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ABSTRACT
More and more things are now connected to the Internet and
become part of the Web of Things. The notion of “thing”
encompasses various types of devices, from complex robots
to simple sensors. In particular, things may rely on limited
memory, storage and computing capabilities. We propose
an architecture able to embed both semantic and REST-
ful technologies into constrained things, while being generic
and reconfigurable. It combines emerging standards such as
CoAP and Hydra to split RDF graphs, process requests, and
generate responses on-the-fly. We validate our proposition
by implementing such a Server in an Arduino UNO.
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1. INTRODUCTION
One of the WoT challenges is to provide building blocks

for applications able to compose services offered by things
as standard Web resources [4]. Relying on the Web – and
REST principles – as a platform provides WoT applications
with efficiency and scalability. One trend of the Web com-
munity consists in providing semantic, hypermedia-based
documentations for Web APIs (aka RESTful services). This
way, intelligent clients can navigate among resources and de-
cide which service to use for a given purpose [14]. Achieving
and combining these two objectives is an important direction
towards which the W3C WoT Interest Group1 aims.

A promising solution consists in defining architectures able
to provide clients with semantically described RESTful ser-
vices (e.g. servients2 or avatars [8]), using for instance the
Hydra [6] or the Thing Description3 vocabularies. From a

1https://www.w3.org/WoT/IG/
2https://w3c.github.io/wot/architecture/wot-architecture.
html\#general-description-of-wot-servient
3https://w3c.github.io/wot/current-practices/
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pragmatic point of view, even if these architectures can the-
oretically be embedded in things, they can require a large
amount of resources that may not be available on all devices.
Indeed, there is currently no technology stack that allows at
the same time discoverability, scalable access through Web
standards and semantic interoperability, aimed to fit in con-
strained devices4. In order for such an architecture to meet
the requirements of both the semantic WoT and constrained
devices, it must satisfy the following requirements:

• Energy efficiency: Energy consumption of devices,
especially battery-powered, should be optimized. In
particular, during wireless network communications,
the quantity of data transmitted should be minimized.

• Computational resource efficiency: Inside a server,
implementing the network protocol stack requires com-
puting resources. On constrained devices, such imple-
mentations should choose the adequate protocols to
keep their memory footprint minimal.

• Self-description: Constrained devices should mem-
orize their configuration in non-volatile memory, so
that they can harmlessly be shut down and restarted,
and send their API documentation to clients.

• Availability: Endpoints generated by constrained
devices should be available as a Web resource and the
required operations to solve requests should be kept
minimal to limit processing time.

• Scalability: Web Servers embedded in constrained
devices should be optimized to maximize the number
of clients they can efficiently handle.

We herein propose a generic architecture designed to fit in-
side constrained devices, taking into account their limited
resources while allowing them to provide clients with dis-
coverable and interoperable access to their sensors and ac-
tuators. Our approach relies on two key technologies: Hy-
dra for reconfigurable thing API documentations, and CoAP
for block-wise transfers, which allow analysing and generat-
ing RDF graphs on the go. We intend to show how to-
day’s Web tools can be used to embed semantic, RESTful
and auto-descriptive services on such constrained devices.
Our approach targets things equipped with a network inter-
face capable of implementing the IP protocol and minimally

wot-practices.html#thing-description
4Constrained devices refer to connected things equipped
with bare minimal power, energy, communication capabil-
ities, and computing power (memory, processing, storage).



structured with CPU, RAM and persistent memory, plus
enough program memory to store the algorithms implement-
ing this approach. To demonstrate our design we implement
our solution in a constrained device: the Arduino UNO5.

Section 2 presents a state of the art regarding both se-
mantics in the WoT and Technical aspects of Constrained
Devices. Section 3 describes our proposition of architecture,
along with the algorithm that links API semantic descrip-
tions with the internal capabilities of a thing. Section 4
presents our implementation and evaluates our proposition
against the above criteria. Section 5 concludes the paper.

2. STATE OF THE ART

2.1 Semantic Web and the IoT
Today, efforts are focused on solving heterogeneity of hard-

ware, software, and syntactic formats in the IoT [1]. Through
the IERC AC4 [10], Serrano et al. identified the problems
yet to be solved in order to reach interoperability and under-
line the current lack of a widely used standard. Additionally,
a number of initiatives tend to describe similar concepts and
end up generating redundant ontologies, thus inducing the
need of a commonly shared and accepted ontology [5]. This
tendency is reinforced with projects such as Schema.org, a
vocabulary created to promote the usage of a Web of Data
which employs common semantics.

On the other hand, the Linked Data initiative6 encourages
entities to publish structured data enriched with semantics
and relies on the notion of hypermedia link to map them
together. Lanthaler et al. point out that unfortunately,
Linked data principles have not yet found widespread adop-
tion among Web APIs[6]. Even though semantically anno-
tating data is a big challenge today at a global scope, the
services that deliver this data need also to be given meaning.
This is especially true in IoT where heterogeneous devices,
communication schemes and data are encountered. Guinard
et al. proposed a semantic description of services in the
WoT by the means of JSON on Wireless Sensor Networks
[7]. Their work stresses the use of RESTful architectures as
part of the WoT. Lanthaler et al. share the same vision,
in which the description of services that link the data also
need to be specified with semantics. Their efforts resulted
in Hydra [6], a vocabulary designed to describe Web APIs in
RDF applying Linked Data principles to RESTful services.

An example of application of Hydra in the WoT can be
found in [13]. Ventura et al. demonstrate how a seman-
tic web client is able to discover self-describing APIs and to
query and build request sequences with no previous knowl-
edge of these APIs. Their implementation uses Notation3
(N3) pre and postconditions rules to describe services, and
JSON-LD7 as a vehicle to transport self-describing state
transfers. Although we use this work as one of the start-
ing points of our contribution, it is unfortunately too heavy
to be embedded in constrained devices.

2.2 Constrained Devices and the Web
A Constrained Device or Node, as defined in IETF’s RFC

7228 ”Terminology for Constrained-Node Networks”, is a
device where ”the characteristics that are often taken for

5https://github.com/ucbl/arduinoRdfServer
6http://linkeddata.org/
7http://json-ld.org/

granted for an Internet node are not attainable at the time
of writing, due to constraints of cost and physical nature,
such as limited battery and computing power, little memory,
and insufficient wireless bandwidth and ability to commu-
nicate”[2]. Some facets often apply combinations of maxi-
mum code complexity (ROM, Flash), size of state complex-
ity (RAM), processing power, available power, and user in-
terface and accessibility in deployment.

Research work in the Sensor Network field faces challenges
that can often be applied to constrained nodes. Wireless
Sensor Networks have also implemented power saving modes
of operation such as Power Aware Sensor Model, Event Gen-
eration Model, Energy workload Model among others [12].
Another Sensor Network initiative [9] reuses concepts from
smart homes such as the 6LoWPAN TCP/IP stack on top of
which sensor data is expressed in JSON rather than XML,
since the payload size is decreased. To tackle this issue,
the W3C has initiated work on Efficient XML Interchange
(EXI)8, which aims at dramatically reducing message pay-
loads. These works stress the importance of REST architec-
tures on top of HTTP and minimal payload size.

However, even though HTTP and TCP are widely ac-
cepted and used in today’s WWW, there exist alternatives
better adapted to Constrained Devices. Constrained Ap-
plication Protocol (CoAP) [11] was conceived by the
IETF CoRE task force9. It has been specially designed to
fit Constrained Devices, by implementing a minimal header,
while still enabling devices to keep track of multiple client
requests, URI components, payload types, message codes,
amongst other features found in traditional HTTP/TCP.
As Castellani et al. mention, CoAP’s similarity to the afore-
mentioned protocols makes it easy for HTTP clients or servers
to interact, since all that is needed is a translation-proxy be-
tween them [3]. Moreover, CoAP servers are able to imple-
ment REST principles, even while relying on UDP, a simpler
protocol compared to TCP’s and its range of technologies.

CBOR10 stands for Concise Binary Object Representa-
tion. A JSON-compatible model expressed in binary. Its
code size is greately reduced in comparison to traditional
JSON. It is an advantageous approach when dealing with
tight and bad quality networks, since the data to be trans-
mitted does not require a significant number of packets.
We find it disadvantageous to use since we already process
JSON. Developing a module to encode/decode CBOR is an
additional unnecessary load for an already limited memory.

3. ARCHITECTURE
We herein propose the conceptual architecture of a server

designed to be implemented in constrained devices, and able
to communicate with its clients by exchanging RDF graphs,
serialized in JSON-LD. Network communications rely on
the CoAP protocol that fits both constrained devices and
REST. As the server exposes a semantic and RESTful API,
it documents this API according to the Hydra specification.
Through this means, it can handle three types of requests:

• The server responds to documentation requests by send-
ing an RDF document generated according to the de-
vice internal configuration.

8https://www.w3.org/XML/EXI/
9https://datatracker.ietf.org/wg/core/documents/

10urlhttp://cbor.io



Figure 1: Startup (a) and Configuration Request (b)

Figure 2: Request Processing Algorithm: Inbound(a), Outbound(b)

• Configuration requests allow clients to choose which
of the available operations on the object are to be
enabled, disabled or configured. This gives the user
control over which services are available at any given
time. With the help of non-volatile memory, the state
of enabled operations can be stored, which makes such
configuration resilient to shutdowns, down-time and
power shortages.

• Operational requests allow clients to query the sensors
and actuators connected to the device and enabled in
its configuration, in a semantic and RESTful manner.

The different building blocks of our architecture are de-
picted in Figure 1 and Figure 2. The most important of
them are detailed below.

• The RAM contains complete representations of the
server current configuration. Clients can only request
services provided by operations stored in RAM at the
time of the request. RAM variables establish the link
between the semantic layer and the internal functions
that access the configuration and the devices. These
representations are necessary for the main algorithm to
execute the correct function and write a complete re-
sponse, including any result obtained from a correctly
requested service.

• The Device Configuration stores information about the
state and configuration of the object. It may vary from
object to object, but the interest is that probably not
all the possible capabilities of an object need nor can
be available at any given time. It stores the service
configurations that were made available by users as

well as the involved physical components. It also acts
as a backup to restore the setup previous to a power
cut, intentional or not.

• The Semantic Service Repository stores JSON-LD Se-
mantic annotations. The algorithm refers to this mem-
ory space whenever it needs to send or interpret JSON-
LD documents.

The design of the server relies on the following technical
principles. Switching to CoAP from traditional HTTP gives
a more in-depth packet control and allows for streaming of
large payloads. Indeed, using the CoAP Block-wise Transfer
option on top of UDP as a synchronous transport solution
removes package size limitations. Taking into consideration
that most clients on the Web do not implement CoAP, we
developed a simple translation proxy from and to HTTP
meant to be ran outside the constrained device.

3.1 API and Semantics
To illustrate the semantic aspects of our approach, we

propose the following application scenario: a crop field is
populated with numerous constrained things, disseminated
over the field. Each of these fixed things can bear different
sensors and actuators. Mobile clients such as drones can
move over the field, discover the available fixed things and
interact with them. As all these things embed their own
semantic descriptions, the client can more easily integrate
data and service descriptions, reason about them, and pro-
voke an “intelligent” global behavior, such as watering the
parts of the field that lack water or guide other objects to
cure diseases detected on the plants. Let us consider one of
these single fixed things, equiped with a temperature sensor



Figure 3: Minimal documentation exposed by a constrained
thing

Figure 4: Ontology providing common parts of thing API de-
scriptions

to sense weather conditions and an infrared LED that mov-
ing objects can use to proceed to the plant. It exposes a set
of physical operations, aka Capabilities [8], and is able to
serve a Hydra API documentation, as well as to repond to
client requests concerning these capabilities.

By relying on Hypermedia, JSON-LD documents can ref-
erence context definitions and concepts that are served else-
where. Using this mechanism, the constrained thing server
only exposes the specific parts of its documentation and
refers to a common ontology, shared with all other dissemi-
nated servers. Referencing this ontology allows to minimize
the information embedded in the objects themselves, while
maintaining semantic consistency. Figure 3 illustrates the
minimal API description stored on the thing, and Figure 4
the global ontology11.

At the root of the API is a Hydra EntryPoint that leads to
a collection of the above mentioned Capabilities. A capabil-
ity instance can expose one or both of the capability retrieve
and capability update hydra operations. Our ontology relies
on the SSN vocabulary12 to define the respective outputs
and inputs of these operations. In order for the things to be
able to expose instances of ssn:Output/ssn:Input (which are
disjoint) and hydra:Class, the ontology respectively provides
the asawoo:Value and asawoo:Command classes. Things,
however, are responsible to provide the data types they deal
with. For instance, in our scenario, the thing uses SAREF13

for describing a temperature, but another vocabulary could
have been used.

The API documentation is queried and processed by clients.
They can take advantage of the descriptions in this docu-
mentation according to the level of expressivity present in
the descriptions and to the clients’ ”understanding”(i.e. rea-
soning) capabilities. This allows them to query the services
provided in RAM.

11These files can be respectively found at
https://github.com/ucbl/arduinoRdfServer/blob/master/
example/arduino.jsonld and
http://liris.cnrs.fr/asawoo/ontology/asawoo-hydra.jsonld

12http://www.w3.org/2005/Incubator/ssn/ssnx/ssn
13http://ontology.tno.nl/saref/

3.2 Startup
Whenever the device is powered up, reset, or flashed, the

initial setup is immediately executed once. During this setup
two classes are instantiated:

• Coap: our implementation of the CoAP protocol, which
is used to handle incoming and outgoing packages. In
it we find operations to manipulate payloads, as well
as every function that will directly read and write a
network packet.

• Resource Manager: a class created to handle represen-
tations of the semantic concepts, as well as the link
between semantics and low level I/O functions, which
most of the time involve Sensor/Actuator calls.

The server populates at startup a set of global variables
concerning the enabled operations (list of services, service
URIs, port mappings) from the Device Configuration, so
that they are available in RAM. Although all possible opera-
tions are listed in the Semantic Service Repository, only the
ones present in the configuration are instantiated as service
templates that will be used to parse and serialize semantic
information. Consequently, all necessary information is ac-
cessible to algorithm modules to perform operations. This
behaviour is represented in Figure 1.a.

3.3 Thing Configuration
Enabling a service at runtime resembles a request process-

ing, the only difference is instead of acting on a sensor/ac-
tuator, its provokes the writing of new information in the
Device Configuration.

To enable/disable a service, the client must request the
corresponding service URI and provide logical data about its
new configuration. The semantics related to the availabil-
ity of a service are defined by it’s boolean ”EnabledStatus”
property. Activation of a service is shown in Figure 1.b.

3.4 Request Processing
When a CoAP packet is received, relevant data relative

to the currently requested service is saved, meanwhile the
algorithm streams the incoming packages using block-wise,



and recycling the inbound buffers in an effort to maximize
available space in memory.

Once all relevant information for a service is retrieved
from the request and completeness is detected, the corre-
sponding Sensor/Actuator function for that specific service
is triggered. The return values are stored in a buffer. The
server then sends the corresponding response using (once
again) block-wise transfer. When writing into the outbound
buffer, the JSON-LD payload is generated using the Ser-
vice Template, and is complemented by the results retrieved
from the operations on sensors and actuators, thus forming
a complete response. The whole process is represented in
Figure 2.a and Figure 2.b.

4. EVALUATION
We previously defined a set of criteria to enable constrained

devices to integrate the semantic Web of Things: Discover-
ability, Self-description, Scalability, and Power and Com-
putational Resource efficiency. As a proof of concept, we
evaluate these criteria on an Arduino UNO implementation.

4.1 Implementation
The Arduino UNO and similar devices are microcontrollers

conceived to host flashed C++ compiled code, also called
sketch. We make use of libraries that let us interact with
the physical/electronic modules as well as UDP packages.
The Arduino UNO’s memory specification is detailed in ta-
ble 1. Arduino boards provide access to I/O ports, or pins.
Either analog or digital, they connect the board to sensors
and actuators through libraries provided by the SDK.

Program Space RAM Non-volatile (EEPROM)
32KB read-only 2KB read/write 1KB read/write

Table 1: Arduino UNO Memory Specification

Open source CoAP implementations are, to the best of our
knowledge, not yet ported to Arduino UNO boards, which
is why we developed our own. Due to its size, the Semantic
Server Repository SSR needs to be stored in the device’s
Program Space. The text based descriptions take several
KBytes, and storing them as standard strings at runtime
would easily overflow the Arduino’s RAM. AVR libraries
available on Arduino boards provide a set of tools to ma-
nipulate Program Space pointers, which help overcome this
issue. We use the non-volatile EEPROM memory to store
the Device Configuration. By serializing the information
about the ID and pins for a service, we effectively describe
the physical configuration, as well as providing the neces-
sary information to later fetch a service in the SSR, result-
ing in a list of enabled services in RAM. We developed a
proxy translating headers from HTTP into CoAP and vice
versa. It was developed with the TxThings14 library and
the Twisted Framework15 in Python2. The implementation
is represented in Figure 5.

4.2 Experimentation
Arduino devices provide a simple logging tool through a

serial connection that allows us to print text during execu-
tion. Thanks to it and the observable behaviour of the board

14TxThings: https://github.com/mwasilak/txThings
15Twisted Framework: http://twistedmatrix.com/trac/

Figure 5: Implementation on an Arduino UNO through a
translation Proxy

we are able to have some degree of debugging. We test the
3 primary capabilities of our architecture:

• Service persistence/startup: Verifying the configura-
tion is correctly saved. The same service should re-
spond before and after removing the power source, ef-
fectively shutting down the device. To do so, we simply
power off the device after using a service. We succeed
if the service yields the same previous behaviour.

• Enabling a new service: Making a new service avail-
able by modifying its Enabled property and specifying
its configuration. This is done by performing a POST
request on /service name/ enable, including informa-
tion about the physical configuration in the payload.
If successful, the device responds with a 2.04 Changed
CoAP message. We then request the service itself and
verify the output matches our expectations.

4.3 Results

Footprint
Cumulative
Available

RAM (Bytes)
Algorithm & Class
Instantiation

968Bytes 1080 (52.7%)

Capability (x3) 279Bytes 725 (35.4%)
Static JSON Buffer 200Bytes 525 (25.63%)
Package-processing 24Bytes 501 (24.46%)

Table 2: RAM Usage

The CoAP protocol offers the option for any party to set
the payload size. We take advantage of this fact to ensure
CoAP packets never encapsulate more than 64Bytes, thus
transmitting 130Bytes at most between the proxy and the
Arduino. Furthermore, taking into account the synchronous
nature of the protocol, the bandwidth consumed remains
under the maximum mentioned previously. We recall and
evaluate the criteria we defined to embed a semantic server
into a constrained device:

• Since most clients on the Web rather implement HTTP
than CoAP, our HTTP translation Proxy compensates
the discoverability drawbacks. Yet, it is not necessary
to go through this proxy, which allows other CoAP
clients to communicate directly, effectively widening
the spectrum of possible requesting parties.



• Services are serialized in JSON-LD and stored in Pro-
gram Memory. Referencing further definitions on an
external server allows us to save up to 31.2KBytes of
data, close to 100% of total Program Memory. The
remaining local semantics allows the API documenta-
tion to be self-descriptive, allowing semantic clients to
conceive requests at runtime.

• Power efficiency is achieved thanks to the persistence
of configuration and services; we can imagine scenarios
where current is cut on an object by an external factor
or in periodic cycles to maximise its lifetime.

• Computational Resource Efficiency is achieved through
the properties a service needs to be available; non-
configured services stay in the SSR, which means they
have no representation in RAM nor the configuration,
effectively reducing memory load. RAM usage can be
visualised in table 2. With a cost of 93Bytes, 10 Ca-
pabilities can be instantiated simultaneously.

• Our architecture is able to apply some REST principles
that facilitate scalability. Client-state representation is
not kept in memory, and there is no out of the band
knowledge necessary to retrieve URIs.

5. CONCLUSION
A big number of things are flourishing with the potential

to integrate the Web in the coming years. As of today, no
clear standard technology stack is ready to integrate them
to the Web due to their heterogeneity. This is especially
true for constrained devices, that can not rely on extensive
resources to support typical Web technologies. Furthermore
the price on hardware for Web-capable devices represents
a major obstacle for the widespread adoption of these tech-
nologies. Embedding them in ever smaller devices minimizes
the influence of this factor. The technical feasibility de-
pended on the ability of the chosen tools and standards to
fit in the constrained setup of the device. We can imagine
better devices to embed the proposed architecture, but we
intentionally chose an Arduino UNO to demonstrate that it
is capable to cope with our expectations.

We herein proposed a minimal architecture to enhance
constrained devices with semantics and improve their inter-
operability with Web standards. We contribute to a more
distributed semantic Web, encouraging the creation of intel-
ligent clients. Our contribution meet a certain number of
criteria: discoverability through the use of commonly used
technologies, power efficiency by implementing persistent
configuration, computational resource efficiency by allow-
ing only configured services to be available, self-description
through semantic descriptions of APIs, and scalability by
implementing REST principles.

We envisage further work towards implementing a REST-
ful agent instead of just servers, to learn and generate re-
quests to other connected objects on the Web and then par-
ticipate in physical mashups, as well as enabling the proxy
to serve as a cache and content negotiator.
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