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Abstract — We study the generation of random fields applied to problems where the domain is much
larger than the characteristic distance of the properties fluctuation. Spectral Representation is used and
a variation for isotropic fields is proposed. To improve scalability, a method to divide the domain in
independent overlapping subsets is developed. The effectiveness of these modifications will be shown
on tests in a 3D seismic waves propagation code running over hundreds of cores. Comparison with other
schemes for large scale generation of random fields will also be performed.
Keywords — Random Fields, Gaussian Process, Spectral Representation, High Performance Comput-
ing.

1 Introduction

Modelling earth crust heterogeneities is necessary when we are interested in studying the seismic coda
or higher frequency signals [1]. Its description requires an enormous amount of data. Fortunately when
asymptotic regimes are considered, such as homogenization [2] or weak scattering regime [3] the solution
of the mechanical problem depends only on some statistics of media properties. In this context a stochas-
tic description of the media is adapted and the set of values for a given parameter can be represented by
a random field realization.

An important requirement is that the sample generation cost (CPU time and memory) should remain
small compared to the simulation time. We will consider in this work domains of dimension L much
larger than both the correlation length `c (or some characteristic size over which the fluctuations of the
random field are significant) and the discretization step h. If h > `c, the random field is a Gaussian white
noise. We therefore restrict our attention to the case where h < `c� L. In this context building a relevant
field can become computationally expensive and choosing an efficient algorithm is essential.

We chose to simulate our fields using the classical algorithm by [4]. This method, based on spectral
representation, can ensure the C ∞ regularity of the field with little communication between processors,
making it appealing to parallel implementation. The complexity of this method is O(N2), where N is
the size of the mesh. We developed a variation for isotropic materials, discretizing the wave number
space partly uniformly and parly randomly. This approach decreases the complexity of the algorithm to
O(N1+1/d), where d is the number of dimensions of space. Although spectral methods allow an easy
discretization in space we are still summing contributions for every point over the whole domain. Sta-
tistically one can expect that, when the distance is larger than a given length, neglecting this residual
contribution would affect in a minor way the generated field. This idea makes possible to divide the do-
main in several independent subsets. To handle the transition between the subsets an overlap is imposed.
A method to make a statistically correct superposition is shown.
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2 Wave propagation in heterogeneous media

The equation describing elastic wave propagation in elastic (non-dissipative) media can be expressed as:

ρ(x)
∂2v
∂t2 (x, t)−∇x {C(x) : ∇x⊗ v(x, t)}= 0, (x, t) ∈Ω×R (1)

where ρ(x) is the medium density, C(x) is the fourth-order elastic tensor, and v(x, t) is the displacement
field. To take into account media heterogeneity we compute C = {C(x) : x ∈Ω} replacing the properties
by a random field carrying inside its stochastic description.

3 Stochastic field generation

The generation algorithm should meet the following specifications : (i) the time of generation should
remain small compared to the simulation time and (ii) each generated sample should represent well the
required statistics. We only consider here the sampling of Gaussian fields because they are the basic
building block of a large number of numerical schemes. The first-order marginal density can be modified
locally by combining a direct and inverse Rosenblatt transforms [5], although one has to pay attention to
the influence on the correlation function of the resulting random field [6, 7].

A common approach to sample a random field {u(x) : x ∈Ω⊂Rd} with a given correlation function
R is to search it as a linear combination of independent and identically distributed random variables,
where Ω ⊂ Rd is the medium and d is the number of dimensions of space. For instance, the spectral
representation is a classic way to sample gaussian random field [8] :

u(x) =
∫

k∈Ω

R̂1/2(k)exp(ik ·x)dW (k) (x ∈Ω) (2)

where {W (k) : k ∈ Ω} is a Brownian motion, R̂ is the Fourier transform of R and k ·x the inner product
between k and x.

There are several methods in the literature to compute the stochastic integral (2) and we will introduce
its main ideas. The spectral method by M. Shinozuka and G. Deodatis [8], proposes the quadrature (3) :

uS.D.(x) =
N

∑
n=0

R̂1/2(kn)exp(ikn ·x)
√

∆nξ(n) (x ∈Ω) (3)

where ξ = {ξ(n) : n≤ N} is a white noise, kn ∈Ωn for all n≤ N, (Ωn)0≤n≤N is a partition of Ω and ∆n is
the Lebesgue measure of Ωn. The expression (3) is obtained thanks to the approximation

∫
Ωn

f (k)dk ≈
f (kn). This representation ensures the C ∞ regularity on Ω of the random field u and decouples u(x1)
and u(x2) for x1 6= x2. This local formulation makes parallelism straightforward. Nevertheless, some
conditions must be respected when using the Fourier transform in discrete spaces. Assuming Ω = [0,L]d

where L is the domain scale, we define ∆x = L
M and ∆k respectively the discretization steps in space

and wave number space. To avoid the field periodicity we must compute ∆k ≤ 2π

L . On the other hand,
it is useless to consider wave vectors where || k ||≥ kmax =

2π

∆x = N∆k because the grid is too coarse to
represent it. We deduce 1 :

∆k =
2π

L
, N = M (4)

The number of points in the wave number space, N, depends on the spacial parameters L and ∆x. As
a result, when generating u over a large domain or a refined mesh, computational cost grows rapidly. A
well-known manner to perform the sum (3) computation faster (O(N logN)) is to use the Fast Fourier
Transform (F.F.T.) :

uFFT (p∆x) =
N

∑
n=0

R̂1/2(kn)exp(2iπ
p×n

N
)
√

∆nξ(n) = F −1[(Sn)0≤n≤N ]p (5)

where Sn = R̂1/2(kn)
√

∆nξ(n) and p ∈ {0, . . . ,M}. Unlike the previous method, the FFT needs all the
x′ ∈Ω to compute u(x), making parallelism difficult to implement. The L2 norm of the error committed

1The majoration of N could be improved when we consider a cut-wave vector kc (R̂(kc)≈ 0) : N = E[ kc×Li
2π

]+1.
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on the correlation function is dominated by M(L)×N−1/d where M(L) increases with L.

Another classic way to compute (2) is to consider it as the expectancy of a random variable exp(iK.x)
:
∫

k∈Ω
R̂(k)exp(ik.x)dk = E[exp(iK.x)] where K follows the probality density R̂(k). It is called the

Randomization Method [9, 10] :

uR.(x) =
1√
Nr

Nr

∑
n=0

ξ(n)exp(ikn ·x) (x ∈Ω) (6)

where (kn)n≤Nr is a set of Nr realisations of K. The Randomization Method does not introduce aliasing
or periodicity ; there is no condition on Nr wich involves ∆x or M. It can be demonstrated that L2 norm
of the error committed on the correlation function, thanks to the Central Limit Theorem, is dominated
by ν(Ω)×N−1/2

r where ν(Ω) =||
√

1−R2 ||L2(Ω2). The fact that ν depends strongly on Ω is the main
limitation to use this method for sampling over large domain.

4 Isotropic fields in spherical coordinates

When considering isotropic fields one can reduce the complexity of Spectral Representation method
from O(N2) to O(N1+1/d) using spherical coordinates to describe the vector k. We choose randomly the
two angles θn and φn that define the direction of kn and his norm rn deterministically. The deterministic
radius (rn)n≤Nr assures that we explore all the spectrum and the random direction reduces the integral
from a volume to a line with no further drawback. (kn)n≤Nr is defined as :

kn = rn{cos(θn)sin(φn),sin(θn)sin(φn),cos(φn)}T (rn ∈ R+) (7)

where {θn : n≤ Nr} and {φn : n≤ Nr} are respectively white noises in [0,2π] and [0,π].

uI.S.(x) =
Nr

∑
n=0

√
R̂(rn)rn sin(φn)∆n exp(ikn ·x)ξ(n) (x ∈Ω) (8)

To ensure the fact that we explore all the spectrum, we are used to choose Nr ≈ N1/d which is a good
approximation of the number of point on the medium radius. The L2 norm of the correlation function
error is dominated by MI.S.(L)×N−1/d where MI.S.(L) increases with L.

5 Localization of the sampling

As the domain becomes larger the computational cost of generating a sample grows rapidly and without
threshold. To bound this overflowing instead of performing the whole domain at once, it could be inter-
esting to sample over several smaller subdomains. The issue here is how to ensure regularity between the
fields generated on different subdomains. We address to this problem making a transition overlapping
area between subdomains.

Points separated by a distance larger than the correlation length are, by definition, uncorrelated.
In the algorithms presented so far the mutual contribution of every point on the grid was considered.
Now we subdivide the domain in smaller indepedent parts with a partition of unity ψ = (ψi)i∈I of Ω :
∑i∈I ψi(x) = 1 for all x ∈Ω. We chose to write u as :

u(x) = ∑
i∈I

uΩi(x)
√

ψi(x) (x ∈Ω) (9)

where uΩi is a localized sample of u over the subdomain Ωi and for i 6= j,ψi = 0 over Ω j. The size of Ωi

and the overlap between Ωi and Ω j depends on the correlation length `c of the medium. An example is
to decompose Ω =

⋃
i∈I Ωi where each Ωi is a sphere with α`c for radius. The acceptable error ε of the

correlation function is chosen and the minimal size of intersection between the subsets can be calculated
as :

α`c = M−1
ψ (

ε

J× supx∈Ω{|| x ||2 R(x)}
) (10)

where Mψ(αlc) = supi∈I ||
√

ψi ||L2(Ωi). This method allows to exchange information locally, mitigating
scalability issues.
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6 Simulation

We use the generated samples to create a 3D elasticity tensor fields of a random isotropic material. For
each property the statistical inputs are: first order marginal density, correlation model, correlation length,
average and standard deviation. We need to communicate between the processors the seed for random
number generation and the extreme coordinates (so we can find the global extremes). It ensures the
regularity of the generated fields. Once each processor has this information it can perform the calculation
independently. We can see one realization of a density field on Figure 1 used in a ballasted railway
problem. The problem was performed in a 7,6 millions points mesh.

Figure 1: Random density field generated with isotropic spherical coordinates method (Left) and simu-
lation snapshot of the displacement field in this media (Right)
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