

whole state vector and model input are impossible to measure

thus the observation techniques have to be used to estimate

the unmeasurable states.

As for motorcycle modelling lot of works have been

conducted to estimate motorcycle dynamic states. Longitu-

dinal dynamic estimation of PTW is discussed in [8] or [9],

whereas lateral estimation is addressed in [5], [10], [11],

[12], [13] and recently in [14]. Concerning lateral estimation

most of cited papers consider restrictive assumptions which

regarding riding motorcycle practices are not in adequation

with the reality. This paper proposes a solution to design a

very simple Luenberger observer in TS form which enables

to estimate every lateral dynamic state of PTW including the

unknown input. The designed observer takes into account the

dependence of forward speed variation motion and guaranty

estimation error boundedness. The observer is studied on

stable motorcycle speed range without any control.



This paper is organized as follow. Section 2 describes

problem statement. Section 3 introduces the motorcycle dy-

namics model. Sections 4 deals with observer design. Section

5 shows simulation results. Finally, Section 6 presents our

conclusions.

II. MOTIVATION

Several works deal with the lateral motorcycle dynamics

estimation as presented in the previous section but very

few of them consider a variation of longitudinal speed. In

[15] the author considers longitudinal velocity vx constant

before decoupling the model and construct the observer. A

restrictive speed range is then defined to guarantee reliable

estimation. In [16] the variation of the forward speed is

considered using an extended Kalman filter but simulations

are performed for a constraint speed range.

Moreover to estimate dynamic states including rider torque

which is an unknown input, authors use complex structures

of observer sometimes associate with differentiator as in [15]

where a high order sliding mode observer (HOSMO) is com-

bined with derivative estimator. In [17] an adaptive observer

is used. Proportional multiple integral (PMI) observers and

Kalman filter as discussed in previous paragraph are also

used for PTW lateral estimation.

None of them uses a simple structure of observer often

easier to implement in the vehicle. That’s why this paper

deals with this topic and shows the ability in estimating

simultaneous dynamic states and unknown input taking into

account forward speed variation. This method does not need

any assumption about unknown input except the existence of

its first time derivative which is always satisfied because the

rider torque is naturally bounded and can not be discontin-

uous. Moreover the designed nominal observer is naturally

robust regarding modelling uncertainties.

III. LINEARIZED MODEL OF MOTORCYCLE

The present section is based on our previous works. For

details, please refer to [5].

The study of the dynamics of motorcycle vehicles highlights

two main modes of motion: in-plane mode representing

longitudinal motion and out-of-plane mode, which describes

the lateral dynamics when cornering. This last mode involves

the roll inclination, the yaw rotation, and the steering and

lateral motions of the bike. We consider here only the out-of-

mode dynamics of the PTW. The coupling between the two

modes is materialized by considering a variable longitudinal

velocity that appears in the lateral dynamics. The motorcycle

dynamic model given in [5] is linearized around the straight-

running trim trajectory and can be expressed by the following

state space representation:
{

˙̄x = Ā(vx)x̄+ B̄τ

ȳ = C̄x̄
(1)

Where x̄ = [φ, δ, vy, ψ̇, φ̇, δ̇, Fyf , Fyr]
T denotes the state

vector. For the sake of simplicity and clarity, the time variable

t is omitted and it assumes x̄ = x̄(t). Fyf and Fyr represent,

respectively, the lateral forces of the front and rear tires

introduced in the state space representing the tire relaxation.

τ denotes the rider torque. Ā(vx) is a parameter-varying

matrix related to the forward velocity vx, whereas B̄ is a

time-invariant vector. ȳ is the vector of measures and C̄ is

the observation matrix. For more details please refer to the

Appendix.

A. Augmented model for observer design

The state-space representation of the motorcycle (1) is then

considered. To guaranty observability and observer design

conditions the needed measurements are the yaw rate ψ̇ and

roll rate φ̇ (both are given by the central unit); the steering

angle δ and steering rate δ̇ which may be obtained from an

optical encoder. Finally with the appropriate output matrix

C̄ it comes ȳ = [δ, ψ̇, φ̇, δ̇]T

Regarding the model (1) it is not possible to directly

implement a Luenberger observer because there is no in-

formation about the dynamic of the model input τ . Indeed

the rider’s torque applied on the handlebar is very difficult

to measure with conventional devices. That’s why several

works consider the rider torque as unknown then they design

an unknown input observer (UIO) to estimate the dynamic

states. According to the kind of UIO used it is sometimes

necessary to combine the observer with a model inversion as

in [15] to get an estimation of the unknown input.

To keep as much as possible a simple structure and design

of observer by avoiding the use of an UIO the system is

augmented. Considering the input τ as a state and that

its first time derivative τ̇ exists which is always satisfied

because the rider torque is naturally bounded and can not be

discontinuous. The system (1) can be transformed as follows:















ẋ =

[

Ā(vx) B̄

0 0

]

x+

[

0
1

]

τ̇

y =

[

C̄

0

]

x

(2)

with x = [x̄, τ ]T and y = ȳ which respectively denote

the augmented state vector and the output vector. Note the

system as expressed in (2) is an exact form considering that

τ̇ exists.

For the next sections let us consider the following nota-

tions:

A(vx) =

[

Ā(vx) B̄

0 0

]

, C =

[

C̄

0

]

, F =

[

0
1

]

, f = τ̇

B. Exact T-S model of the augmented model

In order to express the LPV model (2) in T-S fuzzy

structure, let us consider the nonlinearity vx. It is important

to note that the motorcycle is naturally a strongly unstable

system that is why to keep the stability of the model, in

open loop way, without considering control the study is

reduced on a stable speed range. Consequently, the bounds

of the premise variables are given by: vxmin
= 40km/h and

vxmax
= 110 km/h.



By following the well-known sector nonlinearity approach

[18] the model (2) can be exactly expressed as follows:






ẋ =
2
∑

i=1

µi (vx)Aix+ Ff

y = Cx

(3)

Note that there is one nonlinearity that’s why the system

is described with 2 sub-models. The variables µi(.) are

the weighing functions and they must satisfy the following

convex sum property:






2
∑

i=1

µi (ν) = 1

0 ≤ µi (ν) ≤ 1
with

{

µ1 =
vxmax

−vx

vxmax
−vxmin

µ2 =
vx−vxmin

vxmax
−vxmin

(4)

The augmented model (3) expressed in exact TS form

allows to design a Luenberger observer to estimate vehicle

lateral dynamics and the rider torque.

IV. OBSERVER DESIGN

In this section we explain the process to design the nom-

inal Luenberger observer considering a general TS model.

The approach considers Lyapunov theory associated with

LMI tools and L2-gain to guaranty ISS.

Let us consider the following TS model:






ẋ =
r
∑

i=1

µi (ρ)Aix+ Ff

y = Cx
(5)

with x ∈ R
n, f ∈ R

nf and y ∈ R
ny which are

respectively the vector of states, the vector of perturbation

and the vector of measures. ρ(t) ∈ R
nρ notes ρ is the premise

variable, r is the number of sub-models given by r = 2l with

l the number of nonlinearities and µi(.) are the weighing

functions and verifying the convex sum property (3) substi-

tuting 2 by r sub-models. For the following observer design

ρ is considered measured.

Consider the well-known Luenberger observer in TS form:






˙̂x =
r
∑

i=1

µi (ρ) (Aix̂+ Li (y − ŷ))

ŷ = Cx̂
(6)

with Li the observer gain matrices which ensure error

convergence. The estimated state and output vector are re-

spectively denoted x̂ and ŷ. Now consider the state estimation

error as follows:

e = x− x̂ (7)

The dynamic of the error is given by:

ė = ẋ− ˙̂x

=

r
∑

i=1

µi (ρ)Aix+ Ff −

r
∑

i=1

µi (ρ) (Aix̂+ Li (y − ŷ))

=
r

∑

i=1

µi (ρ)Aie+ Ff

(8)

with Ai = Ai − LiC.

Finally, for stability analysis, one can consider the Lya-

punov function V with the symmetric definite positive matrix

X such that:

V = eTXe, X = XT > 0 (9)

whose time derivatives V̇ leads to:

V̇ = eT
r

∑

i=1

µi (ρ)
(

AT
i X +XAi

)

e+ fTFTXe+ eTXFf

(10)

To attenuate the effect of the perturbation f on the

estimation error e let us define the L2-gain as the quantity:

sup
‖f‖

2
6=0

‖e‖
2

‖f‖
2

≤ γ2 (11)

with γ a positive scalar and ||.||2 the L2-norm which for a

vector z(t) is given by:

‖z(t)‖
2
=





∞
∫

0

zT (t) z (t) dt





1/2

(12)

The L2-gain leads to the inequality:

eT e− γ2fT f < 0 (13)

Considering V̇ < 0 it follows:

V̇ + eT e− γ2fT f < 0 (14)

By exploiting the expression of V̇ , inequality (14) can be

expressed in matrix form as follows:

[

e
f

]T





r
∑

i=1

µi (ρ)
(

AT
i X +XAi

)

+ I XF

FTX −γ2





[

e
f

]

< 0

(15)

Since the weighting functions satisfy the convex sum

property, sufficient conditions ensuring the convergence of

estimation error are obtained as follows:
[

AT
i X +XAi + I XF

FTX −γ2

]

< 0, i = 1, ..., r (16)

In order to obtain solvable LMI conditions, the change

of variables L̄i = XLi, Ai = Ai + LiC and γ̄ = γ2 are

performed which allows to obtain the LMI:
[

AT
i X +XAi − L̄iC − CT L̄T

i + I XF

FTX −γ̄

]

< 0, i = 1, ..., r

(17)

Finally, given a scalar γ, if there exists a symmetric and

positive definite matrix X and matrices L̄i, i = 1, ..., r such

that the LMI (17) is satisfied, then the error is stable and

the transfer from the perturbation f to the estimation error

e is bounded by γ. Note that the observer gain matrix L is

obtained by:

L =
r

∑

i=1

µi(ρ)X
−1L̄i (18)

In practice to get better performance of the observer it is

possible to transform the previous LMI (17) in an optimiza-

tion problem by considering γ as a variable parameter of

optimization.
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Fig. 1: Overtaking and obstacle avoidance scenario

V. SIMULATION RESULTS

A. Nominal simulation

In this section some simulations are provided to illustrate

the effectiveness in estimating simultaneously the dynamic

states and the rider torque on the LPV motorcycle model con-

sidering longitudinal velocity vx as time varying parameter.

Motorcycle data used to perform simulations come from the

simulator program BikeSim and are the same used in [15].

The scenario presented on figure 1 simulates two suc-

cessive double lane changes. The first one with a lateral

displacement at 2 meters while longitudinal speed increases

uniformly from 50 to 100 km/h. The second with an ampli-

fied lateral displacement at 3,5 meters but the forward speed

is considered constant speed at 100 km/h. Practically this

scenario could represent an overtaking at constant acceler-

ation followed with an obstacle avoidance at constant high

speed.

BikeSim allows to simulate the whole of motorcycle

dynamics including rider action which is considered as a

regulator. That is why to get more realistic results taking

into account rider control, the desired vehicle trajectory

and longitudinal speed are implemented in the simulator to

compute the resulted rider torque, the real longitudinal speed

and vehicle trajectory. The considered outputs from BikeSim

are then the inputs of our dynamic model and are given on

figure 2.
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Fig. 2: Overtaking and obstacle avoidance scenario simulate

with BikeSim
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Fig. 3: Measured states for nominal case

As discussed previously the measures are the yaw rate ψ̇,

the roll rate φ̇, the steering angle δ and the steering rate

δ̇ which are respectively given by an inertial unit and an

encoder for the steering mechanism angle and rate. Notice

that these measures allow to estimate all dynamic states

including rider torque. According to the simulation scenario

described in figure 2, the measured states are given in the

above figure 3.

Then initial conditions of the observer are chosen different

from the motorcycle model to show the transient phase of

estimation error while the vehicle is considered in a straight

running with null initial conditions at the beginning.
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Fig. 4: Estimated states for nominal case
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Fig. 4: Estimated states for nominal case

We can see on figure 4 the non-measured states and rider

torque with estimated states in red and actual states in blue

which are perfectly estimated.

Finally, figure 4 shows the ability of the designed observer

to perfectly recover the dynamics for a nominal case of

simulation even if stability does not guaranty asymptotic

convergence but bounded error convergence.

B. Simulation with uncertainties

Motorcycle model is highly dependant of many parame-

ters as the inertia and mass of each body, the motorcycle

geometry, etc. Usually the dynamic model is defined for

a nominal case. A variation of some parameters inevitably

leads to model uncertainties. The present section will focus

on the rider weight uncertainty which is one of the most

evident because every rider has a different morphology. The

uncertainty inevitably impact the vehicle dynamics. Now let

us consider a new rider with an uncertain weight of 30%

from the nominal case, the system (2) becomes:

{

ẋ = (A(vx) + ∆A)x+ Ff

y = Cx
(19)

with the model uncertainty noted ∆A which does not

depend of the linear parameter varying vx .

To validate the effects of model uncertainty on the present

observer, a new scenario is defined in order to show a sig-

nificant difference of the simulated dynamic states between

nominal model (2) and uncertain model (19). Let us consider

a scenario with a constant forward speed at 100 km/h and a

successive positive and negative torque step applied on the

handlebar as it is shown on figure 5.
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Fig. 5: Simulation scenario for uncertain case

Figure 6 shows the actual dynamic states compute with the

nominal model in light blue and with the uncertain model in

dark blue whereas estimated states are represented in red.
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Fig. 6: Estimated states for uncertain case

Figure 7 shows the estimation error between estimated

states and actual states obtained with nominal model in

magenta and uncertain model in red.

Finally, the two figures 6 and 7 show that estimated

states converge to actual states given by the uncertain model.

This two last figures illustrate clearly the robustness of the

proposed observer even if dynamic states are clearly affected

by the uncertainties.
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Fig. 7: State estimation errors for uncertain case
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VI. CONCLUSION

In this paper we have described the design process of a

Luenberger observer in TS form to simultaneous estimate

the lateral motorcycle dynamic states and the rider torque.

The design method takes into account the forward speed as a

linear parameter varying. The LPV model of the motorcycle

used for observer synthesis is derived from Jourdain’s prin-

cipal and linearized around straight position. To conclude

the design, observer stability analysis is addressed with

Lyapunov theory associates with LMI tools and L2-gain

to guaranty ISS property. Then simulation are performed

with a realistic riding scenario. First a nominal case is

simulated, results are provided to show effectiveness of

perfectly estimate the model state. Then uncertain model

are consider with uncertainty on the rider weight. Results

demonstrate that the proposed observer is naturally robust.

VII. APPENDIX

Ā(vx) =

























0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
a31 a32 0 a34 a35 a36 a37 a38
a41 a42 0 a44 a45 a46 a47 a48
a51 a52 0 a54 a55 a56 a57 a58
a61 a62 0 a64 a65 a66 a67 a68
a71 a72 a73 a74 0 a76 a77 0
a81 0 a83 a84 0 0 0 a88

























B̄ =
[

0 0 b3 b4 b5 b6 0 0
]T

Numeric parameters aij and bi i, j = 1..8
a31 = 28.340, a32 = −0.780, a34 = −0.942.vx, a35 =
−0.017.vx, a36 = 0.026.vx − 0.351, a37 = 0.009, a38 =
0.019, a41 = −3.209, a42 = −1.142, a44 = 0.011.vx, a45 =
−0.007.vx, a46 = 0.006.vx + 0.538, a47 = 0.013, a48 =
−0.014, a51 = 47.171, a52 = −1.170, a54 = 0.095.vx,
a55 = −0.059.vx, a56 = 0.048.vx − 0.636, a57 = 0.013,
a58 = 0.022, a61 = −103.307, a62 = 69.066, a64 =
−1.173.vx, a65 = −2.907.vx, a66 = 0.0478.vx − 25.529,
a67 = −0.111, a68 = 0.0455, a71 = −5281.460.vx,
a72 = 104503.vx, a73 = −112042, a74 = −106440,
a76 = 5480.620, a77 = −5.vx, a81 = −2592.44.vx, a83 =
−88282.8, a84 = 37078.4, a88 = −5.vx
b3 = 0.028, b4 = −0.042, b5 = 0.050, b6 = 2.014

Notations

ẋ, ẍ time derivatives of the var x
x̂ estimate of a variable x

x
T transpose of vector or matrix x

xf , xr denotes front and rear

Variables and matrices

vx, vy longitudinal and lateral speeds
ϕ, ψ, δ roll, yaw and steer angles
τ rider torque
Fyf , Fyr lateral forces

Ā(vx), A(vx) state matrices

B̄, B input vectors

C̄, C observation matrices
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