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Abstract

Human action recognition is a challenging task due to the complexity of human movements and to the variety among
the same actions performed by distinct subjects. Recent technologies provide the skeletal representation of human body
extracted in real time from depth maps, which is a high discriminant information for efficient action recognition. In this
context, we present a new framework for human action recognition from skeleton sequences. We propose extracting sets of
spatial and temporal local features from subgroups of joints, which are aggregated by a robust method based on the VLAD
algorithm and a pool of clusters. Several feature vectors are then combined by a metric learning method inspired by the
LMNN algorithm with the objective to improve the classification accuracy using the nonparametric k-NN classifier. We
evaluated our method on three public datasets, including the MSR-Action3D, the UTKinect-Action3D, and the Florence
3D Actions dataset. As a result, the proposed framework performance overcomes the methods in the state of the art on
all the experiments.

1 Introduction

Despite many efforts in the last years, automatic recogni-
tion of human actions is still a challenging task. Action
recognition is broadly related to human behavior and to
machine learning techniques, whereas its applications in-
clude improved human-computer interfaces, human-robot
interaction and surveillance systems, among others. Ac-
tivities involving temporal interactions between humans
and objects could be handled by graphical models as de-
scribed in [5]. In our work, we address specifically human
actions, which are described as a well defined sequence of
movements. Moreover, action recognition methods may
be used as intermediate stages in systems capable of pro-
viding more complex interpretations such as human be-
haviour analysis and task recognition [13]. In action recog-
nition frameworks, we can identify three major parts: ac-
tion segmentation from video streams, modeling and rep-
resentation of spatial and temporal structure of actions,
and action classification. The first two parts are highly
dependent on the quality of sensory data, while the classi-
fication stage has been proved difficult due to the variety
and complexity of human body movements.

Many approaches for human action recognition are
based on 2D video streams [26]. However, 2D color im-
ages are hard to be segmented and lack depth information.
As an alternative to color cameras, depth sensors have
been popularized by their low-cost and accessibility. Ex-
amples of affordable depth sensors are Microsoft’s Kinect
and Asus’ Xtion, which allows to capture both RGB im-
ages and depth maps. The human poses, composed by
skeleton joints, can be extracted from depth maps in real-

∗Corresponding author: Tel.: +33-013-073-6292; fax: +33-013-
073-6627;

time [19]. Skeleton joints are a high discriminant represen-
tation that allows efficient extraction of relevant informa-
tion for action classification. Samples of RGB images with
associated depth maps and skeleton joints from captured
human actions are shown in Fig. 1.

(a) (b)

Figure 1: Samples of RGB images, depth maps, and
their respective skeleton joints from the public UTKinect-
Action3D dataset [27]. The images correspond to the ac-
tions throw (a) and wave hands (b).

Human action recognition methods still include some
drawbacks, specially when representing the structure of
actions. Many authors have proposed to extract spatial
features from skeleton joints [23, 27], while others extract
temporal information from sequences alignment [12] or by
frequency analysis [24] of spatial features. It is known
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that both spatial and temporal information are fundamen-
tal, however, an early combination of distinct features may
not effectively improve results [21]. Some authors have no-
ticed that the relevance of each skeleton joint varies from
one action to another. [24] empirically demonstrated the
benefit of grouping certain joints into subgroups to con-
struct more discriminant features. Also, human actions
are often performed in very different durations, which de-
mands a robust method to represent the variety of lengths
of the input sequences.

Considering the presented difficulties, we present the
three main contributions of this work as follows. First,
we bring traditional methods in the image classification
domain to human action recognition, constructing a new
framework able to combine distinct features in a straight-
forward pipeline. Second, we propose simple yet effi-
cient spatial and temporal local features from subgroups
of joints, aggregated into global representations, allowing
further learning to extract relevant information for classi-
fication. Third, we demonstrate the individual contribu-
tions of each step of the proposed framework by extensive
experiments, showing that all parts are important to the
final results. With these contributions we are able to pro-
vide state-of-the-art performance at very high speed on
three well know datasets. In addition, the source code of
this work is publicly available 1.

This paper is organized as follows. Section 2 presents
a review of related work. The proposed framework is de-
scribed in section 3, followed by the experimental evalu-
ation of our method in section 4. Finally, section 5 con-
cludes this paper.

2 Related work

In this section, we focus on action recognition methods
from depth sensors. Readers can refer to the survey from
[15] for general vision-based approaches.

State-of-the-art methods for human action recognition
using depth sensors are mostly based on depth maps, skele-
ton joints, or both [10]. Some of the advantages of depth
sensors over color cameras are their invariance to lightning
and color conditions. They can also be used to provide a
3D structure of the scene, which makes the segmentation
step easier. Some methods use solely depth maps for ac-
tion recognition [9, 11, 14, 16, 28]. However, these methods
suffer from noisy depth maps and occlusions. To deal with
multichannel RGB-D frames, [21] proposed a latter feature
combination scheme, although it can be costly if several
features are used, since their method needs one classifier
and one weight coefficient for features individually. Using
both depth maps and skeleton joints, [24] proposed the
actionlet ensemble model. The actionlet features combine
the relative 3D position of subgroups of skeleton joints and
the local occupancy pattern (LOP) descriptor. To capture
the temporal structure of actions, the authors employ the

1The Matlabr source code is publicly available at https://

github.com/dluvizon/harskel

short time Fourier transform on concatenated features to
compose a final feature vector.

Based only on skeletons extracted from depth maps,
[27] proposed a representation of human pose by the his-
togram of 3D joints (HOJ3D). They project the sequence
of histograms using LDA and label each posture using the
k-means algorithm. Each posture label from a sequence
is fed into a discrete hidden Markov model (HMM) that
gives the matching probability for each action. Their ap-
proach showed low accuracy in cross subject tests due
to the high intra-class variance observed in the evaluated
datasets. [29] showed that speed and acceleration of skele-
ton joints are also important for action classification by
proposing the nonparametric moving pose (MP) descrip-
tor. A dictionary learning algorithm was proposed by [12]
in order to learn a sparse representation for the human
body. Some works have proposed manifold based methods
to analyse sequences of skeleton joints. [4] projected the
temporal evolution of skeleton joints into a Riemannian
manifold and proposed an elastic metric to compare dif-
ferent actions, and [20] projected one sequence as a point
on a Grassmann manifold, proposing to learn the “Con-
trol Tangent” spaces for actions representation. [23] pro-
posed a new skeletal representation that models the 3D
geometric relationships between human joints using three-
dimensional linear transformations. Applying a graph-
based model for human action recognition, [8] proposed
the Joint Spatial Graph (JSG), in which the vertices rep-
resent the human joints and the edges represent the rela-
tive variance among joint pairs with respect to a specific
action. For each action, a JSG is constructed using a fixed
number of joint pairs according to their importance. Two
graphs are then compared by their structures, resulting in
a similarity score.

Although recurrent neural networks (RNN) have suc-
ceed in the text and speech domains, a few works have
presented satisfactory results using the already available
skeletal features in differential RNN [22] and Long Short-
Term Memory (LSTM) networks [31]. One of the major
difficulties using neural networks on 3D action recognition
is the relatively small number of training samples, which
usually leads to strong overfitting.

From this related work we can conclude two important
facts. First, both spatial and temporal information are
relevant for action recognition. However, since they have
different nature, it is not trivial to combine them. Second,
certain joints are more discriminant for specific actions. In
our work, we demonstrate that spatial and temporal fea-
tures can be used together if they are combined correctly.
Furthermore, the proposed approach relies on an aggrega-
tion method that preserves fundamental information from
individual joints, allowing further efficient metric learning.

3 Proposed framework

The proposed approach for human action recognition rely
on sequences of skeleton joints extracted from depth maps
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Figure 2: Overview of the proposed framework.

and can be divided into four stages, as outlined in Fig. 2.
In the first stage we extract local features, which are then
aggregated into global representations. In the third stage,
all the resulting features are concatenated. Finally, the
learning method extract the relevant information for the
k-NN classification.

3.1 Local features extraction

The local features are extracted directly from sequences
of skeleton joints and can be divided into two types, ac-
cording to their physical interpretation. The first are the
displacement vectors of joints, which represent the motion
of specific body parts. Displacement vectors are 3D vec-
tors taken from single joints with respect to the sequence
of skeletons s = {1, 2, . . . , τ}, defined as follows:

υsi =
ps+1
i − ps−1i

∆T
| 1 < s < τ, (1)

where psi is the coordinate (x, y, z) of the joint i in the
sequence index s, ∆T is the time interval between two
sequences s+1 and s−1, and τ is the number of skeletons
(frames) in a given sequence. The second type of local
features are formed by relative position of joints, which
is a relevant information that describes the body position
and has been successfully used by other authors [24, 12].
The relative position between two joints in the sequence
index s is a 3D vector defined by the equation bellow:

ωs
i,k = psi − psk | i 6= k, (2)

where psi and psk are the coordinates (x, y, z) of different
joints from the same skeleton.

The skeletal representation of human body is usually
composed by a fixed number of joints. Two different lay-
outs of human body representation are shown in Fig. 3.
The basic layout is composed by 15 joints: right hand,
r. elbow, r. shoulder, head, neck, left shoulder, l. elbow,
l. hand, spine, r. hip, r. knee, r. foot, l. hip, l. knee, and
l. foot. Another representation commonly used in some
datasets includes the r. wrist, l. wrist, center hip, r. ankle,
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Figure 3: Human body representation by 20 (a) and 15
(b) skeleton joints.

Table 1: Features fn composed by subgroups of displace-
ment vectors.

Feature Subgroup of joints (i)
f1 Head, r. hand, l. hand, r. foot, and l. foot
f2 Neck, r. elbow, l. elbow, r. knee, and l. knee
f3 Spine, r. shoulder, l. shoulder, r. hip, and l. hip

and l. ankle, resulting in 20 joints. In order to build the
proposed local features, we concatenate displacement vec-
tors (from Eq. 1) or relative positions (from Eq. 2) taking
subgroups of joints. Three features are composed by com-
bination of displacement vectors and four are composed
by combination of relative positions, respectively detailed
by Tables 1 and 2. Specifically, the features f1, f2, and f3
are composed by concatenation of displacement vectors of
five joints. Similarly, the features f4, f5, f6, and f7 result
from distinct relative positions concatenated.

The major objective of dividing skeletons into subgroups
of joints is to provide smaller features to the clustering
stage. When compared to all joints composing one single
feature, we expect two improvements. First, smaller fea-
tures tend to be better clustered, and second, it is prefer-
able to use smaller but complementary groups of joints
than reducing the feature space (by PCA, for example).
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Table 2: Features fn composed by subgroups of relative
positions.

Feature Subgroup of joints (i) Relative to (k)
f4 Head, l. hand, and r. hand Spine
f5 Head, l, hand, and l. foot R. hip
f6 Head, r. hand, and r. foot L. hip
f7 L. hand and r. hand Head

This assumption is verified by our experiments, as pre-
sented in Sec. 4. Another important point is how the sub-
groups are chosen. In our method it is not practical to
evaluate all the possible combinations of different joints
into smaller groups. Therefore, we intuitively divided the
joints of displacement vectors from the center to the ex-
tremities of the human body. Similarly, the relative posi-
tions were selected to represent the position of hands, feet
and head with respect to the rest of the body. This ap-
proach was empirically validated as a satisfactory solution
by our experiments.

3.2 Features aggregation

For each video frame, a set of local features are extracted
by the local feature extraction method. Namely, the
sequence of local features is represented by fn,s where
n = {1, 2, . . . , 7} and s = {1, 2, . . . , τ}. The objective
of the aggregation stage is to build fixed-size features for
each sequence of local features, as depicted in Fig. 4.
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Figure 4: Diagram of the feature aggregation stage.

The feature aggregation method can be divided into
three steps. In the first step, for each subgroup n we
compute C different k-means using different initializa-
tions. For each subgroup we then obtain C sets of k clus-
ters represented by {µn,c,m}, where m = {1, . . . , k} and
c = {1, . . . , C}. The next step consists in applying PCA
to local features individually in each cluster. In this step,
we apply PCA keeping all the components. Finally, in the
third step, we use the vector of locally aggregated descrip-
tors (VLAD), which is the non probabilistic version of the
Fisher Vectors, proposed by [6]. Let

Sn,c,m =

{
fn,s

∣∣∣∣m = arg min
p
‖fn,s − µn,c,p‖

}
(3)

be the set of local features of subgroup n from the initial-
ization c in cluster m. Then the VLAD component m with
respect to the initialization c is:

vn,c,m =
∑

fn,s∈Sn,c,m

(fn,s − µn,c,m). (4)

The VLAD representation of subgroup n and k-means c
is simply the concatenation of all components vn,c,m, as
follows:

Fn,c = [vn,c,1, . . . , vn,c,k]. (5)

As proposed by [7], we apply power law normalization
keeping the sign of each component x of the VLAD rep-
resentation by doing x ← sign(x)

√
|x|. The PCA inside

clusters followed by the power law normalization can be
seen as a kind of “whitening” [3]. As noted by [17], whiten-
ing vectors is equivalent to replacing the Euclidean dis-
tance by the Mahalanobis distance.

Each feature Fn,c is a vector which size depends only
on the corresponding local feature size and the number
of centers in the clustering algorithm. We do a flat con-
catenation of all features Fn,c into a final feature vector
here represented by ~x. The key factor in the aggregation
method is that the fundamental structure of local features
are preserved while using multiple clustering representa-
tions. That fact allows the next stage to learn the best
combination of features and clustering representations.

3.3 Learning features combination

As a result from the previews two stages, we have a feature
vector ~x formed by aggregated features that depends on
the number of local feature subgroups (n) and the number
C of unique k-means initializations. The goal of the feature
combination stage is to extract discriminant information
that improves the action recognition accuracy, considering
the nonparametric k nearest neighbor (k-NN) classifier.
In this regard, we employ two stages of metric learning,
resulting in a reduced final feature vector, which is used
for classification.

The metric learning approach is inspired by the large
margin nearest neighbor (LMNN) algorithm proposed
by [25]. For simplicity, we define the squared distance
(squared l2-norm) between two feature vectors in function
of the linear transformation L:

DL(~xi, ~xj) = ‖L(~xi − ~xj)‖2 (6)

3.3.1 Loss function

Considering the k-NN classifier, the loss function is a mea-
surement of violations made by impostor samples and dis-
tancing among target neighbors. Specifically, given one
feature vector ~xi, the target neighbors, here represented
by ~xj , are those that we want to be closest to ~xi. On the
other hand, the impostors, represented by ~xl, are those
that are closer to ~xi without being targets. This concept
was previously introduced by [25]. The function loss can
be represented by two forces: the pull and push compo-
nents, trying to respectively pull the targets while pushing
the impostors, defined as follows:

εpull(L) =
∑
j→i

DL(~xi, ~xj) (7)
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εpush(L) =
∑
i,j→i

∑
i,l 6→i

bξ +DL(~xi, ~xj)−DL(~xi, ~xl)c (8)

where ξ is the desired separation margin between targets
and impostors. The notations j → i and l 6→ i mean that
j is the index of targets of sample i while l is the index of
impostors of sample i.

As most of the datasets for human action recognition
have a relatively small number of samples from each action,
learning algorithms can be very prone to overfitting on
such data. To cope with this, we added a regularization
in the linear transformation L, as presented in the global
loss function:

ε(L) = (1− µ)εpull(L) + µεpush(L) + γ‖LTL− I‖2 (9)

where µ is the ratio between “push” and “pull” compo-
nents, γ is the regularization coefficient, and I is the iden-
tity matrix. The regularization term enforces that the
equivalent metric LTL should remains close to the identity
matrix.

3.3.2 Global optimization

The optimal transformation L∗ that minimizes Eq. (9) can
be found by solving the global optimization problem:

L∗ = arg min
L

ε(L) (10)

In order to solve Eq. (10) using the gradient descent
approach, we compute the derivative term of ε in L, as
follows:

(11)

1

2

∂ε

∂L
= (1− µ)L

∑
i,j→i

(~xi − ~xj)(~xi − ~xj)
T

+ µL
∑
i,j→i

∑
i,l 6→i

[(~xi − ~xj)(~xi − ~xj)
T

− (~xi − ~xl)(~xi − ~xl)
T

] + 2γL(LTL− I)

Since the number of operations required to solve Eq. (11)
can be significantly large even for small training datasets,
we employ a minimization algorithm based on stochas-
tic gradient descent [1]. Let us define D as the training
dataset. In the SGD optimization, for each iteration, we
randomly select a small subset from D defined as S. Iter-
ating over the samples in S i.e., the index i is restricted to
samples in S, we solve Eq. (11) taking targets and impos-
tors from the whole dataset D. A good initialization of L
can be done by taking the eigenvectors of the covariance
matrix of D, which means to initialize L with the PCA on
D. This is a good initialization since we reduce the feature
size in the metric learning stages and PCA is known to be
a good dimension reduction technique. The optimization
is performed until the maximum number of epochs (Max-
Epoch) is reached or the gradient vanishes according to the
threshold ϑ. The global SGD optimization is presented in
Algorithm 1.

Algorithm 1 Global SGD optimization.

Require: Training dataset D, MaxEpoch, vanishing
value ϑ

1: Do PCA on D to initialize L
2: Epoch← 0
3: repeat
4: S← Randomly select samples from D
5: G← Solve Eq. (11) for the subset S
6: L← L− ηG
7: Epoch← Epoch+ sizeof(S)/sizeof(D)
8: until (‖G‖ ≥ ϑ) and (Epoch < MaxEpoch)
9: return L

As shown in Fig. 2, two stages of metric learning were
used in our method. The first one aimed to reduce the fea-
ture size while performing a first separation between tar-
gets and impostors by learning the transformation L1. In
this regard, we set µ = 0.9 and MaxEpoch = 2. The sec-
ond stage works on smaller features and learns the trans-
formation L2 with µ = 0.5 and MaxEpoch = 50. Each
metric learning stage is individually optimized following
the Algorithm 1, replacing L by L1 and L2, respectively
at each etage. Namely, we first learn L1, which takes ~x
as input, then in the second stage we learn L2 which in-
put is L1~x. This approach allows a fast learning process
in addition to avoiding overfitting, since the feature size is
reduced in a few iterations and the more intensive learning
stage is performed over fewer parameters. Finally, since all
transformations are linear, in the testing evaluation we can
use L = L2L1 to represent the full learned transformation.

4 Experiments

We evaluated the accuracy of our method on three pub-
licly available datasets. The MSR-Action3D [9] is the
most common dataset for 3D human action recognition
according to [30] and is composed by 10 subjects perform-
ing 20 actions chosen in the context of gaming, which in-
clude: high wave, horizontal wave, hammer, hand catch,
high throw, draw X, draw tick, draw circle, hand clamp,
two hand clamp, two hand wave, side boxing, bend, for-
ward kick, side kick, jogging, tennis swing, tennis serve,
golf swing, and pick-up throw. This dataset is challeng-
ing due to some pairs of actions very similar, for example:
hand catch and draw tick, or pick-up throw and bend. The
UTKinect-Action3D dataset [27] is composed by 10 sub-
jects, of which nine are males and one is female including
one left-handed, performing 10 actions: walk, sit down,
stand up, pick up, carry, throw, push, pull, wave, and clap
hands. Each subject perform actions in various views and
the length of videos vary from 5 to 120 frames, resulting
in significant variation among the recordings. The Flo-
rence 3D Actions dataset [18] is composed by 10 subjects
performing 9 actions recorded in distinct environment con-
ditions, which include: wave, drink from a bottle, answer
phone, clap, tight lace, sit down, stand up, read watch,
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and bow. Since our feature extraction method requires
only 15 skeleton joints, we averaged the joints from hands
and wrist into a single joint hand for the datasets MSR-
Action3D and UTKinect-Action3D, in which skeletons are
composed by 20 joints. We apply the same process to foot
and ankle, and to spine and center hip.

For all datasets, we use the already computed skeleton
joints data and the same parameters in all the performed
tests. We optimized the hyperparameters of our method
using only the MSR-Action3D dataset split as proposed
by [24]. Seven local feature subgroups were extracted as
described in Sec. 3.1. In the feature aggregation stage, we
use a pool of five unique k-means (C = 5), each one com-
puting k = 23 clusters. After the feature concatenation
stage, the resulting feature vectors are of size 8970. In
both metric learning stages, we set γ = 0.1 and ξ = 0.1.
In the SGD optimization, we solve the Eq. 11 by taking
batches of 32 training samples. In the first metric learning
stage we set the output dimension to 512, followed by the
second stage with output dimension equal to 256, which
is the final feature size. The final classification is a seven
nearest neighbors voting.

4.1 Comparison with the state of the art

We compared our results with several methods in the state
of the art on three distinct datasets, as presented in Ta-
ble 3.

4.1.1 MSR-Action3D dataset

The MSR-Action3D dataset has been used by several
works in many disparate ways. In our tests, we selected the
two most relevant evaluation approaches on this dataset.
The first approach we used is the cross-subject splitting
proposed by [24], where subjects 1,3,5,7,9 are used for
training and subjects 2,4,6,8,10 are used for testing. In
that case, the accuracy of our method is 97.1%, which is
the best result on this data as far as we know. Compa-
rable results are shown in Table 3. As can be seen in
the confusion matrix (Fig. 5) resulting from our method,
several actions were classified without any mistake and
only two actions presented classification accuracy lower
than 93%. The second approach for evaluation we used
was proposed by [14], where we report the average result
among all possible 5-5 subject splits. We consider this ap-
proach the most relevant, since it reduces the possibility
of effects from particular combinations. By this approach,
our method achieved an average accuracy of 90.36% and a
standard deviation of 2.45%, which is an improvement of
3.08% over the best method so far [4]. We reinforce that in
both approaches results are reported in the cross-subject
scenario. The results from other methods using the same
assessment are reported in the third column of Table 3.
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Figure 5: Confusion matrix for action classification on
the MSR-Action3D dataset resulted from the proposed
method.

4.1.2 UTKinect-Action3D dataset

On this dataset, the authors [27] proposed to use the leave
one actor out cross validation (LOOCV) scheme. Specifi-
cally, one actor is removed from training and used as test-
ing. This process is repeated for all actors and the final
result is the average accuracy of all runs. On our tests,
we followed the same procedure and our method achieved
on average 98.00% of accuracy with a standard deviation
of 3.49%, as reported in the fourth column of Table 3.
We consider the LOOCV scheme statistically more stable
than the single cross-validation assessment employed by
[32] and [8]. Therefore, our results are not comparable on
this dataset.

4.1.3 Florence 3D Actions dataset

Similarly to the previews experiment, we evaluate the
performance of our method on the Florence 3D Actins
dataset using the LOOCV approach, as suggested by the
authors [18]. On average, our method classified 94.39% of
actions correctly. Our method exceeded the state-of-the-
art approaches by a significant margin, as presented in the
fifth column of Table 3.

4.2 Contribution of each method’s stage

In this section, we discuss the influence of each part of our
method, as tested on the MSR-Action3D dataset.

• First, using all joints together instead of our proposed
subgroups leads to a performance decrease of 5.5%.
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Table 3: Accuracy evaluation of our method compared to the state-of-the-art methods on three public datasets. Columns
two and three present results on the MSR-Action3D dataset using the protocols proposed by [24] and [14], respectively.
Columns four and five respectively show results on UTKinect-Action3D and Florence 3D Actions datasets.

Dataset / Method
MSR-Action3D

protocol of
[24]

MSR-Action3D
protocol of

[14]
UTKinect-Action3D Florence 3D Actions

[24] 88.2% — — —
[27] — — 90.92% ± 1.74% —
[12] 96.7% — — —
[14] 88.36% 82.15% ± 4.18% — —
[18] — — — 82.0%
[21] 88.89% — — —
[4] 92.1% 87.28% ± 2.41% 91.5% 87.04%
[11] 95.62% — — —
[23] 89.48% — 97.08% 90.88%
[28] 93.09% — — —
[20] 91.21% — 88.5% —
[22] 92.03% — — —
[8] 92.2% — — —
[16] — 86.5% — —

Our method 97.1% 90.36% ± 2.45% 98.00% ± 3.49% 94.39%

• If only displacement vectors or only relative positions
are used, the classification accuracy drops by 4.1%
and 17.2%, respectively.

• In the feature aggregation stage, if the PCA or the
power law normalization is turned off, the perfor-
mance decreases by 4.4% and 4.8%, respectively.

• Similarly, aggregating features with a single cluster-
ing initialization, i.e., setting C = 1, drops the per-
formance by 2.5%.

• Replacing the proposed two stages of metric learning
by features reduction with PCA, it means using PCA
to reduce the feature size from 8970 to 512 and then
using a single metric learning stage, the best perfor-
mance decreases by 0.8%.

• Removing the regularization coefficient from Eq. 9 re-
duces the best performance by 0.4% and led to faster
overfitting.

• Finally, replacing the k-NN classifier by SVM or neu-
ral network (MLP) drops the performance by 1.5% in
the best case (see Table 4).

The conception of the proposed framework was reasoned
that each part is optimally designed regarding the next
stage in the pipeline. For instance, the local features ex-
traction provides small features that can be clustered well,
while avoiding early combination of distinct information.
In the clustering stage, we use multiple initializations to
increase the chances to have a better representation, which
can be learned in the next stage. Similarly, the met-
ric learning algorithm (LMNN) is optimal to increase the
nearest neighborhood (k-NN) classifier accuracy.

The multiple clustering initialization is an important
step in the feature aggregation method and goes beyond
the improvement on classification accuracy of the proposed
framework. As shown in Fig. 6, the probability of reaching
better accuracy drastically increases after metric learning
when using C = 5. This effect can also be observed by
the standard deviation decreasing from 1.34% to 0.71%,
respectively using C = 1 and C = 5. This fact is ex-
pected, since the metric learning can extract complemen-
tary information from different clustering representations.
Additionally, the metric learning stage can be seen as the
point of convergence where all the particular improvements
are intensified, resulting in a final improvement of 12% as
shown in Fig. 7, while drastically reducing the feature size.
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Figure 6: Probability of accuracy according to 100 random
evaluations using C = 1 and C = 5 in the feature aggre-
gation stage, before (Bef.ML) and after (Aft.ML) metric
learning.

We evaluate the influence of the last stages by replac-
ing the k-NN classifier by two well known classifiers, be-
fore and after the metric learning (LMNN) stage. First,
we compared with a standard SVM [2] using the sigmoid
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Figure 7: The learning curves: evolution of the function
loss on training and the classification accuracy on testing
samples.

kernel setting the parameters gamma and C respectively
to 1 and 10. Second, we compared with a neural net-
work (MLP) with two fully-connected layers, the first using
ReLu activation and the second using softmax for classifi-
cation. Table 4 shows that the k-NN classifier on learned
features by the metric learning stage gives the best result,
even though both SVM and neural network present results
comparable to the state of the art, which demonstrates the
robustness of the proposed features representation. These
are expected results, since the objective function of the
metric learning stage was specially designed to increase
the k-NN classification accuracy.

Table 4: Classification accuracy of the proposed metric
learning and classifier stages compared to SVM and neural
network approaches. We evaluate the classifiers taking as
input the aggregated features (~x) and the learned features
after LMNN.

Classifier Aggregated features
Learned

features (LMNN)

SVM 93.4% 95.6%
Neural net. 93.8% 95.6%
k-NN 83.2% 97.1%

4.3 Computation time

The average testing runtime of the proposed method is
presented in Table 5, which is faster than the computation
time reported by [20]. The testing sequences were pro-
cessed in a laptop machine with Intelr CoreTM i7-4710MQ
processor, after training. One of the reasons which led to
low computing time for action recognition is that the most
complex part of our method is the metric learning feature
combination. Once the training stage is finished, recogniz-
ing new sequences is a fast and straightforward process.

5 Conclusion

In this work, we presented a new framework for human ac-
tion recognition using only skeleton joints extracted from
depth maps. We proposed extracting sets of spatial and

Table 5: Average testing runtime of the proposed method
on three datasets. The given computation time in millisec-
onds refers to one testing sequence.

Dataset / Stage
MSR-

Action3D
UTKinect
Action3D

Florence
3D Actions

Local features
extraction (ms)

2.34 2.00 1.52

Features
aggregation (ms)

4.59 4.92 4.14

Features
combination (ms)

0.14 0.18 0.15

Classification
k-NN (ms)

1.38 0.97 1.06

Average testing
time (ms)

8.45 8.07 6.87

temporal local features from subgroups of joints. Local
features are aggregated into several feature vectors by a
robust method using the VLAD algorithm and a pool of
clusters, providing a good representation for long and short
actions. All the feature vectors are then efficiently com-
bined by a metric learning method inspired by the LMNN
algorithm, which is used to extract the most discriminant
information from features with the objective to improve
the accuracy of the k-NN classifier.

Extensive experiments with the proposed framework
show that all the proposed steps contribute significantly to
improve classification accuracy. We conclude that spatial
and temporal information, as well as the multiple clus-
tering representations, could be efficiently combined by
the metric learning approach, resulting in a significant in-
crease of performance. Moreover, the proposed method
relies on a few external parameters and our experiments
show that the method generalizes well, since its perfor-
mance overcame all the results in the state of the art on
three important datasets, using the same parameters in all
evaluations.

Acknowledgment

This work was partially supported by the Brazilian Na-
tional Council for Scientific and Technological Develop-
ment (CNPq) – Grant 233342/2014-1.

References
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