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The frequency-dependent mean free paths (MFPs) of vibrational heat carriers
in amorphous silicon are predicted from the length dependence of the spec-
trally decomposed heat current (SDHC) obtained from non-equilibrium molec-
ular dynamics simulations. The results suggest a (frequency)� 2 scaling of the
room-temperature MFPs below 5 THz. The MFPs exhibit a local maximum at
a frequency of 8 THz and fall below 1 nm at frequencies greater than 10 THz,
indicating localized vibrations. The MFPs extracted from sub-10 nm system-size
simulations are used to predict the length-dependence of thermal conductivity up
to system sizes of 100 nm and good agreement is found with independent molecular
dynamics simulations. Weighting the SDHC by the frequency-dependent quantum
occupation function provides a simple and convenient method to account for quan-
tum statistics and provides reasonable agreement with the experimentally-measured
trend and magnitude. © 2016 Author(s). All article content, except where other-
wise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/) [http://dx.doi.org/10.1063/1.4968617]

I. INTRODUCTION

Compared to heat transfer by phonons in crystalline materials, heat transfer in amorphous
materials is complicated by the existence of three regimes of vibrational modes.1 Low-frequency
propagons are delocalized and have a well-defined wave vector and group velocity,2 similar to
phonons in crystals. High-frequency vibrations are localized and are called locons. Their role in
thermal transport is an active area of research.3–6 Diffusons have intermediate frequencies and are
delocalized, but do not have well-defined wave vectors or group velocities. The contribution of dif-
fusons to thermal conduction can be notable, however, as they occupy the majority of the vibrational
spectrum.2

From kinetic theory,7 the contribution of an individual phonon or propagon mode to thermal
conductivity is proportional to its mean free path (MFP). Because diffusons do not have a well-defined
group velocity, it is not clear if they have a MFP or how it can be defined. Their contribution to thermal
conductivity can be predicted using their diffusivity, which is well-defined and can be calculated from
Allen-Feldman theory.2,8 Nevertheless, it would be insightful to identify a frequency-dependent length
scale for propagons and diffusons describing the decay of the heat flux at each vibrational frequency.
Such a definition would lift the (fundamentally) arbitrary distinction between propagons and diffusons
and enable a unified description of heat transfer.
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In this paper, we apply the spectrally-decomposed MFP method9 to probe the non-equilibrium
MFPs of vibrational heat carriers in amorphous silicon (a-Si). This method is based on calculating the
spectrally-decomposed heat current (SDHC)10 in systems of different lengths using non-equilibrium
molecular dynamics (NEMD) simulations. The MFPs are determined from the variation of the SDHC
as a function of system length at each vibrational frequency.11

We previously used the spectrally-decomposed MFP method to calculate the non-equilibrium
MFPs in low-dimensional systems such as carbon nanotubes,9 anharmonic chains,11 and nanowires
with resonant scatterers.12 We demonstrated that the non-equilibrium MFPs transparently describe
the ballistic-to-diffusive transition in the length-dependence of thermal conductivity9,11,12 and reveal
the effects of structural modifications such as alloying on frequency-dependent phonon transport.12

Compared to previous calculations for a-Si, the spectrally-decomposed MFP method has several
advantages. Unlike in modal life-time calculations,13 we do not need to estimate the group velocities
of individual modes to calculate their MFPs. We also do not need to distinguish between propagons
and diffusons14 nor resort to the harmonic approximation.2 In addition, as the non-equilibrium mean
MFPs are defined based on the decay of non-equilibrium heat flux as a function of system length, their
physical interpretation is evident: they describe the propagation length of heat carriers (diffusons,
propagons, or locons in case of a-Si). In contrast to recent calculations studying the spectral thermal
conductivity of a-Si in fixed-size systems,4,15 we focus on the MFPs of heat carriers and the system-
size dependence of thermal conductivity.

The rest of the paper is organized as follows. The calculation methods are presented in Sec. II
and the numerical results are discussed in Sec. III. We also introduce a simple method for the
quantum correction of thermal conductivity from classical MD simulations, based on weighting the
SDHC by the quantum occupation function. Because this quantum correction method operates at the
frequency level, it is more reasonable than quantum-correction methods that operate at the system
level (see Ref. 16 and references therein) and allows us to compare our predictions to experimental
measurements.

II. SIMULATION SETUP AND METHODS

All simulations are carried out using the LAMMPS package17 with a time step of 2.5 fs. The
Si-Si interactions are modeled by the Stillinger-Weber potential18 with the parameters of Ref. 19.
The NEMD simulation geometry is shown in Fig. 1. The atomic coordinates for a-Si are generated
by following the melt-quench procedure of Ref. 20 and the final density is 2,291 kg/m3. After
equilibration of the quenched system, atoms located within a distance Lbath = 5 nm from the left and
right edges of the structure are coupled to Langevin heat baths at temperatures TH =T + ∆T/2 and
TC =T − ∆T/2 with bath relaxation times of 1 ps. To prevent sublimation, atoms at the far left and
right edges are fixed to their equilibrium positions. Periodic boundary conditions are applied at the
boundaries transverse to the current flow, eliminating boundary scattering effects.. The width of the
system cross-section, W , is 7 nm. System lengths L (i.e., the region between the baths) between 1
and 10 nm at intervals of 1 nm are considered.

FIG. 1. Schematic illustration of the a-Si system for L = 10 nm. The spectral heat flux q(ω) is calculated at the cross-section
in the middle of the structure (dashed line). The length L between the Langevin heat baths is varied to extract the vibrational
mode MFPs based on the decrease of q(ω) as a function of L.
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The SDHC is calculated through the plane of decomposition located halfway between the hot
and cold baths (dashed line in Fig. 1).9,11 The SDHC qi→j(ω) between particles i and j located on
opposite sides of this plane is given by the pair-wise SDHC equation10

qi→j(ω)=−
2

tsimuω

∑
α,β∈{x,y,z }

Im
〈
v̂αi (ω)∗Kαβ

ij v̂
β
j (ω)

〉
, (1)

where tsimu is the simulation time,ω is the angular frequency, and the interatomic force constant Kαβ
ij

is defined as

Kαβ
ij =−

∂2V

∂uαi uβj

�������u=0

. (2)

The velocities v̂αi (ω) and v̂
β
j (ω) are the discrete Fourier transforms of the atomic velocities vαi (t)

= u̇αi (t) and v
β
j (t)= u̇βj (t) (the exact definitions are in Ref. 9), where uαi and uβj are the displacements

of atoms i and j from their equilibrium positions in directions α,β ∈ {x, y, z}. In Eq. (2), V is the
interatomic potential energy function. The spectral flux through the plane of decomposition is obtained
from Eq. (1) by summing over all pairs of atoms (one on the left side, denoted by L̃, and one on the
right side, denoted by R̃) within the potential cut-off distance of each other and dividing by the
interface area A:

q(ω)=
1
A

∑
i∈L̃

∑
j∈R̃

qi→j(ω). (3)

While Eq. (1) is the first-order approximation to the inter-particle SDHC,10 we have confirmed that
the contribution of higher-order terms is negligible for a-Si by comparing the integral of Eq. (3),
which we denote as Q, to the total flux determined from the work done by the heat baths. The two
results agree within 4%. We attribute this good agreement to the stiffness of the interatomic bonds
in a-Si, which ensures that the first-order term in the current (proportional to the harmonic force
constants Kαβ

ij ) dominates the higher-order terms that are related to anharmonic force constants. This
restriction to the first-order current term at the plane of decomposition does not, however, mean that
anharmonic scattering in the bulk is neglected, because all anharmonic effects are included in the
NEMD simulations.9,10

Frequency-dependent MFPs Λ(ω) are calculated by determining q(ω, L) for different system
lengths L and fitting the length-dependent q(ω, L) to the equation9,11

q(ω, L)=
q0(ω)

1 + L/[2Λ(ω)]
, (4)

where q0(ω) is the spectral flux when the baths are in contact (L→ 0+). Equation (4) can be ana-
lytically derived, e.g., from the frequency-dependent relaxation time approximation21 and has been
successfully used to describe the length-dependence of heat flux in various systems.9,11,12,22 Both
q0(ω) and Λ(ω) in Eq. (4) are determined from the fitting procedure. While q0(ω) depends on the
details of the heat baths, the MFPs extracted from the length-dependence are not expected to depend
on the bath details.11 The frequency-dependent MFPs determined from Eq. (4) are mode-averaged
and projected along the direction of heat transfer.9 They are also independent of the system length
and correspond to the bulk values.9 We note that the MFPs determined from Eq. (4) correspond to the
decay length of the heat flux. This definition does not necessarily coincide with the conventional def-
inition of the MFP as the decay length of a wave packet.7 This distinction is important for diffusons,
which do not have a well-defined wave-vector so that the traditional definition cannot be applied.

The prefactor of Λ(ω) in Eq. (4) depends on whether the MFP is defined as the decay length
of the vibrational amplitude (unity) or of the squared amplitude (two, as we have chosen), which is
proportonal to the vibrational energy. In Ref. 9, the definition corresponding to the decay length of
the amplitude was used. In Ref. 23, the prefactor was four, but because of their heuristic derivation,
it is difficult to analyze the discrepancy with Eq. (4). All such definitions are valid as long as the
mathematical relation between the MFP and a physically measurable quantity (such as the thermal
conductivity) is clearly specified.
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Once the spectral MFPs are determined from Eq. (4), the thermal conductivity κ for length L can
be determined from9

κ =
QL
∆T
=

L
∆T

∫ ∞
0

dω
2π

q0(ω)
1 + L/[2Λ(ω)]

. (5)

The length-dependence of the thermal conductivity can be intuitively understood by writing Eq. (5)
in the equivalent form

κ =
2
∆T

∫ ∞
0

dω
2π

q0(ω)
1

(L/2)−1 + Λ(ω)−1︸                 ︷︷                 ︸
Λeff(ω)−1

, (6)

where the “effective” MFP Λeff(ω) has been introduced, which is similar to the well-known
Matthiessen rule.24 The effective MFP accounts for boundary scattering through the additional L/2
term and is limited to below this value. It is important to note that we do not use the Matthiessen rule
as the foundational basis of our analysis, but that it naturally arises from Eq. (4).

Finally, Eq. (5) allows for a simple quantum correction to the thermal conductivity prediction,
because the contributions of different frequencies can be weighted by the vibrational mode energy
and occupation, as done in the Landauer-Büttiker formalism.21,25,26 We define the quantum corrected
thermal conductivity as

κ =
L
∆T

∫ ∞
0

dω
2π

q0(ω)
1 + L/[2Λ(ω)]

~ω

kB

∂fBE(ω, T )
∂T

, (7)

where fBE(ω, T )=
[
exp(~ω/kBT ) − 1

]−1 is the Bose-Einstein distribution function, kB is the Boltz-
mann constant, and ~ is the Planck constant divided by 2π. By defining the dimensionless,
length-dependent bath-to-bath transmission function as

T (ω, L)=
q0(ω)A
kB∆T

1
1 + L/[2Λ(ω)]

, (8)

Eq. (7) can be written in the familiar Landauer-Büttiker form as25

κ =
L
A

∫ ∞
0

dω
2π
~ωT (ω, L)

∂fB(ω, T )
∂T

. (9)

The proposed quantum correction accounts for the quantum specific heat of the modes at each
frequency, but does not account for quantum effects in the dynamics. The method is thus similar to
the one recently introduced by Lv and Henry,4 who weight the modal contributions to the equilibrium
Green-Kubo thermal conductivity by the quantum population function.

All our NEMD simulations are performed at a mean temperature of T = 300 K with temperature
bias ∆T = 100 K. Choosing a relatively large bias allows for very good signal-to-noise ratio in the
spectral heat flux, suppressing the statistical noise. The spectral heat flux q(ω) divided by the temper-
ature bias for∆T = 100 K and 50 K is plotted in Fig. 2(a). Here, L = 5 nm and W = 7 nm. Reducing∆T
to 50 K from 100 K has a negligible effect on the normalized spectral heat flux q(ω)/∆T , suggesting
that the system is in the linear response regime and justifies our use of ∆T = 100 K. The quantity
q(ω)/∆T is plotted in Fig. 2(b) for W = 7 nm and 10 nm. The system length is 5 nm and the bias is
100 K. The heat fluxes for the two widths agree closely, justifying our use of W = 7 nm.

Finite-size effects generally become more important as the system length L increases27 and
similar sensitivity analysis should, in principle, be performed for the largest system length L = 100 nm
considered in the paper. We have not performed such detailed checks because of the very large
computational burden required. However, it is important to note that such finite-size effects are
generally visible as a divergence of thermal conductivity when the system length increases,27 which
cannot be seen in the NEMD simulation results of Fig. 5. Therefore, we expect that finite-size effects
are small in the systems considered in this paper. Furthermore, for a longer system under the same
temperature bias, the heat flux will be smaller and the system will be even further in the linear response
regime.

In addition, we checked that the heat flux is not sensitive to the exact arrangement of atoms
arising from the melt-and-quench procedure, which we attribute to the large cross-section of the
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FIG. 2. (a) Spectral heat flux q(ω) divided by temperature bias ∆T versus frequency for two values of ∆T . L = 5 nm and
W = 7 nm. The insensitivity of q(ω)/∆T to ∆T suggests that the system is in the linear response regime. (b) Spectral heat flux
q(ω) divided by bias ∆T versus frequency for two values of the width W . L = 5 nm, ∆T = 100 K, and the simulation were run
for 5 × 106 and 2.5 × 106 MD time steps for W = 7 nm and W = 10 nm. The effect of W on q(ω) is small.

system giving rise to spatial averaging in the spectral currents. Therefore, we performed a single
melt-quench for each system length. Finally, by using stochastic Langevin heat baths and sufficiently
long simulation times, we are able to sufficiently sample the phase space in a single simulation, so
that only one simulation is required at each length. This behavior is in contrast to energy-conserving
equilibrium microcanonical simulations that require multiple independent simulations to explore the
phase space (e.g., Ref. 14).

III. RESULTS

The spectral heat flux q(ω) for selected system lengths L as a function of frequency f =ω/(2π)
is plotted in Fig. 3. The spectral distribution of the heat flux for L = 20 nm was recently analyzed
in detail by Zhou and Hu,15 so we focus here on its length-dependence. As expected, increasing the
system length reduces the heat current throughout the whole frequency range because of increased
phonon-phonon scattering. The reduction is strongest at high frequencies, where the MFPs are shorter
compared to low frequencies. At frequencies less than 2 THz, the spectral current is nearly independent
of system length. Such nearly ballistic conduction suggests that the low frequency MFPs are notably
longer than the system sizes considered here.

Equation (4) suggests that the inverse of the spectral flux will be linearly proportional to the
system length, with the slope given by [2Λ(ω)]−1. To determine the MFPs, we calculated the spectral

FIG. 3. Spectral heat flux q(ω) for different system lengths L. Increasing the system length reduces the heat flux, especially at
high frequencies, where the MFPs are shorter. At frequencies below 2 THz, the heat current is independent of system length,
suggesting ballistic transport.
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FIG. 4. Log-log plot of the spectral MFPs determined by fitting to Eq. (4). The shaded regions correspond to the 95%
confidence interval. The confidence intervals were obtained from the uncertainty in the linear fitting parameters.

flux for system sizes L ∈ {1, 2, . . ., 10} nm, plotted q(ω)−1 versus L and fitted a linear function at
each frequency using least squares fitting.9,11 A linear function accurately reproduces the length-
dependence of q(ω)−1 (not shown), as previously observed for other systems.9,11,12

Because of the high computational cost associated with calculating the spectral heat fluxes
for large systems, we limited our study to systems at most 10 nm long. This restriction precludes
extracting MFPs longer than 10 nm accurately, limiting the current analysis to frequencies greater
than 2 THz. The MFPs Λ(ω) extracted from the linear fitting procedure are shown in a log-log plot
in Fig. 4. At frequencies below 5 THz, the MFPs obey a power-law scaling Λ(ω) ∝ω−2. This scaling
agrees with modal life-time calculations on a-Si.14 At frequencies greater than 5 THz, the power-
law scaling breaks down and the MFPs increase with increasing frequency, giving rise to a local
maximum around 8 THz. A similar maximum for a-Si has been observed in effective MFPs13 and in
lifetimes.14 At higher frequencies, the MFPs decrease again and fall below 0.5 nm, which is on the
order of the silicon-silicon bond length. At such high frequencies, the uncertainty is large because of
the sensitivity of the spectral flux to the system size.

Larkin and McGaughey reported a propagon-diffuson transition frequency of 1.8 THz,14 such that
the frequency range considered in Fig. 4 mostly corresponds to diffuson-like modes. In the analysis
below, we assume that the scalingΛ(ω) ∝ω−2 (solid line in Fig. 4) remains valid at frequencies below
2 THz and analyze the validity of this assumption by comparing the predicted thermal conductivity
to independently performed NEMD simulations. With such Λ(ω) ∝ω−2 scaling, the MFPs exceed
100 nm below 530 GHz and 1 µm below 170 GHz. While the ω−2 scaling may break down in real
situations because of defects, boundary scattering, or even the onset of a Rayleigh-likeω−4 scaling at
very low frequencies,2 we assume it to hold for simplicity. These long mean free paths are consistent
with previous atomistic calculations13,14 and interpretations of experimental measurements28,29 of
a-Si. The thermal conductivity remains low, however, because the relevant modes have low frequency
and thus low population.

We now investigate the length-dependence of the thermal conductivity using Eq. (5). The calcu-
lated thermal conductivity (continuous line) is compared with that determined directly from NEMD
simulations (data points) for lengths up to 100 nm in Fig. 5. In the evaluation of the integral in Eq. (5),
the MFPs were assumed to scale as Λ(ω) ∝ω−2 at frequencies below 2 THz.

These calculations were carried out without the quantum correction as the NEMD simulations
are classical. Equation (5) combined with the MFP data of Fig. 4 reproduces the length-dependence
of thermal conductivity up to lengths L = 100 nm to within 2%. This close agreement (i) supports the
assumption of Λ(ω) ∝ω−2 scaling at low frequencies, (ii) shows that the MFP data in Fig. 4, which
were determined from simulations of systems shorter than 10 nm, can be reliably used to estimate the
relative contributions of different vibrational frequencies to thermal transport in much larger systems,
and (iii) provides support for the accuracy of Eq. (5) in describing the length-dependence.

The Debye temperature of a-Si is 530 K,31 which is well above room temperature, and we
need to apply the quantum correction to compare the predicted temperature-dependence of thermal
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FIG. 5. Thermal conductivity versus system length. The thermal conductivities calculated from direct NEMD simulation are
marked by blue circles and that estimated from Eq. (5) using classical statistics is indicated by the solid red line. The error
bars in the NEMD thermal conductivities were calculated using standard methods30 and correspond to the 95% confidence
interval.

conductivity to experimental data. To do so, we use Eq. (7) and evaluate the integral as a function
of temperature using the MFPs from Fig. 4, again assuming the scaling Λ(ω) ∝ω−2 at frequencies
below 2 THz. A full quantum-corrected analysis would require determining the MFPs at each tem-
perature. Based on the results of Lv and Henry,4 who suggest that the MFPs in a-Si depend weakly
on temperature, we assume that the MFPs calculated at a temperature of 300 K remain valid at other
temperatures. In future, it would be important to verify this assumption.

The quantum-corrected thermal conductivity [Eq. (7)] is plotted as a function of temperature for
system lengths of 50, 250, and 1000 nm in Fig. 6. As noted above, assuming finite L in Eq. (7) limits
the MFPs to L/2. Experimental data from Cahill et al. for a 520 nm thick film of hydrogenated a-Si
with one atomic percent hydrogen content are also plotted.32 Because available thermal conductivity
measurements for a-Si contain significant scatter,14 we use the data of Cahill et al. to check the
trend of our predictions, but do not expect quantitative agreement. Differences may also exist due
to the use of the Stillinger-Weber potential and the classical nature of the NEMD simulations. The
increase of thermal conductivity with increasing temperature is well described by the quantum-
corrected thermal conductivity. At temperatures higher than 300 K, the experimentally measured
thermal conductivity increases slightly slower as a function of temperature than our prediction, but
this disagreement may be related to our approximation that the MFPs are independent of temperature.

FIG. 6. Quantum-corrected thermal conductivity versus temperature for system lengths of 50, 250, and 1000 nm. The MFPs
are assumed to scale as Λ(ω) ∝ω−2 below frequencies of 2 THz and to be independent of temperature. Also plotted is the
thermal conductivity of a 520 nm thick hydrogenated a-Si thin film measured by Cahill et al.32 Without the quantum-correction,
the thermal conductivity would be temperature-independent and coincide with the quantum-corrected value at T & 500 K.



121904-8 Sääskilahti et al. AIP Advances 6, 121904 (2016)

At such high temperatures, anharmonic scattering will reduce MFPs and therefore decrease the
thermal conductivity. Without the quantum-correction, the predicted thermal conductivity would
depend only very weakly on temperature (due to the weak temperature-dependence of the MFPs),
precluding reasonable agreement with the trend of the experimental data. We caution that this quantum
correction has only been examined for a-Si here and that its application to other systems warrants
further investigation.

IV. CONCLUSION

We investigated vibrational heat transfer in a-Si by determining the SDHC and MFPs from
NEMD simulations. The calculated MFPs directly reflect the decay of the heat flux at each vibrational
frequency and do not rely on the existence of a well-defined modal wave vector, thereby avoiding
the separate treatment of diffusons and propagons. As shown in Fig. 4, the MFPs exhibit ω−2 scaling
at frequencies above 2 THz and below 5 THz. At frequencies higher than 10 THz, the MFPs fall
below 1 nm, corresponding to localized vibrations. The length-independent MFPs can be used to
accurately predict the thermal conductivity in systems as long as 100 nm (Fig. 5). Weighting the
SDHC by the frequency-dependent quantum occupation function provides a simple method for a
quantum-correction of thermal conductivity and is able to reproduce the experimentally measured
temperature-dependence of thermal conductivity, as shown in Fig. 6.

In the future, it will be useful to calculate the SDHC for systems longer than those considered
here, enabling direct extraction of MFPs at frequencies below 2 THz. Such an analysis could inform
the ongoing discussion14 of the low-frequency scaling of MFPs in a-Si. It will also be important
to compare the non-equilibrium MFPs to those calculated from equilibrium molecular dynamics
simulations.
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