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Abstract: This paper concerns the real time control of the boundary layer on an aircraft wing. This new approach consists in heating
the surface in an unsteady regime using electrically resistant strips embedded in the wing skin. The control of the boundary layer’s

separation and transition point will provide a reduction in friction drag, and hence a reduction in fuel consumption. This new method
consists in applying the required thermal power in the different strips in order to ensure the desired temperatures on the aircraft wing.
We also have to determine the optimum size of these strips (length, width and distance between two strips). This implies finding the
best mathematical model corresponding to the physics enabling us to facilitate the calculation for any type of material used for the

wings. Secondly, the heating being unsteady, and, as during a flight the flow conditions or the ambient temperatures vary, the thermal
power needed changes and must be chosen as fast as possible in order to ensure optimal operating conditions.

Key words: Model reduction, PGD (proper generalized decomposition), heating of an airfoil, boundary layers, laminar-turbulent

transition and separation point, friction drag, unsteady heating.

1. Introduction

A new proposal enabling us to control the boundary
layer flow over an airfoil is under way [1]. It would
influence the boundary layer’s laminar-turbulent

transition and separation point, allowing an
improvement in economic efficiency and safety of
airplanes. This new approach proposed is associated
with the unsteady surface heating regime using
electrically resistant strips embedded in the wing skin.
The control of the boundary layer’s separation and
transition point will provide a reduction in friction
drag, and hence a reduction in fuel consumption. The

implementation of strips in the wing skin could be
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done at a low cost for the manufacturer without
weakening the structural integrity of the wing.
Another possible advantage of this method is
associated with taking-off and landing regimes. This
method could enlarge effectiveness of control surfaces
and possibly reduce the aerodynamic noise produced
by the control surfaces because it could influence the
boundary layer separation point.

In order to ensure the desired temperatures on the
aircraft wing at a given time, we must determine
which is the required thermal power in each strip. This
means we have to solve the heat equation for the plate,
strip and air surrounding the system. But if we take
into account all the equations due to fluid dynamics
[2-3], it will be impossible to obtain the result fast
enough to heat the airfoil at the temperature wanted.



So we have to find a suitable simplified model.

Once we have solved the simplified 2D model, we
can go one step further and solve a 3D model. But in
this case, the optimal design of the strips has to be
worked out: which would be the ideal length, width
and distance between two strips in order to obtain the

wanted temperatures.
1.1 Building-Up Parametric Solutions

Usual models in computational mechanics could be
enriched by considering all the sources of variability
(e.g., model parameters, initial or boundary conditions,
geometrical parameters, etc.) as extra-coordinates. For
example, in our case, we are interested in solving the
heat equation but we do not know the dimension and
position of the source term, as it has to be defined as
an optimum between power consumption and
evolution of the temperature in time. We have three
possibilities: (1) we wait to know the chosen design
before solving the heat equation (a conservative
solution); (2) we solve the equation for many values
of the length, width and distance between two strips
and then the work is done (a sort of brute force
approach); or (3) we solve the heat equation only once
for any length, width and position of the strips.

Obviously the third alternative is the most exciting
one. To compute this parametric solution, it suffices to
introduce the design parameters as extra-coordinates,
playing the same role as the standard space and time
coordinates, even if there are no derivatives
concerning these extra-coordinates. This procedure
runs, very well, and can be extended for introducing
many other extra-coordinates: the power of the source
... (See Ref. [4] and the

references therein for an exhaustive and recent

term, initial conditions

review). It is easy to understand that after performing

this type of -calculations, a posteriori inverse
identification or optimization can be easily handled
[5-8].

The price to pay is the solution of a model

involving many coordinates. If the model is defined in

a space involving N coordinates, standard mesh based
discretization techniques require M" degrees of
in the
discretization of each coordinate. In practical
with M ~10° and N ~10 the
complexity reaches the value of M"Y ~10°° beyond

freedom when M nodes are involved

applications

the present computational capabilities. Thus, standard

discretization techniques fail to solve
multidimensional models that suffer the so-called

curse of dimensionality.

1.2 Routes for

Dimensionality

Circumventing the Curse of

The construction of parametric solutions seems an
exciting route, but the main question needs an answer:
How can we circumvent the curse of dimensionality?

Different techniques have been proposed for
circumventing the curse of dimensionality, Monte
Carlo simulations being the most widely used. Their
Other
possibilities lie in the use of sparse grids [9], within

main drawback is the statistical noise.
the deterministic framework, but they suffer also when
the dimension of the space increases beyond a certain
value (about 20).

Separated representations could be a valuable
alternative. Separated representations proceeds by
function

expressing a generic multidimensional

u(x,+,xy ) in a separated form:
=0
u( XXy )2 D F (x) % xEY (xy) (1)
i=1
In this expression, the coordinates Xx; denote any
coordinate, scalar or vector, involving the physical
space, the time or any other extra-coordinate (e.g., the
conductivity in the example previously discussed).
Separated representations were present within the
Hartree-Fock-based
employed in quantum chemistry [10]. In the 80s,

approaches  were  widely
space-time separated representations were considered
by P. Ladeveze within an original and powerful
called LATIN

generalization was

non-incremental-non-linear solver
method [11-12]. A natural

proposed by Ammar and Chinesta [13-14] for solving



the highly multidimensional models encountered in
the kinetic theory description of complex fluids.
Parametric models were addressed in Ref. [15].

Thus, if M nodes are used to discretize each
coordinate, the total number of unknowns involved in
the solution is OxNxM instead of the M"
degrees of freedom involved in mesh based
discretizations. We must recall that these functions are
not “a priori” known, they are computed on the fly by
introducing the approximation separated
representation into the model weak form and then
solving the resulting non-linear problem. The
interested reader can refer to Ref. [12] and the
references therein for a detailed description of the
numerical and algorithmic aspects. The construction
of such approximation is called Proper Generalized
Decomposition (PGD) because this decomposition is
not orthogonal but in many cases the number of terms
in the finite sum is very close to the optimal
decomposition obtained by applying the Proper
Orthogonal Decomposition (POD) (or the Singular
Value Decomposition (SVD)) on the model solution.

As can be noticed in the expression of the
approximation separated representation the
complexity scales linearly with the dimension of the
space in which the model is defined, instead of the
exponential growth characteristic of mesh based
discretization strategies. In general, for many models,
the number of terms Q in the finite sum is quite
reduced (few tens) and in all cases the approximation
converges towards the solution associated with a full
tensor product of approximation bases considered in
each space x;. Thus, we can conclude about the
generality of the separated representation, but its

optimality depends on the solution features.
1.3 Structure of the Paper

In this paper, we focus on the numerical tools
linked to the new approach, enabling us to control the
boundary layer flow over an airfoil. First, in section

2.1 we will find a suitable simplified 2D equation,

which represents in a realistic way the heat transfer
equation for the flat plate, strip and boundary layer,
and that will be used in section 2.2 in order to identify
the advection coefficient to be considered for
modeling the thermal boundary conditions avoiding
the necessity of solving the thermal balance in the air
and also for justifying that the ambient temperature
can be considered in all the boundary conditions
instead of the real temperature of the air within the
boundary layer. In section 2.3, in order to determine
the real configuration and optimize the strips location
and geometry we considered a 3D modeling. The
design of the strips (length, width and distance
between two strips) must be taken into account and
introduced as extra-coordinates of the model allowing
efficient optimizations. As the number of
extra-coordinates becomes important, we will use the
PGD method to solve this problem. The last ingredient,
which will be looked at in section 3, is, as mentioned
earlier, the unsteady heating of the strips. We will use
the linearity and the superposition principle to solve

this problem.
2. Solving the Problem in the Steady State

2.1 A Simple Model for Calculating the Airfoil’s

Surface Temperature

In what follows, and for simplicity’s sake, we solve
the heat transfer equation in a two dimensional
domain, i.e., we consider a flat plate and an electrical
strip resistance on top, both having the same length, as
depicted in Fig. 1.

There is no heat source in the plate, and the source

Fig. 1 Heat transfer on a flat plate with an electrically
resistant strip on top.



term in the strip is P, thus the equations are
respectively
{KPAU” =0 2
KAU' =P

where K, and K are respectively the plate’s and the
strip’s conduction coefficient. We assume a local
system of the coordinates attached to the bottom
boundary in each domain (plate and strip).

The boundary conditions are

* For the plate,

-K, ou™ :h'(U”(O’y)_Tamb)
x=0
aUH
K= =h-(U"(H,.9)-T,,) )
X x=H,
Ut .
Kp oy y:()_h (U (x,O) Tb)
* For the strip,
ou’ ,
-K _h. r
ol = U (0)-T.,)
oU’ L (0 )
POX leen, =k (U (H’Y’y) T“'"”) 4)
oU"’
K, =h-(U'(x,H")-T,
Y — ( ( ) )

where /4 is the convection coefficient, T, represents
the ambient temperature, and 7T, and 7} respectively
the temperatures of the upper and lower boundary
layers. H, is the length of the plate and strip, HyI and
Hy” are respectively the height of the strip and of the
plate.
Between the strip and the plate, we have equality in
temperature and thermal fluxes:
U” (x,y” =H, ) =U"(x,y" =0)
y'=H

Furthermore, inside the upper boundary layer, we

®)

/=0

consider the energy balance in a volume Ax during a

time Az, i.e.,
Ki-(fl—Umf)oAt-Ax+v-p-c-7;o5'At (6)
: —v-p-c:T-5A=0

where v represents the free stream velocity, o the

density, ¢ the specific heat capacity, 4 the convection
coefficient and ¢ the boundary layer thickness. U,y is
the temperature at the surface of the strip, i.e., U'(x,
H)).

Thus, taking into account

: dT,
T ~T,+—% Ax ™
dx
we can deduce that the temperature in the upper

boundary layer is governed by
dT
1 a _
Ve dx _7:1 - Usurf (8)

where y' = pcvd Khs .

Using a similar approach, we obtain the following
equation for the lower boundary layer:

7”ﬁ_T =U ©))

b~ ~lower

K
where y" = pcv57" and Uy, is the temperature at

the plate’s bottom surface.

We have the following boundary conditions for
both boundary layers:

T,(x=0)=T,(x=0)=T,, (10)

We are looking for the temperature in the whole
structure (plate and strip) that we denote by U(x, »), by
solving Eqgs. (2)-(5) and (8)-(10), however we must
first find a simple procedure to estimate the value of
the convection coefficient 4.

2.2 A Simple Model for Calculating the Exchange
Coefficient

Thus, we consider a second system composed of the

Upper Boundary Layer

Strip

Plate

Lower Boundary Layer

Fig. 2 System composed of the flat plate, the strip and the
upper and lower boundary layers.



flat plate, the strip and the upper and lower boundary
layers, as shown in Fig. 2.

The temperature inside the plate and strip responds
to the steady state heat equation as in the first system
considered, i.e., Eq. (2). Inside each boundary layer,
the temperature is given by Eq. (11).

(&T o°T)

0
v(x,y)az kk@x_z-'—ﬁy_ﬁ

where k is the air conductivity and v(x, y) is the

(11)

velocity in the boundary layer, and can be calculated
thanks to the Karman equation:
2y _»?
v(x,y)=v[?_5_zj (12)

where V is the free stream velocity and y is the vertical
distance to the solid surface.

The boundary conditions between each sub-domain
of this system are

* Between the upper boundary layer and the strip,

K ou’ _ i o7, |
I Y10 (13)
U' (x.H)=T,(x,0)
* Between the strip and the plate,
_K" M =_K! ou’
W Ny Y o (14)

U (x,H!')=U"(x,0)
* Between the plate and the lower boundary layer,

_K”LH =—jh I,

Y |, oy
U"(x,0)=T, (x,Hfh)

y=H,)? (15)

Note that in all the equations, the ‘y’ coordinate is
again taken locally, i.e., it is dependent of each layer,
and takes its origin (v = 0) on the lower surface of the
corresponding layer.

If we consider adiabatic boundary conditions along
x = 0 and x = H,, a quite reasonable assumption
because the reduced thickness of the system under
consideration, the energy flow is thereby concentrated

on the top and lower domain boundaries, and writes

T—K’y dx+TK”aLH dx =

x;o oy y=t! =0 ) Y | (16)
[ n(U" (xH!)-T,,)+ [ m(U" (x,0)-T,,)

x=0 x=0

Eq. (16) enables us to estimate the convection
coefficient /.

Once we have the value of the convection
coefficient, we can come back to the simplified model
described in the previous section:

* First we solve Eq. (2) with the given boundary
conditions, taking an arbitrary T,(x) and T,(x) thus
obtaining the temperature inside the plate and the
strip.

* Then we solve Egs. (8) and (9) using the
temperatures U'(x, H' y) and U'(x, H' Iy) on the upper
and lower surface of the plate just calculated to obtain
T,(x) and Tp(x).

We repeat both steps until convergence.

Now it is possible to determine the value of power
P needed in order to achieve the target temperature on
the surface of the airfoil simply by doing an inverse
calculation. The numerical experiments reported later
will prove that the energy balance in both boundary
layers is unnecessary and that no significant error is
introduced if we consider that everywhere in the

boundary layer the air temperature is the ambient one.

2.3 Finding the Optimized Location and Dimensions
for the Strips

In the previous section, we only considered two
dimensions: the length and height of the plate. But
eventually, we will have to determine what is the
optimum width W of each strip and distance D
between two consecutive strips. And this requires
solving the problem in 3D, as in Fig. 3. However,
thanks to the previous simplified analysis we can
justify the use of simplified boundary conditions
avoiding the consideration of energy balances in the
surrounding air layers. Moreover the exchange

coefficient to be considered in the boundary

conditions was properly identified. In order to find the



Fig. 3 3 representation of the flat plate with the strips on
top.

ideal width and distance, /¥ and D, we could attempt
different trials until reaching an acceptable value of
the cost functions describing the optimal choice. This
would imply a 3D solution procedure for each
tentative choice of the parameters.

Instead of the traditional procedure, we will define
and solve a model considering all the design
parameters as extra-coordinates. The resulting
multidimensional model will only be solved once, and
allows us to define a sort of abacus from which the
optimization process can be carried out very fast even
on light computing platforms. As we also do not know
what the optimal length L of the airfoil will be, neither
the power P given to heat the strips, we will add L and
P as extra-coordinates. Thus, we arrive to 7
coordinates: x, y, z, W, D, L and P. Using a traditional
mesh-based discretization method implies a too high
number of degrees of freedom. This is why we use the
PGD revisited and summarized in the first section of
this work. The system we are considering is the flat
plate (represented in white in Fig. 4) with an
imbedded electrically resistant strip (in grey in Fig. 4).

This means, we have to solve the following heat
transfer equation:

kAU =P a7
where the power source P only applies in the strip.

We have convective boundary conditions in the x
and z directions, and symmetry conditions in the
y-direction as there would be more than one strip to
heat the airfoil, thus, we have the boundary conditions

as Eq. (18):

Fig. 4 3D representation of the flat plate (in white) one
electrically resistant strip (in grey).

U
ox

LU
ox

o
oy

ou (18)
oy

= h (Tamb - Ux:O)

x=0

= h (Tamb - Ux:L)

x=L

y=D+W

_xoU
0z

LU

z

= h (Tamb - UZ:O)

z=0

= h (Tamb _Uz:H)

z=H

By using the PGD method, we obtain a solution

under the separated form:
U= X(-X()-Z(2)-W(W)-D(D)-F(L)- B(P)

For more details of such a separated representation
construction, the interested reader can refer to Ref. [7].
As we now have the temperature of the airfoil for all
width and distance between 2 consecutive strips and
for all other extra-coordinates, we can determine the
optimum width and distance between 2 strips (as the
length of the airfoil is determined by other criteria)

according to the power we want to apply on the strips.
3. Taking into Account the Unsteady Heating

For simplicity’s sake, in the above calculations we
only considered steady heating. But usually, the
control of the boundary layer flow over the airfoil is
achieved by applying unsteady heating in the
electrical strips resistances. During the flight, we

would need to know which power must be applied and



at which frequency, in order to obtain the desired
temperature on the surface of the wing.

We are considering the flat plate/embedded strip
system depicted in Fig. 5, which gives us the
following parametric heat transfer equation to be

solved:
pcaa—uzkAu+P(x,y,z,t) (19)
t
where the source term P(x, y, z, t) only applies on the

strip and has an arbitrary evolution in time.
The boundary conditions are as follows:

=0 (20)

with the following initial condition:
u(x,y,z,6=0)= (21)
As P(x, y, z, t) can evolve arbitrarily in time but the

amb

heat equation being linear, we start by solving the
simpler heat transfer equation associated with a unit

power-step applied at the initial time:

ou
— =kAu+ (22)
yole p u+p

amb (u

Fig. 5 Flat plate with an embedded electrically resistant
strip and corresponding boundary conditions.

where p = 1 in the strip (as shown in Fig. 6), with the
same boundary conditions described in Eq. (20), and
initial condition described in Eq. (21). This can be
done using different methods (finite differences, finite
elements or even the non-incremental parametric
PGD ...).

Once we have obtained u(x, y, z, t; p = 1)
corresponding to the solution of Eq. (22) with the
boundary conditions (20), we can obtain U(x, y, z, t; P)
solution of the equation:

pcg—’; =kAu+P (23)

using the linearity, simply by multiplying u(x, y, z, t; p
=1)byP,ie.,

U(x,y,z,t;P)=P-u(x,y,z,t;p=1) (24)

The solution related to an arbitrary evolution of the

source term can be now easily obtained by invoking

the superposition principle.

If Pz) 29 H , as seen in Fig. 7, by applying

the superposition it results,

\ [

1.2

1
0.8
0.6
0.4
0.2

0

A 4

-1.2 0.7 -0.2 0.3 0.8

Fig. 6 Source term p =1 for ¢> 0.

—

b, 7
Fig. 7 Source term P varying in time.




U(x,y,z,t)zZHi‘u(x,y,z,t—t,.;pzl) (25)

4. Numerical Results
4.1 Steady Heating

4.1.1 Airfoil’s Temperature in 2D

As explained in section 2.1, we first have to
estimate the convection coefficient. This coefficient /
is assumed in first approximation independent of the
power induced in the strip and the outside temperature.
The only parameter that can influence this coefficient
is the free-stream velocity v as the conditions are then
comparable to a forced convection.

The expected tendency is reflected in the numerical
results, as 4 changes only according to the free-stream
velocity.

For v =20 m/s, we obtain & = 8.2 W/m’ K.

For v= 100 m/s, we obtain 2 = 18.2 W/m® K.

For a flat plate 15 cm long, 17.9 mm thick, and a

strip of the same length and 0.1 mm thick, solving Eqgs.

(2), (6) and (7) with the boundary conditions
described in Eq. (3), gives us the following
temperatures (in the following figures, “I”” represents
the intensity administered in the electrically resistant
strip).

Figs. 8-13 show the influence of the conduction
coefficient k£ and the intensity / applied on the strip.
Figs. 14-18 compared to the previous figures let us
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Fig. 8 Plate’s temperature for v = 20 m/s, h = 8.2 W/m’K,
I=2 A and k=300 W/mK.
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Fig. 9 Boundary layer’s temperature in contact with the
plate, for v =20 m/s, h = 8.2 W/m’K, I =2 A and k = 300
W/mK.

0.05

Fig. 10 Plate’s temperature for v =20 m/s, h = 8.2 W/m’K,
I="7A and k=300 W/mK.
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Fig. 11 Plate’s temperature for v =20 m/s, I = 2A and k =
100 W/mK.



0 1 1 1 1 1 1 1
20 0 0.0z 0.04 0.06 0.03 01 012 0.14 016

] 00Z 004 006 008 01 012 014 016 . .
Fig. 15 Boundary layer’s temperature in contact with the

plate, for v =100 m/s, & = 18.2 W/m?K, I=2 A and k = 300
W/mK.

Fig. 12 Boundary layer’s temperature in contact with the
plate, for v=20 m/s, /=2 A and k£ =100 W/mK.
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Fig. 13 Plate’s temperature for v = 20m/s, I = 7A and k = Fig. 16 Plate’s temperature for v = 100m/s, & = 18.2
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Fig. 14 Plate’s temperature for v = 100m/s, 7 = 18.2 Fig. 17 Plate’s temperature for v = 100 m/s, / = 2 A and
W/m’K, I=2 A and k = 300 W/mK. k=100 W/mK.
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Fig. 18 Boundary layer’s temperature in contact with the
plate, for v=100 m/s, /=2 A and k =100 W/mK.

appreciate the influence of the free stream velocity.

4.1.2 3D Plate Temperature—PGD Solution

In this example, we are going to solve the 3D heat
transfer equation for a flat plate, i.e., Eq. (10) with the
boundary conditions described in Eq.(11) for 7
coordinates: x, y, z (space coordinates), the width of
the strip W, the distance between two strips D, the
length L and the power in the strip P. Thus, the

solution is found under the form:
i=N
U= X,(0)Y()-Z(2)-W,(W)-D.(D)- E(L)-E(P) (26)
i=1

The convection coefficient £ and the conduction
coefficient & are considered known. The results are
shown for two values of each of these parameters: 4 =
8.2 W/m”K and 4 = 18.2 W/m*K; k = 300 W/mK and
k=100 W/mK.

The calculation time in order to obtain the solution
all values of the
approximately 142s. This
temperature of all the points on the plate and strip,
for all length of the airfoil, width of the strips,

is
the

for extra-coordinates

abacus contains

distance between two strips and for any power
applied. The meshing chosen was 100 values for x,
200 for y, 500 for z, 100 for P, 50 for L, and 20 for W
and D, that means 20 x 10" dof with a traditional
meshing technique, or having to solve 2 x 10° 3D

problems in order to obtain the same information as Eq.

10

07 06 0s 04 03 0.2 01 ]
Fig. 19 Plate’s surface temperature for & =82 W/m’K, k
=300 W/mK, W=0.289 m,d=0.289 m, P =5 x 10° W/m’.
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Fig. 20 Plate’s surface temperature for s = 8.2 W/m’K, k
=300 W/mK, W=0.1m,d=0.48 m, P=5 x 10° W/m".
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Fig. 21 Plate’s surface temperature for & =8.2 W/m’K, k
=300 W/mK, W =0.289 m, d = 0.289 m, P =45.5 x 10° W/m’.
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Fig. 22 Plate’s surface temperature for & =8.2 W/m’K, k
=100 W/mK, W= 0.289 m, d =0.289 m, P =5 x 10° W/m®.
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Fig. 23 Plate’s surface temperature for /2 = 18.2 W/m’K, k
=300 W/mK, W =0.289 m, d = 0.289 m, P = 5.10° W/m’.
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Fig. 24 Plate’s surface temperature for /2 = 18.2 W/m’K, k
=100 W/mK, W=0.289 m, d=0.289 m, P =5 x 10° W/m’.

(26) contains. The solution

particularization only takes 0.3 s.

parametric

From now on, in order to enable comparison, we
only show the plate’s surface temperature in Figs.
19-24. But the temperature of any part of the plate
could be shown if wanted.

We can clearly notice in Figs. 19-24 the influence
of the

according to the free-stream velocity), the conduction

convection coefficient (which changes
coefficient, the applied power on the strip and the
width of these strips.

4.2 Unsteady Heating

In the presented example, we consider a flat plate
with the following dimensions:
xel0;15], y€[0;20], ze[0;0.18]
The outside temperature is considered to be 7,,,, =
20 °C.

The heating strip is located at

xe[3;12], ye[4;8], z€[0.16;0.18].
ou
We first calculate the solution of P€ E =kAu+p

where p =1 as previously described.

Fig. 25 represents the temperature on the surface of
the plate for P = 1. To obtain the solution for P =2, as
shown in Fig. 26, we make use of the linearity.

The temperature on the surface of the plate can
easily be seen for one step, two or more, by using
superposition.

Fig. 27 shows the temperature evolution at the
surface of the strip (z = 0.18 cm), where x = 7.5 cm
and y = 6 cm with one power step at 1, = 1 and 6, = 6.

Fig. 28 shows the temperature of the same point and
same thermal step than in Fig. 27, but with a second step
applied at t, = 4 with 6 = -6. We can clearly see the
temperature of the plate decreasing as a result of this
second impulse. In Figs. 29-30, we can see the
temperature at the same point under the influence of a
pulsed wave, as we apply P and -P alternatively at every
time step. In Fig. 29, the pulse frequency is Az = 3, and
P = 6. In Fig 30, P is doubled, and At is divided by 2.
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5. Conclusions

A new approach to improve fuel consumption
during an airplane flight consists in heating the wings.
This requires the creation of a numerical abacus in
order to know which thermal power must be given to
obtain the required temperature as a function of the
flight conditions.

In this work, we have seen that it is possible to
obtain a simple mathematical model corresponding to
the physics: indeed, the 2D models enabled us to
define the convection coefficient /4, and determine that
it is not compulsory to take the boundary layer’s
temperature into account to obtain an accurate
temperature of the surface of the plate. Instead, it
suffices to consider the ambient temperature.

The 3D parametric model helps the design of the
airfoil and strip by enabling the evaluation of all
design configurations thanks to a faster calculation
time. And finally, the 3D unsteady heating model
(parametric or not) allows fast unsteady calculus for
any given signal.

The ongoing work concerns

* We must still define the optimum and control
As the

consumption during a flight, we must determine

criteria: final aim is to improve fuel

which would be the compromise between the energy
consumption and temperature, both depending on the
intensity, length and power step frequency;

* A control system based on the numerical PGD
abacus (containing all the different parameters)
ensuring the right temperature on the surface of the

strip, i.e., the inverse identification, must still be
defined.
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