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Impact of demography on extinction/fixation events

C. Coron* S. Méléard! D. Villemonais?*
July 2, 2018

Abstract

In this article we consider diffusion processes modeling the dynamics of multiple allelic proportions
(with fixed and varying population size). We are interested in the way alleles extinctions and fixations
occur. We first prove that for the Wright-Fisher diffusion process with selection, alleles get extinct
successively (and not simultaneously), until the fixation of one last allele. Then we introduce a very
general model with selection, competition and Mendelian reproduction, derived from the rescaling of a
discrete individual-based dynamics. This multi-dimensional diffusion process describes the dynamics
of the population size as well as the proportion of each type in the population. We prove first that
alleles extinctions occur successively and second that depending on population size dynamics near
extinction, fixation can occur either before extinction almost surely, or not. The proofs of these
different results rely on stochastic time changes, integrability of one-dimensional diffusion processes
paths and multi-dimensional Girsanov’s tranform.

Keywords: population dynamics and population genetics, demography and extinction, allelic fixa-
tion, diffusion processes, path integrability, diffusion absorption

1 Introduction - A demo-genetic model

This paper is motivated by concerns in conservation biology and more specifically by assessing conditions
for the maintenance of biodiversity in populations facing extinction. Classical population genetics models
like the Wright-Fisher model, the Moran model or the Wright-Fisher diffusion for instance assume a
constant population size, which is then introduced as a key parameter of these models. In contrast,
when conservation biology issues, one needs to understand the behaviour of populations facing extinction
or composed with only a few individuals. Notably, specific phenomena such as inbreeding ([4]) and
mutational meltdown ([20]), or changes in interactions between individuals ([26]) are observed in small
populations. To study these kinds of phenomena one therefore needs to consider models that allow to
take into account and study the joint dynamics of both the demography and the genetic composition of
a population. Our aim in this paper is more specifically to understand the impact of demography, and
in particular of extinction, on allele extinction (or fixation).

We first study the dynamics of the progressive loss of genetic diversity in a classical population genetics
context (constant population size) and second the impact of the fluctuations of population demography on
genetic diversity. We consider a population composed of hermaphroditic diploid individuals characterized
by their genotype at one locus presenting L possible alleles. The dynamics is modeled by a multi-
dimensional diffusion process. The first study (Section 2) concerns the L-allelic diploid Wright-Fisher
diffusion (see [12], Chap. 10). We prove (Theorem 2.1) that in this model the alleles disappear successively
until the fixation of a single last allele. Therefore fixed population size induces a progressive loss of genetic
diversity. The proof is done by induction on L and is based on successive time changes and a criterion
for perpetual integrals finiteness.
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The rest of the article focuses on the impact of demography on genetic diversity. We introduce a dif-
fusion process (N (t), X2(t), X3(t), ..., XL (¢))¢>0 giving the joint behavior of the population size and the
proportions of types 2,3, ..., L. Note that X' =1 — Ef:z X' is the proportion af allele 1. This diffusion
is derived from a slow-fast rescaling of a diploid multi-type birth and death process (see Appendix A).
This individual-based model includes Mendelian reproduction, competition, and selection on birth, nat-
ural death and competition parameters. Since individuals are diploid, their genotypes are of the form ij
where i,5 € {1,...,L}.

The infinitesimal generator of the considered diffusion process is given for (n,zo,...,z1) € ]0,+00) X
{(z2,...;zr) € [0,1];22+...4+x1 < 1} and any function f € CZ([0, +o0)x {(z2,...,x1) € [0,1]; xa+... 4z, <
1},R) by

3]
Lyf(n,xa,....,x )—n(p an + Z < i—n Z cuklmkxl>xxj>a£(n,x2,...,xL)

1<i,j<L 1<k,I<L
2

+’Y’I’La 2(71,%'2, ,J}L)

L L L of (1)
+ Z ; Z > aja, [(Sik: —sip)=n > (Cikmi — cjk,mz)xmxz] a—xi(n, T2, T1)

i=2 j=1k=1 1<l,m<L

zi(1—x;) 0*f zixy O*f

+ , o 0a2 (n,z9,...,x1) | Z T, duidz,; (n,z2,...,2L).

1=2 i#j€[2,N]

Here 1 = 1 — 29 — ... — x, is the proportion of allele 1, p € R is the natural growth rate of genotype

11 and s;; quantifies the selective advantage of genotype ij for ¢,j € {1,..., L} (the higher is s;;, the
more advantageous is genotype ij); si1 = 0 by convention. The parameter a + ¢;j i > 0 quantifies
the competition pressure of genotype k! on genotype ij (for example due to limitation of resources)
and ci1,11 = 0 by convention. The allelic diffusion parameter v > 0 scales the speed at which birth-
and-death events occur. The existence and uniqueness properties of this process are given in Appendix
A. The Model (1) dramatically generalizes the classical genetic models by considering an arbitrary
number of alleles under different types of selection. Let us note the interplay between allelic repartition
and demography through differences in competition parameters. In the mean field case with constant
competition pressure (c;; i = 0 for any 4,5, k,(), this model is a stochastically varying population size
version of the general Wright-Fisher model introduced in [12].

If s;; = 0 for all ¢,7 > 1, the model is neutral, since alleles are exchangeable.

If 555 = %(sl + s;) for all 4, j, which corresponds to additive selection, the generator becomes

2

Elf(n,xg,...,a:,;):n< —an—i—Zs xl) (n,za,...,x )—I—Wna 5 (0,22, ..., 71)
L
Z (sl ijsj) (n,x9,...,xr) (2)
=2 7j=1
L f Tilj an
Z T (n,l'g, ...,Z‘L) - ‘ Z Y m amzax] (naan "'a'rL)'
=2 i#j€[2,N]

Let us note that this generator is close to the one we would obtain in an haploid case, except that the
denominator 2n in the diffusion coefficients would be n, which changes the dynamics.

What is more, the system (1) writes as (2) with any s; replaced by S; defined by

L
Si = E SikTK — N E Cik,mITmTITh-
k=1

1<k,l,m<L

The coefficient S; is the true selective advantage of allele ¢ in our general framework. It takes into account
both diploid individual (genetic) selection and environmental pressure between individuals.



In Model (1), population size goes almost-surely to 0 in finite time. We prove (Theorem 3.1) that, almost
surely, the fixation of a (non given) single allele occurs before the extinction time and after the successive
extinctions of the other alleles. The proof of this result is deduced from that of Theorem 2.1 using time
changes and multi-dimensional Girsanov’s transform.

The diffusion processes defined in (1) comes from a specific scaling in the individual-based initial model
linking the population size and the demographic parameters in an allometric scale explained by the
metabolic theory which relates the individuals characteristics and their mass (Cf. [3], [24], [13]). This
leads in the limit to systems in which the organisms with short lives and fast reproduction create a
demographic stochasticity modeled by the diffusion (Cf Champagnat et al. [4]). In the case where some
specific density-dependence impacts the birth and death rates, we can obtain a different scaling leading
to different population size diffusion coefficients. In Section 4 we explore the impact of the demography
on allele fixation and therefore on the maintenance of biodiversity. In particular, we exhibit examples of
population size dynamics for which extinction occurs before fixation of alleles with positive probability
(Theorem 4.1 and Figures 1 and 2). This result implies a maintenance of genetic diversity at all times,
for the considered population, and shows the main influence of demographic stochasticity on biodiversity.

Our proofs and results repeatedly rely on the study of quantities of the form fOTO f(Zs)ds (which are

referred to as perpetual integrals [24]), for a nonnegative (one-dimensional) diffusion process Z and Tj
its hitting time of 0, or fOTOATl f(Xs)ds, for a diffusion process X € [0,1] and Ty, T} its hitting times of
0 and 1. More specifically, we need to know whether such integrals are finite or not. In Appendix B,

we state and prove a general criterion involving a necessary and sufficient condition based on the scale
function and speed measure of the nonnegative (one-dimensional) diffusion process Z, which ensures that

the integral fOTO f(Zs)ds is finite almost surely or infinite almost surely.

Notation: -In the following the state space will be denoted by

S =10,4+00) x {(z2,....,2) € [0,1]);22 + ... + x, < 1}
and its interior will be denoted by % .

-We denote by T, the hitting time of z € [0, +00) by the process Z:
T, = inf{t > 0,7, = 2}.

When the process Z has to be specified, this time will be denoted T'Z.

2 Successive fixations for the multi-allelic neutral Wright-Fisher
diffusion

In this section we consider a neutral L-type Wright-Fisher diffusion (Ethier-Kurtz [12], pp. 435 — 439)
describing the dynamics of the respective proportions of L alleles in a population with fixed size. We are
interested in the study of alleles extinctions in this model.

Let us define by X/ the proportion of allele i in the population at time t. Since by definition X} +
<+ XE =1 for any time ¢, it is enough to study the dynamics of the process (X},--- ,XtL_l)tZO.
The Wright-Fisher diffusion (see for example [12, Chap. 10]) is a stochastic diffusion whose infinitesimal
generator £; is defined for all (zy,...x1_1) € {(21,...,21_1) € [0,1]F L2y + ...+ 2,1 < 1} and for all
function f € C2({(x1,...,zr—1) € [0, 1) "2 + ...+ 2,1 <1}, R) by

Lyf(xy,- xp1) = Z zi(1— ;) Tm?(l‘lw“ yTL—1) — o Z TiT; M(Ih'" ,TL-1)-
i=1 i#j€[1,L—1]

(3)

Our aim is to prove the following theorem:



Theorem 2.1. (i) One of the L alleles is fized almost surely in finite time, i.e. the random wvariable
maX;e(1,....L} X' is absorbed at 1 in finite time almost surely.

(i) Till that time, the population experiences successive (and non simultaneous) allele extinctions.

The proof of this theorem is based on an induction argument and relies on two lemmas.

Lemma 2.2. Let Y be the process solution of

dY; = \/Yi(1=Y;)dBys; Yo € (0,1),

where (B, t > 0) is a standard Brownian motion. Then, setting Ty = inf{t > 0,Y; = 1}, we have for any
y€(0,1)

]P’y(/OTl 1—1Ys ds=+oo):1. (4)

Proof. Tt is well known that Y reaches 0 or 1 in finite time a.s.. The process is on natural scale and the
speed measure on (0,1) is given by m(dy) = y(zldﬁjy). Setting f(y) = 1/(1 — y), we have fl_(s(l) —
s(y))f(y) m(dy) = 400 and Theorem B.4 of Appendix B yields

Ty 1
Py<{/ — ds:+oo}ﬂ{T1<T0}) =P, (Ty < Tp).
0 ]
Since {11 = 400} = {Tp < T1} and 1/(1 — Y;) =1 for all ¢ > T, we get the result. O
Lemma 2.3. Let (X'(t),.... X 71(t))i>0 be a L — 1-dimensional Wright-Fisher diffusion process, let

1—XL(t) = XY(t) + ... + XL7L(t) for all time t > 0, and define the time change T on [0, 4+0oc) such that
fOT(t) 17X1L(s) ds =1 for allt >0 (see Lemma 2.2). Now let

VY2 Ym0 = (e (1(1))s o e (2(1)
t o Xy e Xy t>0 = 1—XLT ,...,1_XLT t>0.

The stochastic process (Y5, Y2, ..., YtL72)t20 is a L — 2-dimensional Wright-Fisher diffusion process.

Proof of Lemma 2.3. Let us denote by £ the infinitesimal generator of the L — 1-dimensional diffusion
process (I_X;(L (1), 13(); (t), ..., 1X_L): (t),1 — XE());>0. For any real-valued twice differentiable function

f defined on {(Z1,...,71_2,1 — 1) € [0,1]F71; %) + ... + T2 < 1}, we may write for zy # 1,

Lf(#1, . dr-2,1 —xr) = L1(f o g) (21, 0y Tr_1),

where (%1,..,@r_2,1 —2r) = g(x1,..,2zr_1) and, for any (xq,..xr_1) € [0,1]*71 such that 0 <
1+ ..+x-1 <1

g(:l?l,...,IL_l) = ( 11 g ey TL—2 ,I1+...+IL_1) .
1+ ...+ 1+ ...+

Therefore, we obtain from Equation (3) that for zy # 1,

L-2 -
o . T,(1 —3;)0%f . _ -
Ef(xl,x2, ooy TL—2, 1-— JL‘L) = wai];(xl,xg, ooy TL—2, 1-— xL)
= — Xy, ZL'j
T3, 02 - -
- Z ;jxk 8@({;;' (x17x27"'7l‘L—2a1_$L)
j#ke[l,L—2] L &8Ok
+yzp(l—2 )&(f z z 1—=zp)
YrL L B(1—z1)2 1,225 s TL—2, L
which gives the result since dr(t) = (1 — X(t))dt. O



Proof of Theorem 2.1. We prove both results by induction on L. (i) is a well known result in the case
L = 2. Now for L alleles, note that the proportion of allele 1 follows a 1-dimensional Wright-Fisher
diffusion. Therefore allele 1 gets fixed or disappears almost surely in finite time. If allele 1 gets fixed then
one of the L alleles gets fixed. If allele 1 gets lost then from its (almost surely finite) extinction time, the
population follows a L — 1-type Wright-Fisher diffusion, therefore one of the L — 1 remaining alleles gets
fixed almost surely in finite time, using the induction assumption.

L
We now prove (4i) (which is trivial when L = 2). We have fOTl 171X; ds = +oo from Lemma 2.2. Let us

consider the time change 7(t), defined for all ¢ € [0, +00) by fOT(t) —rds = t. Note that for t € [0, +00),
Xp(r(t)) < L.

Therefore we can define the stochastic process Y; = (V}},. .. ,YtL72)t20 such that Y} = %(T(t)) for
all 1 <i < L—2and for any ¢ € [0, +00). From Lemma 2.3, the stochastic process (Y;*, Y2, ..., ¥,*72);50
is a L — 2 dimensional Wright-Fisher diffusion process. By induction assumption, this diffusion process
experiences L — 2 successive and non simultaneous extinctions, at times denoted by ST < .. < SY , <
+00. Therefore 7(SY) < ... < 7(SY_,) < 7(+00) = T{. Under the event { T} < +oc}, the times
7(SY), ..., 7(SY_,) and T correspond to the L — 1 extinction times experienced by the population,

which gives the result, since P(UL {T¥ < +00}) =1 from (i). O

3 Long time behavior of the diffusion process (1)

In this section, we focus on the stochastic diffusion process (N(t), X2(t), X3(t), ..., XZ(t))i>0 whose in-
finitesimal generator is given in (1) and whose existence is obtained by the scaling limit of a multi-type
birth-and-death process (see Appendix A, Theorem A.4 for existence and uniqueness). Here the genetic
dynamics of the population depends on both the selection and the competition between individuals, and
the population size dynamics depends on the allelic repartition. The following theorem generalizes the
results obtained in Theorem 2.1, to this very general class of demogenetics models. The main intuition
(for the proof) is that the speed of allelic extinctions is inversely proportional to population size. So we
introduce an appropriate time change to compensate the population size variability.

Theorem 3.1. (i) The population size process (N (t));>o is absorbed at 0 (extinction of the population)
almost surely in finite time.

(ii) One of the allele will eventually get fixed before the extinction of the population, almost surely.
(#i1) Till that time, the population experiences successive (and not simultaneous) allele extinctions.

Proof. (i) From (1), using that z; € [0, 1] for all 4, and setting p = sup; ;{p + s;;} and a = inf; ;1 {a +
Cijkl}, one can easily see that the process (N(t)):>o is stochastically dominated by the logistic Feller
diffusion process (N(t))tzo satisfying dNy = Ny(p — aN;)dt + \/2yNdB; which is known to reach 0
almost surely in finite time ([16], Chapter VI.3).

(#4) and (ii3). We first use a multi-dimensional Girsanov transform to reduce the study to the neutral

diffusion process (for which s;; = ¢, = 0 for all ¢, j, k, [). We introduce an appropriate time change

to compensate the population size variability. That allows us to deduce the long time behavior of the

diffusion process (1) from that of the classical Wright-Fisher diffusion process, obtained in Theorem 2.1.
The infinitesimal generator (1) writes



0
Lyf(n,xa,...,x1) :n(p—cm—i— Z (sij -n Z cij’klxkxl) ximj) a—i(n,x27...7xL)

1<k,I<L

+ E a(n,zo,...,xr)ii Nn,To,...,TL),
2 N s b2y ey UL Jijg 2,0, 2 L
i,5€[2,N]

where the diffusion matrix a(n, xs, x3, ..., xp) satisfies for i # j

(1 — -
M and  a(n,z2,3,...,2L)ij = — L%

a(n,$2,$37---7$L)¢i =7
n n

Remark that this matrix is related to the covariance matrix of a L—1-dimensional multinomial (n, z2, 23, ..., 1)
vector Y: a(n, 21, ...,x1) = yCov((Ya,...,Yr)/n). Therefore it is a symmetric positive semi-definite ma-
trix. The vector b is defined by

L
bi(n7$27 --~,93L) = Ty Z Zl’jxk |:(51k - Sjk) —"n Z (Cik,ml - Cjk,ml)xmzl .

j=1k=1 1<l,m<L

[e]
We first prove that for all (n,zs,...,x1) € S, a(n,zg, ...,z ) is an invertible matrix.

Lemma 3.2. Assume that n # 0, then

1 L
det(a) = oy (1- sz) 1_[3:Z

L
1=2 =2

Proof. Tt is well known that det(a) is a polynomial of degree less than 2L — 2. It is obvious that any z;,

i =2,...,L, is a factor of det(a). Moreover adding all columns, we also obtain that (1 — 2522 i) = 11

factorizes det(a). The derivative of det(a) is of degree one in any variable z;, since it is a multilinear form
on its columns whose derivatives are of degree one. The conclusion follows by computing the determinant
with z; = 1/L (which allows us to check that the value of the dominating constant is 1/n=1). O

We remark that a(n,x2,...,x1) = a(xe, ...,xr)/n where the second derivative of @ is bounded. Then
from Theorem 5.2.3 of Stroock-Varadhan [25], there exists a Lipschitz square root & of the matrix a.

Let us note that b;(n, za,...,z1) = z;(S; — Zf:z S;jx;) where

L
Si(n,x2,...,x1) = E SikTl — N E Conl, ik Tm T T,
k=1

k,l,m

We have the remarkable identity: If ¥ denotes the vector of coordinates S;(n,zs,...,x),i = 2,...,L,
then

a(n,zg,...,xp).2 = %b(n,iﬂz,...,fﬂL). (5)

o

Then for (n,z) € S,

||a_1(n, X9y ..oy xp)b(N, Lo, ...,xL)||2 =<b(n,za,...,xL), aY(n, s, woxp)b(n, e, . xr) >

n
= 5 <b(n,x9,....,xr), % >.



Therefore there exists a constant C' > 0 such that for all (n,xs,...,xz1) € S,

o=t (n, z2, ..., zp)b(n, T2, .oy zp)||* < C (1 +n?). (6)
Let (N, X2, ..., XL) be solution to the stochastic differential system

dN; = \/AN;dB} + Ni(p — aN, L SNy, X2, .., XE) X0 dt 0
t YNt dB} + Ne(p — aNy 4+ 3,25 Si(Ny, X2, ..., XE) X]) . (No,Xo) €S (7)
dXt = O'(Nt, Xt) dBt + b(Nt, Xt)dt

where X = (X?2,...,X%) and B! and B are two independent Brownian motions respectively one and

L — 1-dimensional. The system is well defined as soon as the solutions stay in S and then for any time
t< TV ANTE ATE A AT where X' =1 - X2 — .. — XL
We now use the following L-dimensional Girsanov transformation ([16], p. 192). Let us introduce

k € N and define 7, = Tg" A TiY A T()Xl A Ton AR ToXL. We introduce the exponential martingale
E(M)inr, where for any t < 7y,

L t N
_ ) 2 L i [4Vs 1
M, = —((ZSZ(NS,XS,..‘,XS)/O xi, | 7>dBS
=2
L t
+Z/ a‘l(NS,XSQ,...,XSL)b(NS,XSQ,...,XSL)dBS).
1=2 0

For each k, the martingale £(M)¢nr, is uniformly integrable, thanks to (6). Under the probability
Q such that %b—t = &(M)y, the process (B',B) = (B! — (B, M), B — (B,M)) is a L-dimensional
Brownian motion, and the process (N, X2, ..., X) is solution to the stochastic differential system

dN; = /vN;dB! + N;(p — aN,)dt 0
t YN dB; + Ne(p ) . (No, Xo) € S, (8)
dXt :O'(Nt,Xt)dBt

for t < 7.
The end of the proof of (ii) and (iii) consists in using a time change in order to apply Theorem 2.1
(i) and (ii). Using Example 2 in Section B, we know that

Ty
Y
ds = +oo
/0 2N,

a.s. Hence we can define the time change 7(t) defined for all ¢t € [0,400) as the unique positive real

number satisfying
(t)
~
ds =t.
| s )

In particular, 7 is increasing and, under Q, the process defined for any t by X't = X, is a Markov
process whose generator is given in (3).
Since 7(-) is increasing, we deduce that, Q-almost surely,

T AT N AT = (T AT A AT
and that, up to a Q-negligible event,
X1 X2 xE N X1 X2 Xk
{TO AT AL ATE < T } - {TO AT A LATE < +oo}.
Using Theorem 2.1, we deduce that

Q(T()Xl ANTE A ATE" <T0N) ~1.



Hence, one has

IP’(TOXI AT A ATE" <T({V) = lim IP’(TOXI AT A AT <T,§V/\T5V)

k— 400

— Q _
= kEIfOOE (1T§1ATUX"’A...AT§L<T,§V/\T[§Vg( M)TéV/\Td\I)
5 (e )

N N NY) _
= lim P(T" <TY) =1

Using the same induction argument as in the proof of Theorem 2.1, this concludes the proof of (ii) and
(iii) and hence of Theorem 3.1. O

4 Demography and maintenance of biodiversity

The general demogenetics model (1) was obtained from a specific scaling of the parameters in the
individual-based model. Other scalings will lead to different coefficients. In particular we can gener-
alize the linear form of the size diffusion coefficient (Feller diffusion). Our aim in this section is to
emphasize the importance of the variance effects, both in the demographic and in the genetic part of
the system, on the long time behavior. The main question is whether one allele gets fixed almost surely
before the population goes extinct. We will see that it depends on the behavior of the diffusion coefficient
near extinction in the equation satisfied by the population size. The next theorem notably highlights
the major effect of the demography on the maintenance of genetic diversity by giving a necessary and
sufficient criterion ensuring almost sure fixation before extinction.
For simplicity we consider in this section the bi-allelic framework.

Let us consider the process (N¢, X;);>0 solution to the system of stochastic differential equations

dN; = O'(Nt) dB; + Nt(p — Oth)dt, No>0,aa>0 N
_ /X=X , t<Toy, (10)
dX; = TN dWy

where B,W are independent one-dimensional Brownian motions, o : (0,+00) — (0,400) is locally
Lipschitz and f : (0, +00) — (0, +00) is locally bounded away from 0 and where

T} == lim Ty .

Note that liminf,_,o f(x) can be null or not, nevertheless the former case is more interesting and
biologically motivated (see [8]). Note also that the system admits a pathwise unique strong solution,
as will be explained in the proof of the following theorem (if o is only locally Holder continuous, an
adaptation of our proof leads to the weak existence and pathwise uniqueness of a solution to this system,
so that the following result remains valid).

Theorem 4.1. Fization occurs before extinction with probability one if and only if

— Y =40
/0+ a2(y) f(y) Gy = too. 1

In particular, if f is the identity function, the behavior of o(N) near extinction plays a main role. Whereas
for the usual demographic term o(N) = v/N (studied in the previous sections), fixation occurs almost
surely before extinction, a small perturbation of this diffusion term, taking for example o(N) = N(1=¢)/2
€ > 0, leads to extinction before fixation with positive probability. An example of trajectory for which
fixation does not occur before extinction is given in Figure 1, and the effect of € on the probability of
extinction before fixation is numerically studied in Figure 2.



Note that the demographic term o(N) = V/N can be explained from an individual-based stochastic
system in a case of large size combined with accelerated birth and death. This corresponds to population
dynamics with allometric demographies whose time scale is explained by the metabolic theory which
relates the individuals characteristics and their mass (Cf. [3], [27], [15]). This leads in the limit to systems
in which the organisms with short lives and fast reproduction create a demographic stochasticity modeled
by the Brownian part (Cf Champagnat et al. [5]). In the case where some specific density-dependence
impacts the birth and death rates, we can obtain, in the limit of large population, a demographic term of
the form o(N) = N(1=9)/2_ ¢ > 0. For the mathematical statement of such limits, we refer to Bansaye-
Méléard [2].

Figure 1: We plot a trajectory of the 2-dimensional diffusion process (N, X) such that dN; = \/Ntufs)dBt +

Ni(p — alNy)dt and dX, = /(=X dW,, with ¢ = 0.4, p = —1 and a = 0.1. For this trajectory, fixation does
not occur before extinction.

Nombre d'extinctions avant fixation
200 400 600 800 1000

0
I

0.1 0.2 0.3 0.4 0.5

epsilon

Figure 2: For different values of €, we simulate 10000 trajectories of the 2-dimensional diffusion process (N, X)

such that dN; = \/ N~ dB} + Ni(r — cNy)dt and dX; = VY, with r = —1 and ¢ = 0.1. We plot the
number of simulations for which fixation does not occur before extinction.

Proof. Let us first prove that the system (10) admits a unique (strong) solution up to time T(ﬁ, which in
particular implies the strong Markov property used in the sequel. Given B and W, for all n > 1, there



exists a pathwise unique strong solution N™ to the equation dN;* = o(N;*)dB; + N]*(p — aNJ*)dt for
all time t < Tf\/fn = inf{s > 0, N < 1/n} (this is an immediate consequence of Theorem 3.11 p.300

n [12]). Setting Ny = N}* for all t € [Tl]\/fn,Tf\/fnJrl
dN; = 0(Ny) dBy + Ny(p — aNy)dt up to time T34 (in the case where o is only Hélder continuous, weak
existence holds true, see for instance in Section 12.1 of [7]).

We define the random number

), one obtains a pathwise unique strong solution to

o .
Traz = S
/o F(Ns)

and the time change 7(t), for all ¢ € [0, Tyas), as the unique positive real number satisfying

In particular, 7 is increasing and Tg%. = 7(Tnaz)-

We define Wt = fOT(t) f(lle) s maz (Which is a standard Brownian motion), and consider

X, the unique strong solution to

dX; = \/X:(1 — Xy) dWy, Xo = Xo, t € [0, Tnaz)

(strong existence and pathwise uniqueness of such a solution is a consequence of Proposition 2.13 p.291
of [18]). Then the process X; := X;-1¢) is a strong solution to dX; = ,/Xt((l Xo) qW, for all t < T0+
Pathwise uniqueness up to time le\/fn)n = inf{t > 0, Ny ¢ [1/n,n]} for all n Z 1 is proved using the
same approach as in the proof of Theorem 3.8 p.298 of [12], using the fact that inf,c[y/,.n) f(y) > 0.
Since lim,, 400 T = T(f\j_ almots surely, one concludes that the system (10) admits a pathwise unique

1]\/]n,n
strong solution. A R
We denote by Tr = inf{t > 0, X; € {0,1}} the (possibly infinite) absorption time of X.

Assume first that [, m dy = +o0. In this case, using (21), we note that s(y) ~,—0 v s'(y). Hence

Tz = +00 by Corollary B.3, and X reaches 0 or 1 in finite time almost surely. Then, Tp = 7(T%) <
T(Tmaz) = Tgy. (i-e. fixation occurs before extinction) almost surely.

Assume now that fo N m dy < 4o0. In this case Tj,q, < +00 with probability one by Corollary
B.3. Let W' be a Brownian motion independent from B and consider X’ the solution to the SDE
dX] = \/X](1 - X})dW/, X} = X,. We define for ¢t < T3% the time changed X, = X/ r-1()> SO that
(IV, X") is solution to the SDE system (10) and hence, by uniqueness in law of the solution to this system,
(N, X’) and (N, X) have the same law. Since (N, X’) and (IV, X) can be obtained as the same function

of (N, X’) and (N, X) respectively, we deduce that they share the same law up to time T},,,. Then we
have

P(X; € (0,1) Vt < T\ and Xy — exists in (0,1))
=P(X; € (0,1) Vt < Tppae and Xp, . exists in (0,1))
=P(X] € (0,1) Yt < Tpae and X7, exists in (0,1)) > 0,
since N and X’ are independent and X’ is a Wright-Fisher diffusion. This concludes the proof, since
{X, €(0,1),Vt < TpY, and Xy - exists in (0,1)} C {T. < Tr}, therefore P(T,. < Tp) > 0. O

Acknowledgements: This work was partially funded by the Chair "Modélisation Mathématique et
Biodiversité” of VEOLIA-Ecole Polytechnique-MnHn-FX and also supported by public grants as part of
the ”Investissement d’avenir” project, reference ANR-11-LABX-0056-LMH, LabEx LMH, and reference
ANR-10-CAMP-0151-02, FMJH, and by the Mission for Interdisciplinarity at the CNRS.
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A Derivation of the generator (1) from an individual-based model

A.1 The model

We consider a population of diploid hermaphroditic organisms, characterized by their genotype at one
locus. There exist L versions (alleles) of the gene at this locus and we denote by 1, 2,.., L, these alleles.
Individuals can then have genotype ij for all ¢ and j in [1, L] (genotypes ij and ji are not distinguished),
and we study the dynamics of the respective numbers of individuals with each genotype. We introduce a
scaling parameter K € N\{0} that scales the initial population size and goes to infinity. The population
is then represented at any time ¢t > 0 by a symmetric positive matrix with size L, whose coefficients
belong to Z, /2K:
N¥(t) = (nfs ()1<ij<r,

where for all i € [1, L], n (t) € Z /K is the number of individuals with genotype #i at time ¢, divided by
K and for all i # j € [1, L], nfs (t) +nf (t) = 2nf5 () € Z4 /K is the number of individuals with genotype
ij at time ¢, divided by K. For any time t, and for all K, N*(¢) belongs to the space S¥([0, +00)) of
symmetric matrices with positive real-valued coefficients.

Notation A.1. For any matriz v = (Vij)i<ij<r € SE([0,+0)), we define Viiy = Vi and vy = 205
for alli#j.

We assume that the population follows a non-linear birth-and-death process with Mendelian reproduction
and competition whose jump rates will be given later.

The following quantities play a main role in this study:

e NE(t)y= ¥ nfg (t) is the rescaled population size at time t,
i,5€[1,L]
o n(t)=2 Zle nfg (t) is the rescaled number of occurrences of allele i at time ¢,

K(f) = nf@) _ X;niG®
= INE@ = YAk
&

is the proportion of alleles ¢ at time ¢,

K(t) — nﬁj}(t)

NE (@) is the proportion of genotypes ¢j at time ¢,

K
o efS(t) = xf(t)al (1) - T”T(t) is called the deviation of the population from Hardy-Weinberg structure,
for genotype ij with i # j.

For all n = (ni;); jeqi,) € S“([0,400)) \ 0, we set for all i # j,

Qopna) Xoyngn) — nig
(X ”ij)2 2 Mis

Yij(n) = € =

We obtain the following result:
Lemma A.2. For alln = (n;); jep,r] € S*([0,400)) \ 0, let us define
L Z n
¢1(n) = Z nij 5 ¢;(n) = =1 foralli e [2,L],
=1 D i Mg
(Pr41(n), e dp(n41y/2(m)) = ((Y15(n))1<j<r, (Y25(n))2<j<rys s Yz-1)0 (M)

The function
¢ : S([0,4+00)) \ 0 = ¢(S*([0, +00)) \ 0)

n s ¢(n) = ((bl(n), ...,qs%(n))

18 a bijection.
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Proof. Setting x1 =1— 22 — x3 — ... — x1, we get that
(n, 2,73, ..., 2L, (Elj)1§i<j§L7 (€2j)2§i<j§L7 e 6(L-1)L) = ¢(x)

if and only if
n;; = n(z,x; —€;) for all i # j, and

ni; = n(z;)* + Z € which gives the result.
JFi
O

For all ¢,j € [1, L], we now denote by e;; the square matrix with size L such that for all k,l € [1, L],
(B0 s(kD)
Rl 4 5k

eij(k,1) = -2 Individuals experience panmictic Mendelian reproduction. Therefore, for all

i < j € [1,L], as long as the total population size 3, ; ;o7 nij = n # 0, the rate )\g(n) (resp. AE(n))
at which the stochastic process N* jumps from n = (ng;); jei,r) € S¥([0,+00)) to n+ e;;/K (resp.
n+ e;/K) is given by:
/\fj(.(x) = 2be§na?ixj
ME(x) = KbEna?,

(12)

where bfj{ € [0, 400) for all i < j € [1, L]. These birth rates are naturally all equal to 0 if n = 0.
Each individual can die either naturally or due to the competition with other individuals. More
precisely, for all i < j € [1, L], the rate uf5(x) at which the stochastic process X* jumps from x =

(xij)i,je[[l,L]] S SL([O, +OO)) to x — Bl'j/K, iS given by

ph) =K [dS+K Y cf yaw | 2, (13)
1<kI<L

where dilj‘ € [0, 4+00) is the intrinsic death rate of an an individual with genotype 7, and cfjkl €10, +00) is
the rate at which a given individual with genotype ij dies due to the competition with a given individual
with genotype kl (we have used Notation A.1). We obviously assume that C{j‘,kz = C{]{',zk = Cﬁ,kz for all 7,
j, k, and [, since the two genotypes ij and ji are indistinguishable.

Note that for all K € N\{0}, the pure jump process X* is well-defined for all time ¢ € [0, 4+00).
Indeed, the process (N (t),t > 0) is stochastically dominated by a logistic birth-and-death process N
with birth, intrinsic death and competition parameters respectively equal to sup bi[](» < 400, 1anf dg and

2,7 ?

'i_nkf l ck i; > 0, which, from Chapter 8 of [1], does not explode, almost surely.
4:.J:k, ’

The stochastic process (X% (t),¢ > 0) is therefore a pure jump process with values in S¥(R..) (endowed
with the distance r such that r(x,y) = max |x;; — y;;|, for instance), absorbed at 0, and defined for all
0.

t >0 by

ey ij "eij ij

1<i<j<L 0

where the measures n,ij for i < j € [1,L] and k € {1,2} are independent Poisson point measures

on [0, —|—oo)2, with intensity dsdf. For all K, the law of XX is then a probability measure on the
space of trajectories D([0, +00), SZ([0, +00))) which is the space of cad-lag functions, from [0, +00) to
SL([0,+0)), endowed with the Skorokhod topology. The extended generator L& of (XX (t),t > 0)
satisfies, for all measurable function f from S% ([0, +00)) to R, and for all x € SL([0, +00)):

LRFe) = > GO (F(x+ S2) = £00) + a0 (£ (x= L) —s)] . g

1<i<j<L

where the rates /\fj{-(x) and ufj{-(x) have been defined in Equations (12) and (13) for all ¢ < j.
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A.2 Slow-fast dynamics

We now study the convergence of the sequence of stochastic processes (X% (¢),t > 0) ke {0} toward a
slow-fast stochastic diffusion dynamic, as done in [8]. To this aim, demographic parameters must be
properly rescaled, according to the following assumptions, for « > 0:

Q5 kl

bg =K + ;; €10, +00), dg =K +6;; € [0,+00), and c{?kl =7 € 10, 4+00).
Besides, we assume that
there exists a constant C' < oo such that  sup E((N*(0))%) < C. (15)
K

Then, from Lemma 1 of [6] and the proof of Theorem 5.3 of [14]:

(i) There exists a constant C' > 0 such that

sup sup E(N¥(1))3) < C.
K >0

ii) For all T' < +o0, there exists a constant Cr such that
b

sup E (sup (NK(t))3> < Cr.
K t<T

The following proposition gives the convergence of the fast variables ((efj( (t)1<icj<r,t > 0) toward
0 and is an extension of Proposition 3.2 of [8] for a larger number of alleles. The proof of this result can
be found in [9], Chapter 4, Appendix A.

Proposition A.3. Under the Hypothesis (15), for all times s,t > 0 and for all i # j € [1,L],
sup  E((ef5(u))?) = 0 when K goes to infinity.
t<u<t+s
We next study the asymptotic behavior of the sequence of stochastic processes constituted of the re-
maining variables (N (t), 2 (¢), 25 (), ..., 25 (#))i>0 introduced in Lemma A.2, when K goes to infinity.

For more simplicity, we first consider the sequence of stochastic processes ((nf* (¢), ng (), ..., nf (t))i>0) Ken {0}

giving the respective numbers of occurrences of the different alleles, whose dynamics are simpler. The
proof of the following can be found in [9], Chapter 4, Appendix A and is a generalization of the proof of
Theorem 1 in [8].

Theorem A.4. Under (15), if the sequence (ni* (0),n% (0),...,n¥(0)) ke fo} converges in law toward a
random variable (n1(0),n2(0), ...,n.(0)) € [0,400)" when K goes to infinity, then for all T > 0, the se-
quence of stochastic processes ((ni<(t),n (¢),...,n¥ (t)),t € [0,T]) converges in law in D([0, T], [0, +00)")
when K goes to infinity, toward a time-continuous diffusion process ((ni(t),na(t),...,nr(t)),t € [0,T])
starting from (n1(0),n2(0), ...,n5(0)), which is the unique continuous solution of the martingale problem:

9(n1(t), na(t), .., nL(t)) — g(n1(0), n2(0), ..., nL(0)) — /0 Lg(ni(s),n2(s),...,ne(s))ds  (16)

is a martingale for all function g € CZ([0, —|—oo)L,R) where L satisfies

L L
dg nEny N1
Lg(ny,..,ng) = (n) Bij — 6ij — E Qg kl :
gan Z J J v PE2Y e | D,

1
L
0? (n;)? 0%g 2n;m;
’ VZ 87”12(”) |:Ek Nk * nz} * 7; OniOn;; ) |:Ek nk}
for all point n = (nq,...,nr) of [0,+oo)L.
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Note that the diffusion coefficients of the generator £ go to 0 when the total ), n; goes to 0. The
system of equations (16) and (17) admits a unique strong solution up to time T, = inf{t > 0,n1(¢) +
na(t) + ... + np(t) > €}. Then from Theorem 6.2, Chapter 4 of [12], it admits a unique strong solution
up to time Tp4 = lim._,o Te.

From Theorem A.4, we deduce for all € > 0 the convergence of the sequence of stochastic processes
(NE(@#), 25 (t), 25 (), ..o (#))i>0 stopped when NE () < ¢, toward a L-dimensional diffusion process
(N()a $2(~), "'7xL('))-/\Te’ stopped when N<t) <e

Corollary A.5. For all e > 0 and T > 0, let us define TX = inf{t € [0,T] : NX(t) < €}. If the
sequence of random variables (N¥(0), 2 (0), 25 (0), ...25(0)) € [¢, +00[x[0,1]X~ converges in law when
K goes to infinity, toward a random vector (N(0),z2(0),23(0),...z1(0)) €le, +oo[x[0,1]E7L, then the
sequence of stopped stochastic processes {(NE(tATE), al ¢t ANTE), 2K (ATE), .., 2Bt ATE) ) o<i<r} >1
converges in law in D([0,T], e, 00[x[0, 1]*~1) when K goes to infinity, toward a continuous diffusion
process (N(t ANTe),x2(t ANTe), ...,z (t ANTe))o<i<r stopped at time T, = inf{t € [0,T] : N, = ¢}, starting
from (N(0),22(0),23(0),...z1(0 )) and whose infinitesimal generator L1 is defined for all function f €
C2([e, o[ [0, 1174, R) by

0
Lif(n,za,...,xr) =n Z Bij — 6ij — Z O INTET] | T2 a*:;(n,xz,m,i?L)

1<i <L 1<k,I<L
6 Q(n X2y ey L)
L L
Z [ iy $]$k< (Bik — Bjr) — (0ik — k)
—2 j=lk=1
- (ikemi — ajk,mz)nxmmzﬂ %(n,xg, e r)
1<l,m<L
zi(1 — ;) 0% f Ti%j 0% f
—|—Z R e 2(n Ty,...,Tp) > oy on D20, (n, @2, ..., 1)

i#j€[2,N]

The link with the generator (1) can be seen by setting p = f11 — 611, si; = (Bij — 0i5) — (11 — 011),
o = 011,11 and Cijkl = Q45 k1 — 11,11

B Integrability properties for diffusion processes

Proofs of Theorems 2.1, Lemmas 2.2, 2.3 and Theorem 3.1 rely on the integrability of paths of diffusion
processes. This section is devoted to the statement and the proof of a criterion for such integrability
(Theorem B.2). More precisely, this result states that, depending on the behavior of the diffusion and
drift coefficients near absorption, the integral of the paths of diffusion processes are either almost surely
finite or almost surely infinite. This 0-1 law criterion has already been proved by various methods, using
a combination of the local time formula and Ray-Knight Theorem [11, 21, 19] (see also [10, 13] for proofs
in particular settings). We give a simpler proof of this criterion, which also provides explicit bounds for
the moments of perpetual integrals and can be easily extended to more general one dimensional Markov
processes. Then, we extend this result to a diffusion taking values in a compact subset and finally to
non-homogeneous processes by the use of Girsanov’s transform.

B.1 General diffusion processes on [0, +00)

Let us consider a general one-dimensional diffusion process (Z;,¢ > 0) (that is a continuous strong
Markov process) with values in [0, +00). We denote by T, the hitting time of z € [0, +00) by the process
Z:

T, =inf{t > 0,Z; = z}.

When the process Z has to be specified, this time will be denoted T'Z.
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Let us denote by P, the law of Z starting from z. We assume that Z is regular (Vz € (0,+00),Vy €
(0,4+00), P.(Ty < +00) > 0). This implies that for any a < b € (0,+00) anda < z < b, E, (T, ATp) < +00
and we can associate with Z a scale function s and a locally finite speed measure m on [0, +00) (see [22,
Chapter VII]). We moreover assume that for all z € (0, +00),

P.(To=To AT < +o0) =1, (18)
where T, is the explosion time.

Lemma B.1. Condition (18) is equivalent to
s(+00) =400 ; s(0) > —o0 ; / (s(y) — s(0)) m(dy) < +o0. (19)
0+

Note that Condition (19) is well known in the case where Z is solution of a stochastic differential equation
(cf. [18] p.348, [16] p.450).

Proof. Assume first that (18) is satisfied. As Z has scale s, s(Z) is a local martingale on (s(0), s(+00))
such that T;((OZ)) < T;((fgo) a.s.. We deduce that s(0) > —oco and s(4+00) = 4o00. The diffusion s(Z)
has a natural scale with speed measure m = m o s~! (see [22], Chapter VII). Since it attains s(0) in
finite time almost surely, we deduce using [23, Theorem 51-2] that f8(0)+(u — 5(0)) m(du) < +o0. As
f§(0)+(u — 5(0)) m(du) < +o0 <= [, (s(y) — 5(0)) m(dy) < +oo, we obtain (19). Conversely, assume
(19). Conditions s(0) > —oo and s(+00) = +oo imply that the local martingale s(Z) doesn’t explode
a.s.. Since f0+(s(y) —5(0)) m(dy) < 400, then fs(0)+(u—s(0)) m(du) < +oo and the process s(Z) attains
5(0) in finite time a.s., so does the process Z. O

Since the function s is defined up to a constant, we choose by convention s(0) = 0 as soon as s(0) > —oo.
The following theorem gives a 0 — 1 law criterion for the finiteness/infiniteness of perpetual integrals
of diffusion processes, for which we provide a new and simple proof.

Theorem B.2. Let (Z;,t > 0) be a regular diffusion process on [0,+00) with scale function s and

speed measure m on (0,4+00) satisfying (19). Let also f be a non-negative locally integrable function on
(0, 4+00). Then, for all z> 0 and alln > 1,

(O%fwadﬁn]Sn4<4ms@n«omww>n

To
/ s(y) fly) m(dy) < 00 <= f(Zs)ds < +00 P, — almost surely
0+ 0

E.

and

To
/ s(y) fly) m(dy) = +o0 = f(Zs)ds = +oo P, — almost surely.
o+ 0

Proof. Because of the non-explosion assumption (19), we have fOTO f(Zs)ds < 400 < Vk € N, fOTO f(Z )1z, <k ds <
+00 and fOTO f(Zs)ds = 400 < Jk € N such that fOT” f(Zs)1z,<kds = +oo. Hence it is sufficient to
prove Theorem B.4 for functions f satisfying [ f(z) s(z) m(dz) < +oo for all @ > 0. We make this
assumption from the rest of the proof.

As Z has scale function s and speed measure m, the process s(Z) is on a natural scale with speed

measure m o s~ '. Then it is enough to prove the result for Z on a natural scale. In particular, we have
the following Green formula (see [Chapter 23] of [17])

E4(ffwa@)AHM2@Awﬂwmum
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Noting that

To o Teyk+1
fzyas=3 [ sz ds,
k=1

0 Tw/k

one easily checks that, under P, for any x € (0, +00), OTO f(Zs)ds < +oo satisfies a 0—1 law. Indeed, the

random variables fTT”/k(’““) f(Zs)ds, k > 1 are non-negative and independent (strong Markov property)

x

and almost surely finite because of our assumptions and the Green’s formula applied under P/, up to
time T, /,11. Hence the above series is finite with probability zero or one.

Let us now assume that f(o +o0) y f(y)m(dy) < +oo. Then fOT" f(Zs)ds < oo almost surely and, for

alln > 1,
Ty n
E,. ( f(ZS)ds>
0

0

o T n—1
=N / E’I‘ 1S<T()f(ZS) < f(Zu) du> ds
0 s

To T n—1

T T n—1
=nk, f(Zs)]EZS ( f(Zu)du> ds|,

0 0

where we used the Markov property. We immediately deduce by induction that

oo n n
( f(Zs)ds> ] <n! (/ 2yf(y)m(dy)> :
0 (0,4+00)

This concludes the proof of the first part of Theorem B.2 (the inequality is trivial when [ (0,400) Y fly)ym(dy) =
+00).

Ey

Assume now that f(o +00) y f(y) m(dy) = +o0 and fix x € (0,+00). For all k > 1, we set

_Jfw) ify=>1
Jely) = {f(y)/\k‘ if y < 1.

In particular, [ (0,+00) fx(y) ym(dy) < oo for all £ > 1 and hence, using the inequalities established above
and then the fact that f(o +00) 2y fr(y) m(dy) goes to infinity and the fact that yf(y)m(dy) is assumed
to be finite on neighborhood of 400, we deduce that for k large enough

T 2 2
E, < fk(Zs)d5> <2 </ 2y fk(y)m(dy)>
0 (0,400)

2 (/(MOO) 2(y AN ) fe(y) m(dy) + /:O 2y — z)f(y) m(dy)>

4 ( /( 2 0A m(dy>>2 VS x)f(y)m(dy)>2

5 (/ 2(y ANa)fi(y) m(dy)> <5 [Ea( Ofk(Zs)dSﬂ :
(0,+00) 0

2

IA

IN

IN
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We deduce that, for k large enough,

To
P, ( OT° Jl(Z,)ds > at J;’“(ZS)d )) > o

Indeed, for any random variable Y > 0 such that E(Y?2) < 5E(Y)?, we have, setting M = E(Y),

5M? > E(Y?) > E(Y? | Y > M/2)P(Y > M/2) > E(Y | Y > M/2)*P(Y > M/2)
E(Y1ysar2)? - M?/4
= P(Y >M/2) T PY >MJ/2)

and hence P(Y > M/2) > 1/20. Now using the fact that fj is increasing in k, we deduce that, for k large
enough,

E, (J;" fulZ0)ds)
2

]P’g;( OTO F(Zs)ds > ) > 1/20.

Since E, (fOTO fk(Zs)ds> is not bounded in k, we deduce that ]P’l.( OTO f(Z,)ds = —|—oo> > 1/20. This
and the fact that {fOTO f(Zs)ds = +oo} satisfies a 0 — 1 law conclude the proof. O

The equivalences stated in Theorem B.2 are particularly useful when Z is solution of
dZy = o(Zy)dBy + b(Zy)dt 5 Zp >0, (20)

where B is a one dimensional Brownian motion, and ¢ : (0,4+00) — (0,400) and b : (0,+00) — R are
measurable functions such that b/0? is locally integrable. The scale function (up to a constant) and speed
measure equal to

(L [P N
s = [ (=2 [ Gy o mian) = o2 (21)
(cf. [17, Chapter 23]).

Corollary B.3. Assume that Z is solution of (20) with s(+00) = +oo and [y, s(y) m(dy) < +oc. Let
us consider a non negative locally integrable function f on (0,4+00). Then, under P,

To
{%L‘Z(y) dy = +o00 <+— f(Zs)ds = +o00  almost surely,
o+ 8" (y)o?(y) 0
To
{C(L‘Z(y) dy < +00 = f(Zs)ds < +o0o  almost surely.
o+ 8" (y)o?(y) 0

Let us give two examples for population size processes.

Example 1. Branching process with immigration. Let us consider the solution of the stochastic differential
equation dN; = ov/NydBy+ Bdt, 8 > 0. Computing s and m as in (21), we easily obtain that (18) <=
B/0? < 1/2. Applying Corollary B.3 with f(y) = 1/y®, we have

To To 1
——ds =400 a.s. <:>a21;/ ——ds <400 a.s5 <= a<l (22)
/0 (Ns)* o (Ns)®

In the particular case a = 1, the authors of [13] propose an other approach based on self-similarity
properties.
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Ezample 2. Logistic diffusion process. Let us consider the process
dN; = v/ N; dB; + N; (b — CNt) dt ; Ng >0,

2
2e—CY +2by
where ¢ > 0. Then s(y) = [/ e =224z and m(dy) = ery and [y, s(y)m(dy) < +o0, since

S,S((;’))y —y—0 1. (Note that if ¢ = 0, the condition s(+00) = 400 is not satisfied). It is immediate to

check that (22) also holds.

B.2 General diffusion processes on (a,b)

Let us consider a general diffusion process (X, ¢ > 0) with scale function s and locally finite speed
measure m on (a,b), with —oo < a < b < +00. Let us denote by T, and T the hitting times of a and
b respectively by the process X. We assume that, for all « € (a,b), P,(T, A Tp < 400) = 1. This is the
case if and only if one of the following properties is satisfied

(i) — o0 < s(a) < s(b) < 400 ; [ 1 (s(y) — s(a)) m(dy) < 400 and fb7 (s(b) — s(y) m(dy) < +o0;

(i) — 00 < s(a) and s(b) = +0c 5 . (s(y) — s(a)) m(dy) < +o%;

(iii) s(a) = —o0 and s(b) < 400 ; [ (s(b) — s(y)) m(dy) < +o0.
Theorem B.4. Fiz z € (a,b) and let f : (a,b) — Ry be a locally bounded measurable function. Then
b= Ty
/ (S<b) - S(y)) f(y)m(dy> =00 &P, ({ o f(Xs)dS = OO} N {Tb < Ta}) =P, (Tb < Ta)

/ (s(b) — s()) flyym(dy) < 0 &P, ({ ; b f(Xs)ds < o0} N{T, < Ta}) =P, (T, < To).

A similar result holds at the boundary a.

Proof. As in the proof of Theorem B.2, it is enough to prove the result in the case where s is the identity
function. Without loss of generality, we take (a,b) = (0,1). Let us consider z € (0,1), fix ¢ € (0,1 — x)
and consider a locally finite measure m® on (0, +00) such that the restriction of m® on (0,1 — ¢) is equal
to the restriction of m on (0,1 —¢). Let X© be a diffusion process on natural scale on (0, +00) with speed
measure m® and starting from x, built as a time change of the same Brownian motion as X. Because of
this construction, X and X¢ coincide up to time Ty on the event {Tp < T1_.}.

Now, by Theorem B.2 applied to X¢ and f: y — f(y)1y<i—., we deduce that

To

f(X5)Ixe<i-cds = 400 almost surely <= y f(y)m(dy) = +oo,
0 o+

To
f(X5)Ixe<1-cds < +oo  almost surely <= y fly)m(dy) < +o0.
0 0+

Since on the event Ty < T7_., X and X¢ coincide up to time Ty and X, < 1 — ¢ holds for s < Tj, then
up to P, -negligible events,

To
/ y f(y)m(dy) = +oo —> F(X.)ds = to0 on Ty < Th..
o+ 0

To
/ y fy)m(dy) < +o0 = f(Xs)ds < 400 on Ty <Ti_..
ot 0
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The continuity of the paths of X implies that {7y < T1} = Up<ce<1—2{T0 < T1—c}, which yields, up to
negligible events,

To
/ y f(y)m(dy) = +c0 = f(Xs)ds =400 on Ty < T3.
o+ 0

To
/ y fy)m(dy) < +c0 = f(Xs)ds < 400 on Ty <Th.
o+ 0

This concludes the proof of the direct implications in Theorem B.4.

Now, assume for instance that fOTU f(Xs)ds = 400 on Ty < Ty. Then, a fortiori, fOTO f(Xs)ds = 400

on Ty < Ty_. for any € € (0,1 — x). This implies that fOTO f(XE)ds = +o0 on Ty < Ty_.. But
To < Ti_. happens with probability /(1 — &) > 0 by definition of the natural scale. We deduce
from Theorem B.2 that [, y f(y)m(dy) < +o00 does not hold and hence, because f is non-negative, that
f0+ y f(y)m(dy) = +oo. This provides the first <= implication in Theorem B.4. The second < implication
in Theorem B.4 is proved using similar arguments.

The result at boundary b is proved similarly. O

B.3 Extension to non-homogeneous processes by use of Girsanov transform

We are interested in generalized one-dimensional stochastic differential equations of the form
dX; = O'(Xt)dBt + b(Xt)dt + Q(Xt, Ht)dt, Xo >0, (23)
where (B, t > 0) is a Brownian motion for some filtration (F;); and (6;,¢ > 0) is predictable with respect

to (Ft)¢. The process (6;); can for example model an environmental heterogeneity.

Assumption (H): We consider real functions o and b such that for any Brownian motion W on some
probability space, the one-dimensional stochastic differential equation dZ; = o(Z;)dW; + b(Z;)dt, Zy > 0
satisfies the assumptions of Corollary B.S3.

Theorem B.5. Let us consider a solution X of (23) where o and b satisfy Assumption (H). We also
assume that Ty = TgX < +0o almost surely and that the sequence (T,f()keN* tends almost surely to infinity
as k tends to infinity.

Next, we assume that for any k € N\{0},

]E(exp (% /OTkX qi(j((;(’js) ds)) < +00. (24)

Let f be a non negative locally bounded measurable function on (0,4+0c0). We have

5
F(W)s(y) m(dy) = 400 <~ f(Xs)ds = 400 almost surely,
o+ 0
g
fy)s(y) m(dy) < +o0 = f(Xs)ds < 400 almost surely,
0+ 0
where s and m are defined in (21).
Note that (24) holds true as soon as, for all k € Ry,
sup |q(z,0)/0(z)| < +oo. (25)

z€(0,k),0

19



Proof. We use the Girsanov Theorem, as stated for example in Revuz-Yor [22] Chapter 8 Proposition
1.3.

Let us consider the diffusion process X* on [0, k], absorbed when it reaches 0 or k, at time 73, := Tj5* /\T,f .
tATE q(Xs,0,)
—Jo a(Xs)

The exponential martingale &(L*);, where LF = dBgs, is uniformly integrable thanks to

(24) and Novikov’s criterion. Define for any = > 0 the probability Q, with Z%’% |7, = E(L);. Then, the

process w = B — (B, L) is a Q,-Brownian motion and, under Q,, X is solution to the SDE dX; =
o(X;)dw; + b(X;)dt. Hence s restricted to (0, k) is the scale function of X* under Q,. Since s and f are
both bounded in a vicinity of k, we deduce from Theorem B.4 that

Tk
/ f(Xp)dt < +o0o as., under Q. (- | TX < TyF).
0

Note also that, since we assumed that T} tends almost surely to infinity, we have up to a P,-negligible

event,
To +o0o Tk
{ ; f(Xt)dt:—Foo}:kL_Jo{/o f(Xt)dtz—Foo}

and hence

To

IP’I< e = +oo) - kETOOPZ(/OTk F(X,) dt = +oo).

But, by definition of Q, and by Theorem B.4, we have

Tk Tk
- —E% (1, , aws, 0s)
P ( /O FXo)dt = +50) =B (1 ;30 & /O - s, )) (26)
O fo, s()f(y) m(dy) < +o0 (27)
EQ- (]lTO<Tk & ( OTk qgw(le)) dws) ) otherwise
P.(To < Ty) otherwise.
Letting k tend to infinity concludes the proof. O
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