
HAL Id: hal-01515012
https://hal.science/hal-01515012

Submitted on 28 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Toward a Correct-and-Scalable Verification of
Concurrent Robotic Systems: Insights on Formalisms

and Tools
Mohammed Foughali

To cite this version:
Mohammed Foughali. Toward a Correct-and-Scalable Verification of Concurrent Robotic Systems:
Insights on Formalisms and Tools. International Conference on Application of Concurrency to System
Design (ACSD 2017), Jun 2017, Zaragoza, Spain. 10p., �10.1109/ACSD.2017.10�. �hal-01515012�

https://hal.science/hal-01515012
https://hal.archives-ouvertes.fr

Toward a Correct-and-Scalable Verification of Concurrent Robotic
Systems: Insights on Formalisms and Tools∗

Mohammed Foughali1

Abstract—Formal verification of robotic functional components
is extremely important. Indeed, with the growing involvement of
autonomous systems in everyday life, we may no longer rely
on classical testing and simulation to establish our trust in
them. However, the formalization of such systems is challenging
considering the various existing formalisms and their respective
advantages/drawbacks. One may express more easily in one
formalism and verify more easily in another depending on
the aspects/properties they are modeling/verifying. Furthermore,
both the reusability of the formalization and the scalability of the
obtained formal models are crucial elements in the verification
process. In this paper, we present modeling concurrency aspects
of robotic functional components in Time Petri Nets, Timed
Automata and Timed Automata extended with urgencies. Formal
models are automatically generated and verification is conducted
on each of them. Both the expressiveness of the formalisms
and scalability of the obtained models are evaluated and future
directions are consequently outlined.

I. INTRODUCTION

Robotic and autonomous systems involvement in costly
missions (e.g. space exploration) and/or human environments
(e.g. robotic surgery) keeps growing with time. Such a growth
questions the level of trust we are willing to put in these
systems. Indeed, we still tend to rely on extensive tests
and heavy simulations for certification while such techniques
are inherently non exhaustive. Formal methods constitute a
promising alternative to consolidate trustworthiness of robotic
and autonomous systems.

Robotic/autonomous specifications are very often organized
through two layers: the decisional and the functional one [1].
In this paper, we only focus on applying formal methods
to the latter. The reason is quite straightforward. Decisional
descriptions are usually formal and thus formal methods are
directly applicable. This explains why literature is rich in
works of formal verification of decisional functions [2], [3],
[4], [5]. In contrast, functional specifications are non formal
and remarkably complex, which renders their verification
extremely challenging.

Functional descriptions are nowadays deployed through
components [6], [7], [8]. Formal verification of functional
robotic components faces two main problems. First, due to
their non formal nature, their formalization is often hard, error
prone and non reusable (manual). Second, the complexity of
functional components leads quickly to state space explosion,
which forces the specialists to go through exaggerated abstrac-

*This work was supported in part by the EU CPSE Labs project funded
by the H2020 program under grant agreement No 644400.

1LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
{firstname.lastname}@laas.fr

tions such as removing time constraints. At least one of these
issues is present in [9], [10], [11], [12], [13].

The problems pertaining to formalization are often treated
slightly or not treated at all. This is however worrying since the
efficiency of formalization, its correctness and its reusability
are crucial to both the feasibility and accuracy of verification.
Indeed, one formalism may be more suitable than the other in
modeling a certain aspect of the application while it is the other
way around for another aspect. The choice of the most suitable
formalism and associated verification techniques is far from
being obvious, yet very important. With regards to Time Petri
Nets “à la Merlin” [14] and Timed Automata [15], few formal
works comparing their expressiveness and trying to bridge
the gap between them exist in the literature [16], [17], [18].
There is, however, an important disconnection between such
leading formal works and the real-world, complex applications
proposed by the robotics community. This gap shows no
signs of shrinking as formal methods are out of a roboticist
field of expertise. A rare contribution that actually brings
Timed Automata and Time Petri Nets together with relatively
complex examples put on verification is presented in [19] and
discussed in section V.

In this paper, we go through the abovementioned issues.
Formal methods are applied to components written in GenoM3,
a robotic software equipped with an automatic synthesis
mechanism. Non reusability is thus resolved as formal models
are automatically generated out of the functional components.
On the modeling level, we focus on presenting and discussing
modeling the fine-grain locking of resources characteristic to
GenoM3. Time Petri Nets (TPN), Timed Safety Automata (TA)
and Timed Safety Automata extended with urgencies (UA) are
used. We compare the power of such formalisms to express
the said concurrency aspect and the feasibility of verification
in each case using Fiacre/TINA for TPN and BIP/RTD-Finder
for TA/UA. Formal models are automatically generated, the
complexity of the specification is conserved all along the
process and all timing constraints are taken into account. We
stand halfway between the formal methods and the robotic
communities in a clear attempt to make this paper readable to
both of them. Formal definitions are therefore often avoided as
we rely mostly on natural language and simple mathematical
concepts to develop our ideas.

The rest of this paper is organized as follows. First, GenoM3,
its automatic synthesis mechanism and the concurrency within
and between its components are presented through an example
in section II. Afterwards, section III presents and discusses
(i) modeling the concurrency in TA and UA as well as
verification feasability with RTD-Finder (section III-A) and

Ports

Execution Tasks

Activities

IDS

RequestsReports

Control Task Attributes
and

Functions

Ports

Ports

In

Out

Clients

Ports

Fig. 1: A generic GenoM3 component.

(ii) modeling such concurrency in TPN and verification of the
components with TINA (section III-B). We debate the results
in section IV and conclude with learned lessons and future
actions in section V.

II. GenoM3 COMPONENTS

GenoM3 [20] is a component-based framework used to
develop and deploy robotic functional specifications. In the
overall LAAS architecture [21], functional components act as
“servers” in charge of functionalities which may range from
simple low-level driver control (e.g. the velocity control of
the propellers of a drone, camera, etc) to more integrated
computations (e.g. navigation, mapping, etc).

We consider that a typical component is a program which
needs to handle and manage the following aspects:
Inputs and Outputs : a component interacts with external

clients and other components. For the former, the control
flow, it must handle requests and send back reports
from/to clients. For the latter, the data flow, it must pro-
vide a mechanism to share data with other components.

Algorithms : the core algorithms needed to implement the
functionality the component is in charge of must be
appropriately organized as to preserve the reactivity of the
component and the schedulability of the various possibly

concurrent algorithms. A component may have just one
service to provide, but most of the time, there are a
number of such services associated to the considered
robotic functionality.

Internally shared data : the various algorithms, possibly
concurrent, running in the component, may have to share
state variables, parameters, etc. which represent the inter-
nal state of the component.

To achieve such requirements of a functional component, we
propose to organize each one as shown in Fig. 1. Hereafter, we
briefly introduce the different entities of a GenoM3 component:
Control Task : A component always has an implicit control

task that manages the control flow by processing requests
and sending reports (from/to external clients); activates
and stops services, etc.

Execution Task(s) : Aside from the control task, whose re-
activity must remain short, one may need one or more
execution tasks, aperiodic or periodic, in charge of longer
computations.

Services : The core algorithms of the component are encap-
sulated within services. Services are often associated to a
request (with the same name). They can be either fast or
slow. Fast services are known as control services and are
directly executed by the control task. Control services
may be attributes (setters/getters) or functions (quick
computations). Slow services are known as activities and
they are executed by execution tasks. They are broken
into different states, each state associated to a codel. A
codel specifies a C or C++ function. At a given state of
an activity, the execution task runs the codel associated
to that state.

IDS : A local internal data structure is provided for all the
services to share parameters, computed values or state
variables of the component. It is appropriately accessed
by the codels when they need to read or write it (sec-
tion II-B).

Ports : They specify the shared data, in and out, the com-
ponent needs or produces from/for other components.
Access to ports is mutually exclusive.

Note that this description is greatly simplified. Indeed,
GenoM3 components contain several aspects the formalization
of which is difficult and non obvious. For instance, there
are a number of rules concerning the behavior of execution
tasks: how, when, and how often they execute their associated
activities. These aspects are out of the scope of this paper but
the interested reader may refer to [22] for some of them and
their formalization.

A. Templates Approach

The template mechanism was first proposed to deal with
the middleware dependency problem, classical in robotics.
A robotic middleware is the piece of software that permits
the functional components to communicate with the operating
system and with one another. In this context, GenoM3 devel-
opers proposed a novel approach back then known as template

<’ foreach s [$component services] { ’>

Service <"[$s name]">

<’ } ’>

Listing 1: A simple template code snippet.

mechanism [20]. In brief, the components are specified in a
generic way using GenoM3. Templates are used to generate the
components for various middleware. Hence, the component
achieves a complete independency from the middleware.

A template, when called by GenoM3 on a given component
specification, has access to all the information contained in
the specification such as services names and types, ports and
IDS fields needed by each codel, execution tasks periods,
etc. Through the template interpreter (Tcl), one specifies what
they need the template to synthesize. For instance, Listing 1
shows a simple template function that outputs the names of all
the services of a given component. The interpreter evaluates
anything enclosed in markers (<’‘> or <”“>) in Tcl and leaves
the rest as is.

Since there is no restriction on what a template may
synthesize, we use this powerful mechanism to automatically
generate formal models. As of today, GenoM3 has three
formal-model templates, a Fiacre template [22], and two BIP
templates (one for UA and one for TA).

B. Concurrency

As said in the introduction, this paper will focus mainly on
modeling concurrency aspects of GenoM3. GenoM3 tasks run
in parallel assuming the number of available cores is sufficient.
Therefore, the shared resources need to be correctly managed.
The latest releases of GenoM3 improve the parallelism level
in particular. Only the field(s) of the IDS/ports needed by
a codel are now locked while such a codel is running and
simultaneous readings are allowed. This guarantees a maximal
level of parallelism.

Let us introduce our quadcopter navigation as the ver-
ification case study through which we also illustrate the
concurrency aspect of GenoM3. Fig. 2 presents the 5 com-
ponents involved in our quadcopter functional layer. Each box
corresponds to a component, and each octagon is a port. Ports
are written (out) by the components they are attached to, and
read (in) through the arrow pointing to the reading component.
Inside each box, we list the execution tasks, their periods
(if any), and a partial list of the services provided by this
component. The perm keyword refers to permanent activities.
Unlike regular activities which are started upon request from
a client, permanent activities are started when the task is
spawned, but otherwise follow the same execution rules as
any other activity (see below). Note that this figure does not
present the clients in charge of sending requests and analyzing
reports (out of scope of this paper).
• MIKROKOPTER is the component in charge of the quad-

copter low-level hardware. The quadcopter is controlled
by applying a velocity to each propeller, and produces
the current velocities, as well as its current IMU (Inertia
Measurement Unit) values. It has two execution tasks i)
comm, aperiodic, in charge of polling and parsing data
from the hardware (to get the current propellers velocity
and IMU) and storing them in the IDS. ii) main, periodic
at 1KHz, which reads the cmd velocity port, manages
the servo control and writes the two ports IMU and the
propellers actual velocity.

• OPTITRACK is the component handling the current posi-
tion of the quadcopter as perceived by our “OptiTrack”
motion capture system. It has one execution task publish
that provides the current position of the quadcopter in the
mocap pose port. Its period is 4ms.

• POM merges the mocap pose position produced by OPTI-
TRACK and the IMU from MIKROKOPTER and produces
an Unscented Kalman filtered position in port state. It has
two execution tasks io and filter both periodic at 1KHz.

• MANEUVER is the navigation component, it has two
execution tasks exec and plan both periodic at 5ms.
Given a position or waypoints to navigate to, it reads the
state, and computes a trajectory to reach it, producing in
desired state the intermediate positions to fly to.

• NHFC (Near Hovering Flight Controller) is the core of the
flight controller. Running one task main at 1KHz, it reads
the actual velocity port of the propellers, the current
position in the state port of POM, and the desired position
(port desired state) of MANEUVER and produces the
proper cmd velocity port containing the desired velocity
of the propellers (which is then read by MIKROKOPTER)
to reach and hover near this position.

Through an excerpt of the specification of MIKROKOPTER
(listing 2), we introduce hereafter the concurrency of GenoM3
tasks. In order to do so, we see first how an activity is
specified in GenoM3. An activity is defined through its states,
transitions and codels. The execution task main is in charge
of the activity Servo (line 12). Servo has three states: start,
exec and end (lines 13 through 15) to which a terminal state
called ether is added. Except the latter, each state defines a
codel to execute (for example, the codel mk servo start is
associated to the state start, line 13), the possible transitions
at the end of such an execution (for example, the state exec
transits to itself or to the state end, line 14) and, optionally,
the WCET of the codel (4µs for mv servo end, line 15). An
activity may be incompatible with a set of activities that may
include the activity itself. Line 16 specifies that the activity
servo interrupts itself, it is thus self-incompatible. A self-
incompatible activity may not run a new instance unless the
currently running one is interrupted and terminated. Therefore,
it may not have more than one active (running) instance at any
given time, contrary to self-compatible activities that may have
as many active instances as the memory may handle. In the rest
of this paper, we extend the term codel to refer indifferently to
itself or the state it is associated to. This choice makes it easier

Functional Level

actual
velocityIMU

nhfc

Task: main 1ms
Services:
Init
Servo
Stop

cmd
velocity

desired
state

maneuverpom

state

mikrokopter

Task:
plan 5ms
Services:
Goto
WayPoint
TakeOff

Task:
exec 5ms
Services:
perm

Task: io 1ms
Services:
perm, add_me

Task: filter 1ms
Services:
perm

Task:
main 1ms
Services:
perm
calibrate_imu
start
servo
stop

Task:
comm
Services:
perm
connect
monitor
set_ramp

mocap
pose

optitrack
Task:
publish 4ms
Services:
Init
(pos updated
100Hz)

Fig. 2: The quadcopter functional level. Only a partial list of
services is presented. Activities are in Italic font.

to formulate the different explanations given in section III.
The attribute set ramp writes (out) the IDS field servo data

(line 5). Since an attribute is a control service, its execution
is carried out by the control task. On the other hand, the
codel mk servo main associated to the state exec of the
activity servo (line 14) reads (in) the same IDS field, namely
servo data (codel’s arguments, line 14). This codel is executed
by the execution task main, in charge of the activity servo.
This is a perfect example of how concurrency works in
GenoM3. Since the attribute and the activity codel are run by
two different tasks in parallel, whichever starts executing first
locks the field servo data of the IDS and forces the other
to wait till it finishes its execution. As soon as such a field
is unlocked, the waiting entity executes, there is therefore
a notion of urgency. We say that the codel exec and the
attribute set ramp are in conflict. GenoM3 offers a function
that ensures a correct implementation of concurrency while
preserving a maximum parallelism level as explained above
(simultaneous readings are allowed). This function returns, for
each codel/control service, the list of codels/control services
in conflict with it. A codel/control service that is in conflict
with at least one codel/control service is referred to as non-
thread-safe. There is also a notion of non determinism. That

1 component mikrokopter {
2 ...
3
4 /* control services declaration */
5 attribute set_ramp(out servo_data);
6 ...
7
8 /* activities declaration */
9

10 activity servo() {
11 doc "Control the propellers according to the given

velocities";
12 task main;/* execution task in charge of the activity */
13 codel<start> mk_servo_start(out scale) yield exec wcet

26us;
14 codel<exec> mk_servo_main(in servo_data, inout scale,

...) yield exec, end wcet 12us;
15 codel<end> mk_servo_end(in conn) yield ether wcet 4 us;
16 interrupts servo;
17 };

Listing 2: Excerpt from the GenoM3 specification of the
MIKROKOPTER component.

is, if several non-thread-safe entities are waiting for the same
resources, there is no rule defining which of the waiting
entities will lock such resources as soon as they are released.
Note that mutual exclusion between GenoM3 entities is not
transitive, i.e if B and C are in conflict with A, then B
is not necessarily in conflict with C (A, B and C being
codels/control services).

Not to go beyond of the scoop of this paper, our description
of the mechanisms offered by GenoM3 to specify and deploy
functional components remains partial. Still, one can see
the complexity of GenoM3 components and the challenge
of applying formal methods to them. For instance, in the
quadcopter example above, we have 5 modules, 13 tasks, 20
activities, and more than 65 codels overall.

III. MODELING AND VERIFICATION

The formalization and the verification of GenoM3 compo-
nents face several challenges. For instance, GenoM3 reflects
many software aspects the formalization of which is unnatural
and error prone, mainly interruption routines, termination of
activities, etc. Also, the modeling process should not be de-
coupled from the verification one. That is, it is not sufficient to
model correctly, but also efficiently. This efficiency rimes with
both scalability and convenience. The user should understand
the generated models and express the properties they want to
verify easily, and models should remain as scalable as possible.
It is therefore very important to preserve compositionality
throughout the modeling process.

This section will focus on modeling the concurrency aspect
detailed in section II-B in TPN, TA, and UA. Both compo-
sitionality and timing constraints are preserved all along the
verification process. The power of the different formalisms
to express the urgency characterizing the way GenoM3 deals
with concurrency is particularly assessed. The verifiability of
the global systems with the proposed tools is then evaluated.

All along this section, we consider three non-thread-safe

codels C1, C2 and C3 belonging to, respectively, activities
A1, A2 and A3. These activities are run by three different
tasks. C1 and C3 are in conflict with C2 but not in mutual
conflict. Consequently, C1 (respect. C3) may not run if C2 is
executing, and vice versa. However, C1 and C3 may run in
parallel. For the sake of readability and simplicity, we suppose
that each of these codels has only one input and only one
output codel. That is, for instance, only one codel in A1 has
a transition to C1 and C1 has only one outgoing transition.

A. With TA/UA

a) With TA: Timed Automata is a theory for modeling
and verification of timed systems. In the original version of
the theory [15], Timed Automata extend finite-state Büchi
automata with real-valued clocks. The behavior of such au-
tomata is therefore restricted by defining constraints on the
clock variables and a set of accepting states. A simpler version
allowing local invariant conditions and known as Timed Safety
Automata is introduced in [23]. In this paper, we focus on
Timed Safety Automata and refer to them as Timed Automata
or TA for short. The syntax and semantics of TA in this
paper follow those in [24] except that we refer to switches
as transitions.

We target in this section modeling the GenoM3 concur-
rency/mutual exclusion aspects in TA. Fig. 3 shows such
modeling. The system is modeled as TA components con-
nected through synchronization constraints on labels. When
two or more labels are connected, the respective transitions are
synchronized. The global system is the synchronous product of
the TA components with respect to the different synchroniza-
tion constraints. Synchronization constraints are represented as
thick colored lines in Fig. 3. For the sake of readability, merely
the synchronization constraints involving the execution and
end of execution of C2 are represented in Fig. 3. Note that (i)
the components A1, A2 and A3 are represented only partially
(the discontinued transitions denote missing parts before/after
them) and (ii) labels/clocks belonging to different components
are different, even if they have the same name. These two
simplifications apply also to the UA model (in the sequel).

Each non-thread-safe codel C is modeled within its activity
component by two locations, C wait and C exe. If C wait is
the current location, then C is waiting for resources to execute.
In contrast, location C exe denotes that C is executing. To
imitate the execution time we define a local invariant on C exe
with an upper bound equal to the codel’s WCET. Each C
has a lock C TA component that determines whether C may
execute (location ready), is executing (location execute) or is
idle/needs to wait further (otherwise).

Let us depict how it works with an example. The component
lock C2 is initially at the location Init. Unless one of the
codels in conflict with C2, i.e. C1 or C3, starts executing,
lock C2 transits to ready as C2 reaches the location C2 wait.
Here, an urgency occurs as no time may elapse at the location
ready (component lock C2). Therefore, C2 transits immedi-
ately to its location C2 exe while its lock transits to execute
(in case C1 or C3 is also waiting to execute, non-determinism

applies). By the end of execution, lock C2 transits back to Init.
Now, if C1 starts executing, lock C2 transits to level 1. If C2
reaches its location C2 wait during C1’s execution, it is the
end of the latter that allows the transition to ready (component
lock C2) and consequently the possibility to execute C2.

TA do not express urgencies naturally, hence the heterogene-
ity of the lock components from a codel to another. Let C be a
non-thread-safe codel and N the number of codels in conflict
with it. The proposed solution induces a linear proportionality
between N and the number of locations/transitions of the lock
component associated with C:
• The number of locations in the lock component associated

with C is equal to N+3
• The number of transitions within the lock component

associated with C is equal to 3N+5.
For instance, when N is equal to 8 (which is rather

usual for a GenoM3 non-thread-safe codel), the number of
locations and transitions is, respectively, 11 and 29. Note
that another representation is possible using Timed Automata
extended with variables where each lock component has a
local variable. This allows a more compact and homogeneous
representation of the lock components (Fig. 4). However, such
a representation changes nothing in terms of the global product
of the components.

b) With UA: Timed Automata with Urgencies (UA, [25])
extend Timed Automata (TA) with a notion of urgency on
transitions. In this paper, we use two types of urgencies:
• eager: the transition is to be taken as soon as enabled.

This is the strong urgency.
• lazy: no urgency, as in standard TA. Naturally, it’s the

weak urgency.
Fig. 5 shows the modeling of GenoM3 concurrency/mu-

tual exclusion aspects in UA. As in TA, we use synchro-
nization constraints among different components. Applying a
synchronization constraint on transitions with no conditions
on clocks and with different urgencies produces a transition
with the strongest urgency. For instance, the synchronization
constraint involving the transition labeled resfree (component
A2), the transition labeled take (component lock C2), and the
transitions labeled check (components lock C1 and lock C3)
results in an eager transition (conjunction of eager, lazy, lazy
and lazy). Therefore, if the codel C2 is waiting to execute,
i.e component A2 is in the location C2 wait, it will transit to
C2 exe (start executing) as soon as the components lock C1,
lock C2 and lock C3 are in their respective locations free (in
case C1 or C3 is also waiting to execute, non-determinism ap-
plies). Such a transition is concomitant to switching lock C2
to its location taken which will prevent any codel in conflict
with C2 to execute until C2 finishes its execution. The rest
of the model is quite similar to the TA model. For the sake of
readability, only one synchronization constraint (that of C1)
defining codels end of execution is represented in Fig. 5. Also,
the lazy type of urgency is omitted (being the “default” type).

c) Automatic Synthesis and Verification: After formaliz-
ing all the remaining aspects/entities of GenoM3 components,

LOCK C3
clock c

exec_ext

end_ext

wait

exec

end

exec_ext

exec_ext

wait

wait

end_ext

end_ext

reset c

reset c

exec

end

Init

Ready

initial location: init

c<=0

Execute

Level_0

LOCK C1
clock c

exec_ext

end

wait

exec

end_ext

exec_ext

exec_ext

wait

wait

end_ext

end_ext

reset c

reset c

exec

end

Init

Ready

initial location: init

c<=0

Execute

Level_0

exec_ext

LOCK C2
clock c

end

wait

exec

end_ext

exec_ext

exec_extexec_ext

wait

wait

wait

end_ext

end_ext

end_ext

reset c

reset c

exec

end

Init

Ready

initial location: init

c<=0

Execute

Level_0

Level_1

resfree

freeres

A1

clock c

freeres

resfree
reset c

wait
wait

c<=WCET_C1

C1_wait

C1_exe

resfree

freeres

A2
clock c

freeres

resfree
reset c

wait
wait

c<=WCET_C2

C2_wait

C2_exe

resfree

freeres

A3
clock c

freeres

resfree
reset c

wait
wait

c<=WCET_C3

C3_wait

C3_exe

Fig. 3: Concurrency and mutual exclusion in TA.

two templates are developed to automatically synthesize, re-
spectively, UA and TA models in the RT-BIP [26] syntax. RT-

BIP associated verification tool is known as RTD-Finder [27].
It is a deductive, compositional verification tool that overap-

exec_ext

end_ext

wait

exec

end

wait
exec_ext

reset c var - -

exec

end

Init

Ready

Execute

LOCK
clock c
var:= N

end_ext
wait var++

var++

wait end_ext

guard: var<N guard: var<N

guard: var==N
guard: var==N

exec_ext

c<=0

reset creset c

Fig. 4: The lock components with a local variable.

proximates the reachable state space using invariants. RTD-
Finder aims to overcome the state explosion problem often en-
countered in complex real-time systems modeled as networks
of TA. RTD-Finder extends its untimed version D-Finder [28]
with the possibility to reason over time by considering history
clocks in the generation of the components local invariants.

We automatically generate the RT-BIP models from our
quadcopter application specification using the RT-BIP tem-
plates. Two models are thus obtained, a TA- and a UA-
based model. The TA model is relatively large due to the
proportionality between the number of locations/transitions of
a given lock and the codels in conflict with its associated codel.
The verification process leads quickly to a memory blow-up
even when tested on our simplest components. We could not
verify the UA and extended TA models since RTD-Finder does
not take urgencies/variables into account.

B. With TPN

a) Modeling: Time Petri Nets [14], TPN for short, are
Petri nets extended with intervals on transitions. Each transi-
tion T is associated with the positive reals efd T and lfd T
where:
• efd T is bounded and denotes the earliest firing deadline

of T

give

take

check

take

check

LOCK C3

free

taken

give

initial location: free

LOCK C1

give

take

check

take

check

free

taken

give

initial location: free

LOCK C2

check

give

take

take

check

free

taken

give

initial location: free

resfree

freeres

A1

clock c

freeres

resfree
reset c

eager

C1_wait

C1_exe
c<=WCET_C1

clock c

A2

resfree

freeres

freeres

resfree
reset c

eager

C2_wait

C2_exe
c<=WCET_C2

clock c

A3

resfree

freeres

freeres

resfree
reset c

eager

C3_wait

C3_exe
c<=WCET_C3

Fig. 5: Concurrency and mutual exclusion in UA.

• lfd T is possibly unbounded and is superior or equal to
efd T . It is called the latest firing deadline of T .

In this paper, T activation, or firing in TPN terminology,
follows the Strong Time Semantics of TPN introduced in [29].
That is, if T was last enabled at time d, T may not fire before
d + efd T and must fire before or at d + lfd T unless it is
disabled before then by the firing of another transition.

A TPN is referred to as safe if it is 1-bounded, i.e the
maximum marking of each of its places is 1. In this section,
the TPN components we use for modeling are all safe, and
thus we define a composition rule that is similar to the
one of automata. Synchronization constraints define which
transitions are to synchronize. The resulting transition (from
synchronization) is associated with the interval resulting from
the conjunction of the respective intervals of the synchronized
transitions. The input (respect. output) places of the resulting
transition is the union of the input (respect. output) places of
the synchronized transitions. The global TPN is the product
of the TPN components following these rules by applying
the synchronization constraints. Fig. 6 shows how we model,
using TPN components and synchronization constraints, the
concurrency of the execution of C1, C2 and C3 while finely
locking resources.

Each non-thread-safe codel C has a lock C TPN compo-

wait

ex
e

wait

ex
e

wait

ex
e

al
lo
w

start end

al
lo
w

start end
al
lo
w

start end

[0,0]

[0,0]

[0,0]

[0,WCET_C1]

[0,WCET_C2]

[0,WCET_C3]

A1

C1_wait

C1_exec

C2_wait

C2_exec

C3_wait

C3_exec

Lock_C1

Lock_C2

Lock_C3 idle

idle

idle

busy

busy

busy

A2

A3

Fig. 6: Concurrency and mutual exclusion in TPN.

nent. The marking of that TPN defines whether C is executing
(place busy marked) or not (either idle or waiting to execute,
place idle marked). Firing the transition start unmarks idle
and marks busy, firing end does the contrary. The transition
allow is enabled when idle is marked and its firing preserves
the marking of the net.

Despite the lock component, C is modeled within its activity
by two places, C wait and C exec. If C wait is marked then
C is waiting for resources to execute. In contrast, if C exec
is marked then C is executing.

In Fig. 6, synchronization constraints are represented by
colored thick lines connecting transitions of different com-
ponents. For instance, allowing C2 to execute is dictated
by the synchronization constraint that involves its transition
wait (component A2), the transition start of its own lock
(component lock C2) and all the transitions allow of the locks
of the codels in conflict with C2 (components lock C1 and
lock C3). Let T be the transition resulting from applying such
a constraint. T is associated with the firing interval [0,0] (the
conjunction of [0,0],[0,∞[,[0,∞[and [0,∞[). Hence, as soon
as all the input places of T , i.e C2 wait (component A2),
idle (component lock C2) and all the places idle of the lock
components of the codels in conflict with C2 (components
lock C1 and lock C3), are marked, T is immediately fired

(in case C1 or C3 is also waiting to execute, it might get
immediately disabled instead as non-determinism applies).
Urgencies are then well expressed in a relatively easy way.
This is mainly due to the fact that firing intervals in TPN
depend on the enabledness of their associated transitions.

Let T ′ be the result of applying the synchronization con-
straint connecting exe (component A2) to end (component
lock C2). T ′ is then associated with the firing interval
[0,WCET C2] (where WCET C2 is the WCET of C2). When
T is fired, C2 exec (component A2) and busy (component
lock C2) are marked and T ′ is consequently enabled. Ac-
cording to TPN firing rules, T ′ must be fired within the next
WCET C2 units of time. This imitates the execution time
of the codel, that may take any positive value inferior to
its WCET. Note that for the sake of readability, only one
synchronization constraint pertaining to the end of execution is
represented in the figure, namely that of C2. Also, the default
firing intervals (i.e. [0,∞[) are not shown. The components A1,
A2 and A3 are represented only partially (the discontinued
arcs denote missing parts before/after them). Transitions/-
places belonging to different components are different even
if they have similar names.

b) Automatic Synthesis and Verification: All GenoM3
aspects, including the concurrency one, are formalized in
Fiacre [30], a high-level specification language for describing
compositionally both the behavioral and timing aspects of
concurrent systems. Fiacre is relevant in this context since it
derives its expression of timing constraints from TPN. Fiacre
models are automatically generated from GenoM3 specifica-
tions [22] then automatically compiled into Time Transition
Systems, TTS for short, namely TPN extended with data. On
the resulting TTS, we verify important real-time properties
to the robotic programmer using TINA model checkers [31].
The latter rely on model checking techniques where a States
Class Graph (SCG) is constructed with a possibility to verify
the properties on the fly. SCGs are introduced in [32] as
finite abstractions to the typically infinite nature of TPN state
spaces due to the dense nature of time. One may refer to [33]
and [34] for later improvements of the technique. In this
section, we give an example of the verified properties, namely
the schedulability of execution tasks. In order to do so, we
consider the global Fiacre model of the five modules com-
municating through ports. We generate an application-specific
client corresponding to a stationary flight which involves ten
tasks (all the components shown in Fig. 2 except MANEUVER).

In [22], we suppose that the robotic platform contains as
many cores as the GenoM3 tasks involved in the application.
Here, we consider the number of cores of the robotic platform.
For that matter, our template integrates a cooperative non-
deterministic scheduler into the generated model. Results are
given for the actual hardware platform, namely the quad-core
ODROID-C0 board.

We refer to a periodic execution task as schedulable if
it never misses its deadline. The problem of verifying the
schedulability of tasks is inherently complex in GenoM3 be-
cause of the mutual exclusion between codels. While a given

task is executing an activity, it may have to wait when it
reaches one of its codels since that codel needs a resource
(a field of the IDS or a port) already in use by a codel run
by another task (of the same or another component). Hence,
verifying the schedulability is more complicated than just
summing the WCETs of the codels and comparing the result
to the task period. Furthermore, the lack of cores may cause
a delay between the period signal and the actual start of the
task execution, raising the risk of missing the deadline, i.e. the
next period signal.

We formulate schedulability properties as invariants. This
allows constructing a coarser SCG that does not preserve firing
sequences. Therefore, the verification is time and memory
efficient. We prove, in a few to several minutes, that all tasks
are schedulable, considering the ODROID-C0 constraints. We
note that in case of using a less powerful hardware, e.g. with
two cores, only publish (OPTITRACK) remains schedulable.
Under a cooperative non-deterministic scheduling policy, we
prove that in order to satisfy schedulability properties for all
the periodic tasks in the application, a hardware with three
cores minimum is indispensable. In all cases, the SCG contains
barely ten million states.

Note that the generated model limits the number of active
instances to two per activity. While this sounds fair for self-
incompatible activities that may not have more than one
active instance anyway, it is an additional constraint on self-
compatible ones (it does not exist in the underlying system).
As soon as this limit is raised to four, the system scales no
more. The user should thus be aware that the obtained results
exclude the possibility of having four instances of the activity
monitor (MIKROKOPTER) (the only self-compatible activity of
the application). The model does not scale either when we
consider a random navigation application that involves all of
the five components, i.e thirteen tasks overall.

IV. DISCUSSION

A. On the formalisms

When the theory of TA was introduced in [15], the authors
argued that a main advantage of TA compared to other
formalisms like Timed Petri Nets [35] is the ability to express
the time elapsed in a whole path (not only between taking
two successive transitions). This advantage is contrasted with
a less obvious, yet equal, compositional expressiveness when
compared to TPN with regards to urgencies. Indeed, as seen in
section III-A, expressing urgencies in TA is relatively painful
in compositional contexts and leads to larger representations
compared to those based on TPN. We extrapolate that this
was one of the motivations to introduce UA and benefit from
both the abovementioned advantage (expressing time easily
through a whole execution path) and an easy and efficient
expression of urgencies. In [36], the authors corroborate as
they describe why UA are needed in many real-world contexts
(such as robotics).

B. On the tools

The experience depicted through this paper constitutes a
useful feedback on RTD-Finder. RTD-Finder developers are
currently investigating the memory blow-up. Consequently,
they are developing a new version of the tool where the
linear method [37] replaces Binary Decision Diagrams. They
are also working on extending RTD-Finder to UA to avoid
scalability issues with the large TA models. TINA, on the
other hand, gives promising results despite the scalability
issues encountered when greatly alleviating the assumptions
or considering a more complex application than a stationary
flight control. It is still important to point out that preemptive
scheduling leads immediately to a state-space explosion, a non
surprising result with model checking.

V. CONCLUSION

In this paper, we formalize functional components and
automatize such formalization. We develop few templates that
bridge GenoM3, our component-based robotic software with
Fiacre and RT-BIP, formal languages based on TPN, TA and
UA. Important real-time properties are verified on the resulting
models. Compared to the related work on formal verification
of robotic functional components (section I), our approach
is simultaneously automatic (automatically synthesized formal
models) and rigorous (all timing constraints considered). Our
models remain mostly scalable. Compared to our work in [22],
we consider hardware constraints into the model, we extend
our templates to another formal framework and share the
learned lessons of the whole experience.

We attempt to enrich the formal work presented in [19]
with the lessons learned from our experience. For instance,
while the authors propose a method to translate TPN to TA, it
follows that they rather use TA extended with variables as an
output. This is an issue for TA-based tools that do not support
variables. Furthermore, each TPN transition is modeled as an
(extended) TA with one clock which gives large (extended)
TA models. The authors argue that this is not an issue since
only clocks of simultaneously enabled transitions are active.
In a real robotic context, this might be still problematic as
dozens of transitions might be simultaneously enabled (e.g. at
a given moment, a client might send any of dozens of possible
requests, several codels in conflict are ready to execute, etc.).
Also, one may question the need of TA when TPN models
scale since the main advantage of the translation was the
verifiability of quantitative properties with TA tools. Indeed,
techniques such as the Fiacre patterns [38] emerged since
then to express and verify quantitative properties of the style
“marking M leads to marking M ′ within n units of time”
using observers on TPN. As robotic programmers, we still did
not encounter a case where a property of interest to us could
not be expressed within a TPN model. Still, TPN observers
induce larger models whereas TA/UA are suitable for TCTL
which gives a natural way of verifying quantitative properties.

The work in progress to extend RTD-Finder to urgencies
will permit us to benefit from its powerful compositional
technique to deal with scalability issues. The integration of

urgencies in TA-based verification tools is quite recent. In [36],
the authors claim that their work is the first that integrates
urgencies to a model checker, namely SGM [39]. The well-
known model checking tool UPPAAL [40] allows now urgent
channels. UPPAAL and SGM rely on model checking tech-
niques. To our knowledge, no non-deterministic-TA-based tool
that relies on a deductive approach supports urgencies so far.

On the limitations of this paper, cooperative non-
deterministic scheduling is seldom used in reality. We envisage
integrating more realistic scheduling policies. These may in-
clude cooperative FIFO with fixed priority and pre-emptive
policies. For the latter, further techniques will be sought to
verify the resulting models as they do not scale with model
checking. In this context, Statistical Model Checking tools
such as UPPAAL-SMC [41] may be considered. Also, both
TINA and RTD-Finder are offline verification tools. Online
verification will allow us to monitor our components online
and enforce desired properties. RT-BIP UA template has an
execution model branch that calls the actual codels within the
model and runs the components online with the BIP-Engine.
The latter is currently under development to support real-time
multithreaded behaviors.

REFERENCES

[1] R. Alami, R. Chatilla, S. Fleury, M. Ghallab, and F. Ingrand, “An
Architecture for Autonomy,” IJRR, 1998.

[2] Y. Abdeddaı̈m, E. Asarin, M. Gallien, F. Ingrand, C. Lesire, and
M. Sighireanu, “Planning Robust Temporal Plans: A Comparison Be-
tween CBTP and TGA Approaches.” in ICAPS, 2007.

[3] A. Cimatti, M. Roveri, and P. Bertoli, “Conformant planning via
symbolic model checking and heuristic search,” AI, 2004.

[4] D. Hähnel, W. Burgard, and G. Lakemeyer, “GOLEX—bridging the gap
between logic (GOLOG) and a real robot,” in KI Advances in Artificial
Intelligence, 1998.

[5] R. Simmons and C. Pecheur, “Automating Model Checking for Au-
tonomous Systems,” in AAAI Spring Symposium on Real-Time Au-
tonomous Systems, 2000.

[6] D. Brugali, “Model-Driven Software Engineering in Robotics,” IEEE
RAM, 2015.

[7] A. Elkady and T. Sobh, “Robotics Middleware: A Comprehensive Lit-
erature Survey and Attribute-Based Bibliography,” Journal of Robotics,
2012.

[8] N. Mohamed, J. Al-Jaroodi, and I. Jawhar, “Middleware for Robotics:
A Survey,” in RAMECH, 2008.

[9] B. Espiau, K. Kapellos, and M. Jourdan, “Formal verification in robotics:
Why and how?” in ISRR, 1996.

[10] A. Sowmya, D. Tsz-Wang So, and W. Hung Tang, “Design of a Mobile
Robot Controller using Esterel Tools,” Electronic Notes in Theoretical
Computer Science, 2002.

[11] M. Kim and K. C. Kang, “Formal Construction and Verification of
Home Service Robots: A Case Study,” in Automated Technology for
Verification and Analysis, 2005.

[12] G. Brat, E. Denney, D. Giannakopoulou, J. Frank, and A. K.
Jónsson, “Verification of autonomous systems for space applications,”
in Aerospace Conference, 2006 IEEE, 2006.

[13] T. Abdellatif, S. Bensalem, J. Combaz, L. de Silva, and F. Ingrand, “Rig-
orous design of robot software: A formal component-based approach,”
Robotics and Autonomous Systems, 2012.

[14] P. M. Merlin and D. J. Farber, “Recoverability of Communication
Protocols: Implications of a Theoretical Study.” IEEE Trans. Comm.,
1976.

[15] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical
computer science, vol. 126, no. 2, pp. 183–235, 1994.

[16] B. Bérard, F. Cassez, S. Haddad, D. Lime, and O. H. Roux, “Compar-
ison of the expressiveness of timed automata and time petri nets,” in
International Conference on Formal Modeling and Analysis of Timed
Systems. Springer, 2005, pp. 211–225.

[17] B. Berthomieu, F. Peres, and F. Vernadat, “Bridging the gap between
timed automata and bounded time petri nets,” in International Confer-
ence on Formal Modeling and Analysis of Timed Systems. Springer,
2006, pp. 82–97.

[18] D. Lime and O. H. Roux, “Model checking of time petri nets using the
state class timed automaton,” Discrete Event Dynamic Systems, vol. 16,
no. 2, pp. 179–205, 2006.

[19] F. Cassez and O. H. Roux, “Structural translation from time petri nets
to timed automata,” Journal of Systems and Software, vol. 79, no. 10,
pp. 1456–1468, 2006.

[20] A. Mallet, C. Pasteur, M. Herrb, S. Lemaignan, and F. Ingrand,
“GenoM3: Building middleware-independent robotic components,” in
ICRA, 2010.

[21] F. Ingrand, S. Lacroix, S. Lemai-Chenevier, and F. Py, “Decisional
autonomy of planetary rovers,” JFR, 2007.

[22] M. Foughali, B. Berthomieu, S. Dal Zilio, F. Ingrand, and A. Mallet,
“Model Checking Real-Time Properties on the Functional Layer of
Autonomous Robots,” in ICFEM, 2016.

[23] T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine, “Symbolic
model checking for real-time systems,” in Logic in Computer Science,
1992. LICS’92., Proceedings of the Seventh Annual IEEE Symposium
on. IEEE, 1992, pp. 394–406.

[24] R. Alur, “Timed automata,” in International Conference on Computer
Aided Verification. Springer, 1999, pp. 8–22.

[25] S. Bornot, J. Sifakis, and S. Tripakis, “Modeling urgency in timed
systems,” in Compositionality: the significant difference. Springer,
1998, pp. 103–129.

[26] A. Basu, M. Bozga, and J. Sifakis, “Modeling Heterogeneous Real-Time
Components in BIP,” in SEFM, 2006.

[27] L. Astefanoaei, S. B. Rayana, S. Bensalem, M. Bozga, and J. Com-
baz, “Compositional verification for timed systems based on automatic
invariant generation,” arXiv preprint arXiv:1506.04879, 2015.

[28] S. Bensalem, M. Bozga, T.-H. Nguyen, and J. Sifakis, “D-finder: A tool
for compositional deadlock detection and verification,” in International
Conference on Computer Aided Verification. Springer, 2009, pp. 614–
619.

[29] M. Pezze and M. Young, “Time petri nets: A primer introduction,”
in Tutorial presented at the Multi-Workshop on Formal Methods in
Performance Evaluation and Applications, Zaragoza, Spain, 1999.

[30] B. Berthomieu, J.-P. Bodeveix, P. Farail, M. Filali, H. Garavel, P. Gau-
fillet, F. Lang, and F. Vernadat, “Fiacre: an Intermediate Language for
Model Verification in the Topcased Environment,” in ERTSS, 2008.

[31] B. Berthomieu, P. O. Ribet, and F. Vernadat, “The tool TINA -
Construction of abstract state spaces for Petri nets and Time Petri,”
International Journal of Production Research, 2004.

[32] B. Berthomieu and M. Menasche, “An enumerative approach for ana-
lyzing time Petri nets.” IFIP Cong. Series, vol. 9, pp. 41–46, 1983.

[33] B. Berthomieu and M. Diaz, “Modeling and verification of time de-
pendent systems using time petri nets,” IEEE transactions on software
engineering, vol. 17, no. 3, pp. 259–273, 1991.

[34] J. Lilius, “Efficient state space search for time petri nets,” Electronic
Notes in Theoretical Computer Science, vol. 18, pp. 113–133, 1998.

[35] C. Ramchandani, “Analysis of asynchronous concurrent systems by petri
nets,” DTIC Document, Tech. Rep., 1974.

[36] P.-A. Hsiung, S.-W. Lin, Y.-R. Chen, C.-H. Huang, J.-J. Yeh, H.-Y.
Sun, C.-S. Lin, and H.-W. Liao, “Model checking timed systems with
urgencies,” in International Symposium on Automated Technology for
Verification and Analysis. Springer, 2006, pp. 67–81.

[37] S. Bensalem, M. Bozga, B. Boyer, and A. Legay, “Incremental gener-
ation of linear invariants for component-based systems,” in Application
of Concurrency to System Design (ACSD), 2013 13th International
Conference on. IEEE, 2013, pp. 80–89.

[38] N. Abid, S. Dal Zilio, and D. Le Botlan, “Real-time specification patterns
and tools,” in International Workshop on Formal Methods for Industrial
Critical Systems. Springer, 2012, pp. 1–15.

[39] F. Wang and P.-A. Hsiung, “Efficient and user-friendly verification,”
IEEE Transactions on Computers, vol. 51, no. 1, pp. 61–83, 2002.

[40] K. G. Larsen, P. Pettersson, and W. Yi, “Uppaal in a nutshell,” Interna-
tional journal on software tools for technology transfer, vol. 1, no. 1-2,
pp. 134–152, 1997.

[41] P. Bulychev, A. David, K. G. Larsen, M. Mikučionis, D. B. Poulsen,
A. Legay, and Z. Wang, “Uppaal-smc: Statistical model checking for
priced timed automata,” arXiv preprint arXiv:1207.1272, 2012.

