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Abstract: This paper concerns the real time control of the boundary layer on an aircraft wing. This new approach consists in heating 
the surface in an unsteady regime using electrically resistant strips embedded in the wing skin. The control of the boundary layer’s 
separation and transition point will provide a reduction in friction drag, and hence a reduction in fuel consumption. This new method 
consists in applying the required thermal power in the different strips in order to ensure the desired temperatures on the aircraft wing. 
We also have to determine the optimum size of these strips (length, width and distance between two strips). This implies finding the 
best mathematical model corresponding to the physics enabling us to facilitate the calculation for any type of material used for the 
wings. Secondly, the heating being unsteady, and, as during a flight the flow conditions or the ambient temperatures vary, the thermal 
power needed changes and must be chosen as fast as possible in order to ensure optimal operating conditions. 

Key words: Model reduction, PGD (proper generalized decomposition), heating of an airfoil, boundary layers, laminar-turbulent 
transition and separation point, friction drag, unsteady heating. 

1. Introduction

A new proposal enabling us to control the boundary 

layer flow over an airfoil is under way [1]. It would 

influence the boundary layer’s laminar-turbulent 

transition and separation point, allowing an 

improvement in economic efficiency and safety of 

airplanes. This new approach proposed is associated 

with the unsteady surface heating regime using 

electrically resistant strips embedded in the wing skin. 

The control of the boundary layer’s separation and 

transition point will provide a reduction in friction 

drag, and hence a reduction in fuel consumption. The 

implementation of strips in the wing skin could be 
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done at a low cost for the manufacturer without 

weakening the structural integrity of the wing. 

Another possible advantage of this method is 

associated with taking-off and landing regimes. This 

method could enlarge effectiveness of control surfaces 

and possibly reduce the aerodynamic noise produced 

by the control surfaces because it could influence the 

boundary layer separation point. 

In order to ensure the desired temperatures on the 

aircraft wing at a given time, we must determine 

which is the required thermal power in each strip. This 

means we have to solve the heat equation for the plate, 

strip and air surrounding the system. But if we take 

into account all the equations due to fluid dynamics 

[2-3], it will be impossible to obtain the result fast 

enough to heat the airfoil at the temperature wanted. 
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So we have to find a suitable simplified model. 

Once we have solved the simplified 2D model, we 

can go one step further and solve a 3D model. But in 

this case, the optimal design of the strips has to be 

worked out: which would be the ideal length, width 

and distance between two strips in order to obtain the 

wanted temperatures. 

1.1 Building-Up Parametric Solutions 

Usual models in computational mechanics could be 

enriched by considering all the sources of variability 

(e.g., model parameters, initial or boundary conditions, 

geometrical parameters, etc.) as extra-coordinates. For 

example, in our case, we are interested in solving the 

heat equation but we do not know the dimension and 

position of the source term, as it has to be defined as 

an optimum between power consumption and 

evolution of the temperature in time. We have three 

possibilities: (1) we wait to know the chosen design 

before solving the heat equation (a conservative 

solution); (2) we solve the equation for many values 

of the length, width and distance between two strips 

and then the work is done (a sort of brute force 

approach); or (3) we solve the heat equation only once 

for any length, width and position of the strips. 

Obviously the third alternative is the most exciting 

one. To compute this parametric solution, it suffices to 

introduce the design parameters as extra-coordinates, 

playing the same role as the standard space and time 

coordinates, even if there are no derivatives 

concerning these extra-coordinates. This procedure 

runs, very well, and can be extended for introducing 

many other extra-coordinates: the power of the source 

term, initial conditions … (See Ref. [4] and the 

references therein for an exhaustive and recent 

review). It is easy to understand that after performing 

this type of calculations, a posteriori inverse 

identification or optimization can be easily handled 

[5-8]. 

The price to pay is the solution of a model 

involving many coordinates. If the model is defined in 

a space involving N coordinates, standard mesh based 

discretization techniques require MN degrees of 

freedom when M nodes are involved in the 

discretization of each coordinate. In practical 

applications with 310M   and 10N   the 

complexity reaches the value of 3010NM   beyond 

the present computational capabilities. Thus, standard 

discretization techniques fail to solve 

multidimensional models that suffer the so-called 

curse of dimensionality. 

1.2 Routes for Circumventing the Curse of 

Dimensionality 

The construction of parametric solutions seems an 

exciting route, but the main question needs an answer: 

How can we circumvent the curse of dimensionality? 

Different techniques have been proposed for 

circumventing the curse of dimensionality, Monte 

Carlo simulations being the most widely used. Their 

main drawback is the statistical noise. Other 

possibilities lie in the use of sparse grids [9], within 

the deterministic framework, but they suffer also when 

the dimension of the space increases beyond a certain 

value (about 20). 

Separated representations could be a valuable 

alternative. Separated representations proceeds by 

expressing a generic multidimensional function 

 1, , Nu x x in a separated form: 

     1
1 1

1

, ,
i Q

N
N i i N

i

u x x F x F x




          (1) 

In this expression, the coordinates ix  denote any 

coordinate, scalar or vector, involving the physical 

space, the time or any other extra-coordinate (e.g., the 

conductivity in the example previously discussed). 

Separated representations were present within the 

Hartree-Fock-based approaches were widely 

employed in quantum chemistry [10]. In the 80s, 

space-time separated representations were considered 

by P. Ladeveze within an original and powerful 

non-incremental-non-linear solver called LATIN 

method [11-12]. A natural generalization was 

proposed by Ammar and Chinesta [13-14] for solving 
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flat plate, the strip and the upper and lower boundary 

layers, as shown in Fig. 2. 

The temperature inside the plate and strip responds 

to the steady state heat equation as in the first system 

considered, i.e., Eq. (2). Inside each boundary layer, 

the temperature is given by Eq. (11). 

v x, y T

x
 k

2T

x 2

2T

y2







 (11)

 

where k is the air conductivity and v(x, y) is the 

velocity in the boundary layer, and can be calculated 

thanks to the Karman equation: 

 
2

2

2
,

y y
v x y V

 
 

  
 

   (12) 

where V is the free stream velocity and y is the vertical 

distance to the solid surface. 

The boundary conditions between each sub-domain 

of this system are 

 Between the upper boundary layer and the strip, 

   
0

, ,0

a

I
y

I
TI a

yy H

I I
y a

TU
K k

y y

U x H T x



 
    
 

 (13) 

 Between the strip and the plate, 

   
0

, , 0

II
y

II I
II I

y H y

II II I
y

U U
K K

y y

U x H U x

 

  
    
 

 (14) 

 Between the plate and the lower boundary layer, 

   
0

b,0 ,

b

Tb
y

b

II
TII b

y Hy

TII
y

TU
K k

y y

U x T x H



 
    
 

(15)

Note that in all the equations, the ‘y’ coordinate is 

again taken locally, i.e., it is dependent of each layer, 

and takes its origin (y = 0) on the lower surface of the 

corresponding layer. 

If we consider adiabatic boundary conditions along 

x = 0 and x = Hx, a quite reasonable assumption 

because the reduced thickness of the system under 

consideration, the energy flow is thereby concentrated 

on the top and lower domain boundaries, and writes 

     

0 0 0

0 0

. , . ,0

x x

I
y

x x

H HI II
I II

x xy H y

H H
I I II

y amb amb

x x

U U
K dx K dx

y y

h U x H T h U x T

  

 

 
  

 

  

 

 
(16)

Eq. (16) enables us to estimate the convection 

coefficient h. 

Once we have the value of the convection 

coefficient, we can come back to the simplified model 

described in the previous section: 

 First we solve Eq. (2) with the given boundary 

conditions, taking an arbitrary Ta(x) and Tb(x) thus 

obtaining the temperature inside the plate and the 

strip. 

 Then we solve Eqs. (8) and (9) using the 

temperatures UI(x, HI
y) and UII(x, HII

y) on the upper 

and lower surface of the plate just calculated to obtain 

Ta(x) and Tb(x). 

We repeat both steps until convergence. 

Now it is possible to determine the value of power 

P needed in order to achieve the target temperature on 

the surface of the airfoil simply by doing an inverse 

calculation. The numerical experiments reported later 

will prove that the energy balance in both boundary 

layers is unnecessary and that no significant error is 

introduced if we consider that everywhere in the 

boundary layer the air temperature is the ambient one. 

2.3 Finding the Optimized Location and Dimensions 

for the Strips 

In the previous section, we only considered two 

dimensions: the length and height of the plate. But 

eventually, we will have to determine what is the 

optimum width W of each strip and distance D 

between two consecutive strips. And this requires 

solving the problem in 3D, as in Fig. 3. However, 

thanks to the previous simplified analysis we can 

justify the use of simplified boundary conditions 

avoiding the consideration of energy balances in the 

surrounding air layers. Moreover the exchange 

coefficient to be considered in the boundary 

conditions was properly identified. In order to find the 
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4. Numerical Results

4.1 Steady Heating 

4.1.1 Airfoil’s Temperature in 2D 

As explained in section 2.1, we first have to 

estimate the convection coefficient. This coefficient h 

is assumed in first approximation independent of the 

power induced in the strip and the outside temperature. 

The only parameter that can influence this coefficient 

is the free-stream velocity v as the conditions are then 

comparable to a forced convection. 

The expected tendency is reflected in the numerical 

results, as h changes only according to the free-stream 

velocity. 

For v = 20 m/s, we obtain h = 8.2 W/m2 K. 

For v = 100 m/s, we obtain h = 18.2 W/m2 K. 

For a flat plate 15 cm long, 17.9 mm thick, and a 

strip of the same length and 0.1 mm thick, solving Eqs. 

(2), (6) and (7) with the boundary conditions 

described in Eq. (3), gives us the following 

temperatures (in the following figures, “I” represents 

the intensity administered in the electrically resistant 

strip). 

Figs. 8-13 show the influence of the conduction 

coefficient k and the intensity I applied on the strip. 

Figs. 14-18 compared to the previous figures let us  

Fig. 8  Plate’s temperature for v = 20 m/s, h = 8.2 W/m2K, 
I = 2 A and k = 300 W/mK. 

Fig. 9  Boundary layer’s temperature in contact with the 
plate, for v = 20 m/s, h = 8.2 W/m2K, I = 2 A and k = 300 
W/mK.  

Fig. 10  Plate’s temperature for v = 20 m/s, h = 8.2 W/m2K, 
I = 7 A and k = 300 W/mK. 

Fig. 11  Plate’s temperature for v = 20 m/s, I = 2A and k = 
100 W/mK. 
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Fig. 12  Boundary layer’s temperature in contact with the 
plate, for v = 20 m/s, I = 2 A and k = 100 W/mK. 

Fig. 13  Plate’s temperature for v = 20m/s, I = 7A and k = 
100 W/mK. 

Fig. 14  Plate’s temperature for v = 100m/s, h = 18.2 
W/m2K, I = 2 A and k = 300 W/mK. 

Fig. 15  Boundary layer’s temperature in contact with the 
plate, for v = 100 m/s, h = 18.2 W/m2K, I = 2 A and k = 300 
W/mK. 

Fig. 16  Plate’s temperature for v = 100m/s, h = 18.2 
W/m2K, I = 7 A and k = 300 W/mK. 

Fig. 17  Plate’s temperature for v = 100 m/s, I = 2 A and 
k = 100 W/mK.  
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Fig. 18  Boundary layer’s temperature in contact with the 
plate, for v = 100 m/s, I = 2 A and k = 100 W/mK. 

appreciate the influence of the free stream velocity. 

4.1.2 3D Plate Temperature—PGD Solution 

In this example, we are going to solve the 3D heat 

transfer equation for a flat plate, i.e., Eq. (10) with the 

boundary conditions described in Eq. (11) for 7 

coordinates: x, y, z (space coordinates), the width of 

the strip W, the distance between two strips D, the 

length L and the power in the strip P. Thus, the 

solution is found under the form: 

         
1

( ) ( )
i N

i i i i i i i
i

U X x Y y Z z W W D D F L P P




        (26)

The convection coefficient h and the conduction 

coefficient k are considered known. The results are 

shown for two values of each of these parameters: h = 

8.2 W/m2·K and h = 18.2 W/m2·K; k = 300 W/mK and 

k = 100 W/mK. 

The calculation time in order to obtain the solution 

for all values of the extra-coordinates is 

approximately 142s. This abacus contains the 

temperature of all the points on the plate and strip, 

for all length of the airfoil, width of the strips, 

distance between two strips and for any power 

applied. The meshing chosen was 100 values for x, 

200 for y, 500 for z, 100 for P, 50 for L, and 20 for W 

and D, that means 20 × 1013 dof with a traditional 

meshing technique, or having to solve 2 × 106 3D 

problems in order to obtain the same information as Eq. 

Fig. 19  Plate’s surface temperature for h = 8.2 W/m2K, k 
= 300 W/mK, W = 0.289 m, d = 0.289 m, P = 5 × 106 W/m3. 

Fig. 20  Plate’s surface temperature for h = 8.2 W/m2K, k 
= 300 W/mK, W = 0.1 m, d = 0.48 m, P = 5 × 106 W/m3. 

Fig. 21  Plate’s surface temperature for h = 8.2 W/m2K, k 
= 300 W/mK, W = 0.289 m, d = 0.289 m, P = 45.5 × 106 W/m3. 
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Fig. 22  Plate’s surface temperature for h = 8.2 W/m2K, k 
= 100 W/mK, W = 0.289 m, d = 0.289 m, P = 5 × 106 W/m3. 

Fig. 23  Plate’s surface temperature for h = 18.2 W/m2K, k 
= 300 W/mK, W = 0.289 m, d = 0.289 m, P = 5.106 W/m3. 

Fig. 24  Plate’s surface temperature for h = 18.2 W/m2K, k 
= 100 W/mK, W = 0.289 m, d = 0.289 m, P = 5 × 106 W/m3. 

(26) contains. The parametric solution 

particularization only takes 0.3 s. 

From now on, in order to enable comparison, we 

only show the plate’s surface temperature in Figs. 

19-24. But the temperature of any part of the plate 

could be shown if wanted. 

We can clearly notice in Figs. 19-24 the influence 

of the convection coefficient (which changes 

according to the free-stream velocity), the conduction 

coefficient, the applied power on the strip and the 

width of these strips. 

4.2 Unsteady Heating 

In the presented example, we consider a flat plate 

with the following dimensions: 

     0 ; 15 ,  0 ; 20 ,  z 0 ; 0.18x y    
The outside temperature is considered to be Tamb = 

20 °C. 

The heating strip is located at 

     3 ; 12 ,  4 ; 8 ,  z 0.16 ; 0.18x y   .
 

We first calculate the solution of 
u

c k u p
t

 
  


where p = 1 as previously described. 

Fig. 25 represents the temperature on the surface of 

the plate for P = 1. To obtain the solution for P = 2, as 

shown in Fig. 26, we make use of the linearity. 

The temperature on the surface of the plate can 

easily be seen for one step, two or more, by using 

superposition. 

Fig. 27 shows the temperature evolution at the 

surface of the strip (z = 0.18 cm), where x = 7.5 cm 

and y = 6 cm with one power step at t1 = 1 and 1 = 6.  

Fig. 28 shows the temperature of the same point and 

same thermal step than in Fig. 27, but with a second step 

applied at t2 = 4 with 2 = -6. We can clearly see the 

temperature of the plate decreasing as a result of this 

second impulse. In Figs. 29-30, we can see the 

temperature at the same point under the influence of a 

pulsed wave, as we apply P and -P alternatively at every 

time step. In Fig. 29, the pulse frequency is Dt = 3, and 

P = 6. In Fig 30, P is doubled, and Dt is divided by 2. 
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Fig. 25  Temperature on the surface of the plate, at time t 
= 50, for P = 1. 

Fig. 26  Temperature on the surface of the plate, at time t 
= 50, for P = 2. 

Fig. 27  One impulse at time t1 = 0 and 1 = 6. 

Fig. 28  Two Impulses at t1 = 0 where 1 = 6, and at t1 = 25 

where 1 = -6. 

Fig. 29  Impulse at t1 = 0 and 1 = 6 and at t2 = 25 and 2 = 

-6 . Thereafter pulse wave every Dt = 3. 

Fig. 30  Impulse at t1 = 0 and 1 = 12 and at t2 = 25 and 2 = 

-12. Thereafter pulse wave every Dt = 1.5. 
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5. Conclusions

A new approach to improve fuel consumption

during an airplane flight consists in heating the wings. 

This requires the creation of a numerical abacus in 

order to know which thermal power must be given to 

obtain the required temperature as a function of the 

flight conditions. 

In this work, we have seen that it is possible to 

obtain a simple mathematical model corresponding to 

the physics: indeed, the 2D models enabled us to 

define the convection coefficient h, and determine that 

it is not compulsory to take the boundary layer’s 

temperature into account to obtain an accurate 

temperature of the surface of the plate. Instead, it 

suffices to consider the ambient temperature. 

The 3D parametric model helps the design of the 

airfoil and strip by enabling the evaluation of all 

design configurations thanks to a faster calculation 

time. And finally, the 3D unsteady heating model 

(parametric or not) allows fast unsteady calculus for 

any given signal. 

The ongoing work concerns 

 We must still define the optimum and control 

criteria: As the final aim is to improve fuel 

consumption during a flight, we must determine 

which would be the compromise between the energy 

consumption and temperature, both depending on the 

intensity, length and power step frequency; 

 A control system based on the numerical PGD 

abacus (containing all the different parameters) 

ensuring the right temperature on the surface of the 

strip, i.e., the inverse identification, must still be 

defined.  
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