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Convergence of the the kinetic hydrostatic
reconstruction scheme for the Saint Venant
system with topography

Francois Bouchut} Xavier Lhébrard*

Abstract

We prove the convergence of the hydrostatic reconstruction scheme
with kinetic numerical flux for the Saint Venant system with Lipschitz
continuous topography. We use a recently derived fully discrete sharp
entropy inequality with dissipation, that enables us to establish an
estimate in the inverse of the square root of the space increment Ax of
the L? norm of the gradient of approximate solutions. By Diperna’s
method we conclude the strong convergence towards bounded weak
entropy solutions.

Keywords: Saint Venant system with topography, well-balanced scheme,
hydrostatic reconstruction, convergence, entropy inequality.

Mathematics Subject Classification: 65M12, 76M12, 35165

1 Introduction and main result

We consider the Saint Venant system

2 1.1
Oy (hu) + 0, (hu® + g%) + gho,z = 0, (1.1)

for t > 0 and x € R, where the unknowns are h(t,x) > 0 and u(t,x) € R,
g > 0 is the gravity constant, and the topography z(x) is given. The system
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is completed with an entropy inequality

2

u? h u’ 2
O\ hey +95 +ghz ) +0.  (h +gh* +ghz)u) <0 (1.2)

We shall denote U = (h, hu) with h > 0, and

u?  h? u? )
nU) =0+ g5, GU) = (o +gh?)u, (1.3)
the entropy and entropy fluxes without topography.

For this system we have some existence and stability results [27, 21, 23,
29]. Concerning the approximation of this system, several schemes have been
invastigated [25, 4, 3, 6, 11, 15, 10] and we have some results concerning con-
sistency, stability and convergence of those schemes [9, 12, 26, 8, 2].

In this context this paper gives a proof of convergence for the hydrostatic
reconstruction scheme [4] with kinetic flux [25]. Our result is a consequence
of the work [5], which states that the hydrostatic reconstruction scheme, used
with the classical kinetic solver, satisfies a fully discrete entropy inequality
with an error term. In the case without topography, the error terms vanish
and we have the following inequality:

n n At~ ~
n(U; +1) <n(U;}") - Ax (Gi+l/2 - Gi71/2)
At

2.2
g
— Vs _/ |€|—(1£<0 (Mz‘+1/2+ =+ Mz‘+1/2f) (Mi+1/2+ - Mi+1/27>2
A.T R 6
+ Teso (Miorjor + Miajp) (Mioajay — Mifl/Q—)2> d¢. (1.4)

In the time-only discrete case and without topography, this single energy
inequality that holds for the kinetic scheme ensures the convergence [9]. The
fully-discrete case (still without topography) is treated in [8] and the result is
given under the dissipation assumption that F* or —F~ (defined in (1.25))
are 7 dissipative . Unfortunatly this property does not hold for the scheme
we considerer, there is a lack of dissipativity of the kinetic scheme. Thus the
new contribution of this paper is to give a proof for the convergence in the
case of non constant topography, under weaker dissipation assumptions.

Let us give here some of the main ideas of our proof. First thing had been
to find a weaker dissipation property that enables us to prove the convergence.
In that matter we found that F* — F'~ is n dissipative, which corresponds to



the following inequality

G (H<M2> B -7 () @ (M — Mo) e
> a(n(Uz) —n(Ur) =0/ (Ur) (Us — Uh)). (1.5)

A rigorous statement of this result can be founded in lemma 5.2 and we can
point out that it is only valid on an open bounded convex set which does not
content zero value for the height, and the constant « is not explicit.

In order to go further in the proof we multiply by time increment At (1.4)
and sum over indices ¢ and n. Then after doing some additional computations
we are able to use (1.5), as a consequence we get a gradient estimate and we
conclude by a compensated compactness result. Indeed we recall that the
compensated compactness theory [27] gives the compactness on a bounded
sequence of approximated solutions of the system (U.) which satisfies the
relations

On(Uz) + 0:G(U:) (1.6)

to be compact in H lgcl, on a sufficiently large family of entropies. In our work,

we found an estimate on the gradient of the approximate numerical solutions
(Ua):

C C
10:Uall 2, <

< JAL B S AL
where Az is the space increment of the scheme. This is the key point of the
method. Indeed, the estimates (1.7) are enough as in Di Perna approximation
technique [21] to control all entropies as (1.6).

We have non-uniqueness of Riemann solution for nonconstant topography,
concerning numerical issues associated see [3, 30].

10:Ua |l 2, (1.7)

1.1 Saint Venant system

Before going into discretised models, we recall the classical kinetic Maxwellian
equilibrium, used in [25] for example, at the coninuous level. The kinetic
Maxwellian is given by

M(U£) = giﬁ (20h — (€ —u)®) ", (18)

where £ € R and z; = max(0,x) for any = € R. It satisfies the following

moment relation,
/ (1) M(U, €)de = U. (1.9)
r \§
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The interest of this particular form lies in its link with a kinetic entropy.
Consider the kinetic entropy,

927T2

5 34 gzf, (1.10)

H<f7£72) = Ef +

where f >0, £ € R and z € R, and its version without topography

(s =51+ 50 p (1.11)

Then one can check the relations
/R H(M(U).£,2)dg = n(U) + gh, (1.12)
/R EH(M(UE).£,2)de = G(U) + ghzu. (1.13)

Moreover, for any f(£) > 0, setting h = [ f()dE, hu = [ £f(£)d€ (assumed

finite), one has the following entropy minimization principle [5],
o) = [ mrwe.ode < [ mir©.0m 1
R R

1.2 Hydrostatic reconstruction and kinetic flux

We consider a time-step At and an uniform grid (2;11/2)icz With space in-
crement Ar = ;10 — Ti—1/2, We set 2,12 = 1Ax and t, = nAt. Let
U° = (h% h%u®), h® > 0, h% u® € L®(R) and = — z(z), assumed Lipschitz
continuous, be an initial data. We define the discretization of the initial data
as

go - L[ U°(y)d (1.15)
i—1/2
and
z; an approximation of z(x;), (1.16)

where z; = (ZL‘Z-+1 2+ i /2) /2. Then the scheme writes

At

Ui"H =U" - Ax (Fzﬂ/% - @'71/2+) ) (1.17)
with

Fz’+1/2f = ?(Uiﬂ/%, Ui+1/2+) - 5¢+1/277 (1-18)

Fi 0 = F(Uicjo—, Uic124) + Sica /24 (1.19)

4



with F is a numerical flux for the system without topography. The source
terms Sji1/2—, Si—1/24 are defined by

0 0
Sivi2—- =\ r2 ., w2 | Sicijor = | g2 2 : (1.20)
9= — g5 g5 — g5+

The reconstructed states
Ui+1/2— = (hi+1/2—7 hi+1/2—ui); Ui+1/2+ = (hi+1/2+7 hi+1/2+ui) (1-21)
are defined by
hivijo— = (hi + 2 — ziv1/2) 4, hivijor = (hiv1 + Zig1 — Zig1y2)+ (1.22)

and
Zip1/2 = Max(Zj, Zip1). (1.23)

We will use in this paper a kinetic numerical flux F introduced in [25]

i}d((]la Ur) = F+(Ul) + F_(Ur)7 (124)

Fr) = [ 1o @ M(U£)de, (1.25)
F)= [ 6 @ M(U£)de,

with M (U,{) defined by (1.8).
We consider the velocity v, > 0 such that for all i,

M(U;, &) >0 < €] < vp. (1.26)

This means equivalently that |u;|++v/2gh; < v,,. We consider a CFL condition
strictly less than one,

At
— < 1 1.2
vax <pB <1, (1.27)

where (3 is a given constant.



1.3 Convergence result

Let (U, z;) be the scheme defined by (1.15)-(1.8). We define the approximate
solution, at fixed Az, by

UA(t,.T)
1 [ort ot —-uor, +un,
- % i { ? -z Un+1_Un t_tn
At IAT (.’L‘ T 1/2> + i i ( )
U, - UL
a2 Wk e Y OSRV U
+ oAL (x —x 1/2) + U;
for Ti—1/2 <z < Tit1/2 and t, <t< tn+1, (128)
and we set
za(x) = %(az — ;) + 2, forx <x < T (1.29)
T

Moreover, for hy; > h,, > 0 and uy; > 0, we set
Un,haruns = {(hw) €R?, Ry < h < by, Jul < g} (1.30)

which is a convex set. We state now the main result of this article, which is
the proof of the convergence of the numerical scheme.

Theorem 1.1. Let U° = (R h%u®), h° > 0, A% u® € L>®°(R), be an ini-
tial data and let z € L*(R) N CY(R) and Lipschitz continuous be the given
topography. Let (U, z;) be the scheme defined by (1.15)-(1.8). Let Ua be
the continuous approximate solution to (1.1) defined by (1.28) and za the
approzimate topography defined by (1.29). We assume that

| <2 (1.31)
Sv Ax, .

for some v* > 0. Then let hy,, > 0, hy;y > 0 and up; > 0. We assume that

sup(|zi+1 — 2il) < P, (1.32)

which enables us to set h,, = h,, — sup;(|ziz1 — z|) > 0, and make the
assumption
Vi, U eU; (1.33)

hmyhogung?

with Un,, nyy oy defined by (1.30). Moreover we assume

Lip(za) < C, (1.34)



and that

dza dz )
BTV e e uniformly. (1.35)
Ax—0 Ax—0

Then, under the CFL condition (1.27), up to a subsequence, Un — U a.e. in
(t,x) and in C¢([0,T], L,.(R)) as At — 0 and Ax — 0 where U is a weak

T, Wk

solution to (1.1) with initial data U° satisfying the entropy condition
omU) + 0,G(U) € Mg, (1.36)
for all suitable couple entropy-entropy flux (n, G) and inequality (1.2).

The outline of the parper is as follows. In section 2, we establish estimates
on the gradient of the approximate solution as we mentionned in (1.7). In
section 3, we introduce some interpolation functions and prove some regu-
larity estimates on the approximate solution. In section 4 we prove theorem
1.1, first we obtain that (1.6) is compact in H l;i by combining the gradient

estimate and the regularity estimate, then we complete the proof by applying
a compensated compactness result.

2 Estimate on the gradient of approximate
solution

This section is devoted to the proof of proposition 2.1.
We have the following estimate on the approximate solution

Proposition 2.1. Let U° = (h° n%°), h° > 0, A% u® € L*(R), be an
initial data and let z € L*(R) N CY(R) and Lipschitz continuous be the
given topography. Let (U, z;) be the scheme defined by (1.15)-(1.8). Let Ua
be the continuous approximate solution to (1.1) defined by (1.28) and za the
approzimate topography defined by (1.29). Let 5 > 0 and v*, hy,, har, upr>0,
involved respectively in assumption (1.27) and (1.31)-(1.34). We define for
all U = (h, hu),

h?  u*h?
UP =g— . 2.1
UF = g% + 35 (21)
Let N € N, T = NAt, ig, 11 € N such that ig < iy. For alli < j € N, we set
IV = (12 = 0T, xjq10 +0°T). (2.2)
Then there exists some constants Cy, Cy, Cs such that
N-1lij—1
>3 Aoz, -0 < 23
n=0 i=ig



N—-1i1—1

S> aqurtt —up <01A 02 (1+22), (2.4)
n=0 i1=1ig

/ /”H/Q 10,Un|?dadt " < G (2.5)
e . .

Tig—1/2 ° B Al‘

2

Tig+1/2 03
O, UA|?dzdt < . 2.6
(//MQ'”' ) < VA (2.6)

The constants Cy, Cy, C3 depend only on gravity constant g, h,,, har, uar,
U, B, on final time T, on |Ti,-1/2 — Ti,41/2], on |||z, ||77(U0)||L1(IZ’0*¢1) and

||h ||L1 vy

10 i1
We are able to find thoses estimates on 0;Ux and 9,Ux using recent
results on discrete kinetic inequalities founded in [5]. The proof we will be
developing is rather technical and we will use several lemmas in section 2.3.
We put their demonstrations in the appendix in order to keep clarity of the
demonstration.

2.1 Bounded propagation on the space integral of the

height
Here we found some bound on ZZ iy Azh¥ .
n+1 n At h
R = hi — Ar (F;+1/2 Fz’fl/2) ) (2.7)

with
Fliyy = / ELesoM (U, £)dE + / oMU O)de. (28)

We multiply by Az and sum over index ¢ and we obtain

71 il
O AzhPtt =" Awhy — At (Fr = Fl ) - (2.9)

=10 =10
Then we notice that

—ALF]' )y < Atoghiy 1, ALF) ) < Atophiy . (2.10)
With CFL condition (1.27) we have

11+1

ZAwh”“ < > Azh. (2.11)

1=1g i=i9—1



Let N € N and T'= NAt, using the previous inequality we get

i+ N T +1/24N
ZAth< > Azhf = / KO (z)dz. (2.12)
=10 i—=ig— N Tig—1/2—N

The last equality holds because h = 7= [/ h%(z)dz. Moreover we have

i—1/2
Tig—1/2-N = Tig—1/2 — NAT = 2012 — Ti—atj, (2.13)
Tiy41/24N = Tiy1/2 + NAT = 25 112 + T%. (2.14)
Therefore by assumption (1.31) we get
> Aat < [ @ = gy, 15)

i=io ig—1/2—Tv"
with I}, defined in (2.2).
2.2 From kinetic to macroscopic discrete entropy in-

equality

We use the notations introduced in proposition 2.1. Using CFL condition
(1.27) we can use and integrate kinetic entropy inequality [5, Theorem 3.7]
with respect to £ and we obtain

W(Uinﬂ) + gzihnﬂ < W(U'n) + gzihi — o; (é@'+1/2 - 5241/2)

VAL / |f| IL§<0 ( ir1/2+ T Mig1/o- ) (Miy1/24 — Mi+1/2—)2

+ leso (M¢f1/2+ + Mifl/Qf) (M;—1/24 — Mi71/27)2)df

At 2 2,2
+Cy (_x”m) } / M (M = Misajo- )+ (Mi = Myoajo )2 ) S,
R

A 6
(2.16)
with
Gitij2 = fH(Mz‘+1/2+7§,Zi+1/z)df+/ EH(Miy1/2—, &, 2i4172)dE,
£<0 £>0
(2.17)



the constant vg > 0 is a dissipation constant depending only on 3, and
Cjs > 0 is a constant depending only on 3. Using (1.9) and technical resultat
over maxwellian functions (5.106), we get that

W(Uinﬂ) + gzihnﬂ < W(U'n) + gzihi — o; (é@'+1/2 - 5241/2)

- yﬁAl’ / |£| 1£<0 ( +1/24 + Mz+1/2 ) (Mi+1/2+ — Mi+1/2—)2

+ Leso (M¢f1/2+ + Mi1po-) (Mi—1o4 — Mi71/27)2)d£

At \?
G <E”m) (9(hi — hip1p-)* + g(hi — hi—1/2+)2>. (2.18)

Using the definition (1.22) we get that

O S hz — hi+1/2, S |Zi+1 — Zz| s (219)
0 < hi —hicior < |z — zica], (2.20)

and we deduce that
U(Uinﬂ) + gzihﬂ“ < 77(U‘n) + gzihi — oi (éi+1/2 - 5241/2)
“ VAL / |€| Jl£<0 (Mis124 + Migajo-) (Mig1jor — Misja-)”
+ leso (M¢f1/2+ + Mi71/27) (Mi_124 — Mi71/27)2)d£

At
+ gCﬁ (E%ﬂ) (|Zz‘+1 - Zi‘z + |Zi - Zifl‘z) . (2.21)

Then we follow the computations over height done in subsection 2.1. Thus
we multiply by Az, take the sum over ¢ and make a translation over index i

10



in order to obtain

ZA:E (urth +g]2JLn+1 ZA:E (U") + gzih;)

i=1g =1

— Atéi1+1/2 + Atéioq/z

i1—1

g 7T
M 124 + Mig1)2- ) (Mit1/04 — Mz‘+1/2—)2d§
i=ig
g*m? 2
— vgAt A |f|1£<0T (Miygajor + Miygayo-) (Miy g1y — My, 1o )?d€
g2ﬂ.2

- VBAt/R ‘§‘15>0T (Mi071/2+ + Mi+1/27) (Mi071/2+ - Mi071/27)2d£

: At? 3
+ Z 2gCgA—$vm|zi+1—zi\ . (2.22)

i=ig—1
We notice according to (2.17) that we have
—Atéi1+1/2 < UV AUy 41/2+) + VmAtghitr /24 Zig1/2, (2.23)
and
—Atéio_l/z < U AN (Usy—1/2—) + vmAtghi_1/2-2i—1/2, (2.24)
with (1.27), hi 41724+ < hipr and |25, 1172 — 2i+1] < |2i+1 — 24, |, it leads to
—Atéi1+1/2 < Axn(Uiy41) + omAtghi, v12i 11 + ghau Atz 1 — 25|, (2.25)
and similarly we get
—Atéio,l/Q < Axn(Uiy—1) + vmAtghiy_12ig—1 + ghyAt|zi, — zi-1]- (2.26)

From (2.22), noticing that the last two integrals are nonpositive and using
(2.25),(2.26), we obtain

i1+1
ZASL’ (UMY 4 gzhith) < Z Az (n(UM) + gzih;)
1= 20 = 20 1

i1—1
g 7T
- VﬁAtZ/ €] —— (Mit1o+ + Miv1jo—) (Mi1)00 — Miy1/o-)*d€
i=10
- At? 5
+ ghu Atz — Zig1 | + ghuAt|zi, 0 — 2|+ 29Cs 3 m |2in1 — &l
=10

(2.27)

11



Next, we sum now over index n and we use that T = NAt and that, by
assumption (1.34) and (1.29), we have

|ziv1 — 2| < CAx, (2.28)
and therefore we get
N-1 4 A2
9T har|zig — Zig—1| + 9T har|ziy+1 — Z“|+222905A Um |2i1 — 2| < C.
e (2.29)

Thus we get

ZASL’ (UN) + gzhy)

i=ig

i1—1

g*r?
g Z At Z/ €172 (Migryay + Migaja-) (Migayop — Migaya-)*d€

i=ig

< Z Ax (n(UiO) + gzih?) +C
i=ig— N

(2.30)

with C' depending on g, T', has, B, U, |%ig—1/2 — Tiy 4172 Now we will see

that the integral in LHS of (2.30) is underestimated by a term proportionnal
N—1 x—i

t0 > onTe Soite1 At|Ui12p — Uiiajor %

2.3 Lower estimate of dissipation terms

First we notice that

2.2
g*m
/ |§|T (Mi+1/2+ + Mi+1/27) (Mit1/24 — Mi+1/27)2d€
R

g2ﬂ.2

> 3 (2Mi+1/2+ + Mi+1/2—) (Mij1)24 — Mz‘+1/2—)2df- (2.31)

Now using lemma 5.4, we obtain that there exists some C' > 0 depending
only on g, h,,, har, ups such that

) (M — My)?dg

>C <g<h2_27h1)2 + hmw) (2.32)

12



for every Uy , Uy € Up,, hps s -
Next we notice using the definitions (1.21) and the assumption (1.33) we
get that

Uiv1/24>Uiv1/2- € Wnpp haruns - (2.33)
Thus from (2.31) and applying the last estimate (2.32) with Uy = U412+

and Uy = Ujy1/2—, there exists some constant C' > 0 depending only on g,
By, har, ups such that

Miy1/24 + Mig1yo- ) (Miy1/24 — Mz‘+1/2—)2df
> ClUit1/2+ — Ui+1/2—|2 (2.34)

where | - | is defined in (2.1).

2.4 Estimate of discrete gradient
Now we use (2.34) in (2.30) and we get

N—1i;—1
VBCZ ZAt‘UZ+1/2+ Uit1/2- ‘
n=0 i=ig
i1+N
< Z A:c (U + gzh Z ZAQ: (UM) —i—gzth)jLC. (2.35)
i—=ig— N i=1g

with C depending on g, T7 h’M7 ﬁ7 Um, |xi071/2 - xi1+1/2"
Then we notice that n(U) > 0 and we get

N—-1i=i1—1

VBCZ Z At|Uis1/o4 — Uipayo- I

n=0 i=ig

i1+N
< Z Az (n(U)) + gzih; +ZA;1: —gzh)) +C. (2.36)
i—=ig— N =10

Next, using (1.16) and the fact we assumed z € L*(R) we get Vi, z; < ||2]| 0o,
we have
<2 [ e oh (@) da (2.37)
LA Z||co 9 .
gz Ar 9

Ti—1/2

Moreover, by convexity of (h, hu) — n(U), we have

n(U7) < é/xiﬂ/Qﬂ(UO(x)) da. (2.38)



Combining the last two results and summing over n we get

i1+N

Ti1+1/24+N
Z Az (n(U) + gzh)) g/ o n (U°(2)) + gllz]lsh’(z) da.

i=ig— N Tig—1/2—N

(2.39)

One notice that z;,_1/2-n = ;y —NAx = x;,— TA“” and by finite propagation
hypothesis (1.31) one deduce that

Zl+N $i1+1/2+U*T
Z Ax (U2 + gzlho) / n (Uo(x)) + gl|2|lech’ () dz
i=ig—N Tiy—1/2—0*T

= 1O s + 9l Pl o (241)

with 1P, defined in (2.2). In addition, by preliminary computation (2.15),

10,01
we have

ZAw (—gzhl') < g2 HooZAwhN<guzuoouhoumw L (242)

i=ig i=ig

Using together (2.40), (2.42) and (2.29) in (2.36), we get

N—-1:1-1

SN AtUi1jee = Upapp-|* < C (2.43)

n=0 i=io

where C' depends on g, i, har, U, Vm, B3, T, on |T50-1/2 — Ti41/2], 2],

[7(Uo) |l 1 1) and ||h°]| 1o . Moreover using triangle inequality and
20,21

(1.21)-(1. 23) ( .1)(2.20),(2.19) there exist some absolute constant C' such that

Uipr = Ui?
<C|Uit1j24+ — Ui+1/2—|2 + ClUsy 1724 — U] + C\Uit1/2- — Ui,
§C|Uz‘+1/z+ - Ui+1/2—|2 + Clziy1 — Zi\Q + Clz — Zi71|27
<C|Uitrjay — Uir1ja-|* + 2C A2 (2.44)

Last inequality holds because of (2.28). With (2.43), we get (2.3) of propo-
sition 2.1.

In addition, using (1.17), (5.112), (5.113) and (2.3), we get (2.4) of propo-
sition 2.1.

14



2.5 End of the proof of proposition 2.1: estimate the
gradient of the approximate solution

Now from (1.28) we compute

L=t Uiy UMY — U, + U U, = U (2.45)
At 2Ax 2Ax

and using the triangle inequality we obtain that

tnt1 i+1/2
/ / |0, Un|?dadt
Ti—1/2

< RS — UPP P 4 |UP — DR 4 (U — UPP 4+ U7 — U2 ).
(2.46)

0,Una =

with C' > 0 an absolute constant. In consequence, by using (2.3) we get (2.5)
by summing over ¢ and n. Similarly, from (1.28) we compute

Ua = At 2Ax
thus

tnt1 i+1/2
/ / OUs|2dudt
Ti—1/2

! (SL’ - .Ti_l/g) —+ ljinJrl — Uln (247)

1 lU;ff —- UMt -ur, + UR

3 At S U = UL P (U = UPRY2 4 U — U]
1 Ax? " . § §
= o Ay OB = URP 4+ (U = URS P U = U] (248)

in consequence, by using (2.4) we get (2.6) by summing over i and n.
This concludes the proof of proposition 2.1

3 Regularity estimates

Before going into the proof of theorem 1.1 , we give some regularity estimate.

3.1 Definition of interpolation functions ﬁA and fA

We define Ux(t) a piecewise linear function by

~ t—t,
Ua(t) =U; — Az (F1i+1/27 — i71/2+) (3.1)

15



for t,, <t < tny1, with Fiq/o—, Fi_1/24 defined in (1.18).
Let us remark that
Vn e [|0,N]], Ua(t®)=Ur,  lim Ua(t) = UM =Ua(t™)  (3.2)

¢ t—tntl
t<ttl

i.e. Ua(t) is continuous.

We also define Fa(z) € C(R) by
=~ T —Ti-1/2
F =t
a(2) Az
Tit1/2 — T
+ Ax
for l‘i_l/g S r < ZL‘Z‘_H/Q, with F+, F~ defined in (125), Ui_l/g_, Ui—1/2+
defined in (1.21).
Let us remark that

(F*(Uigrjo=) + F~ (Uigr/24))

(FF(Uicrj2-) + F~(Uic1j21)) (3.3)

Vi € Z, ﬁA(l’i,1/2) =F (Uifl/gf, Ui71/2+) . (34)
and B B
mlir%l+1/2 Fp(z)=F (Ui+1/277Ui+1/2+) = Fa(%i41/2) (3.5)
T<Tjt1/2

They satisfy a partial differential equation

8t(7A + 8:vﬁA = §A (3.6)
with
~ 1
SA(t,ZL’) = A—;L’ (Si+1/2, + Si,1/2+) (37)

for tn S t S tn—i—l and IL‘Z‘_l/Q S X S ZL‘Z‘_H/Q, with hi+1/2—7 hi+1/2+ defined in
(122) and Si+1/277 Si+1/2+ defined in (120)

. T ZT; +1/2 7 2
3.2 Estimate of [; fziol—l/Q |Ua — Ua|?* dtdx
We will see later on that, in order to prove compactness of the sequence
On(Ua) + 0.G(Up) in a convenient space, we will need an estimate on

Upn — Ua. It is the following proposition:

Lemma 3.1. Let § > 0 and v*, h,,, hy, up>0, involved respectively in
assumption (1.27) and (1.31)-(1.34). Let N € N, T'= NAt, ip, i; € N such

16



that ig < i1. Let Ux be the approximate solution (1.28) and Ua defined by
(3.1). Then

T rxi41/2 . 2
( / / U U — Ua)? dtdx) < OVAz (3.8)
0 Jzij_1/2

with | - | defined by (2.1). The constant C' depends only on g, hy,, har, upr,
Ums B, T, |Tig—372 — Tir1172], ||2] L, ||TI(U0)||L1(150*7 ) and ||h0||L1(1;JO*71’1.1+1);
IV defined in (2.2).

i0—1,21+1

16141

Proof. On the one hand we use (1.28), the definition of Ux, and we write

Un — U"
1 UM — U U U
N - 12A:p - (@ = wimaye) F U= U] (8~ )
ur, —ur
+12Tx1(l' - $i,1/2), (39)

for all Ti—1/2 << Tit1/2 and ¢, <t < Tntl-
Using the triangle inequality, we obtain

Ua = UP| < %\U{ff - UM+ %|UZ-”+1 - U
U = UP| 4 507 — U2 |+ U7+ — 07
S lUfy — UP| 4 2 U7 = U2 (3.10)
Thus,

tnt1 [ Tig1/2
/ / |Ua — Ul-n|2dxdt < ClAtA;L’OUﬁ:Fll — Ui”+1‘2 + |Uin+1 o Uinjf‘Q
tn T;

i—1/2
U = U+ (U7 = Uy 2+ U = 7).
(3.11)

with C; > 0 an absolute constant.
Next, we set

UA(ta) = U, (3.12)

for m;_1)0 <& < X1, 1" <t < t"*1. Now, taking the sum over n and i and

17



making substitutions of indices, we get

T (o412 N+1 i+l
/ / Us = UAPdzdt < 4C1Az Y~ > AYU, — U
0 .

Tig—1/2 n=0 i=ig—1
N+1 i1+1
+C Az Y T Y T AU - UPP. (3.13)

n=0 i=ip—1

Then we use the discrete gradient estimates (2.3), (2.4) and CFL condition
(1.27) in order to get

T prxii41/2
/ / \Ua — Ux Pdxdt < CyAz, (3.14)
0 Tip—1/2

with Cy a constant depending on g, hu,, har, Unr, U, B, T, |@ig—3/2 — Ty 412,
0
e e
On the other hand we use (3.1), the definition of Ux, and we get
Ur — Ua

t—tp - )
- <F+(U@-+1/2) + F~(Uiy124) — F*(Uiz1ja-) — F~ (Ui—1/2+)

g 0
_9 , 3.15
2 (h? - h?+1/27 - (hz?—i—l - h?+1/2+)) ) ( )

for all t, <t < t,41, with F*, F~ defined in (1.25), Uit1/2—, Uj+1/24 defined
in (1.21), hit1/24, Pig1/2— defined in (1.22).

Then, using that F'* and F~ are Lipschitz continuous, see (5.112) and
(5.113), with the CFL condition (1.27) we obtain that there exists C3 > 0,
depending on g, hys, ups and v, such that

U — Ua

<Cj <|Ui+1/2— —Ui—1y2-| + |Usg1724 — Ui—1/24|

g
Ty |1 = B s1 o — (R = hiyagoy)| ) : (3.16)

forall t, <t <t,1.

Moreover using (1.21)-(1.23), (2.1), (2.20), (2.19), we get that there exists
C > 0, depending only on g and h,,, such that

|Ui+1/2— - i—1/2—‘ < C(|hi = hiza| + |zig1 — 2| + |20 — zia]) (3.17)
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\Uis12+ — Uicryor] < C (Jhigy — hal + |zign — 21 + 20 — 2ia]) . (3.18)

In addition, (5.133), (5.133),we deduce that there exists C', depending on hyy
such that

9
W hirjo — (Wi = hiiye)| < Clain — 2 + Clzi = zial. - (3.19)

Thus, from (3.16) using the triangle inequality with (3.17), (3.18) and (3.19),
there exists C' depending on g, h,,, hy; such that

tnt1 x1+1/2
/ / — Ua|Pdtds
Ti—1/2

S CAtAzx (‘hz — hl',l‘Q + |hi+1 - hl| -+ |ZZ‘+1 — ZZ'| -+ |ZZ‘ — Zi,1|2) . (320)

Now, taking the sum over n and i and making substitutions of indices, we

get
i1+1/2
/ / (UL — Ua*dzdt
ZO 1/2
N+1 41+1 N+1 i1+1
< CAx (Z STOAYUR, UMY Y Atz — zi|2> o (3.21)
n=0 i=ig—1 n=0 i=ig—1

with U} defined in (3.12) and C'is a constant depending on g, h,,, hyr. Next,
using (2.28) and the gradient estimate (2.3), we get

i1+1/2
// (UL — UaPdadt < CoAw, (3.22)
Tig—1/2

with Cy a constant depending on g, i, har, nr, Um, 8, T, 250372 — T4, 412,
Illzoes M@0,y amd B0 e
0 »i1+ 00—+l

Finally, noticing that Ux — UA = (UA — UA> + (Ui — ﬁA>, we get

i1+1/2
/ / |UA — UA‘ dtdx

1

Tig—1/2
Tiy+1/2 Ti|+1/2
</ / |Ua —UA|2dtdx+/ / (UL — U, dtdx) (3.23)
Tig—1/2 Tig—1/2
With (3.14), (3.22) we get (3.8), which concludes the proof. O
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3.3 Estimate of fOT [Tz | P(Uy) — Fal? didz

Lig—1/2

We will see later on that, in order to prove compactness of the sequence
Om(Ua) + 0,G(Up) in Hy!, we will need an estimate on F(Up) — Fa. It is
the following proposition:

Lemma 3.2. Let 3 > 0 and v*, h,,, hy, upy>0, involved respectively in
assumption (1.27) and (1.31)-(1.34). Let N € N, T'= NAt, ip, iy € N such
that i9 < iy. Let Ua be the approximate solution (1.28) and Fa defined by
(3.3). Then

T rxij4+1/2 .
/ / |F(Up) — Fa|? dtde < CAx (3.24)
0 Jzij_1/2
with | - | defined by (2.1). The constant C' depends only on g, hy,, hy, up,
Ums B, T, |@ig—372 — iy 1372], ||2] L, ||TI(U0)||L1(150*7172.1+1) and ||h0||L1(1;JO*71’1.1+1);

1914 defined in (2.2).

(2

Proof. We recall here (3.3)

~ T — Xj— _
FA(.T) = 7A3} 1/2 (F+(UZ'+1/27) + F (Ui+1/2+))
ZT; — X _
% (F*(Ui_1/2_) + F (Ui—1/2+>) ) (3.25)

for all w;_1/2 < x < x;11/2. Moreover, we have
F(UpA) = FY(Up) + F~(Un). (3.26)
Thus, using triangle inequality, for all ;_1/5 <z < x;41/2, We get
|Fa(z) = F(Us)|
< % ‘F+(Ui+1/2—) - FJF(UA)‘ + % ‘Ff(Uz’+1/2+) - Fﬁ(UA)‘
+ % |FH(Uiijo-) — FH(Ua)| + % |F™ (Uis1jos) — F-(Ua)|. (3.27)

Then, using that F* and F~ are Lipschitz continuous, see (5.112) and
(5.113), with the CFL condition (1.27) we obtain that there exists C' > 0,
depending on g, h,,, has, up and v, such that

|[Falw) = F(Ua))

<C (}Ui+1/27 - UA‘ + }Ui+l/2+ - UA} + }Ui71/27 - UA} + ‘Ui71/2+ - UA‘)
(3.28)

20



Moreover using (1.21), (2.19), (2.20), we get

|Fa(z) = F(Ua)|
S 0(2 |Uz — UA| + |UZ’+1 — UA| + |UZ‘_1 — UA| + |Zi+1 — Zz| + |ZZ — Zi_1|)
(3.29)

with C' > 0, depending on g, h,,, har, upy and v,,.
Thus we get
tnt1 fTit1/2
/ / |Fa(z) — F(Un)|Pdtdx
Ti—1/2

tny1 i+1/2 )
< C/ / U; — Ua)? dtda
Ti—1/2

+CAtAl‘ (|U,‘+1 - U,|2 + |Ui_1 — U,| + |Zi+1 — ZZ| + |Z, — Zi_1|2) s (330)

with C' > 0 an absolute contant.
Now, taking the sum over n and 7 and making substitutions of indices,
we get

9311+1/2 — Ti|+1/2
// F(Ua)| dxdt<// \Ua — U |*dzdt

Tig—1/2 Tig—1/2

N+1 i1+1 N+1 i1+1
+CAz <Z DAY, UMY Y At|zi+1—zi|2>. (3.31)

n=0 i=ip—1 n=0 i=ip—1

Finally, using (2.28), the gradient estimate (2.3) and previous estimation
(3.14), involving Ua — U", we get (3.24), which concludes the proof. O

4 Proof of theorem 1.1

Using (4.1) we compute
BUs + 0, F(Un) = 0y(Un — Un) + s (F(UA) - ﬁA) + 5, (41

with Ua(t,x) defined in (1.28). We multiply (4.1) by ' (Ua) and we get, for
any entropy-entropy flux (7, G), the following decomposition

0m(Ua) + 0,G(Ua) = 7' (Ua) - 8:(Us — Ua)
1/ (Ua) - s (F(UA) . ﬁA)
+ 7/(Ua) - Sa
= Ri+ M, +Ry+ M, —f(Us) - Sa (4.2)

21



where
Ri= 0, (7/(Us) (Us = Ta)),
My = —if"(Us) - OUx - (UA - ﬁA) ,
Ry= 0, (n/(Us) - (F(Us) - Fa)).
My = —5(Un) - 8,Usx - (F(UA) - ﬁA) . (4.3)

First we have, using (3.24)

T R 9
// F(UA)—ﬁA) dudt
< |1 (Ul oo 211 / / 2= ) daat
< CpVAz (4.4)

thus R, goes to zero in H, 1 as Az — 0. Similarly, using (3.8), R; goes to
zero in H,, .1 as Az — 0.
Futhermore, using (2.5) and (3.24), we have

T rR
0 —-R

T R 1/2
< " (Ua)l </ 10,Ua| d:cdt) //‘ FA)‘Qd‘C‘“
L>(]0,T[x]—R,R]) A
< Wl —Lcas
Lo (0, T(x]— R, R) VAT
< Cr (4.5)

thus My is bounded in M,.((0,7°) x R). Similarly, using (2.6) and (3.8), M;
is bounded in M,,.((0,7") x R).
Using (5.133), if z;11 — 2; > 0, we have

|Siv1/2-|
Az

and if not, h; = hi;1/2— and the last inequality holds.
Similarly, using (5.134), if z;11 — 2z; > 0, we have

< CLip(za) (||Ual|eo + AzLip(2)) , (4.6)

|Si—1/2+]

Ay = CLip(za) ([Uallse + AaLip(2)) (4.7)
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and if not, h; = h;_1/24 and the last inequality holds. Using (4.6), (4.7), we
get _
[5alle < CLip(za) ([[Ualloo + AzLip(2)) . (4.8)

Moreover, according to (4.2) and (4.3), one has

8257](UA) -+ &BG(UA) — Ry — Ry = M; + My + 77/<UA) . SA (49)

thus My + My + 1/(Ua) - gA is bounded in VVl;cl’p N My, Vp, 1 < p < +00,
as a consequence it is compact in H. l;cl. At this point, we know that Ry + Rs

and My + My + n'(Up) - Sa are compact in Hl;cl, therefore their sum, which
is equal to 9;n(Ua) + 0,G(Ua), is compact in H,!. Furthermore, (Ua)aso is
bounded since we assume that (U}");, is a bounded sequence. We are now
able to apply the compensated compactness method and we get that up to
a subsequence Uy — U a.e. and in Ly, . as At — 0 and Az — 0, see [23].

Moreover, according to lemma 5.7, ,Un is bounded in L{°(D!) and there-

fore we get
d((Ua(t1),Ua(t2)) w1y < ClOUA | Lge () [t1 — 2], (4.10)
and we conclude that Uxn — U in Cy([0,T], L, (R)), by Arzela—Ascoli the-

orem.
Then, knowing that Ua converges in L} _ to U, we can apply lemma 5.8,
which concludes the convergence of the approximate source term §A to S.
Finally, we pass to the limit in (4.1) using (3.8), (3.24), and (5.131), which
enables us to get that the limit U is a solution to the system. Moreover
passing to the limit with a test function ¢ in (2.16) we get (1.2).

This ends the proof of theorem 1.1.

5 Appendix

We prove here some technical results used throughout the paper.

Lemma 5.1. Let Uk = (hy, hyuy) for k =1, 2 with hy, > 0. Then

92(:2 (2My + My) (My — My)?
= H() - HO8) = () () 08 - 3)
= Lie—ui)z>20m, M> (% -~ ghl) , (5.1)

where My, = My(§) = M(Uy, &), and M(U,§) is defined in (1.8) and H(f) =
H(f,£) is defined in (1.8).
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Proof. Using the identity

b* —a® —3a*(b—a) = (b+2a)(b— a)? (5.2)
one has
92(?2 (2M; + M) (My — My)? = H(My) — H(My) — H'(My) (My — M),
where we donote H'(f,€) = g7 H(f,€). Thus it is sufficient to prove )
(w0 (¢) - #/0m)) (012 - 31
= ticumsam 1 (E5 ). (5.4)

On the one hand we compute

' (Ur) (2) = (gm —~ “; + u1§) : (5.5)

On the other hand we get

2 2,2
H’(Ml):%—i—g; M?

_ %2 . (ghl _ %L (5.6)

In consequence, by adding (5.5) and (5.6) we get

700 ()~ 108 = Ve s, (S5 —g) . 61

and therefore

(@ (¢) - #'012) (012 - 1)

= = Lig—ui)2>0m (@ - ghl) (Mg — My). (5.8)

Finally we notice that
(€ —w)® > 2ghy <= M; =0 (5.9)
and we get (5.4), which concludes the proof. O
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Lemma 5.2. There exists some constant a > 0, depending only on on gravity
constant g, on constants h,,, hyr, upr, which are involved in (1.30), such that

G (H<M2> _HOL) - () @ (M, Mo) ¢
> a(n(Uz) —n(Ur) — 0/ (Ur) (Us — Uh)) (5.10)

for every Uy, Us € Up,, hyyuy defined by (1.30) and where My = M(§) =
MUy, ), with M(U,&) defined in (1.8), H(f) = H(f,£) is defined in (1.8)
and n(U) defined in (1.3).

Proof. We set
W, = {(h,hu) € R?, h > hy,} (5.11)

and we first deal with the case

U, = (hhzlz ) and Uy = ( h ) € ﬂ,\n, such that |u; — us| < \/ghp,.
1U1

hous
(5.12)
In this case we have
vt € [0.1], (1 — )y (Uh) + t/ (Us) € 0 (Upp)- (5.13)
with "
u, = {(h,hu) €eR’* h> 7’”} : (5.14)
Indeed we notice that
Vl T h'm ‘/22
> g 12
(Vz) en(um)<:>V1_g2 5 (5.15)

Thus (5.13) is equivalent to

Vt € [0,1],Vhy, hy > hpy, Vug, us € R, such that |u; — us| < \/E

(1—1) (gh1 - u;) +1 (ghg — %%) > g%ﬂ — %((1 —t)uy + tu2)2. (5.16)
Thus it is sufficient to check that

Vt € [0,1], Vuy, us € R, such that |u; — us| < v/ ghm

u? u3 R 1 2
(1—1) ghm—? +t ghm—? 297—5 (1 —t)uy +tuy | .

(5.17)
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This inequality simplifies to

R ghm S t(1—1t)

vt € [0,1], Vuq, ug € 5 2 5

(Ul - U2)2 (5.18)

which is true if |u; — us| < 2v/ghy,.
We want now to use property (5.13) and define a path v(t) € U,,, con-
necting two states Uy, Us satisfying (5.12) by

' (v(t)) = (1 =)' (Uh) + i/ (U2) (5.19)

for 0 <t < 1. Such a definition is possible because 7 is strictly convex and
1’ is a diffeormorphism. It enables us to set

/ €1(BOM(), &) — B(MU,.€))

W) () & — M(Uy,©)) ) dg
—a (o) 7 (00) (0(1) — U). (5.20)

We notice that ¢(0) = 0, and the result of (5.10) is equivalent to ¢(1) > 0.
Thus it is sufficient to prove that ¢ is non-decreasing. Using the fact that

n'(U) (é) = H' (M(U,£),€), for all £ € R such that M(U, &) >0, (5.21)

we can compute

/ €16700) — @) () M0, -0
(1)) — 7/ (U) -(0). (5.22)
Moreover using
T () — o (Uh) = b (0(8)) - (1) (5.23)
we get
5=t [ I o(0) /0 @ M (o(t).€) /(1) de
ORI (5.24)
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which can be rewritten as

¢'(t)

—— [ (M'(v(tw @tn"w(t))) () (1)
— e (0(e) -0 (1)

=t [l o @ (rem () o v
' (u(8) - (1) 1),

Thus now it is sufficient for getting (5.10) to prove that

YU € U,,, VX € R2

[1arwos (e (¢))-x X zar@) x-x

For all U € ﬂ\:n and ¢ € R such that M (U,¢) > 0, we compute

1) (¢) = ..

and
7'0) (¢) = #4100, (V).

Moreover one can check that
H" (M(U,£)) = g*m* M (U, §)

and we obtain

[ (vw (;)) a

R / €] M(U,E) - M/(U,€) & M (U, £)de.
M(U£)>0
which is equivalent to
/R EMU.E) @ (1 (U)X) - X - Xde

= [ MO (0.9 X dg
M(U,£)>0
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for all X € R2.

Now we denote X = <x1> and compute M'(U, ) - X. We recall that

T2

1/2

M(U€) = — (2gh— (¢ —w)®)"*, U = (b, hu)

gr

o\ 1/2
MU= <2gh— (¢-5) )

+

SO we can rewrite

and compute partial derivatives

M(U,€) = 5— (2gh — (€ =) (29— 276 ~ w)

2gm

and .
ahuM(Ua 5) = 9

2gm

(200 = (€ =) " (%(f - u)) .
Finally it leads to the formula
-1 _
M/(Uvg) X = % <gx1 + % (I‘Q — UZL‘1)> .

Now we denote ]
T3 = 5 (29 — uzy)

in order to write

M X = (g + (€ e

and using (5.38) and (5.31) we get

[iarwes (v (;)) x-xa

— ¢ / €] M(U.€) (M'(U,€) - X) de
M(U£)>0

1 1 2
= _— — d
g*n? /Mw,s»o < aag bom e m)e

9“ V 9 /— /2

> (g.l’l + (§ - U)$3)2 df =1.
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Last estimate In order to get the we used the fact that

1 12 _ V2gh
M =— (2gh— (£ —w)?) /" < = 5.40
(U, = — (20— (€ —w?) [ < 2 (5.40)
Using the substitution v = £ — v and using the convention that
if w =0 then sgn(u) =1 (5.41)
we obtain
1 / 9
= — |v 4+ ul| (g1 + vas)” dv (5.42)
9TV 290 Jivi<vagn
1 / 9
> (Jv| + |u]) (g1 + vsgn(u)xs)” dv  (5.43)
gmy 29 |v|<@ sgn(v)=sgn(u)
P / v (g1 + vsgn(u)as)® dv (5.44)
gw2g
1 V2gh )
> Sm - (g1 +vsgn(u)xs)” dv. (5.45)
Using the substitution & = m we obtain
1 V2gh 2
3 (g1 + vsgn(u)xs)” dv
Vh / ! ( 2
= — gr1 + &/ 2gh sgn(u)x;»,) d§ (5.46)
V297 1/2
which is a positive definite quadratic form with respect to y; = gz, and
ys3 = sgn(u)y/ghxs. Thus we have for some absolute constant C' > 0
ho[* 2
% / (921 + €v/2ghsen(u)as ) de
((g:z:l) + 2ghz})
2
>C <(9371) + fg (29 — USUl)Q)
2 2 2
= <gx1 + — (9 — uxy) ) (5.47)
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and by (5.39) (5.46) (5.47), we get

[ienrw.oe (e (¢))-x-xa

\\;__i ( T+ 2 (:cg — ux1)2> : (5.48)
Besides, we have , ,
n(h.q) = (%% + g%) : (5.49)
n'(h.q) = <—%Z—Z + gh, %) , (5.50)
0" (hq) = (g—i_zg _fi) , (5.51)
h2 h
1" (h,hu) = (%_Zg _ﬁ) : (5.52)
h h

and finally we get

Ty — uxl)z : (5.53)

Thus we find that

[earwe (vw) (1)) 2 vara'e) s

At this point, with the last estimate we obtain that (5.26) holds, and therefore

we have the result (5.10) for all Uy, U; € U,, such that |u; — us| < /ghp,

with the constant o, = f gh,,, where C' > 0 is an absolute constant.

Thus, it is now sufficient to prove that

3&1 > O, VUlj U2 E uhm7h1\47u1\/f7

luy — us| > \/ghm

= [16 (0w - 00 — @) (¢) 08 - 30) ) de 2 a1, 655)
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Indeed, when (5.55) holds, we have
(n(U2) = n(U1) = ' (Ur) (U — Uh))

_ —2h1)2 O —2u1)2
< C(har, unr)
< Churn) [y (fon) - 10m) /@) () (- M) ) ds

(5.56)

which proves (5.10). Using reductio ad absurdum, we suppose (5.55) does
not hold. Thus

Vn >0, 33U, Uy € Up,, hpyuay s Such that

|u7ll - ug| > ghm

n n n 1 n n
[l (#r0013) — 1O~ 07) () O — 217 ) e <

where M = M (U /£).
As Up,, by 1s @ closed and bounded set, we can take 2 subsequences
which we also denote U7, U such that

% (5.57)

Uln — U, € , U2n — Uy € um (558)

with
lur — uz| = v/ ghip, (5.59)

and by dominated converge theorem

16l (0w - m08) -0 (§) 0r - 1)) de =0, 560

We also know by (5.1) that

16 () - srn) - @ () 0 - ) ) dg
> [l 20ty 2 (01, — M (5.61)
R
and therefore we get
(2M, + My) (M, — My)? =0 almost everywhere (5.62)

itself implying that M; = M, a.e. and therefore U; = Us, the later being in
contradiction with (5.59). O
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Lemma 5.3. Let g > 0 be the gravity constant. One has

/ MUy, €) (M - gm) ¢
(€—u1)2>2ghy 2

4 (Jus| + 297 ! 2
(i 2) gl = ha| + (Juz| + v/2ghs)|uy — us| + = |uf — )]
g/ ghs ’

(5.63)

for every Uy = (hy, hyuy), hy > 0 and Us

= (ho, hous), he > 0, where M (U, &)
is defined in (1.8).

Proof. We set

1
K= g‘hl — hQ‘ + (‘UQ‘ “+ 1/ 2gh2)\u1 — Uz‘ + é\uf — ug . (564)

Thus we can rewrite (5.63) as

/ MUy, €) (M - ghl) ¢
(= u1) >2gh1 2

2ghs) K 3 5.65
gﬂ\/—\u2|+\/ga 2 (5.65)

for every Uy, Uy € Up,, by, defined by (1.30).
We notice that V€ € supp(Ms), one has |§| < |ug| + v/2ghs and we get

= ‘g(hQ —hy) +&(ug —uq) — %(Ug — uf)
<K

(5.66)

with K defined by (5.64). Moreover using that & € supp(M;)° Nsupp(My) iff
ghy — =12 ”2) > 0 and =4S “1 — ghy > 0, we get

0< ghy — (§ —up)?

2
< ghy— & _2“2)2 L& _2“1)2 — gl
_ 2 _ 2
gham S (g, - G
< K.

(5.67)
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Similarly we obtain

< K. (5.68)

Finally using (1.8), (5.67) and (5.68), we get

/ €| M(Uy, €) (M = ghl) de

(6—u1)2>2ghy 2

V2 (€ —u2)2\ " [ (€ —w)?

Cogm (€—u1)2>2ghy |§| (gh2 B 2 ) ( - ghl) dg

gm 2
V2
< g—W(IUzI + v/2ghs) [supp(M;)° N supp(My)| K3/2. (5.69)

Thus it is now sufficient for getting (5.65) to prove that

4K

M) n Ms)| < . 5.70
‘Supp< 1) Supp( 2)‘ — \/% ( )

Moreover from (5.67) one has for £ € supp(M;)¢ N supp(Ms) that
PE) <0 (5.71)

where
2
—u

P(£) = ghy — % ~ K. (5.72)

We notice that when & = uy, P reaches a maximum equals to ghs — K, and
we distinguish:

o if K < ghs, then the maximum of P is positive and using (5.71) we get
that for £ € supp(M;)¢ N supp(Ms) we have

€ ¢ [uz —\/2gh,, 7“1] U [rg,uQ + \/2972] (5.73)

with r; < u < ry € R are such that P(r;) = P(ry) = 0, we have

us—+/2ghs < 11 because P(us—+/2ghs) = —K < 0and 1y < ug++/2ghs
because P(us ++1/2ghs) = —K < 0. This configuration is illustrated in
the following picture.
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ghg —Kp-rmmm e
Uy —
y=P(¢)
Graph of £ — P(§) when K < ghy
Thus
|[supp(M;)¢ N supp(Ms)| < |rp — (UQ — \/29h2> + |ug + \/2ghs — 7‘2’ .
(5.74)
We set
r 2ghy + 2K (5.75)
T1 = Uy — — )
L T g,
and we notice that ok
< +\/2gh 5.76
Vaghy ~ VI (5:76)
because of the assumption K < ghs. Thus we obtain that
r1 < Us. (577)
Moreover
~ 2
T — U
ghs — %
1 2K 1\’
= ghy — = | —=v/2¢ghs + ——
o= (2t + o)
2 (g 2)
=———42K=K|—+2 5.78
gha gho ( )
and again using the asumption K < ghy we notice that
K
—— +2>1 (5.79)

gha
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therefore R )
(71 — us)

ghy — === > K (5.80)
which means that P(71) > 0. In consequence, using (5.77), we deduce
that

ry < r; < us. (581)
Similarly we set
2K
ry = \/2ghy — 5.82
T2 Uy + gha \/Qg]—hz ( )

and by the same arguments we obtain that
Uy < To < To. (583)

Putting together (5.81) and (5.83), we get
}7‘1 — (UQ —\ 2gh2>} + }UQ + \/ 2gh2 — TQ‘
'Fl_(u2_\/2gh2> U2+\/2gh2—f2

Finally, using (5.74), we get

< + . (5.84)

|supp(M1)° N supp(Ma)| < |71 — (U2 —V 2gh2> + |uz + \/2ghs — T2
4K
< . 5.85
SN (5.85)
o if K > ghy then
My)n My)| < My)| < 24/2ghy = 2 <
[supp(M1)* M supp(Ms)] < [supp(Ma)| < 2v/2ghy = 277 < e
(5.86)
which concludes (5.70) and the proof.

U

Lemma 5.4. There exists some C' > 0 depending only on g, Ny, har, upr such
that

g27r2
[ 16155 @+ 3) (0t~ 2
R

>C <g<h2%hl)2 + hm%%‘ly) . (5.87)

for every Uy , Us € Un,, hyyuy defined by (1.30) and where My, = My (§) =
M (U, &), with M(U,§) defined in (1.8).
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Proof. Let Uy,Us € Un,, hpyun- We use lemma 5.1 and get

2,2
16155 @+ 3 (01, — 2
R

, 1
= [1e1 (m0m) = 100~ @) () o - 21 ) dg
R
§—uy)?
-/ A e e L
(E—u1)?2>2gh1
We first we deal with the case
1 1
Uy, Uy such that |hy — ho| < — and |u; — us| < — (5.89)
AC2 AC2

where 6’1, C, are positive constants depending on g, A, has, ups such that
2 1
163 =2 Zom
In this case, we are going to estimate the right-hand side of (5.88). On
the one hand, in order to estimate the first term in the RHS of (5.88), we

apply lemma 5.2 and since 4C2 > \/glh—m we are in the case (5.12) and we get

16 (s - 00— (0 (¢) 06 - ) dg

>, (N(Uz) —n(Ur) —1'(U1) (Ua — Uy))

h —h 2 _ 2
= q,, <g( 2 7 ) +h1(u2 2u1) )

> i, (gw + hmw) (5.90)

with o, = % gh,, and C' > 0 and absolute constant. One may notice that
in order to obtain the last inequality we only used the fact that h; > h,,. On
the other hand, in order to estimate the second term in the RHS of (5.88),
we use lemma 5.3 and obtain

/ M (Us, €) (M . ghl) e
(6—u1)2>2ghy 2

4 (|ug| ++/2gh L
< A (Jual + v29h2) (g|h1_h2|+<|u2|+m»ul—uzu—iuf—@)
g/ gho 2

5
< Cr(hansharsuar) (glha — ha| + Cohun,hoyunr) [ur — ug)? (5.91)
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with

Cl (hmuhMuuM) =

9mVGhm
where uy; = tr, Using Hélder inequality on R? we get that for a,b > 0,

P
(a +b)>/? < 23/2(a? + b°/?), we get

/ MUy, €) (M - ghl) ¢
(E—u1)?2>2ghy 2

< 252Cy (hymhoas unr) <9§|h1 — hal% + Cohyn,haguar) ¥ uy — u2|%) - (5.93)

Thus, putting together the two estimates (5.90) and (5.93) of the RHS of
(5.88), we get

g2n
/ I3 G (2M; + Ma) (My — My)*dE
R
(ha — h1)? (uz — ug)?
> m hm
>a (g 5 + 5
— 23/201(hm,hM,UM) (9%|h1 - h2|% + CQ(hm,hM,UM)%Wl - U2|%>
_ 2 ~
a8 ()
P (g — uq)? ~
. (u22 uy) (1 AT uﬁ) (5.94)
with o
Oy = ——+/gh,, C > 0 an absolute constant, (5.95)
V2r
and
2P0 (g g uar) g
1 — Wy ’
~ 2P0 (b 3Cy (R, h >
02 _ Cl( ) M7U‘M>g2 2( ) MauM>2' (596)
amg
From (5.94), using that we deal with Uy, U, satisfying (5.89), we get
/ elarwn, ) (515 - g ) as
(§—u1)*>2ghy
Om (h2 - h1)2 (Uz - U1)2
> — h . .
e (5.97)
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At this point we have the result (5.87) for all Uy, Us € Up,, hyyuy, Satistying
(5.89). Thus, it is now sufficient to prove that

doy >0, VUi, U € U, hasuy Such that
1

1
‘hl h2| > —— Oor \ul —U2| > —
AC? 4C%’

) (My — My)?d€ > . (5.98)

we have

Indeed, this last inequality implies that

(hy — hy)? (ug — uy)?
a7 M) |, W27 M)
C(hM,UM

s ) / €

which proves (5.87). Using reductio ad absurdum as in the proof of lemma
5.2, we suppose that (5.98) does not hold. Thus

) (My — My)?d¢ (5.99)

Vn >0, 33U, Uy € Up,, hppuy» Such that
AC2|hy — h”| + 46§\u1 —ul| > 1

1
and e M) (M — M3)2dé < ~ (5.100)
where M = M(U.£). As Un,, by uy 18 @ closed and bounded set, we can
take 2 subsequences which we also denote UT', U3 such that
Uln — U, € um, Ugn — Uy e U, (5101)
with B B
4C2|hy — ho| + 4C3 uy — up| > 1 (5.102)
and by dominated converge theorem
g%n?
/ €] 6 (2M; + My) (M, — M2)2d§ =0. (5.103)
R
Therefore we get
(2M; + M) (M; — My)* =0 almost everywhere (5.104)

itself implying that M; = M, a.e. and therefore U; = Us,, the later being in
contradiction with (5.102). O
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Lemma 5.5. Let Uk = (hk, hkuk), k = 1,2 with hk Z 0. Then
/ (M(UL.€) ~ M(U8)]) de

< \/g ( ( hl) +min(h1,h2)(u2—u1) )5, (5105)

with M(U, &) defined in (1.8).

Proof. Let us recall some result from [5]

/ M(ULLE) (M(ULE) — M(Us.€))? de

< (9(ha = h1)* + min(hy, he)(us — uy)?) . (5.106)

927T2

We compute

/| (U1.€) — M(U)]) deé

g/ \MI—M2|d§+/ My — My de
Mi1>0 Mo>0

1/2 , 1/2
S ( Mi1>0 Mdg) < M1>0 Ml (Ml - MQ) dg)
1/2
(/ —dg) < M,y (M — My)? dg) (5.107)
M2>0 M2>0

where last estimate is obtained by using Cauchy-Schwarz inequality.

Using the substitution v = % we get

1 utv2g g
7d — d
/ M0 M<Uf ‘ /m Gah (e —up) P

o
2gh (1 —v?)
Now from (5.107), using (5.106) and (5.108), we get

/R (M (UL £) — M(U.£))| de

1
17z dv = gw[arcsin(@)] = g, (5.108)

V3 . .
<2 (9(ha = h1)? + min(ha, ho) (up — ur)?)? (5.109)
V9
i.e. we find (5.105), which concludes the proof. 0
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Lemma 5.6. Let Uy = (hy, hyug), k = 1,2 with hy > 0. Moreover we set
here

1
C= max v| (1+0%)2. (5.110)
ve{u1|+Vght,luz|+v/ghs }

Then one has

‘F(Ul) (Uz)‘ < %C ( ( h1)2 + min(hl, hz)(’dz — U1)2)% s (5111)
‘F—’—(Ul) — F+<U2)‘ < %C ( ( h1>2 + min(hl, hz)(UQ — U1>2)% s
(5.112)
|[F~(Uy) — F~(Us)] < %C( (hy — h1)? + min(hy, hy)(uy — ul)Q)% :
(5.113)
Proof. We recall that
R
() = [ et (¢) b0
R
and  F(U) = / ¢ (1) M(U£)de. (5.114)
R \&
Thus the result is an immediate consequence of lemma 5.5 and the fact that
V¢ € suppM; N suppMa, ‘f (1)‘ < max € (1+¢)?
/17 cefmlrvam huat vz} )
=C (5.115)
with C' defined by (5.110). O

Lemma 5.7. Let (U]") defined by (1.15)-(1.8) and Ua defined by (1.28). Let
¢ € D and we assume (1.32)-(1.34). Then, under the CFL condition (1.27)
there exists some C' > 0 depending only on ¢, g, hy,, har, wpr, vy such that

vVt € [0,T], < oUa(t,),¢><C. (5.116)
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Proof. Using (2.47) we get

< OUpn, ¢ >= A+ B (5.117)
with
1 Un-i—l . Un-i—l —Ur., +ur Tit1/2
A — LY i—1 i+1 i—1 / o
; At { 9Nz S S
(5.118)
and . i
_ n+1 n
B= Z ~ (Ut — ur] /xi_m o(x)dz. (5.119)
First we notice that
ZTit1/2 Tit1/2
/ (x = x;_12)0(x)dr = P(Ti41/2) A — / U(x)dz, (5.120)
Ti—1/2 Ti—1/2

where 1) is an antiderivative of ¢. Then, using last equality in (5.118), we
get

] Aty Az, (5.121)

LU - U U, U,
A= Z At [ 2Az

with Aty = (zi412) — o [T/ p(x)dz. Moreover, by making substitu-

Az Jzi_1/9
tions of indices we get
LU - Uy
A=Y 5 P (A - A (5122)

Next using that (U;") is a bounded sequence we get that
At

U = Ul < 7 (@)oo + F(U)lo0) (5.123)

Moreover we notice that
‘Awi _QA%H < Az’Lip(¢), (5.124)

which enables us to get
Al < 2C1|(U}") i Lip(¢) (Az|suppe]) , (5.125)
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with C' > 0 a constant depending only on ¢. Finally using CFL, it is bounded.
Next, from (5.119), we use (1.17) and we get

1 At
= Z NN Fiy1o- — Fi71/2+} Az, (5.126)

with ¢; := Y12 (z)dx. Using (1.18)-(1.20) we get

Az Ti—1/2

B = Z Fiiipm — Fiipoy]
= Z Fiv1p — Fie 1/2 ¢i + Z Siy1/2- — Si- 1/2+] Gi
= Z —TFir1/2 [0 — Piga] + Z Siv1/2— — Si— 1/2+} Gi-

(5.127)
Moreover
|$i — ¢it1| < AzLip(e) (5.128)
and
|Si+1/2, — i71/2+| S C|ZZ'+1 — Zz| S C|AZL‘| (5129)
Furthermore, using that (U]") is a bounded sequence we get
|1B| <C (IF*(U)lso + [1F7(U)llso) Lin(4) + CISallsolllloo,
(5.130)
with C' depending only on ¢. O

Lemma 5.8. Let Un = (ha,haua) be the approzimate solution of (1.1)

defined by (1.28) and Sa be the approrimate source defined by (3.7). We
assume that there exists U such that Ua tends to U a.e. and in L} ., a
Ax, At — 0. Then we get that

Vo(t,xt) € D(R?), / / Sa(tx)pdtds — Ny / / (t.@)o(t,x)dtdx,
(5.131)

as

with S(t,x) = (—gi?@ z)
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Proof. Let ¢(t,z) € D(R?). We study the following integral

N+1 i1+1

[ Batearotiar =3~ 37 Aedw (Suya + Sicipas) 0

n=0 i=ip—1

1l fTig1/2
with ¢} = ¢(t,x)dtdx. Next we develop and make a
At Aaz 2io1/2
translation over mdex i and we get

Z Z AtAx (SZ'+1/27 + 5¢71/2+) ®i
- Z AtAz Z Sii1/a-¢i + Z AtAz Z Sic1/24+ i,
= Z AtAx Z Sit1/2—Pi + Z AtAx Z Sit1/2+@it1-

Then we notice that |¢7,; — ¢'| < CAxz with constant C' > 0 and we obtain
that

‘// gA(t,$)¢dtd$ - Z Z AtAT (Siy1/o— + Sit1y2+) @i

<CAz > At > SpapiAz (5.132)

n,tp Esuppp 4,T;11/2ESUPPP

Since Sjy1/2+ is bounded the RHS tends to 0. Next, for Az, 211 — ;| small
enough, we have on the one hand

h12+1/2— h_?

AzS] z+1/2— =g 5 Y 5
hi+zi — zi 2 2
:g< : 5 2ir1/2) - ?’ (by assumption (1.32))
R — &
:g(zi — Zz‘+1/2) (hi + %1/2) . (5.133)

On the other hand, as in (5.133), we obtain

hi h?“ 2+ Zit1l — Zit1/2
AxSPrl/%r =g+~ g e —9(zip1 — Zit1)2) (hiJrl + #/) .

2 2
(5.134)
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Moreover noticing that h; 11 = h; + (hiy1 — hi), with (5.133),(5.134) we get

Z Z AtAz ( +1/2— z+1/2+) i
— Z Z AtAT g(zi41 — 2)hidi + Y Y AtAzRI'¢; (5.135)

with
(2 — Zz‘+1/2)2 _ (zig1 — Zi+1/2)2
2 2 '

R} = —g(zix1 — ziy1y2) (hiyn — hi) + g
(5.136)
First term in the RHS of (5.135) converges to the source term:

SN Aty — z)hidi = — ZZAM i

= [[ -2 s aystors — / / _gd;fwwm,

1oe and dzﬁ—m(x) —
dz(mx), in L. In order to conclude, according to (5.132) we need to prove
that the remaining terms ) > . AtAzR}¢; tend to 0 as At, Az — 0.
Using that 0 < 24172 — 21 < |21 — 2], 0 < zipy2 — 2 < |21 — 2| and
|zit1 — 2| < CAx, we get:

the convergence holds because we supposed ha — h, in L?

and

> ) Atrrg;

<O Y AtAT by — bl +C Y 0> AtAL ¢

(5.138)
On the one hand we have
) AtAz by — hi| ¢ = O(Az'?), (5.139)
using Cauchy Swartz and >, >, At(hiy1 — hi)?* < C, see (2.3).
On the other hand we have
> ) AtAPg| < Azl (5.140)
Thus
> ) AtRr¢ — 0, (5.141)
which concludes the proof. O
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