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Abstract
The analysis of expensive numerical simulators usually requires metamodelling techniques, among which
Gaussian process regression is one of the most popular approaches. Frequently, the code outputs correspond
to physical quantities with a behavior which is known a priori: Chemical concentrations lie between 0 and
1, the output is increasing with respect to some parameter, etc. In this paper, we introduce a framework
for incorporating any type of linear constraints in Gaussian process modeling, including common bound and
monotonicity constraints. This new methodology mainly relies on conditional expectations of the truncated
multinormal distribution and a discretization of the input space. When dealing with high-dimensional func-
tions, the discretization suffers from the curse of dimensionality. We thus introduce a sequential sampling
strategy where the input space is explored via a criterion which maximizes the probability of respecting
the given constraints. To further reduce the computational burden, we also recommend a correlation-free
approximation. The proposed approaches are evaluated and compared on several analytical functions with
different instances of linear constraints.

Keywords: Computer experiment, Gaussian process, Constrained regression, Sequential sampling.

1 Introduction

In the computer experiments community, surrogate models are essential tools for the understanding of com-
plex phenomena, since modern computer codes usually take several hours or days for a single run. In this
setting, uncertainty quantification or sensitivity analysis cannot be performed directly, since they require
several thousands of calls to the numerical simulator. The central idea behind metamodeling is to build a
proxy (or surrogate) for the expensive code from a small number of simulations. Many methods dedicated
to sensitivity analysis with proxy models have been proposed in the past few years Oakley and O’Hagan
(2004), Marrel et al. (2008), Da Veiga et al. (2009). Standard surrogate models used for computer experi-
ments include linear models, smoothing splines, polynomial chaos expansions, random forests or Gaussian
process (GP) regression, among others.

Very often, if not always, such computer codes aim at simulating real physical phenomena through the
resolution of equations (ordinary or partial differential equations, simplified analytical formula, ...). But
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most importantly, these models usually encompass symmetries, constraints on the sign of output variables,
monotonicity with respect to some input variables or other constraints which are due to the very nature
of the physics under consideration. From a practical point of view, it would be highly desirable to build
a surrogate model which respects the same constraints: not only the predictions would comply with the
expected physical behavior, but also the practitioners who developed the numerical simulator would have
more confidence in the proxy. On the ”statistical” side, of course we expect that integrating the constraints
in the surrogate would lead to better prediction accuracy and robustness. Despite the extensive use of meta-
models and the potential gain, only a few works tackle constraint incorporation in general regression models.
Monotonicity is easily reachable in linear models through non-negative least squares. For nonlinear regres-
sion, monotonicity constraints were investigated by Hall and Huang (2001), Ramsay and Silverman (2005)
and Bigot and Gadat (2010) in a one-dimensional setting, and Dette and Scheder (2006) and Racine et al.
(2009) in a general kernel regression framework with no dimensionality restriction. Focusing on Gaussian
Process (GP) regression, bound constraints have been studied by Abrahamsen and Benth (2001), Yoo and
Kyriakidis (2006) and Michalak (2008) while monotonicity was examined by Kleijnen and van Beers (2010),
Riihimäki and Vehtari (2010) and Maatouk and Bay (2014). Most approaches incorporate these constraints
with specific tools and do not generalize easily.

In a previous work, we proposed a framework for linear constraints and GP regression based on condi-
tional expectations Da Veiga and Marrel (2012). By making use of moment approximations for the trun-
cated multivariate normal distribution, we introduced a GP surrogate capable of accounting for bounds
and monotonicity constraints. The results on low-dimensional test examples were highly promising, but a
straightforward implementation on examples with a moderate number of regressors is problematic. Indeed,
our surrogate approximates a conditional expectation by discretizing the constraint on a finite number of
points, which implies that the curse of dimensionality applies to the estimation of the mean of a very high-
dimensional truncated multivariate normal vector. Our objective here is twofold. First, we generalize our
surrogate to other types of frequent linear constraints appearing in the study of vector fields. This includes
for example divergence or curl constraints and generalizes the work of Scheuerer and Schlather (2012). Sec-
ond, we develop a sequential strategy for an efficient span of the constraint space which makes it possible to
tackle problems with up to 10 or 15 dimensions.

The structure of the paper is as follows. In Section 2, we first recap the standard GP formulation, the
conditional expectation framework for building a constrained surrogate and the corresponding algorithm. It
is also illustrated on several common physical constraints. In Section 3, we introduce different new sequential
strategies for spanning the constraint space. Several numerical experiments are conducted to compare these
strategies on analytical test functions.

2 Accounting for constraints in Gaussian process regression

In this section, we first briefly introduce the Gaussian process modeling framework. We then detail the
theoretical setting for incorporating constraints. In what follows, we assume that the complex computer
code is represented by a function g : RD → R which is assumed to be continuous. For a given value of the
vector of inputs x =

(
x1, . . . , xD

)
∈ RD, a simulation run of the code yields a real value y = g(x), which

corresponds to the output of interest. In practice, one evaluation of the function g can take several hours
or even days. As a result, we make use here of response surface methods. The idea is the following. For a
given n-size sample of input vectors {x1, . . . ,xn}, we compute the corresponding outputs y1, . . . , yn. The

goal is to build an approximating model of g using the n-sample (xi, yi)i=1,...,n. We let Xs =
[
xT1 , . . . ,x

T
n

]T
and Ys = [y1, . . . , yn]

T
denote the matrix of sample input values and the vector of responses, respectively.
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2.1 Standard Gaussian process modeling

The GP modeling introduced by Sacks et al. (1989) considers the deterministic response y = g(x) as a
realization of a random field Y (x) given by the following decomposition:

Y (x) = g0(x) + U(x)

where g0(x) is the mean function (e.g. a polynomial) and U(x) is a stationary centered Gaussian field with
covariance function C(x,x′) = σ2R(x,x′), σ2 and R being the variance and correlation function respectively.
Note that stationarity implies that its covariance function C(x,x′) can be written as C(τ ) = σ2R(τ ) with
τ = x − x′. In this setting, the conditional distribution of the response at a new location x∗ is a Gaussian
distribution with moments given by

E (Y (x∗)|Y (Xs) = Ys) = g0(x∗) + k(x∗)TΣ−1
S (Ys −G0,s) (1)

Var (Y (x∗)|Y (Xs) = Ys) = σ2 − k(x∗)TΣ−1
S k(x∗) (2)

where G0,s = [g0(x1), . . . , g0(xn)]
T

is the vector of the mean function at sample locations, k(x∗) is the
covariance vector between x and sample locations Xs and Σs is the covariance matrix at sample locations.
The conditional mean (1) serves as the predictor at location x, and the prediction variance is given by (2).

In practice, the mean function g0(x) has a parametric form g0(x) =
∑J
j=1 βjgj(x) = G(x)β where functions

G(x) = [g1(x), . . . , gJ(x)] are known and β = [β1, . . . , βJ ]T are regression parameters to be estimated.
Moreover, R is chosen among a class of standard correlation functions (Gaussian, Matérn, ...) given up to
some unknown hyperparameters ψ, corresponding to correlation lengths for example, see Rasmussen and
Williams (2006). R is then denoted by Rψ and Rψ,s is the correlation matrix at sample locations. As a
result, in order to use the conditional expectation as a predictor, these parameters need to be estimated.
Maximum likelihood estimators are usually preferred. For example, provided that ψ is known, regression
parameters are obtained with the generalized least square estimator

β̂ = (GTs R
−1
ψ,SGs)

−1GTs R
−1
ψ,sYs

and the maximum likelihood estimator of σ2 is

σ̂2 =
1

n
(Ys −Gsβ̂)TR−1

ψ,s(Ys −Gsβ̂).

In addition, the estimation of hyperparameters consists in solving the following minimization problem

ψ̂ = arg min
ψ
σ̂2 |Rψ,s|

1
n

with |A| denoting the determinant of matrixA. Consequently, the conditional field Ỹ (x∗) = [Y (x∗)|Y (Xs) = Ys],

given the estimated parameters, is a Gaussian field with mean µ̃(x∗) = E
(
Ỹ (x∗)

)
given by

µ̃(x∗) = G(x∗)β̂ + k(x∗)TΣ−1
s

(
Ys −Gsβ̂

)
(3)

and covariance function equal to

C̃(x,x′) = C(x,x′)− k(x)TΣ−1
s k(x′) (4)

Σs, k and C depending on the estimated parameters. Note that the covariance function has an additional
component if the variance estimation on β̂ is accounted for (see Santner et al. (2003)), but this case will not
be considered here.
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2.2 Constrained Gaussian process regression

In contrast to previous work on constrained kriging (Yoo and Kyriakidis (2006), Kleijnen and van Beers
(2010), Riihimäki and Vehtari (2010)), we propose to keep the conditional expectation framework.

For instance, in the case of bound or monotonicity constraints (increasing constraint w.r.t. xj) on a
subset I of RD, the predictor µ̃(x∗) is naturally replaced with the conditional expectation

E
(
Ỹ (x∗)|∀x ∈ I, a ≤ Ỹ (x) ≤ b

)
or E

(
Ỹ (x∗)|∀x ∈ I, ∂Ỹ

∂xj
(x) ≥ 0

)
resp. (5)

Unfortunately, no explicit formulations of these quantities are available. As a result, instead of imposing
a constraint on a given subset, we proposed in Da Veiga and Marrel (2012) to discretize it into a (large)
number of conditioning points. As an illustration, considering a set of N points x1, . . . ,xN chosen in a subset
I, the above conditional expectations are approximated by

E
(
Ỹ (x∗)|∀i = 1, . . . , N, a ≤ Ỹ (xi) ≤ b

)
or E

(
Ỹ (x∗)|∀i = 1, . . . , N,

∂Ỹ

∂xj
(xi) ≥ 0

)
resp. (6)

Note that this conditioning does not imply that the computer code g must be evaluated at points x1, . . . ,xN .
More generally, in this work, any constraint defined on a subset will be replaced with its discrete-location
counterpart.

Actually, the proposed framework can accommodate any linear constraint. We propose the following
general formulation to account for K different constraint types, imposed on Nk points for k = 1, . . . ,K :

E
(
Ỹ (x∗)| ∀k = 1, . . . ,K, ∀i = 1, . . . , Nk, a

(k)
i ≤ Z(k)(x

(k)
i ) ≤ b(k)

i

)
. (7)

Here, Z(k) = L(k)
[
Ỹ
]

where L(k) is the linear operator corresponding to the kth constraint type imposed on

the constraint design X(k) =
{

x
(k)
1 , . . . ,x

(k)
Nk

}
, a

(k)
i = a(k)(x

(k)
i ) and b

(k)
i = b(k)(x

(k)
i ) with a(k) and b(k) the

bound functions for the kth constraint type. For example, if we consider a [0, 1] bound and an increasing
constraint w.r.t. the jth input variable, we have: K = 2, Z(1) = Ỹ , Z(2) = ∂Ỹ /∂xj and four constant bound
functions a(1)(x) = 0, b(1)(x) = 1, a(2)(x) = 0 and b(2)(x) =∞.

In the following, the simplified notation Z =
(
Z(1)(x

(1)
1 ), . . . , Z(1)(x

(1)
N1

), . . . , Z(K)(x
(K)
1 ), . . . , Z(K)(x

(K)
NK

)
)T

is used and the corresponding bound vectors are denoted a =
(
a

(1)
1 , . . . , a

(1)
N1
, . . . , a

(K)
1 , . . . , a

(K)
NK

)T
and

b =
(
b
(1)
1 , . . . , b

(1)
N1
, . . . , b

(K)
1 , . . . , b

(K)
NK

)T
. The full constraint design of N =

∑K
k=1Nk points is denoted

X =
{
X(1), . . . , X(K)

}
.

The linearity assumption of the constraints is crucial, in the sense that W =
(
Ỹ (x∗),Z

)
is Gaussian

if all the Z(k) for k = 1, . . . ,K are linear operators. In this setting, the constrained predictor Ŷ (x∗) =

E
(
Ỹ (x∗)|a ≤ Z ≤ b

)
in (7) is then the expectation of a truncated normal distribution. The question now

is to know how such truncated moments can be approximated.

2.2.1 Approximations of truncated moments

There is a large amount of literature dedicated to truncation of Gaussian vectors, the pioneering work being
that of Tallis (Tallis (1961), Tallis (1963), Tallis (1965)). By definition, vector Z above is a N -dimensional
Gaussian vector with probability density function (pdf) given by

φµZ,ΣZ
(z) =

1

(2π)N/2|ΣZ|1/2
exp

(
−1

2
(z− µZ)TΣ−1

Z (z− µZ)

)
, z ∈ RN .
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with mean µZ ∈ RN and covariance matrix ΣZ. By definition of L(k), µZ can be written as µZ =[
µ(1)T . . . µ(K)T

]T
with µ(k) = E

(
Z(k)(X(k))

)
= E

(
L(k) [Y ]

(
X(k)

)
|Y (Xs) = Ys

)
. ΣZ is a K ×K block ma-

trix with each block given by ΣZ,k,l = Cov
(
Z(k)(X(k)), Z(l)(X(l))

)
= Cov

(
L(k) [Y ]

(
X(k)

)
,L(l) [Y ]

(
X(l)

)
|Y (Xs) = Ys

)
.

Since by linearity
(
L(k) [Y ]

(
X(k)

)
, YS

)
is Gaussian, µZ and ΣZ are computed by classical Gaussian regres-

sion formulas, as in eqs (1) and (2).

Following Tallis (1961), the truncated expectation of Z is given by

∀i = 1, . . . , N E(Zi|a ≤ Z ≤ b) = µi +

N∑
j=1

σij (fj(aj)− fj(bj)) (8)

where µi = (µZ)i, σij = (ΣZ)ij and

fi(z) =

∫ b1

a1

. . .

∫ bi−1

ai−1

∫ bi+1

ai+1

. . .

∫ bN

aN

φµ,Σ,a,b(z1, . . . , zi−1, z, zi+1, . . . , zN )dz−i (9)

where φ is the truncated Gaussian pdf

φµ,Σ,a,b(z) =

{
φµ,Σ(z)

P(a≤Z≤b) for a ≤ z ≤ b,

0 otherwise,

with φµ,Σ the pdf of the multivariate normal distribution of mean µ and covariance matrix Σ. Similar
results are available in Tallis (1961) for the truncated covariance of Z. Remark that Formula (8) involves the
computation of normal integrals of dimension N − 1. When N is large, as should be the case in the discrete-
location method we propose, it is necessary to have powerful algorithms capable of producing accurate
approximations. In Da Veiga and Marrel (2012) we investigated three dedicated numerical approaches:

• The first one is based on a simple correlation-free approximation. More precisely ΣZ is assumed to be
diagonal, thus yielding truncated moments approximated by

E(Zi|a ≤ Z ≤ b) ≈ E(Zi|ai ≤ Zi ≤ bi) (10)

≈ µi + σi
φ(ãi)− φ(b̃i)

Φ(b̃i)− Φ(ãi)
(11)

Var(Zi|a ≤ Z ≤ b) ≈ Var(Zi|ai ≤ Zi ≤ bi) (12)

≈ σ2
i

1 +
ãiφ(ãi)− b̃iφ(b̃i)

Φ(b̃i)− Φ(ãi)
−

(
φ(ãi)− φ(b̃i)

Φ(b̃i)− Φ(ãi)

)2
 (13)

where ãi = (ai−µi)/σi and b̃i = (bi−µi)/σi with σi =
√
σii, φ and Φ denoting the pdf and cumulative

density function of standard normal distribution, respectively.

• The two other ones aim at producing a numerical approximation of Formula (8) with two complemen-
tary tools:

– Gibbs sampling of truncated normal distribution (Robert (1995)) coupled with MCMC, where
moments are estimated by their empirical counterpart on samples of the distribution. The imple-
mentation is fully detailed in Da Veiga and Marrel (2012);

– Numerical integration tools introduced by Genz (Genz (1992), Genz (1993)). It relies on a prelim-
inary Cholesky decomposition of ΣZ and successive mono-dimensional integrations with a Quasi
Monte-Carlo procedure. The algorithm complexity depends on the dimension N (the number
of constraints) and on the size of the Quasi Monte-Carlo sample denoted by q. More precisely,
the complexity is given by O(N3 + Nq), where the O(N3) term corresponds to the Cholesky
decomposition and O(Nq) to mono-dimensional integrations.
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Several numerical tests on analytical functions with bounds, monotonicity and convexity constraints were
performed in Da Veiga and Marrel (2012). They reveal that Genz and sampling approximations produce
the same well-behaved constrained predictors, Genz’s method being faster in practice especially when the
number of constraint points increases. Both outperform the correlation-free formula, but the latter yields
relatively accurate predictions given that its computational time is considerably lower and increases much
more slowly with the number of constraints. For these reasons, we will focus here on Genz’s method to
compute the final constrained metamodel while relying on the correlation-free approximation when intensive
computations are required as in our sequential strategy, see Section 3.1.

2.2.2 Algorithm

From a practical perspective, recall that our goal is to compute E
(
Ỹ (x∗)|a ≤ Z ≤ b

)
. As an intermediate

step, remark that the Gaussian vector W =
(
Ỹ (x∗),Z

)
follows the normal distribution

W =
(
Ỹ (x∗),Z

)
∼ N

([
µ̃(x∗)
µZ

]
,

[
C̃(x∗,x∗) ΣỸ Z

ΣT
Ỹ Z

ΣZ

])
(14)

where ΣỸ Z =
[
Σ

(1)

Ỹ Z
, . . . ,Σ

(K)

Ỹ Z

]
with Σ

(k)

Ỹ Z
= Cov

(
Ỹ (x∗),Z(k)

)
= Cov

(
Ỹ (x∗),L(k) [Y ]

(
X(k)

)
|Y (Xs) = Ys

)
for k = 1, . . . ,K.

From a result on general truncation given in Kotz et al. (2000), the first moments of Ỹ (x∗)|a ≤ Z ≤ b
are equal to

E
(
Ỹ (x∗)|a ≤ Z ≤ b

)
= µ̃(x∗) + ΣỸ ZΣ−1

Z (νZ − µZ) (15)

Var
(
Ỹ (x∗)|a ≤ Z ≤ b

)
= C̃(x∗,x∗)− ΣỸ Z

(
Σ−1

Z − Σ−1
Z ΓZΣ−1

Z

)
ΣT
Ỹ Z

(16)

where νZ = E(Z|a ≤ Z ≤ b) and ΓZ = Var(Z|a ≤ Z ≤ b) are the mean and covariance matrix of the
truncated normal vector Z. Once νZ and ΓZ are computed via Tallis formula and Genz’s approximation
(Section 2.2.1), the constrained predictor (15) and its associated variance (16) are easily deduced. The whole
estimation procedure is summarized in Algorithm 1.

Algorithm 1: Constrained GP prediction at x∗

Given Xs, Ys, f0(x), Rψ(x− x′), L(1), . . . ,L(K), X =
{
X(1), . . . , X(k)

}
, a, b

(1) Estimate the GP parameters β, σ and ψ.

(2) Distribution of W =
(
Ỹ (x∗),Z

)
(Equation (14))

(a) Build the Gaussian vector
(
Ỹ (x∗),L(1) [Y ]

(
X(1)

)
, . . . ,L(K) [Y ]

(
X(K)

)
, Ys

)
(b) By conditioning w.r.t. Ys, compute µ̃(x∗) and C̃(x∗,x∗), µZ, ΣZ and ΣỸ Z (formulas for

conditional moments of Gaussian vector, Equations (3) and (4)).

(3) Compute the truncated moments νZ and ΓZ with Tallis formula and Genz’s approximation.

(4) Build the final constrained predictor and variance by computing the truncated moments

E
(
Ỹ (x∗)|a ≤ Z ≤ b

)
and Var

(
Ỹ (x∗)|a ≤ Z ≤ b

)
with equations (15) and (16).

The only tedious part in the algorithm is to evaluate the covariance between the GP process Y and the
constraint processes L(k) [Y ] for k = 1, . . . ,K in step 2.b. Formulas for derivatives are available for example
in Cramér and Leadbetter (1967).
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2.2.3 Parameter estimation and generalizations

As mentioned in Section 2.1, regression parameters β, variance parameter σ2 and covariance hyperparameters
ψ are preliminarily estimated by maximizing the unconditional likelihood of the observations. In other words,
all the above constraints are not used in this estimation process and are included in subsequent predictions
exclusively. In the context of bound truncation of multinormal variables, Griffiths (2002) proposed a Gibbs
sampling approach for mean and covariance estimation. However this work cannot be used as it is based on
a false assumption (it is assumed that incomplete1 conditional distributions of a truncated normal distribu-
tion are truncated normal distributions, which they are not; only full conditional distributions are). To the
best of our knowledge, no other approaches was developed for general linear constraints and covariance hy-
perparameters. We hope to be able to address conditional maximum likelihood estimation in future research.

In Da Veiga and Marrel (2012) we also discussed convexity integral constraints and we would like to point
out that we can accommodate any linear constraint, which includes divergence or curl sign information when
working with multidimensional outputs. Indeed, if we assume for example that the output code is a vector
field

(
Y 1(x1, x2), Y 2(x1, x2)

)
, one can build a 2-D GP surrogate and imposes a divergence constraint by using

L(1)
[
Ỹ 1, Ỹ 2

]
= ∂Ỹ 1

∂x1
+ ∂Ỹ 2

∂x2
, and similarly for a curl. In this sense, we can generalize the work of Scheuerer

and Schlather (2012) where only equality constraints on the divergence and the curl are considered.

2.3 Numerical illustration

Since additional examples are given later in the paper, we illustrate here the behavior of the constrained
predictors only on a simple one-dimensional function g1 given by

g1(x) =
sin(10πx5/2)

10πx

for x ∈ [0, 1]. This function is quite difficult to approximate because it has a frequency which exhibits strong
variations on [0, 1]. We assume that n observations (xi, yi = g1(xi))i=1,...,n are available, where the xi are
sampled according to the uniform distribution on [0, 1]. These observations are used to build the conditional

field Ỹ (x) and the corresponding unconstrained kriging predictor µ̃(x∗) = E
(
Ỹ (x∗)

)
introduced in Section

2.1. The mean function g0(x) is assumed to be constant, a Gaussian covariance function is used (which
is sufficiently differentiable to account for convexity constraints) and its hyperparameters are estimated by
maximum likelihood.

Using Algorithm 1, we build the constrained predictors with four configurations involving three different
types of constraints:

• Bound constraints only at the N locations (sign of g1);

• Derivative constraints only at the N locations (sign of g′1)

• Bound and derivative constraints at the N locations (sign of g1 and g′1);

• Bound, derivative and convexity constraints at the N locations (sign of g1, g′1 and g′′1 );.

To evaluate the accuracy of the metamodels, we use the predictivity coefficient Q2. It is the determination
coefficient R2 computed from a test sample (composed here by ntest = 100 equally spaced points):

Q2(Y, Ŷ ) = 1−

∑ntest

i=1

(
Yi − Ŷi

)2

∑ntest

i=1

(
Yi − Ȳ

)2 ,
1All the elements are not constrained.
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where Y denotes the ntest true observations (or exact values) of the test set, Ȳ their empirical mean and Ŷ the
metamodel predicted values. We consider a learning sample of n = 15 observations and, for each constraint
type, N = 20 constraint locations equally spaced on [0, 1] are chosen. The predictions are performed on a
set of 100 points chosen uniformly on [0, 1] and we repeat this procedure 100 times, varying the learning
sample. The mean and the standard deviation of Q2 are given in Table 1.

Constraints Q2

No 0.62 +/- 0.20
Bounds only 0.79 +/- 0.19

Derivatives only 0.80 +/- 0.19
Bounds + derivatives 0.80 +/- 0.23

Bounds + derivatives + convexity 0.85 +/- 0.19

Table 1: Mean and standard deviation of Q2 when accounting for several constraints for function g1.

When we integrate more constraints, the accuracy of predictions is increasing, as expected. In Figure
1, we show the cumulative incorporation of bounds, first derivatives and convexity for n = 12 and N = 20
on g1, as well as the corresponding predictor variance. While the unconstrained predictor fails at retrieving
information between observed points (Q2 = 0.43), constraints greatly help reconstruct the function in these
regions. Bound constraints start by improving predictions on the right part (Q2 = 0.84 in Figure 1, top).
First-derivative constraints further enhance the approximation on the left part (Q2 = 0.95 in Figure 1,
middle), but deteriorate it on the right. This phenomenon is finally compensated by second-order derivative
constraints (Q2 = 0.98 in Figure 1, bottom). The predictor variance is first largely reduced with bound
constraints, and one can observe further reduction with derivative ones. Convexity has a small impact on
variance reduction, since there is only a slight improvement between predictions with first- and second-order
derivative constraints.

3 Designs for constraint locations

Results showed that incorporation of constraints with our algorithm greatly improve predictions. The fi-
nal constrained predictor is based on a discrete-location approximation of conditional expectations. Since
they involve computation of integrals of dimensionality equal to the number of constraints, we proposed a
numerical approximation based on Genz’ method.

However, its complexity heavily depends on the number of constraints points. When dealing with common
industrial problems, this approach will require many points and subsequent integral approximations could
suffer from the curse of dimensionality if a naive design for constraint locations is used (e.g. points on a
grid).

To face this limitation, a solution could be to use a space-filling design such as Latin Hypercube Sampling
(LHS) with optimal space covering properties (e.g. maximin LHS, optimal discrepancy LHS, . . . see Fang
et al. (2006) or Johnson et al. (1990) for more details). This strategy will serve as a baseline approach for
all subsequent numerical comparison. But this is a blind strategy: constraint locations do not depend on
the regions where the standard GP predictor respects the constraints or not. Ideally, we expect to put more
constraint points where the constraints are not satisfied.

For this, given the total number of constraint points N =
∑K
k=1Nk, intuitively an optimal design

X∗ =
{
X(1)∗, . . . , X(K)∗} should be the one that minimizes the maximal probability of not respecting the

constraints on the whole input domain:

X∗ = ArgminX=
⋃
kX

(k),
∑
k |X(k)|=N max

x∈RD
1− P

(
x;
{
X(1), . . . , X(K)

})
(17)
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where

P
(
x;
{
X(1), . . . , X(K)

})
= P

(
∀k = 1, . . . ,K, a(k)(x) ≤ L(k)

[
Ỹ
]

(x) ≤ b(k)(x) | a ≤ Z ≤ b
)
. (18)

This criterion is unfortunately out of reach, since both the combinatorics and the computational cost for
a given design X are large. To a lesser extent, the same phenomenon arises in standard GP regression with
the Integrated Mean Squared Error criterion. Following previous work on adaptive learning designs for GP
regression, a possible remedy lies in a sequential strategy which is detailed below.

3.1 Adaptive sequential strategy

We start from a current constraint design Xcur =
{
X(1), . . . , X(K)

}
of Ncur =

∑K
k=1Nk,cur points. Using

similar notations as in 2.2, the corresponding constraint and bound vectors are denoted Zcur, acur and bcur,
respectively. The additional locations are chosen where P (x; Xcur), the probability that the constrained
predictor built with Xcur respects the constraints, is minimal. If we look closely at this probability, we see
that it involves the distribution of a truncated multivariate normal distribution. Even if it is possible to
get an approximation with Genz’s method, this means that for each location to be tested Genz’s algorithm
should be processed. This is intractable when the input domain lies in RD.

To go beyond, we propose a crude approximation of this probability based on a normal assumption. More
precisely, we approximate P (x; Xcur) with

P̂ (x; Xcur) =

∫ b(1)(x)

a(1)(x)

. . .

∫ b(K)(x)

a(K)(x)

φµL(x),ΣL(x) (t) dt (19)

where

µkL(x) = E
(
L(k)

[
Ỹ
]

(x) | acur ≤ Zcur ≤ bcur

)
(20)

ΣL,k,k′(x) = Cov
(
L(k)

[
Ỹ
]

(x),L(k′)
[
Ỹ
]

(x) | acur ≤ Zcur ≤ bcur

)
. (21)

Since the number K of different constraint types will usually be small, computing the integral is straight-
forward once the moments of the inner Gaussian are given. Thus, the only stake lies in evaluating µL(x)

and ΣL(x). For this, we can easily extend formulas (15) and (16) to L(k)
[
Ỹ
]

where the computational

burden consists in approximating νZ and ΓZ. As explained in Section 2.2.1, one can use Genz’s integration
method or the correlation-free approximation, the former being more precise while the latter is much faster.
Once all the new constraint points are identified, the final predictor is computed using Genz’s formula as in
Algorithm 1 from Section 2.2.2. The resulting complete adaptive procedure is recapped in Algorithm 2.
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Algorithm 2: Adaptive sequential strategy for constrained GP prediction

Given Xs, Ys, g0(x), Rψ(x− x′), L(1), . . . ,L(K), N

Initialization

• Estimate the GP parameters β, σ and ψ

• Find x∗ = Argminx∈RD P̂ (x; ∅), the point where the standard GP predictor has the highest
probability of violating the constraints

• Set Xcur = x∗

Sequential loop
for iter = 1, . . . , N − 1
do

• Find x∗ = Argminx∈RD P̂ (x; Xcur).

Probability P̂ () can be computed with either Genz’s integration method or the correlation-free
approximation

• Xcur = Xcur ∪ x∗, iter = iter + 1

endfor

Final constrained predictor and variance
Use Algorithm 1 with X = Xcur

3.2 Numerical comparisons

For all examples, we will compare the constrained predictors given by three different designs for constraint
locations:

• LHS with optimal maximin properties (in one-dimension, equivalent to equally spaced);

• sequential strategy based on correlation-free approximation;

• sequential strategy based on Genz’s method.

The efficiency of the strategies is evaluated w.r.t. the Q2 criterion, but also w.r.t. the percentage (in [0, 1])
of constraint respect α of the final predictor on a test sample of size 200. This second indicator is especially
useful when the constraints are not directly on the function, but on one of its derivative for example. For
each numerical test, each experiment is repeated 50 times and report the mean and standard deviation of
Q2 and α accordingly.

3.2.1 Illustration on 1-D example with bound and monotonicity constraints

First, we come back to function g1 already introduced in Section 2.3. Figure 2 illustrates where the sequen-
tial strategies tend to add points. From a given learning sample of n = 20 points randomly planned (grey
triangles in Figure 2), two constrained predictors based on N = 10 constraint points are built following two
strategies: the non-sequential one with constraint points equally spaced and the sequential one based on
correlation-free approximation. The constraint points successively added with the second strategy are rep-
resented by red full circles. Unsurprisingly, the sequential algorithm detects the regions where the predictor
does not respect the constraints and adds constraint points in these regions, which significantly improves the
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constrained predictor.

To confirm these results, we repeat the experiment (50 times) for different values of n and N . Tables 2
and 3 summarize the results for bound constraints obtained with a Matérn 3/2 and a Gaussian covariance
function, respectively. First observe that the Matérn 3/2 covariance consistently surpasses the Gaussian one.
Then, as expected, the addition of constraints improves the predictivity with all three methods. But more
importantly, the sequential strategies yield better results than the static approach, even if the gap vanishes
when n and N . Note also that despite the crude approximation of the correlation-free sequential method,
the constraint points are sufficiently well-placed to obtain a final prediction with the same quality as the
greedy method involving Genz’s computations.

Figure 3 left is another representation of these results, obtained with n = 10, a Matérn 3/2 covariance
function and for a number of constraint N up to 100. Note that only the correlation-free sequential method
is represented, Genz’s sequential method yielding similar results. To further analyze the models and check
that they actually respect the constraints on the whole domain, we report in Figure 3 right the percentage
α of independent points (i.e. neither in the experimental design nor in the constraints set) which respect the
constraints. Again, sequential strategies perform better, even achieving a high level of accuracy with only
20 constraint points.

Finally, we compare the computational burden of Genz’ approximation w.r.t. the correlation-free ap-
proach in Figure 4. While the cost grows very rapidly for Genz, it is only linear when we neglect correlations.

n N Unconstrained Optimal LHS
Correlation-free

sequential
Genz

sequential
10 0.50 ±0.09 0.73 ±0.05 0.78 ±0.08 0.78 ±0.08

20 0.50 ±0.09 0.81 ±0.04 0.82 ±0.07 0.82 ±0.07

8 30 0.50 ±0.09 0.85 ±0.03 0.86 ±0.03 0.87 ±0.04

40 0.50 ±0.09 0.86 ±0.03 0.87 ±0.03 0.87 ±0.03

50 0.50 ±0.09 0.86 ±0.03 0.87 ±0.03 0.88 ±0.03

10 0.66 ±0.08 0.75 ±0.07 0.88 ±0.09 0.89 ±0.09

20 0.66 ±0.08 0.87 ±0.05 0.89 ±0.09 0.90 ±0.08

10 30 0.66 ±0.08 0.89 ±0.04 0.92 ±0.04 0.92 ±0.05

40 0.66 ±0.08 0.90 ±0.04 0.92 ±0.04 0.92 ±0.04

50 0.66 ±0.08 0.91 ±0.04 0.92 ±0.04 0.92 ±0.04

10 0.94 ±0.02 0.96 ±0.02 0.98 ±0.01 0.98 ±0.01

20 0.94 ±0.02 0.97 ±0.01 0.98 ±0.01 0.98 ±0.01

20 30 0.94 ±0.02 0.97 ±0.01 0.98 ±0.01 0.98 ±0.01

40 0.94 ±0.02 0.98 ±0.01 0.98 ±0.01 0.98 ±0.01

50 0.94 ±0.02 0.98 ±0.01 0.98 ±0.01 0.98 ±0.01

Table 2: Function g1 – Mean and standard deviation of Q2 with bound constraints, for different values of
n and N with a Matérn 3/2 covariance function.

We now repeat this experiment but with derivative constraints on g1 instead. Table 4 reports the results
obtained with a Matérn 3/2 covariance function. The analysis ofQ2 shows that the incorporation of derivative
information improves much further the model than bound constraints. This phenomenon makes sense, since
this is a much more informative constraint for the model. Moreover, the two sequential strategies, which
provide similar results, again significantly outperform the non-sequential strategy in terms of both predictor
accuracy Q2 and percentage of constraint respect α.

Figure 5 illustrates these results with n = 10. Figure 5 right also provides an additional insight: respecting
the derivative constraint is harder than the bounds and the sequential addition of constraint points helps
improve the model more slowly, but each addition of such information enhances the predictivity faster.
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n N Unconstrained Optimal LHS
Correlation-free

sequential
Genz

sequential
10 0.38 ±0.17 0.57 ±0.14 0.61 ±0.20 0.61 ±0.21

20 0.38 ±0.17 0.64 ±0.15 0.68 ±0.17 0.68 ±0.17

8 30 0.38 ±0.17 0.69 ±0.11 0.72 ±0.14 0.72 ±0.14

40 0.38 ±0.17 0.70 ±0.10 0.77 ±0.13 0.78 ±0.12

10 0.59 ±0.17 0.66 ±0.14 0.72 ±0.21 0.72 ±0.21

20 0.59 ±0.17 0.73 ±0.14 0.75 ±0.18 0.74 ±0.18

10 30 0.59 ±0.17 0.73 ±0.11 0.79 ±0.14 0.78 ±0.14

40 0.59 ±0.17 0.73 ±0.09 0.81 ±0.13 0.80 ±0.13

10 0.94 ±0.03 0.95 ±0.02 0.98 ±0.01 0.98 ±0.01

20 0.94 ±0.03 0.95 ±0.01 0.98 ±0.01 0.98 ±0.01

20 30 0.94 ±0.03 0.97 ±0.01 0.98 ±0.01 0.98 ±0.01

40 0.94 ±0.03 0.98 ±0.01 0.98 ±0.01 0.98 ±0.01

Table 3: Function g1 – Mean and standard deviation of Q2 with bound constraints, for different values of
n and N with a Gaussian covariance function.

Unconstrained Optimal LHS Correlation-free Genz
n N sequential sequential

Q2 α Q2 α Q2 α Q2 α

10 0.50 ±0.09 0.71 ±0.06 0.57 ±0.09 0.72 ±0.05 0.72 ±0.07 0.84 ±0.07 0.72 ±0.07 0.84 ±0.07

20 0.50 ±0.09 0.71 ±0.06 0.63 ±0.08 0.71 ±0.06 0.75 ±0.08 0.92 ±0.06 0.76 ±0.08 0.92 ±0.06

8 30 0.50 ±0.09 0.71 ±0.06 0.79 ±0.07 0.82 ±0.05 0.81 ±0.06 0.97 ±0.03 0.83 ±0.06 0.97 ±0.03

40 0.50 ±0.09 0.71 ±0.06 0.84 ±0.06 0.86 ±0.05 0.84 ±0.04 0.97 ±0.02 0.84 ±0.04 0.97 ±0.02

10 0.66 ±0.08 0.75 ±0.06 0.73 ±0.08 0.80 ±0.06 0.83 ±0.06 0.92 ±0.07 0.83 ±0.06 0.92 ±0.07

20 0.66 ±0.08 0.75 ±0.06 0.77 ±0.07 0.81 ±0.07 0.89 ±0.06 0.96 ±0.06 0.90 ±0.06 0.96 ±0.06

10 30 0.66 ±0.08 0.75 ±0.06 0.86 ±0.06 0.87 ±0.07 0.89 ±0.05 0.98 ±0.03 0.89 ±0.05 0.98 ±0.02

40 0.66 ±0.08 0.75 ±0.06 0.90 ±0.05 0.91 ±0.05 0.90 ±0.04 0.99 ±0.02 0.90 ±0.04 0.99 ±0.02

10 0.94 ±0.02 0.89 ±0.02 0.96 ±0.02 0.99 ±0.01 0.98 ±0.01 0.92 ±0.02 0.98 ±0.01 0.99 ±0.01

20 0.94 ±0.02 0.89 ±0.02 0.90 ±0.02 0.90 ±0.03 0.98 ±0.01 0.99 ±0.01 0.98 ±0.01 0.99 ±0.01

20 30 0.94 ±0.02 0.89 ±0.02 0.97 ±0.01 0.93 ±0.02 0.98 ±0.01 0.99 ±0.01 0.98 ±0.01 0.99 ±0.01

40 0.94 ±0.02 0.89 ±0.02 0.98 ±0.01 0.94 ±0.02 0.98 ±0.01 0.99 ±0.01 0.98 ±0.01 0.99 ±0.01

Table 4: Function g1 – Mean and standard deviation of Q2 and α with derivative constraints, for different
values of n and N with a Matérn 3/2 covariance.
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Figure 1: Function g1 – Unconstrained and constrained predictor (left) and predictor variance (right) ac-
counting for constraints on bounds only (top), on bounds and derivatives (middle) and on bounds, derivatives
and convexity (bottom), with a Gaussian covariance function.
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Figure 2: Function g1 – Unconstrained and constrained predictor accounting for constraints on bounds only
(top), on derivatives (middle) and on both bounds and derivatives (bottom), with a Matérn 3/2 covariance.
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Figure 3: Function g1 – Mean of Q2 (left) and α (right) of the unconstrained and constrained predictors
with n = 10 observations and bound constraints, with a Matérn 3/2 covariance function.
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Figure 4: Function g1 – Mean of CPU time for constrained predictors with n = 8, 10, . . . , 50 observations
and bound constraints, with a Matérn 3/2 covariance function.
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Figure 5: Function g1 – Mean of Q2 (left) and α (right) of the unconstrained and constrained predictors
with n = 10 observations and derivative constraints with a Matérn 3/2 covariance.
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3.2.2 Illustration on 2-D example with bound constraint

Consider now the two-dimensional function g2 defined on [0, 1]2:

g2(x1, x2) = 1.8x1 + 5 log (g1(x2) + 2) + 10x2g1(x1)− 4.5,

which exhibits strong interactions between the two input variables and is a challenging function to approxi-
mate. The results for bound constraints are reported in Table 5 for a Matérn 3/2 covariance function. While
the unconstrained predictor has a very low Q2, once again the addition of constraints greatly improves the
model quality, especially with the sequential strategies. Note for example that we can reach a Q2 = 0.7
in this case with only n = 50 and N = 100 while the unconstrained predictor has a Q2 = 0.37 and can
only reach a Q2 = 0.68 with n = 130. Similarly, the percentage of points respecting the constraints grow
rapidly with the number of constraint points and closely approaches 100% when N = 100, see Figure 6, right.

Finally, the computational time between the two sequential strategies is compared in Figure 7. Again, this
illustrates that the computational burden of Genz’s integration method heavily increases with the number
of constraint.

The sequential correlation-free strategy performing as well as the Genz’s one and the latter having a higher
computational cost, we recommend, in practice, the use of the correlation-free formulas to sequentially build
the constraint design. But, note that the final constrained predictor is still computed with Genz’s method.

Unconstrained Optimal LHS Correlation-free Genz
n N sequential sequential

Q2 α Q2 α Q2 α Q2 α

25 0.37 ±0.08 0.68 ±0.03 0.45 ±0.08 0.73 ±0.03 0.53 ±0.08 0.79 ±0.03 0.53 ±0.08 0.79 ±0.03

36 0.37 ±0.08 0.68 ±0.03 0.50 ±0.07 0.74 ±0.03 0.57 ±0.08 0.83 ±0.04 0.57 ±0.09 0.84 ±0.04

50 64 0.37 ±0.08 0.68 ±0.03 0.53 ±0.08 0.76 ±0.03 0.64 ±0.08 0.91 ±0.04 0.64 ±0.09 0.92 ±0.04

100 0.37 ±0.08 0.68 ±0.03 0.58 ±0.08 0.78 ±0.03 0.70 ±0.08 0.97 ±0.03 0.70 ±0.09 0.98 ±0.04

25 0.58 ±0.05 0.76 ±0.02 0.64 ±0.04 0.78 ±0.02 0.72 ±0.04 0.87 ±0.02 0.72 ±0.04 0.87 ±0.02

36 0.58 ±0.05 0.76 ±0.02 0.67 ±0.04 0.79 ±0.02 0.75 ±0.04 0.90 ±0.02 0.75 ±0.04 0.90 ±0.02

90 64 0.58 ±0.05 0.76 ±0.02 0.68 ±0.03 0.81 ±0.02 0.80 ±0.03 0.97 ±0.01 0.80 ±0.03 0.97 ±0.01

100 0.58 ±0.05 0.76 ±0.02 0.72 ±0.03 0.82 ±0.02 0.83 ±0.02 0.99 ±0.01 0.83 ±0.03 0.99 ±0.01

25 0.68 ±0.03 0.80 ±0.02 0.72 ±0.04 0.82 ±0.02 0.80 ±0.02 0.89 ±0.02 0.80 ±0.02 0.89 ±0.02

36 0.68 ±0.03 0.80 ±0.02 0.74 ±0.03 0.82 ±0.02 0.82 ±0.02 0.93 ±0.02 0.82 ±0.02 0.93 ±0.01

130 64 0.68 ±0.03 0.80 ±0.02 0.75 ±0.03 0.84 ±0.02 0.85 ±0.02 0.99 ±0.01 0.85 ±0.02 0.99 ±0.01

100 0.68 ±0.03 0.80 ±0.02 0.77 ±0.03 0.84 ±0.02 0.87 ±0.02 0.99 ±0.01 0.88 ±0.02 0.99 ±0.01

Table 5: Function g2 – Mean and standard deviation of Q2 and α with bound constraints, for different
values of n and N , with a Matérn 3/2 covariance.
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Figure 6: Function g2 – Mean of Q2 (left) and α (right) of the unconstrained and constrained predictors
with n = 90 observations and bound constraints, with a Matérn 3/2 covariance.
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Figure 7: Function g2 – Mean of CPU time for constrained predictors with n = 50, 70, . . . , 130 observations
and bound constraints, with a Matérn 3/2 covariance.
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3.2.3 Illustration on 5-D example with monotonicity constraint

Finally, we consider a higher dimensional example which is more representative of industrial applications:

g5(x) = 10(x1 − 0.5)3 + 0.3

5∏
i=2

(
1 +

(−1)i

i

)
hi

(
xi −

2i− 1

10

)
with

hn(x) =
Dn(x)− 1√

2n

and Dn is the Dirichlet kernel :

Dn(x) =
sin((2n+ 1)πx)

sin(πx)
.

A typical constraint which can be encountered in practice is that only one partial monotonicity is known
(i.e. constraint on the sign of a single partial derivative). This is the case we examine here, where we impose
a constraint on the partial derivative w.r.t. x1 only. From a maximin-LHS learning sample of n = 50 points,
the unconstrained and constrained predictors are built. For the constrained ones, N = 400 constraint points
are chosen following the non-sequential strategy (optimal LHS) and the sequential correlation-free strategy.
Q2 and α criteria are then computed on a test basis of 5000 points. Results are reported in Table 6.
The unconstrained predictor has an average Q2 = 0.7 and only 73% of the independent points satisfy the
monotonicity. As before, the constraint incorporation via the static approach improves the results but a
sequential strategy performs much better, at least in terms of constraint complying. It is important to note,
however, that we need a large number of constraint points here since we are working in a 5-D space. Genz’s
sequential strategy is thus impractical in this case, thus highlighting the computational advantage of the
correlation-free approach. Despite the crude assumption it can still reach a satisfying level of accuracy for
the final predictor.

Criterion Unconstrained Optimal LHS Correlation-free sequential
Q2 0.70 0.74 0.74

Monotonicity respect α 0.73 0.86 0.96

Q2 on derivative ∂g5

∂x1
(x) 0 0.38 0.50

Table 6: Function g5 – Q2 and monotonicity constraint respect α (percentage in [0, 1]) with monotonous
constraints, for n = 50 and N = 400 with a Matérn 3/2 covariance function.

4 Conclusion

In this paper, we introduced a new theoretical framework for incorporating any type of linear constraints in
Gaussian process modeling, including usual bound and monotonicity ones. The final constrained predictor is
based on a discrete-location approximation of conditional expectations: from a computational perspective,
the main result is that a vector encompassing the kriging underlying Gaussian field and any linear operator
is still Gaussian. Consequently, our constrained predictors can be written as expectations of the truncated
multinormal distribution and thus can be approximated by MCMC sampling, Genz’s approximation or via
a crude correlation-free assumption. These procedures were shown to perform very well on several 1-D or
2-D examples with various types of constraints.

However, if generalization to more dimensions seems straightforward, the discrete-location approximation
for the constraints will require many points and subsequent integral approximations will suffer from the curse
of dimensionality. In this case, we developed a sequential strategy inspired by previous work on GP modeling:
Starting from given initial locations of constraint points, additional locations are proposed where the predictor
is more likely to violate the constraints. Such relevant constraint points can be easily identified with the
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Gaussian process assumption. Since Genz’s approximation can become very computationally intensive in this
context, we also illustrate how the naive correlation-free approach yields equivalent results with a negligible
CPU time.

From our perspective, two points still have to be addressed to improve the procedure. First, maximum-
likelihood estimation of kriging hyperparameters should be investigated for consistency under constraint
assumptions. In practice, we hope that this will limit the number of constraint points needed for an effective
discrete-location approximation. Second, error bounds on this discrete-location approximation should be
examined. Apart from quality control, they could also be used in order to propose suitable locations for the
constraints.
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Azäıs J.-M. and Wschebor M. (2009). Level sets and extrema of random processes and fields. New York:
Wiley.

Bigot J. and Gadat S. (2010). Smoothing under diffeomorphic constraints with homeomorphic splines. SIAM
Journal on Numerical Analysis, 48(1):224–243.

Chopin N. (2011). Fast simulation of truncated Gaussian distributions. Statistics and Computing, 21:275–
288.

Cozman F. and Krotkov E. (1995). Truncated Gaussians as Tolerance Sets. Fifth Workshop on Artificial
Intelligence and Statistics, Fort Lauderdale Florida.

Cramér H. and Leadbetter M.R. (1967). Stationary and Related Stochastic Processes: Sample Function
Properties and Their Applications. New York: Wiley.

Da Veiga S., Wahl F. and Gamboa F. (2009). Local Polynomial Estimation for Sensitivity Analysis on
Models With Correlated Inputs Technometrics, 51(4):452–463.

Da Veiga S. and Marrel A. (2012). Gaussian process modeling with inequality constraints. Annales de la
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