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This paper concerns the real time control of the boundary layer on an aircraft wing. This new approach consists in heating the surface in an unsteady regime using electrically resistant strips embedded in the wing skin. The control of the boundary layer's separation and transition point will provide a reduction in friction drag, and hence a reduction in fuel consumption. This new method consists in applying the required thermal power in the different strips in order to ensure the desired temperatures on the aircraft wing. We also have to determine the optimum size of these strips (length, width and distance between two strips). This implies finding the best mathematical model corresponding to the physics enabling us to facilitate the calculation for any type of material used for the wings. Secondly, the heating being unsteady, and, as during a flight the flow conditions or the ambient temperatures vary, the thermal power needed changes and must be chosen as fast as possible in order to ensure optimal operating conditions.

Introduction 

A new proposal enabling us to control the boundary layer flow over an airfoil is under way [START_REF] Masson | Real-time control of the heating of an airfoil[END_REF]. It would influence the boundary layer's laminar-turbulent transition and separation point, allowing an improvement in economic efficiency and safety of airplanes. This new approach proposed is associated with the unsteady surface heating regime using electrically resistant strips embedded in the wing skin. The control of the boundary layer's separation and transition point will provide a reduction in friction drag, and hence a reduction in fuel consumption. The implementation of strips in the wing skin could be done at a low cost for the manufacturer without weakening the structural integrity of the wing. Another possible advantage of this method is associated with taking-off and landing regimes. This method could enlarge effectiveness of control surfaces and possibly reduce the aerodynamic noise produced by the control surfaces because it could influence the boundary layer separation point.

In order to ensure the desired temperatures on the aircraft wing at a given time, we must determine which is the required thermal power in each strip. This means we have to solve the heat equation for the plate, strip and air surrounding the system. But if we take into account all the equations due to fluid dynamics [START_REF] Dr | Boundary-Layer Theory[END_REF][START_REF] Anderson | Fundamentals of Aerodynamics[END_REF], it will be impossible to obtain the result fast enough to heat the airfoil at the temperature wanted.

So we have to find a suitable simplified model.

Once we have solved the simplified 2D model, we can go one step further and solve a 3D model. But in this case, the optimal design of the strips has to be worked out: which would be the ideal length, width and distance between two strips in order to obtain the wanted temperatures.

Building-Up Parametric Solutions

Usual models in computational mechanics could be enriched by considering all the sources of variability (e.g., model parameters, initial or boundary conditions, geometrical parameters, etc.) as extra-coordinates. For example, in our case, we are interested in solving the heat equation but we do not know the dimension and position of the source term, as it has to be defined as an optimum between power consumption and evolution of the temperature in time. We have three possibilities: [START_REF] Masson | Real-time control of the heating of an airfoil[END_REF] we wait to know the chosen design before solving the heat equation (a conservative solution); [START_REF] Dr | Boundary-Layer Theory[END_REF] we solve the equation for many values of the length, width and distance between two strips and then the work is done (a sort of brute force approach); or [START_REF] Anderson | Fundamentals of Aerodynamics[END_REF] we solve the heat equation only once for any length, width and position of the strips.

Obviously the third alternative is the most exciting one. To compute this parametric solution, it suffices to introduce the design parameters as extra-coordinates, playing the same role as the standard space and time coordinates, even if there are no derivatives concerning these extra-coordinates. This procedure runs, very well, and can be extended for introducing many other extra-coordinates: the power of the source term, initial conditions … (See Ref. [START_REF] Chinesta | A short review in model order reduction based on Proper Generalized Decomposition[END_REF] and the references therein for an exhaustive and recent review). It is easy to understand that after performing this type of calculations, a posteriori inverse identification or optimization can be easily handled [START_REF] Chinesta | Recent advances in the use of the Proper Generalized Decomposition for solving multidimensional models[END_REF][START_REF] Ch | Methodological approach to efficient modelling and optimization of thermal processes taking place in a die: Application to pultrusion[END_REF][START_REF] Ch | Proper Generalized Decomposition based dynamic data-driven control of thermal processes[END_REF][START_REF] Gonzalez | Proper Generalized Decomposition based dynamic data-driven inverse identification[END_REF].

The price to pay is the solution of a model involving many coordinates. If the model is defined in a space involving N coordinates, standard mesh based discretization techniques require M N degrees of freedom when M nodes are involved in the discretization of each coordinate. In practical applications with 

Routes for Circumventing the Curse of Dimensionality

The construction of parametric solutions seems an exciting route, but the main question needs an answer: How can we circumvent the curse of dimensionality?

Different techniques have been proposed for circumventing the curse of dimensionality, Monte Carlo simulations being the most widely used. Their main drawback is the statistical noise. Other possibilities lie in the use of sparse grids [START_REF] Bungartz | Sparse grids[END_REF], within the deterministic framework, but they suffer also when the dimension of the space increases beyond a certain value (about 20).

Separated representations could be a valuable alternative. Separated representations proceeds by expressing a generic multidimensional function
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In this expression, the coordinates i x denote any coordinate, scalar or vector, involving the physical space, the time or any other extra-coordinate (e.g., the conductivity in the example previously discussed). Separated representations were present within the Hartree-Fock-based approaches were widely employed in quantum chemistry [START_REF] Cancès | Computational quantum chemistry: A primer[END_REF]. In the 80s, space-time separated representations were considered by P. Ladeveze within an original and powerful non-incremental-non-linear solver called LATIN method [START_REF] Ladeveze | Nonlinear Computational Structural Mechanics[END_REF][START_REF] Ladeveze | The LATIN multiscale computational method and the Proper Generalized Decomposition[END_REF]. A natural generalization was proposed by Ammar and Chinesta [START_REF] Ammar | A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids[END_REF][START_REF] Ammar | A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids: Part II. Transient simulation using space-time separated representations[END_REF] The temperature inside the plate and strip responds to the steady state heat equation as in the first system considered, i.e., Eq. ( 2). Inside each boundary layer, the temperature is given by Eq. [START_REF] Ladeveze | Nonlinear Computational Structural Mechanics[END_REF].
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where k is the air conductivity and v(x, y) is the velocity in the boundary layer, and can be calculated thanks to the Karman equation:
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where V is the free stream velocity and y is the vertical distance to the solid surface.

The boundary conditions between each sub-domain of this system are  Between the upper boundary layer and the strip,
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 Between the strip and the plate,
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 Between the plate and the lower boundary layer,
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Note that in all the equations, the 'y' coordinate is again taken locally, i.e., it is dependent of each layer, and takes its origin (y = 0) on the lower surface of the corresponding layer. 
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Eq. ( 16) enables us to estimate the convection coefficient h.

Once we have the value of the convection coefficient, we can come back to the simplified model described in the previous section:

 First we solve Eq. ( 2) with the given boundary conditions, taking an arbitrary T a (x) and T b (x) thus obtaining the temperature inside the plate and the strip.

 Then we solve Eqs. ( 8) and ( 9) using the temperatures U I (x, H I y ) and U II (x, H II y ) on the upper and lower surface of the plate just calculated to obtain T a (x) and T b (x).

We repeat both steps until convergence. Now it is possible to determine the value of power P needed in order to achieve the target temperature on the surface of the airfoil simply by doing an inverse calculation. The numerical experiments reported later will prove that the energy balance in both boundary layers is unnecessary and that no significant error is introduced if we consider that everywhere in the boundary layer the air temperature is the ambient one.

Finding the Optimized Location and Dimensions for the Strips

In the previous section, we only considered two dimensions: the length and height of the plate. But eventually, we will have to determine what is the optimum width W of each strip and distance D between two consecutive strips. And this requires solving the problem in 3D, as in Fig. 3. However, thanks to the previous simplified analysis we can justify the use of simplified boundary conditions avoiding the consideration of energy balances in the surrounding air layers. Moreover the exchange coefficient to be considered in the boundary conditions was properly identified. In order to find the Fig. 3 
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Numerical Results

Steady Heating

4.1.1 Airfoil's Temperature in 2D As explained in section 2.1, we first have to estimate the convection coefficient. This coefficient h is assumed in first approximation independent of the power induced in the strip and the outside temperature. The only parameter that can influence this coefficient is the free-stream velocity v as the conditions are then comparable to a forced convection.

The expected tendency is reflected in the numerical results, as h changes only according to the free-stream velocity.

For v = 20 m/s, we obtain h = 8.2 W/m 2 K. For v = 100 m/s, we obtain h = 18.2 W/m 2 K. For a flat plate 15 cm long, 17.9 mm thick, and a strip of the same length and 0.1 mm thick, solving Eqs. ( 2), ( 6) and ( 7) with the boundary conditions described in Eq. ( 3), gives us the following temperatures (in the following figures, "I" represents the intensity administered in the electrically resistant strip). appreciate the influence of the free stream velocity.

4.1.2 3D Plate Temperature-PGD Solution In this example, we are going to solve the 3D heat transfer equation for a flat plate, i.e., Eq. ( 10) with the boundary conditions described in Eq. ( 11) for 7 coordinates: x, y, z (space coordinates), the width of the strip W, the distance between two strips D, the length L and the power in the strip P. Thus, the solution is found under the form: problems in order to obtain the same information as Eq. We can clearly notice in Figs. 19-24 the influence of the convection coefficient (which changes according to the free-stream velocity), the conduction coefficient, the applied power on the strip and the width of these strips.
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Unsteady Heating

In the presented example, we consider a flat plate with the following dimensions: where p = 1 as previously described.

Fig. 25 represents the temperature on the surface of the plate for P = 1. To obtain the solution for P = 2, as shown in Fig. 26, we make use of the linearity.

The temperature on the surface of the plate can easily be seen for one step, two or more, by using superposition.

Fig. 27 shows the temperature evolution at the surface of the strip (z = 0.18 cm), where x = 7.5 cm and y = 6 cm with one power step at t 1 = 1 and  1 = 6. 

Conclusions

A new approach to improve fuel consumption during an airplane flight consists in heating the wings. This requires the creation of a numerical abacus in order to know which thermal power must be given to obtain the required temperature as a function of the flight conditions.

In this work, we have seen that it is possible to obtain a simple mathematical model corresponding to the physics: indeed, the 2D models enabled us to define the convection coefficient h, and determine that it is not compulsory to take the boundary layer's temperature into account to obtain an accurate temperature of the surface of the plate. Instead, it suffices to consider the ambient temperature.

The 3D parametric model helps the design of the airfoil and strip by enabling the evaluation of all design configurations thanks to a faster calculation time. And finally, the 3D unsteady heating model (parametric or not) allows fast unsteady calculus for any given signal.

The ongoing work concerns  We must still define the optimum and control criteria: As the final aim is to improve fuel consumption during a flight, we must determine which would be the compromise between the energy consumption and temperature, both depending on the intensity, length and power step frequency;  A control system based on the numerical PGD abacus (containing all the different parameters) ensuring the right temperature on the surface of the strip, i.e., the inverse identification, must still be defined.
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  If we consider adiabatic boundary conditions along x = 0 and x = H x , a quite reasonable assumption because the reduced thickness of the system under consideration, the energy flow is thereby concentrated on the top and lower domain boundaries, and writes

  Fig. elec

Fig. 5 Flat

 5 Fig. 5 Flat strip and corr

Figs. 8 -

 8 Fig. 8 Plate's temperature for v = 20 m/s, h = 8.2 W/m 2 K, I = 2 A and k = 300 W/mK.

Fig. 9

 9 Fig. 9 Boundary layer's temperature in contact with the plate, for v = 20 m/s, h = 8.2 W/m 2 K, I = 2 A and k = 300 W/mK.

Fig. 12

 12 Fig. 12 Boundary layer's temperature in contact with the plate, for v = 20 m/s, I = 2 A and k = 100 W/mK.

Fig. 14

 14 Fig. 14 Plate's temperature for v = 100m/s, h = 18.2 W/m 2 K, I = 2 A and k = 300 W/mK.

Fig. 15

 15 Fig. 15 Boundary layer's temperature in contact with the plate, for v = 100 m/s, h = 18.2 W/m 2 K, I = 2 A and k = 300 W/mK.

Fig. 17

 17 Fig. 17 Plate's temperature for v = 100 m/s, I = 2 A and k = 100 W/mK.

Fig. 18

 18 Fig. 18 Boundary layer's temperature in contact with the plate, for v = 100 m/s, I = 2 A and k = 100 W/mK.

  26) The convection coefficient h and the conduction coefficient k are considered known. The results are shown for two values of each of these parameters: h = 8.2 W/m 2 •K and h = 18.2 W/m 2 •K; k = 300 W/mK and k = 100 W/mK. The calculation time in order to obtain the solution for all values of the extra-coordinates is approximately 142s. This abacus contains the temperature of all the points on the plate and strip, for all length of the airfoil, width of the strips, distance between two strips and for any power applied. The meshing chosen was 100 values for x, 200 for y, 500 for z, 100 for P, 50 for L, and 20 for W and D, that means 20 × 10 13 dof with a traditional meshing technique, or having to solve 2 × 10 6 3D

Fig. 19

 19 Fig. 19 Plate's surface temperature for h = 8.2 W/m 2 K, k = 300 W/mK, W = 0.289 m, d = 0.289 m, P = 5 × 10 6 W/m 3 .

  The outside temperature is considered to be T amb = 20

Fig. 28

 28 Fig. 28 shows the temperature of the same point and same thermal step than in Fig. 27, but with a second step applied at t 2 = 4 with  2 = -6. We can clearly see the temperature of the plate decreasing as a result of this second impulse. In Figs. 29-30, we can see the temperature at the same point under the influence of a pulsed wave, as we apply P and -P alternatively at every time step. In Fig. 29, the pulse frequency is Dt = 3, and P = 6. In Fig 30, P is doubled, and Dt is divided by 2.
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 25 Fig. 25 Temperature on the surface of the plate, at time t = 50, for P = 1.

Fig. 28

 28 Fig. 28 Two Impulses at t 1 = 0 where  1 = 6, and at t 1 = 25 where  1 = -6.

Fig. 29 - 6 .

 296 Fig. 29 Impulse at t 1 = 0 and  1 = 6 and at t 2 = 25 and  2 = -6 . Thereafter pulse wave every Dt = 3.

Fig. 30

 30 Fig. 30 Impulse at t 1 = 0 and  1 = 12 and at t 2 = 25 and  2 = -12. Thereafter pulse wave every Dt = 1.5.
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