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Résumé — In this work, a computational homogenization framework based on filters is proposed to
handle homogenization with arbitrary scale separation. Classical homogenization is extended by using
low-pass filters instead of averaging operators, leading to a naturally nonlocal elastic framework, where
the kernel function is fully constructed by means of computations on a unit cell describing the micro-
structure. An associated Finite Element Framework is proposed to deal with heterogeneous structures
containing inclusions with characteristic length of the same order than loading fluctuation wavelength.
Mots clés — Homogenization, Non-separated scales, Filter-based homogenization.

1 Introduction

Classical homogenization assumes separation of scales. This assumption is only valid when the cha-
racteristic fluctuation wavelength of an applied strain field over a given microstructure is supposed to
be large compared with the scale of the microstructure. Otherwise, the scales are considered as non-
separated and the overall effective behavior at a given point depends on the strain states at other points
in the neighborhood, defining a nonlocal effective behavior. Several families of methodologies have been
proposed to handle lack of scale separation [1, 2, 3, 4]. The objective of this work is to provide a new
computational homogenization method able to handle arbitrary scale separation.

2 Mesoscopic description of mechanical fields by numerical filters

In [5, 6], a framework for homogenization able to handle arbitrary scale separation has been proposed
by replacing averaging operators by numerical filters (Gaussian, or least-square-based).

First, we define two scales, one scale associated to fine scale strain and stress fields ε(x) and σ(x),
and another (upper) scale called "Mesoscale", associated to strain and stress fields denoted by ε̂(x) and
σ̂(x), respectively, and called "Mesoscopic" strain and stress fields. These fields are related to each other
through the following relations :

ε̂(x) = F (ε(x)), σ̂(x) = F (σ(x)), (1)

where F (.) is a linear operator, acting as a low-pass filter on the fine scale fluctuations. Associating
F with a characteristic length h related to the fluctuations observation at the mesoscale, the following
properties are assumed for F :

lim F h

h→0
(ε(x)) = ε(x), lim F h

h→∞
(ε(x)) = ⟨ε(x)⟩ . (2)

In [6], we introduced a least-square-based filter in the form :

F (εi j(x)) =
P

∑
p=1

Mp(x)ε̂p
i j, (3)

where Mp(x) are piece-wise polynomial basis functions (e.g. finite element shape functions) and ε̂p
i j are

coefficients, interpreted as the nodal values of the mesoscopic strain field at some nodes of a coarse grid
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associated with the mesoscopic mesh (see [6] for more details), for each component i j. These values are
assumed associated with a compatible mesoscopic strain field.

Given the fine scale strain field ε(x) on a discrete fine mesh composed of N nodes xm, m = 1, ...,N,
the unknown coefficients ε̂p

i j are found by minimizing the following functional :

U =
N

∑
m=1

(
P

∑
p=1

Mp(xm)ε̂p
i j − εi j(xm)

)2

. (4)

Following [5], we then introduce the following split of microscopic strain into a filtered (mesoscopic)
part and a remaining fluctuation ε̃(x) :

ε(x) = ε̂(x)+ ε̃(x). (5)

Let us consider a unit cell characterizing the microstructure defined in a domain Ω ∈ RD, D being
the dimension of the space, with boundary ∂Ω. We define the following localization problem on the unit
cell for non-separated scales : assuming known an applied (non-constant) mesoscopic strain field ε̂(x),
find ε(x) satisfying :

∇ · (σ(x)) = 0 in Ω (6)

and
F (ε(x)) = ε̂(x) in Ω (7)

with
σ(x) = C(x) : ε(x) (8)

where C(x) is a fourth-order elasticity tensor. Condition (7) is an extension of the classical averaging
condition of homogenization in the case of separated scales. It can be interpreted as follows : the filtered
part of the compatible strain field satisfying (6)-(8) must match ε̂(x) ∀x ∈ Ω. An iterative scheme has
been proposed in [6] to enforce this condition.

3 Mesoscopic homogenized model

In this framework, we have shown in [5] that the constitutive law at the meso scale is given by :

σ̂(x) =
∫

Ω
Ĉ(x,y) : ε̂(y)dy, Ĉ(x,y) = F

{
C(x) : Â(x,y)

}
, (9)

where Ĉ(x,y) is a nonlocal elastic tensor defined in Ω. Note that the constitutive law (9) is general
for linear filter operators satisfying conditions (2), and then remains valid when F is chosen e.g. as a
Gaussian filter. Another remark is that in contrast to classical nonlocal elasticity [1], the present nonlocal
elasticity operator does not have translational invariance, i.e. Ĉ(x,y) ̸= Ĉ(x− y). This constitutes a
key feature of the the model to continuously define mesoscopic constitutive laws for arbitrary scale
separation.

A discrete framework can be formulated as follows. Using (3), we define ε̂(x) in the form

ε̂i j(x)≃ ∑
p

Mp(x)ε̂p
i j (10)

where the nodal values ε̂p
i j are defined on a coarse grid discretizing the structure at the mesoscopic scale

and Mp are interpolations functions. Using the filter operator F defined by (3), we obtain the following
relationships :

σ̂(x) = ∑
p
Ĉp(x) : ε̂p, Ĉp(x) = F

{
C(x) : Âp(x)

}
, (11)

and

Âp(x) = Mp(x)I+Ψp(x)−F (Ψp(x)) , (12)
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where Ψp(x) are transformation tensors associated to each node p of the coarse mesh on the unit cell,
defined by :

Ψp
i jkl(x) = ep,(kl)

i j (x), (13)

where ep,(kl) is the strain solution field obtained by solving on the unit cell an elementary problem (see
details in [6]) and where χp,(kl)(x) is a non-uniform eigenstrain prescribed over the support of Mp(x) and
defined as

χp,(kl)(x) =
Mp(x)

2
(vk ⊗vl +vl ⊗vk) (14)

where vi are the base vectors of a Cartesian coordinate system. Then the local strain field can be re-
localized by the relationship :

ε(x) = ∑
p
Âp(x)ε̂p. (15)

4 Numerical examples

The methodology is illustrated in the following example. A heterogeneous structure, as depicted in
Figure 1 (b), is subjected to 4 points bending. The unit cell described in Fig. 1 (a) is used to compute
the nonlocal constitutive operators described in section 3. Results in Figures 2 and 3 show that the
proposed method allows reproducing both the simplified model (mesoscopic model) computed on a
coarse grid, but also provides a good approximation for local fields, which can be obtained by post-
treatment through localization rule (15). We also show the limits of classical homogenization methods
and extended versions, in such situations when scales cannot be separated.

(a) (b)

FIGURE 1 – (a) Unit cell ; (b) heterogeneous structure subjected to 4 points bending.
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(a) Reference (b) Filter-based homogenization

(c) Standard homogenization
(d) Standard homogenization
with enhanced re-localization

FIGURE 2 – Stress fields obtained at the mesoscopic scale (on the coarse grid) : comparisons between
several models.

(a) Reference (b) Filter-based homogenization

(c) Standard homogenization
(d) Standard homogenization
with enhanced re-localization

FIGURE 3 – Stress fields obtained at the microscopic scale (on the finest grid) : comparisons between
several models.
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