Mohammed Foughali

Toward a Correct-and-Scalable Verification of Concurrent Robotic Systems: Insights on Formalisms and Tools *

Formal verification of robotic functional components is extremely important. Indeed, with the growing involvement of autonomous systems in everyday life, we may no longer rely on classical testing and simulation to establish our trust in them. However, the formalization of such systems is challenging considering the various existing formalisms and their respective advantages/drawbacks. One may express more easily in one formalism and verify more easily in another depending on the aspects/properties they are modeling/verifying. Furthermore, both the reusability of the formalization and the scalability of the obtained formal models are crucial elements in the verification process. In this paper, we present modeling concurrency aspects of robotic functional components in Time Petri Nets, Timed Automata and Timed Automata extended with urgencies. Formal models are automatically generated and verification is conducted on each of them. Both the expressiveness of the formalisms and scalability of the obtained models are evaluated and future directions are consequently outlined.

I. INTRODUCTION

Robotic and autonomous systems involvement in costly missions (e.g. space exploration) and/or human environments (e.g. robotic surgery) keeps growing with time. Such a growth questions the level of trust we are willing to put in these systems. Indeed, we still tend to rely on extensive tests and heavy simulations for certification while such techniques are inherently non exhaustive. Formal methods constitute a promising alternative to consolidate trustworthiness of robotic and autonomous systems.

Robotic/autonomous specifications are very often organized through two layers: the decisional and the functional one [START_REF] Alami | An Architecture for Autonomy[END_REF]. In this paper, we only focus on applying formal methods to the latter. The reason is quite straightforward. Decisional descriptions are usually formal and thus formal methods are directly applicable. This explains why literature is rich in works of formal verification of decisional functions [START_REF] Abdeddaïm | Planning Robust Temporal Plans: A Comparison Between CBTP and TGA Approaches[END_REF], [START_REF] Cimatti | Conformant planning via symbolic model checking and heuristic search[END_REF], [START_REF] Hähnel | GOLEX-bridging the gap between logic (GOLOG) and a real robot[END_REF], [START_REF] Simmons | Automating Model Checking for Autonomous Systems[END_REF]. In contrast, functional specifications are non formal and remarkably complex, which renders their verification extremely challenging.

Functional descriptions are nowadays deployed through components [START_REF] Brugali | Model-Driven Software Engineering in Robotics[END_REF], [START_REF] Elkady | Robotics Middleware: A Comprehensive Literature Survey and Attribute-Based Bibliography[END_REF], [START_REF] Mohamed | Middleware for Robotics: A Survey[END_REF]. Formal verification of functional robotic components faces two main problems. First, due to their non formal nature, their formalization is often hard, error prone and non reusable (manual). Second, the complexity of functional components leads quickly to state space explosion, which forces the specialists to go through exaggerated abstrac-*This work was supported in part by the EU CPSE Labs project funded by the H2020 program under grant agreement No 644400.

1 LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France {firstname.lastname}@laas.fr tions such as removing time constraints. At least one of these issues is present in [START_REF] Espiau | Formal verification in robotics: Why and how?[END_REF], [START_REF] Sowmya | Design of a Mobile Robot Controller using Esterel Tools[END_REF], [START_REF] Kim | Formal Construction and Verification of Home Service Robots: A Case Study[END_REF], [START_REF] Brat | Verification of autonomous systems for space applications[END_REF], [START_REF] Abdellatif | Rigorous design of robot software: A formal component-based approach[END_REF].

The problems pertaining to formalization are often treated slightly or not treated at all. This is however worrying since the efficiency of formalization, its correctness and its reusability are crucial to both the feasibility and accuracy of verification. Indeed, one formalism may be more suitable than the other in modeling a certain aspect of the application while it is the other way around for another aspect. The choice of the most suitable formalism and associated verification techniques is far from being obvious, yet very important. With regards to Time Petri Nets "à la Merlin" [START_REF] Merlin | Recoverability of Communication Protocols: Implications of a Theoretical Study[END_REF] and Timed Automata [START_REF] Alur | A theory of timed automata[END_REF], few formal works comparing their expressiveness and trying to bridge the gap between them exist in the literature [START_REF] Bérard | Comparison of the expressiveness of timed automata and time petri nets[END_REF], [START_REF] Berthomieu | Bridging the gap between timed automata and bounded time petri nets[END_REF], [START_REF] Lime | Model checking of time petri nets using the state class timed automaton[END_REF]. There is, however, an important disconnection between such leading formal works and the real-world, complex applications proposed by the robotics community. This gap shows no signs of shrinking as formal methods are out of a roboticist field of expertise. A rare contribution that actually brings Timed Automata and Time Petri Nets together with relatively complex examples put on verification is presented in [START_REF] Cassez | Structural translation from time petri nets to timed automata[END_REF] and discussed in section V.

In this paper, we go through the abovementioned issues. Formal methods are applied to components written in G en oM3, a robotic software equipped with an automatic synthesis mechanism. Non reusability is thus resolved as formal models are automatically generated out of the functional components. On the modeling level, we focus on presenting and discussing modeling the fine-grain locking of resources characteristic to G en oM3. Time Petri Nets (TPN), Timed Safety Automata (TA) and Timed Safety Automata extended with urgencies (UA) are used. We compare the power of such formalisms to express the said concurrency aspect and the feasibility of verification in each case using Fiacre/TINA for TPN and BIP/RTD-Finder for TA/UA. Formal models are automatically generated, the complexity of the specification is conserved all along the process and all timing constraints are taken into account. We stand halfway between the formal methods and the robotic communities in a clear attempt to make this paper readable to both of them. Formal definitions are therefore often avoided as we rely mostly on natural language and simple mathematical concepts to develop our ideas.

The rest of this paper is organized as follows. First, G en oM3, its automatic synthesis mechanism and the concurrency within and between its components are presented through an example in section II. Afterwards, section III presents and discusses (i) modeling the concurrency in TA and UA as well as verification feasability with RTD-Finder (section III-A) and

Ports

Execution Tasks

Activities

IDS Requests Reports

Control Task

Attributes and Functions

Ports Ports

In

Out

Clients

Ports

Fig. 1: A generic G en oM3 component.

(ii) modeling such concurrency in TPN and verification of the components with TINA (section III-B). We debate the results in section IV and conclude with learned lessons and future actions in section V.

II. G en oM3 COMPONENTS

G en oM3 [START_REF] Mallet | GenoM3: Building middleware-independent robotic components[END_REF] is a component-based framework used to develop and deploy robotic functional specifications. In the overall LAAS architecture [START_REF] Ingrand | Decisional autonomy of planetary rovers[END_REF], functional components act as "servers" in charge of functionalities which may range from simple low-level driver control (e.g. the velocity control of the propellers of a drone, camera, etc) to more integrated computations (e.g. navigation, mapping, etc).

We consider that a typical component is a program which needs to handle and manage the following aspects: Inputs and Outputs : a component interacts with external clients and other components. For the former, the control flow, it must handle requests and send back reports from/to clients. For the latter, the data flow, it must provide a mechanism to share data with other components. Algorithms : the core algorithms needed to implement the functionality the component is in charge of must be appropriately organized as to preserve the reactivity of the B). Ports : They specify the shared data, in and out, the component needs or produces from/for other components. Access to ports is mutually exclusive. Note that this description is greatly simplified. Indeed, G en oM3 components contain several aspects the formalization of which is difficult and non obvious. For instance, there are a number of rules concerning the behavior of execution tasks: how, when, and how often they execute their associated activities. These aspects are out of the scope of this paper but the interested reader may refer to [START_REF] Foughali | Model Checking Real-Time Properties on the Functional Layer of Autonomous Robots[END_REF] for some of them and their formalization.

A. Templates Approach

The template mechanism was first proposed to deal with the middleware dependency problem, classical in robotics. A robotic middleware is the piece of software that permits the functional components to communicate with the operating system and with one another. In this context, G en oM3 developers proposed a novel approach back then known as template

<' foreach s [$component services] { '> Service <"[$s name]"> <' } '> Listing 1: A simple template code snippet.
mechanism [START_REF] Mallet | GenoM3: Building middleware-independent robotic components[END_REF]. In brief, the components are specified in a generic way using G en oM3. Templates are used to generate the components for various middleware. Hence, the component achieves a complete independency from the middleware.

A template, when called by G en oM3 on a given component specification, has access to all the information contained in the specification such as services names and types, ports and IDS fields needed by each codel, execution tasks periods, etc. Through the template interpreter (Tcl), one specifies what they need the template to synthesize. For instance, Listing 1 shows a simple template function that outputs the names of all the services of a given component. The interpreter evaluates anything enclosed in markers (<''> or <"">) in Tcl and leaves the rest as is.

Since there is no restriction on what a template may synthesize, we use this powerful mechanism to automatically generate formal models. As of today, G en oM3 has three formal-model templates, a Fiacre template [START_REF] Foughali | Model Checking Real-Time Properties on the Functional Layer of Autonomous Robots[END_REF], and two BIP templates (one for UA and one for TA).

B. Concurrency

As said in the introduction, this paper will focus mainly on modeling concurrency aspects of G en oM3. G en oM3 tasks run in parallel assuming the number of available cores is sufficient. Therefore, the shared resources need to be correctly managed. The latest releases of G en oM3 improve the parallelism level in particular. Only the field(s) of the IDS/ports needed by a codel are now locked while such a codel is running and simultaneous readings are allowed. This guarantees a maximal level of parallelism.

Let us introduce our quadcopter navigation as the verification case study through which we also illustrate the concurrency aspect of G en oM3. Fig. 2 presents the 5 components involved in our quadcopter functional layer. Each box corresponds to a component, and each octagon is a port. Ports are written (out) by the components they are attached to, and read (in) through the arrow pointing to the reading component. Inside each box, we list the execution tasks, their periods (if any), and a partial list of the services provided by this component. The perm keyword refers to permanent activities. Unlike regular activities which are started upon request from a client, permanent activities are started when the task is spawned, but otherwise follow the same execution rules as any other activity (see below). Note that this figure does not present the clients in charge of sending requests and analyzing reports (out of scope of this paper).

• MIKROKOPTER is the component in charge of the quad-copter low-level hardware. The quadcopter is controlled by applying a velocity to each propeller, and produces the current velocities, as well as its current IMU (Inertia Measurement Unit) values. It has two execution tasks i) comm, aperiodic, in charge of polling and parsing data from the hardware (to get the current propellers velocity and IMU) and storing them in the IDS. ii) main, periodic at 1KHz, which reads the cmd velocity port, manages the servo control and writes the two ports IMU and the propellers actual velocity.

• OPTITRACK is the component handling the current position of the quadcopter as perceived by our "OptiTrack" motion capture system. It has one execution task publish that provides the current position of the quadcopter in the mocap pose port. Its period is 4ms. to reach and hover near this position.

Through an excerpt of the specification of MIKROKOPTER (listing 2), we introduce hereafter the concurrency of G en oM3 tasks. In order to do so, we see first how an activity is specified in G en oM3. An activity is defined through its states, transitions and codels. The execution task main is in charge of the activity Servo (line 12). Servo has three states: start, exec and end (lines 13 through 15) to which a terminal state called ether is added. Except the latter, each state defines a codel to execute (for example, the codel mk servo start is associated to the state start, line 13), the possible transitions at the end of such an execution (for example, the state exec transits to itself or to the state end, line 14) and, optionally, the WCET of the codel (4µs for mv servo end, line 15). An activity may be incompatible with a set of activities that may include the activity itself. Line 16 specifies that the activity servo interrupts itself, it is thus self-incompatible. A selfincompatible activity may not run a new instance unless the currently running one is interrupted and terminated. Therefore, it may not have more than one active (running) instance at any given time, contrary to self-compatible activities that may have as many active instances as the memory may handle. In the rest of this paper, we extend the term codel to refer indifferently to itself or the state it is associated to. This choice makes it easier to formulate the different explanations given in section III.

The attribute set ramp writes (out) the IDS field servo data (line 5). Since an attribute is a control service, its execution is carried out by the control task. On the other hand, the codel mk servo main associated to the state exec of the activity servo (line 14) reads (in) the same IDS field, namely servo data (codel's arguments, line 14). This codel is executed by the execution task main, in charge of the activity servo. This is a perfect example of how concurrency works in G en oM3. Since the attribute and the activity codel are run by two different tasks in parallel, whichever starts executing first locks the field servo data of the IDS and forces the other to wait till it finishes its execution. As soon as such a field is unlocked, the waiting entity executes, there is therefore a notion of urgency. We say that the codel exec and the attribute set ramp are in conflict. G en oM3 offers a function that ensures a correct implementation of concurrency while preserving a maximum parallelism level as explained above (simultaneous readings are allowed). This function returns, for each codel/control service, the list of codels/control services in conflict with it. A codel/control service that is in conflict with at least one codel/control service is referred to as nonthread-safe. There is also a notion of non determinism. That Listing 2: Excerpt from the G en oM3 specification of the MIKROKOPTER component.

is, if several non-thread-safe entities are waiting for the same resources, there is no rule defining which of the waiting entities will lock such resources as soon as they are released. Note that mutual exclusion between G en oM3 entities is not transitive, i.e if B and C are in conflict with A, then B is not necessarily in conflict with C (A, B and C being codels/control services). Not to go beyond of the scoop of this paper, our description of the mechanisms offered by G en oM3 to specify and deploy functional components remains partial. Still, one can see the complexity of G en oM3 components and the challenge of applying formal methods to them. For instance, in the quadcopter example above, we have 5 modules, 13 tasks, 20 activities, and more than 65 codels overall.

III. MODELING AND VERIFICATION

The formalization and the verification of G en oM3 components face several challenges. For instance, G en oM3 reflects many software aspects the formalization of which is unnatural and error prone, mainly interruption routines, termination of activities, etc. Also, the modeling process should not be decoupled from the verification one. That is, it is not sufficient to model correctly, but also efficiently. This efficiency rimes with both scalability and convenience. The user should understand the generated models and express the properties they want to verify easily, and models should remain as scalable as possible. It is therefore very important to preserve compositionality throughout the modeling process. This section will focus on modeling the concurrency aspect detailed in section II-B in TPN, TA, and UA. Both compositionality and timing constraints are preserved all along the verification process. The power of the different formalisms to express the urgency characterizing the way G en oM3 deals with concurrency is particularly assessed. The verifiability of the global systems with the proposed tools is then evaluated.

All along this section, we consider three non-thread-safe codels C1, C2 and C3 belonging to, respectively, activities A1, A2 and A3. These activities are run by three different tasks. C1 and C3 are in conflict with C2 but not in mutual conflict. Consequently, C1 (respect. C3) may not run if C2 is executing, and vice versa. However, C1 and C3 may run in parallel. For the sake of readability and simplicity, we suppose that each of these codels has only one input and only one output codel. That is, for instance, only one codel in A1 has a transition to C1 and C1 has only one outgoing transition.

A. With TA/UA a) With TA: Timed Automata is a theory for modeling and verification of timed systems. In the original version of the theory [START_REF] Alur | A theory of timed automata[END_REF], Timed Automata extend finite-state Büchi automata with real-valued clocks. The behavior of such automata is therefore restricted by defining constraints on the clock variables and a set of accepting states. A simpler version allowing local invariant conditions and known as Timed Safety Automata is introduced in [START_REF] Henzinger | Symbolic model checking for real-time systems[END_REF]. In this paper, we focus on Timed Safety Automata and refer to them as Timed Automata or TA for short. The syntax and semantics of TA in this paper follow those in [START_REF] Alur | Timed automata[END_REF] except that we refer to switches as transitions.

We target in this section modeling the G en oM3 concurrency/mutual exclusion aspects in TA. Fig. 3 shows such modeling. The system is modeled as TA components connected through synchronization constraints on labels. When two or more labels are connected, the respective transitions are synchronized. The global system is the synchronous product of the TA components with respect to the different synchronization constraints. Synchronization constraints are represented as thick colored lines in Fig. 3. For the sake of readability, merely the synchronization constraints involving the execution and end of execution of C2 are represented in Fig. 3. Note that (i) the components A1, A2 and A3 are represented only partially (the discontinued transitions denote missing parts before/after them) and (ii) labels/clocks belonging to different components are different, even if they have the same name. These two simplifications apply also to the UA model (in the sequel).

Each non-thread-safe codel C is modeled within its activity component by two locations, C wait and C exe. If C wait is the current location, then C is waiting for resources to execute. In contrast, location C exe denotes that C is executing. To imitate the execution time we define a local invariant on C exe with an upper bound equal to the codel's WCET. Each C has a lock C TA component that determines whether C may execute (location ready), is executing (location execute) or is idle/needs to wait further (otherwise).

Let us depict how it works with an example. The component lock C2 is initially at the location Init. Unless one of the codels in conflict with C2, i.e. C1 or C3, starts executing, lock C2 transits to ready as C2 reaches the location C2 wait.

Here, an urgency occurs as no time may elapse at the location ready (component lock C2). Therefore, C2 transits immediately to its location C2 exe while its lock transits to execute (in case C1 or C3 is also waiting to execute, non-determinism applies). By the end of execution, lock C2 transits back to Init. Now, if C1 starts executing, lock C2 transits to level 1. If C2 reaches its location C2 wait during C1's execution, it is the end of the latter that allows the transition to ready (component lock C2) and consequently the possibility to execute C2.

TA do not express urgencies naturally, hence the heterogeneity of the lock components from a codel to another. Let C be a non-thread-safe codel and N the number of codels in conflict with it. The proposed solution induces a linear proportionality between N and the number of locations/transitions of the lock component associated with C:

• The number of locations in the lock component associated with C is equal to N +3 • The number of transitions within the lock component associated with C is equal to 3N +5. For instance, when N is equal to 8 (which is rather usual for a G en oM3 non-thread-safe codel), the number of locations and transitions is, respectively, 11 and 29. Note that another representation is possible using Timed Automata extended with variables where each lock component has a local variable. This allows a more compact and homogeneous representation of the lock components (Fig. 4). However, such a representation changes nothing in terms of the global product of the components.

b) With UA: Timed Automata with Urgencies (UA, [START_REF] Bornot | Modeling urgency in timed systems[END_REF]) extend Timed Automata (TA) with a notion of urgency on transitions. In this paper, we use two types of urgencies:

• eager: the transition is to be taken as soon as enabled. This is the strong urgency. • lazy: no urgency, as in standard TA. Naturally, it's the weak urgency. Fig. 5 shows the modeling of G en oM3 concurrency/mutual exclusion aspects in UA. As in TA, we use synchronization constraints among different components. Applying a synchronization constraint on transitions with no conditions on clocks and with different urgencies produces a transition with the strongest urgency. For instance, the synchronization constraint involving the transition labeled resfree (component A2), the transition labeled take (component lock C2), and the transitions labeled check (components lock C1 and lock C3) results in an eager transition (conjunction of eager, lazy, lazy and lazy). Therefore, if the codel C2 is waiting to execute, i.e component A2 is in the location C2 wait, it will transit to C2 exe (start executing) as soon as the components lock C1, lock C2 and lock C3 are in their respective locations free (in case C1 or C3 is also waiting to execute, non-determinism applies). Such a transition is concomitant to switching lock C2 to its location taken which will prevent any codel in conflict with C2 to execute until C2 finishes its execution. The rest of the model is quite similar to the TA model. For the sake of readability, only one synchronization constraint (that of C1) defining codels end of execution is represented in Fig. 5. Also, the lazy type of urgency is omitted (being the "default" type).

c) Automatic Synthesis and Verification: After formalizing all the remaining aspects/entities of G en oM3 components, two templates are developed to automatically synthesize, respectively, UA and TA models in the RT-BIP [START_REF] Basu | Modeling Heterogeneous Real-Time Components in BIP[END_REF] syntax. RT-BIP associated verification tool is known as RTD-Finder [START_REF] Astefanoaei | Compositional verification for timed systems based on automatic invariant generation[END_REF]. It is a deductive, compositional verification tool that overap- proximates the reachable state space using invariants. RTD-Finder aims to overcome the state explosion problem often encountered in complex real-time systems modeled as networks of TA. RTD-Finder extends its untimed version D-Finder [START_REF] Bensalem | D-finder: A tool for compositional deadlock detection and verification[END_REF] with the possibility to reason over time by considering history clocks in the generation of the components local invariants.

We automatically generate the RT-BIP models from our quadcopter application specification using the RT-BIP templates. Two models are thus obtained, a TA-and a UAbased model. The TA model is relatively large due to the proportionality between the number of locations/transitions of a given lock and the codels in conflict with its associated codel. The verification process leads quickly to a memory blow-up even when tested on our simplest components. We could not verify the UA and extended TA models since RTD-Finder does not take urgencies/variables into account. A TPN is referred to as safe if it is 1-bounded, i.e the maximum marking of each of its places is 1. In this section, the TPN components we use for modeling are all safe, and thus we define a composition rule that is similar to the one of automata. Synchronization constraints define which transitions are to synchronize. The resulting transition (from synchronization) is associated with the interval resulting from the conjunction of the respective intervals of the synchronized transitions. The input (respect. output) places of the resulting transition is the union of the input (respect. output) places of the synchronized transitions. The global TPN is the product of the TPN components following these rules by applying the synchronization constraints. Fig. 6 shows how we model, using TPN components and synchronization constraints, the concurrency of the execution of C1, C2 and C3 while finely locking resources.

Each non-thread-safe codel C has a lock C TPN compo- nent. The marking of that TPN defines whether C is executing (place busy marked) or not (either idle or waiting to execute, place idle marked). Firing the transition start unmarks idle and marks busy, firing end does the contrary. The transition allow is enabled when idle is marked and its firing preserves the marking of the net. Despite the lock component, C is modeled within its activity by two places, C wait and C exec. If C wait is marked then C is waiting for resources to execute. In contrast, if C exec is marked then C is executing.

In Fig. 6, synchronization constraints are represented by colored thick lines connecting transitions of different components. For instance, allowing C2 to execute is dictated by the synchronization constraint that involves its transition wait (component A2), the transition start of its own lock (component lock C2) and all the transitions allow of the locks of the codels in conflict with C2 (components lock C1 and lock C3). Let T be the transition resulting from applying such a constraint. T is associated with the firing interval [0,0] (the conjunction of [0,0],[0,∞[,[0,∞[and [0,∞[). Hence, as soon as all the input places of T , i.e C2 wait (component A2), idle (component lock C2) and all the places idle of the lock components of the codels in conflict with C2 (components lock C1 and lock C3), are marked, T is immediately fired (in case C1 or C3 is also waiting to execute, it might get immediately disabled instead as non-determinism applies). Urgencies are then well expressed in a relatively easy way. This is mainly due to the fact that firing intervals in TPN depend on the enabledness of their associated transitions.

Let T be the result of applying the synchronization constraint connecting exe (component A2) to end (component lock C2). T is then associated with the firing interval [0,WCET C2] (where WCET C2 is the WCET of C2). When T is fired, C2 exec (component A2) and busy (component lock C2) are marked and T is consequently enabled. According to TPN firing rules, T must be fired within the next WCET C2 units of time. This imitates the execution time of the codel, that may take any positive value inferior to its WCET. Note that for the sake of readability, only one synchronization constraint pertaining to the end of execution is represented in the figure, namely that of C2. Also, the default firing intervals (i.e. [0,∞[) are not shown. The components A1, A2 and A3 are represented only partially (the discontinued arcs denote missing parts before/after them). Transitions/places belonging to different components are different even if they have similar names.

b) Automatic Synthesis and Verification: All G en oM3 aspects, including the concurrency one, are formalized in Fiacre [START_REF] Berthomieu | Fiacre: an Intermediate Language for Model Verification in the Topcased Environment[END_REF], a high-level specification language for describing compositionally both the behavioral and timing aspects of concurrent systems. Fiacre is relevant in this context since it derives its expression of timing constraints from TPN. Fiacre models are automatically generated from G en oM3 specifications [START_REF] Foughali | Model Checking Real-Time Properties on the Functional Layer of Autonomous Robots[END_REF] then automatically compiled into Time Transition Systems, TTS for short, namely TPN extended with data. On the resulting TTS, we verify important real-time properties to the robotic programmer using TINA model checkers [START_REF] Berthomieu | The tool TINA -Construction of abstract state spaces for Petri nets and Time Petri[END_REF]. The latter rely on model checking techniques where a States Class Graph (SCG) is constructed with a possibility to verify the properties on the fly. SCGs are introduced in [START_REF] Berthomieu | An enumerative approach for analyzing time Petri nets[END_REF] as finite abstractions to the typically infinite nature of TPN state spaces due to the dense nature of time. One may refer to [START_REF] Berthomieu | Modeling and verification of time dependent systems using time petri nets[END_REF] and [START_REF] Lilius | Efficient state space search for time petri nets[END_REF] for later improvements of the technique. In this section, we give an example of the verified properties, namely the schedulability of execution tasks. In order to do so, we consider the global Fiacre model of the five modules communicating through ports. We generate an application-specific client corresponding to a stationary flight which involves ten tasks (all the components shown in Fig. 2

except MANEUVER).

In [START_REF] Foughali | Model Checking Real-Time Properties on the Functional Layer of Autonomous Robots[END_REF], we suppose that the robotic platform contains as many cores as the G en oM3 tasks involved in the application. Here, we consider the number of cores of the robotic platform. For that matter, our template integrates a cooperative nondeterministic scheduler into the generated model. Results are given for the actual hardware platform, namely the quad-core ODROID-C0 board.

We refer to a periodic execution task as schedulable if it never misses its deadline. The problem of verifying the schedulability of tasks is inherently complex in G en oM3 because of the mutual exclusion between codels. While a given task is executing an activity, it may have to wait when it reaches one of its codels since that codel needs a resource (a field of the IDS or a port) already in use by a codel run by another task (of the same or another component). Hence, verifying the schedulability is more complicated than just summing the WCETs of the codels and comparing the result to the task period. Furthermore, the lack of cores may cause a delay between the period signal and the actual start of the task execution, raising the risk of missing the deadline, i.e. the next period signal.

We formulate schedulability properties as invariants. This allows constructing a coarser SCG that does not preserve firing sequences. Therefore, the verification is time and memory efficient. We prove, in a few to several minutes, that all tasks are schedulable, considering the ODROID-C0 constraints. We note that in case of using a less powerful hardware, e.g. with two cores, only publish (OPTITRACK) remains schedulable. Under a cooperative non-deterministic scheduling policy, we prove that in order to satisfy schedulability properties for all the periodic tasks in the application, a hardware with three cores minimum is indispensable. In all cases, the SCG contains barely ten million states.

Note that the generated model limits the number of active instances to two per activity. While this sounds fair for selfincompatible activities that may not have more than one active instance anyway, it is an additional constraint on selfcompatible ones (it does not exist in the underlying system). As soon as this limit is raised to four, the system scales no more. The user should thus be aware that the obtained results exclude the possibility of having four instances of the activity monitor (MIKROKOPTER) (the only self-compatible activity of the application). The model does not scale either when we consider a random navigation application that involves all of the five components, i.e thirteen tasks overall.

IV. DISCUSSION

A. On the formalisms

When the theory of TA was introduced in [START_REF] Alur | A theory of timed automata[END_REF], the authors argued that a main advantage of TA compared to other formalisms like Timed Petri Nets [START_REF] Ramchandani | Analysis of asynchronous concurrent systems by petri nets[END_REF] is the ability to express the time elapsed in a whole path (not only between taking two successive transitions). This advantage is contrasted with a less obvious, yet equal, compositional expressiveness when compared to TPN with regards to urgencies. Indeed, as seen in section III-A, expressing urgencies in TA is relatively painful in compositional contexts and leads to larger representations compared to those based on TPN. We extrapolate that this was one of the motivations to introduce UA and benefit from both the abovementioned advantage (expressing time easily through a whole execution path) and an easy and efficient expression of urgencies. In [START_REF] Hsiung | Model checking timed systems with urgencies[END_REF], the authors corroborate as they describe why UA are needed in many real-world contexts (such as robotics).

B. On the tools

The experience depicted through this paper constitutes a useful feedback on RTD-Finder. RTD-Finder developers are currently investigating the memory blow-up. Consequently, they are developing a new version of the tool where the linear method [START_REF] Bensalem | Incremental generation of linear invariants for component-based systems[END_REF] replaces Binary Decision Diagrams. They are also working on extending RTD-Finder to UA to avoid scalability issues with the large TA models. TINA, on the other hand, gives promising results despite the scalability issues encountered when greatly alleviating the assumptions or considering a more complex application than a stationary flight control. It is still important to point out that preemptive scheduling leads immediately to a state-space explosion, a non surprising result with model checking.

V. CONCLUSION

In this paper, we formalize functional components and automatize such formalization. We develop few templates that bridge G en oM3, our component-based robotic software with Fiacre and RT-BIP, formal languages based on TPN, TA and UA. Important real-time properties are verified on the resulting models. Compared to the related work on formal verification of robotic functional components (section I), our approach is simultaneously automatic (automatically synthesized formal models) and rigorous (all timing constraints considered). Our models remain mostly scalable. Compared to our work in [START_REF] Foughali | Model Checking Real-Time Properties on the Functional Layer of Autonomous Robots[END_REF], we consider hardware constraints into the model, we extend our templates to another formal framework and share the learned lessons of the whole experience.

We attempt to enrich the formal work presented in [START_REF] Cassez | Structural translation from time petri nets to timed automata[END_REF] with the lessons learned from our experience. For instance, while the authors propose a method to translate TPN to TA, it follows that they rather use TA extended with variables as an output. This is an issue for TA-based tools that do not support variables. Furthermore, each TPN transition is modeled as an (extended) TA with one clock which gives large (extended) TA models. The authors argue that this is not an issue since only clocks of simultaneously enabled transitions are active. In a real robotic context, this might be still problematic as dozens of transitions might be simultaneously enabled (e.g. at a given moment, a client might send any of dozens of possible requests, several codels in conflict are ready to execute, etc.). Also, one may question the need of TA when TPN models scale since the main advantage of the translation was the verifiability of quantitative properties with TA tools. Indeed, techniques such as the Fiacre patterns [START_REF] Abid | Real-time specification patterns and tools[END_REF] emerged since then to express and verify quantitative properties of the style "marking M leads to marking M within n units of time" using observers on TPN. As robotic programmers, we still did not encounter a case where a property of interest to us could not be expressed within a TPN model. Still, TPN observers induce larger models whereas TA/UA are suitable for TCTL which gives a natural way of verifying quantitative properties.

The work in progress to extend RTD-Finder to urgencies will permit us to benefit from its powerful compositional technique to deal with scalability issues. The integration of urgencies in TA-based verification tools is quite recent. In [START_REF] Hsiung | Model checking timed systems with urgencies[END_REF], the authors claim that their work is the first that integrates urgencies to a model checker, namely SGM [START_REF] Wang | Efficient and user-friendly verification[END_REF]. The wellknown model checking tool UPPAAL [START_REF] Larsen | Uppaal in a nutshell[END_REF] allows now urgent channels. UPPAAL and SGM rely on model checking techniques. To our knowledge, no non-deterministic-TA-based tool that relies on a deductive approach supports urgencies so far.

On the limitations of this paper, cooperative nondeterministic scheduling is seldom used in reality. We envisage integrating more realistic scheduling policies. These may include cooperative FIFO with fixed priority and pre-emptive policies. For the latter, further techniques will be sought to verify the resulting models as they do not scale with model checking. In this context, Statistical Model Checking tools such as UPPAAL-SMC [START_REF] Bulychev | Uppaal-smc: Statistical model checking for priced timed automata[END_REF] may be considered. Also, both TINA and RTD-Finder are offline verification tools. Online verification will allow us to monitor our components online and enforce desired properties. RT-BIP UA template has an execution model branch that calls the actual codels within the model and runs the components online with the BIP-Engine. The latter is currently under development to support real-time multithreaded behaviors.

Fig. 2 :

 2 Fig. 2: The quadcopter functional level. Only a partial list of services is presented. Activities are in Italic font.

Fig. 3 :

 3 Fig. 3: Concurrency and mutual exclusion in TA.

Fig. 4 :

 4 Fig. 4: The lock components with a local variable.

BFig. 5 :

 5 Fig. 5: Concurrency and mutual exclusion in UA.

Fig. 6 :

 6 Fig. 6: Concurrency and mutual exclusion in TPN.

 component and the schedulability of the various possibly concurrent algorithms. A component may have just one service to provide, but most of the time, there are a number of such services associated to the considered robotic functionality. Internally shared data : the various algorithms, possibly concurrent, running in the component, may have to share state variables, parameters, etc. which represent the internal state of the component. To achieve such requirements of a functional component, we propose to organize each one as shown in Fig.1. Hereafter, we briefly introduce the different entities of a G en oM3 component: Control Task : A component always has an implicit control task that manages the control flow by processing requests and sending reports (from/to external clients); activates and stops services, etc. Execution Task(s) : Aside from the control task, whose reactivity must remain short, one may need one or more execution tasks, aperiodic or periodic, in charge of longer computations. Services : The core algorithms of the component are encapsulated within services. Services are often associated to a request (with the same name). They can be either fast or slow. Fast services are known as control services and are directly executed by the control task.

	Control services
	may be attributes (setters/getters) or functions (quick
	computations). Slow services are known as activities and
	they are executed by execution tasks. They are broken
	into different states, each state associated to a codel. A
	codel specifies a C or C++ function. At a given state of
	an activity, the execution task runs the codel associated
	to that state.
	IDS : A local internal data structure is provided for all the
	services to share parameters, computed values or state
	variables of the component. It is appropriately accessed
	by the codels when they need to read or write it (sec-
	tion II-

 • POM merges the mocap pose position produced by OPTI-TRACK and the IMU from MIKROKOPTER and produces an Unscented Kalman filtered position in port state. It has two execution tasks io and filter both periodic at 1KHz.

• MANEUVER is the navigation component, it has two execution tasks exec and plan both periodic at 5ms. Given a position or waypoints to navigate to, it reads the state, and computes a trajectory to reach it, producing in desired state the intermediate positions to fly to.

• NHFC (Near Hovering Flight Controller) is the core of the flight controller. Running one task main at 1KHz, it reads the actual velocity port of the propellers, the current position in the state port of POM, and the desired position (port desired state) of MANEUVER and produces the proper cmd velocity port containing the desired velocity of the propellers (which is then read by MIKROKOPTER)