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Impact of demography on extinction/fixation events

C. Coron∗, S. Méléard†, D. Villemonais‡

July 2, 2018

Abstract

In this article we consider diffusion processes modeling the dynamics of multiple allelic proportions
(with fixed and varying population size). We are interested in the way alleles extinctions and fixations
occur. We first prove that for the Wright-Fisher diffusion process with selection, alleles get extinct
successively (and not simultaneously), until the fixation of one last allele. Then we introduce a very
general model with selection, competition and Mendelian reproduction, derived from the rescaling of a
discrete individual-based dynamics. This multi-dimensional diffusion process describes the dynamics
of the population size as well as the proportion of each type in the population. We prove first that
alleles extinctions occur successively and second that depending on population size dynamics near
extinction, fixation can occur either before extinction almost surely, or not. The proofs of these
different results rely on stochastic time changes, integrability of one-dimensional diffusion processes
paths and multi-dimensional Girsanov’s tranform.

Keywords: population dynamics and population genetics, demography and extinction, allelic fixa-
tion, diffusion processes, path integrability, diffusion absorption

1 Introduction - A demo-genetic model

This paper is motivated by concerns in conservation biology and more specifically by assessing conditions
for the maintenance of biodiversity in populations facing extinction. Classical population genetics models
like the Wright-Fisher model, the Moran model or the Wright-Fisher diffusion for instance assume a
constant population size, which is then introduced as a key parameter of these models. In contrast,
when conservation biology issues, one needs to understand the behaviour of populations facing extinction
or composed with only a few individuals. Notably, specific phenomena such as inbreeding ([4]) and
mutational meltdown ([20]), or changes in interactions between individuals ([26]) are observed in small
populations. To study these kinds of phenomena one therefore needs to consider models that allow to
take into account and study the joint dynamics of both the demography and the genetic composition of
a population. Our aim in this paper is more specifically to understand the impact of demography, and
in particular of extinction, on allele extinction (or fixation).

We first study the dynamics of the progressive loss of genetic diversity in a classical population genetics
context (constant population size) and second the impact of the fluctuations of population demography on
genetic diversity. We consider a population composed of hermaphroditic diploid individuals characterized
by their genotype at one locus presenting L possible alleles. The dynamics is modeled by a multi-
dimensional diffusion process. The first study (Section 2) concerns the L-allelic diploid Wright-Fisher
diffusion (see [12], Chap. 10). We prove (Theorem 2.1) that in this model the alleles disappear successively
until the fixation of a single last allele. Therefore fixed population size induces a progressive loss of genetic
diversity. The proof is done by induction on L and is based on successive time changes and a criterion
for perpetual integrals finiteness.
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The rest of the article focuses on the impact of demography on genetic diversity. We introduce a dif-
fusion process (N(t), X2(t), X3(t), ..., XL(t))t≥0 giving the joint behavior of the population size and the

proportions of types 2, 3, ..., L. Note that X1 = 1−
∑L
i=2X

i is the proportion af allele 1. This diffusion
is derived from a slow-fast rescaling of a diploid multi-type birth and death process (see Appendix A).
This individual-based model includes Mendelian reproduction, competition, and selection on birth, nat-
ural death and competition parameters. Since individuals are diploid, their genotypes are of the form ij
where i, j ∈ {1, . . . , L}.
The infinitesimal generator of the considered diffusion process is given for (n, x2, ..., xL) ∈ ]0,+∞) ×
{(x2, ..., xL) ∈ [0, 1];x2+...+xL ≤ 1} and any function f ∈ C2b ([0,+∞)×{(x2, ..., xL) ∈ [0, 1];x2+...+xL ≤
1},R) by

L1f(n, x2, ..., xL) = n

(
ρ− αn+

∑
1≤i,j≤L

(
sij − n

∑
1≤k,l≤L

cij,klxkxl

)
xixj

)
∂f

∂n
(n, x2, ..., xL)

+ γn
∂2f

∂n2
(n, x2, ..., xL)

+

L∑
i=2

xi L∑
j=1

L∑
k=1

xjxk

[
(sik − sjk)− n

∑
1≤l,m≤L

(cik,ml − cjk,ml)xmxl
] ∂f

∂xi
(n, x2, ..., xL)

+

L∑
i=2

γ
xi(1− xi)

2n

∂2f

∂x2i
(n, x2, ..., xL)−

∑
i 6=j∈[[2,N ]]

γ
xixj
2n

∂2f

∂xi∂xj
(n, x2, ..., xL).

(1)

Here x1 = 1 − x2 − ... − xL is the proportion of allele 1, ρ ∈ R is the natural growth rate of genotype
11 and sij quantifies the selective advantage of genotype ij for i, j ∈ {1, . . . , L} (the higher is sij , the
more advantageous is genotype ij); s11 = 0 by convention. The parameter α + cij,kl > 0 quantifies
the competition pressure of genotype kl on genotype ij (for example due to limitation of resources)
and c11,11 = 0 by convention. The allelic diffusion parameter γ > 0 scales the speed at which birth-
and-death events occur. The existence and uniqueness properties of this process are given in Appendix
A. The Model (1) dramatically generalizes the classical genetic models by considering an arbitrary
number of alleles under different types of selection. Let us note the interplay between allelic repartition
and demography through differences in competition parameters. In the mean field case with constant
competition pressure (cij,kl = 0 for any i, j, k, l), this model is a stochastically varying population size
version of the general Wright-Fisher model introduced in [12].
If sij = 0 for all i, j ≥ 1, the model is neutral, since alleles are exchangeable.
If sij = 1

2 (si + sj) for all i, j, which corresponds to additive selection, the generator becomes

L1f(n, x2, ..., xL) = n
(
ρ− αn+

L∑
i=2

sixi

) ∂f
∂n

(n, x2, ..., xL) + γn
∂2f

∂n2
(n, x2, ..., xL)

+

L∑
i=2

xi

(
si −

L∑
j=1

xjsj

) ∂f
∂xi

(n, x2, ..., xL)

+

L∑
i=2

γ
xi(1− xi)

2n

∂2f

∂x2i
(n, x2, ..., xL)−

∑
i6=j∈[[2,N ]]

γ
xixj
2n

∂2f

∂xi∂xj
(n, x2, ..., xL).

(2)

Let us note that this generator is close to the one we would obtain in an haploid case, except that the
denominator 2n in the diffusion coefficients would be n, which changes the dynamics.

What is more, the system (1) writes as (2) with any si replaced by Si defined by

Si =

L∑
k=1

sikxk − n
∑

1≤k,l,m≤L

cik,mlxmxlxk.

The coefficient Si is the true selective advantage of allele i in our general framework. It takes into account
both diploid individual (genetic) selection and environmental pressure between individuals.
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In Model (1), population size goes almost-surely to 0 in finite time. We prove (Theorem 3.1) that, almost
surely, the fixation of a (non given) single allele occurs before the extinction time and after the successive
extinctions of the other alleles. The proof of this result is deduced from that of Theorem 2.1 using time
changes and multi-dimensional Girsanov’s transform.

The diffusion processes defined in (1) comes from a specific scaling in the individual-based initial model
linking the population size and the demographic parameters in an allometric scale explained by the
metabolic theory which relates the individuals characteristics and their mass (Cf. [3], [24], [13]). This
leads in the limit to systems in which the organisms with short lives and fast reproduction create a
demographic stochasticity modeled by the diffusion (Cf Champagnat et al. [4]). In the case where some
specific density-dependence impacts the birth and death rates, we can obtain a different scaling leading
to different population size diffusion coefficients. In Section 4 we explore the impact of the demography
on allele fixation and therefore on the maintenance of biodiversity. In particular, we exhibit examples of
population size dynamics for which extinction occurs before fixation of alleles with positive probability
(Theorem 4.1 and Figures 1 and 2). This result implies a maintenance of genetic diversity at all times,
for the considered population, and shows the main influence of demographic stochasticity on biodiversity.

Our proofs and results repeatedly rely on the study of quantities of the form
∫ T0

0
f(Zs)ds (which are

referred to as perpetual integrals [24]), for a nonnegative (one-dimensional) diffusion process Z and T0
its hitting time of 0, or

∫ T0∧T1

0
f(Xs)ds, for a diffusion process X ∈ [0, 1] and T0, T1 its hitting times of

0 and 1. More specifically, we need to know whether such integrals are finite or not. In Appendix B,
we state and prove a general criterion involving a necessary and sufficient condition based on the scale
function and speed measure of the nonnegative (one-dimensional) diffusion process Z, which ensures that

the integral
∫ T0

0
f(Zs)ds is finite almost surely or infinite almost surely.

Notation: -In the following the state space will be denoted by

S = ]0,+∞)× {(x2, ..., xL) ∈ [0, 1];x2 + ...+ xL ≤ 1}

and its interior will be denoted by
◦
S.

-We denote by Tz the hitting time of z ∈ [0,+∞) by the process Z:

Tz = inf{t ≥ 0, Zt = z}.

When the process Z has to be specified, this time will be denoted TZz .

2 Successive fixations for the multi-allelic neutral Wright-Fisher
diffusion

In this section we consider a neutral L-type Wright-Fisher diffusion (Ethier-Kurtz [12], pp. 435 − 439)
describing the dynamics of the respective proportions of L alleles in a population with fixed size. We are
interested in the study of alleles extinctions in this model.

Let us define by Xi
t the proportion of allele i in the population at time t. Since by definition X1

t +
· · · + XL

t = 1 for any time t, it is enough to study the dynamics of the process (X1
t , · · · , XL−1

t )t≥0.
The Wright-Fisher diffusion (see for example [12, Chap. 10]) is a stochastic diffusion whose infinitesimal
generator L1 is defined for all (x1, ...xL−1) ∈ {(x1, ..., xL−1) ∈ [0, 1]L−1;x1 + ... + xL−1 ≤ 1} and for all
function f ∈ C2({(x1, ..., xL−1) ∈ [0, 1]L−1;x1 + ...+ xL−1 ≤ 1},R) by

L1f(x1, · · · , xL−1) =

L−1∑
i=1

xi(1− xi)
∂2f

∂x2i
(x1, · · · , xL−1)−

∑
i 6=j∈[[1,L−1]]

xixj
∂2f

∂xi∂xj
(x1, · · · , xL−1).

(3)

Our aim is to prove the following theorem:
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Theorem 2.1. (i) One of the L alleles is fixed almost surely in finite time, i.e. the random variable
maxi∈{1,··· ,L}X

i is absorbed at 1 in finite time almost surely.

(ii) Till that time, the population experiences successive (and non simultaneous) allele extinctions.

The proof of this theorem is based on an induction argument and relies on two lemmas.

Lemma 2.2. Let Y be the process solution of

dYt =
√
Yt(1− Yt) dBt; Y0 ∈ (0, 1),

where (Bt, t ≥ 0) is a standard Brownian motion. Then, setting T1 = inf{t ≥ 0, Yt = 1}, we have for any

y ∈ (0, 1)

Py
(∫ T1

0

1

1− Ys
ds = +∞

)
= 1. (4)

Proof. It is well known that Y reaches 0 or 1 in finite time a.s.. The process is on natural scale and the

speed measure on (0, 1) is given by m(dy) = 2dy
y(1−y) . Setting f(y) = 1/(1 − y), we have

∫ 1−
(s(1) −

s(y))f(y)m(dy) = +∞ and Theorem B.4 of Appendix B yields

Py
(
{
∫ T1

0

1

1− Ys
ds = +∞} ∩ {T1 < T0}

)
= Py

(
T1 < T0

)
.

Since {T1 = +∞} = {T0 < T1} and 1/(1− Yt) = 1 for all t ≥ T0, we get the result.

Lemma 2.3. Let (X1(t), ..., XL−1(t))t≥0 be a L − 1-dimensional Wright-Fisher diffusion process, let
1−XL(t) = X1(t) + ...+XL−1(t) for all time t ≥ 0, and define the time change τ on [0,+∞) such that∫ τ(t)
0

1
1−XL(s)ds = t for all t ≥ 0 (see Lemma 2.2). Now let

(Y 1
t , Y

2
t , ..., Y

L−2
t )t≥0 =

(
X1

1−XL
(τ(t)), ...,

XL−2

1−XL
(τ(t))

)
t≥0

.

The stochastic process (Y 1
t , Y

2
t , ..., Y

L−2
t )t≥0 is a L− 2-dimensional Wright-Fisher diffusion process.

Proof of Lemma 2.3. Let us denote by L̃ the infinitesimal generator of the L − 1-dimensional diffusion

process ( X1

1−XL (t), X2

1−XL (t), ..., X
L−2

1−XL (t), 1 −XL(t))t≥0. For any real-valued twice differentiable function

f defined on {(x̃1, ..., x̃L−2, 1− xL) ∈ [0, 1]L−1; x̃1 + ...+ x̃L−2 ≤ 1}, we may write for xL 6= 1,

L̃f(x̃1, ..., x̃L−2, 1− xL) = L1(f ◦ g)(x1, ..., xL−1),

where (x̃1, ..., x̃L−2, 1 − xL) = g(x1, ..., xL−1) and, for any (x1, ...xL−1) ∈ [0, 1]L−1 such that 0 <
x1 + ...+ xL−1 ≤ 1

g(x1, ..., xL−1) =

(
x1

x1 + ...+ xL−1
, ...,

xL−2
x1 + ...+ xL−1

, x1 + ...+ xL−1

)
.

Therefore, we obtain from Equation (3) that for xL 6= 1,

L̃f(x̃1, x̃2, ..., x̃L−2, 1− xL) =

L−2∑
j=1

γx̃j(1− x̃j)
1− xL

∂2f

∂x̃2j
(x̃1, x̃2, ..., x̃L−2, 1− xL)

−
∑

j 6=k∈[[1,L−2]]

γx̃j x̃k
1− xL

∂2f

∂x̃j∂x̃k
(x̃1, x̃2, ..., x̃L−2, 1− xL)

+ γxL(1− xL)
∂2f

∂(1− xL)2
(x̃1, x̃2, ..., x̃L−2, 1− xL)

which gives the result since dτ(t) = (1−XL(t))dt.
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Proof of Theorem 2.1. We prove both results by induction on L. (i) is a well known result in the case
L = 2. Now for L alleles, note that the proportion of allele 1 follows a 1-dimensional Wright-Fisher
diffusion. Therefore allele 1 gets fixed or disappears almost surely in finite time. If allele 1 gets fixed then
one of the L alleles gets fixed. If allele 1 gets lost then from its (almost surely finite) extinction time, the
population follows a L− 1-type Wright-Fisher diffusion, therefore one of the L− 1 remaining alleles gets
fixed almost surely in finite time, using the induction assumption.

We now prove (ii) (which is trivial when L = 2). We have
∫ TL1
0

1
1−XLs

ds = +∞ from Lemma 2.2. Let us

consider the time change τ(t), defined for all t ∈ [0,+∞) by
∫ τ(t)
0

1
1−XLs

ds = t. Note that for t ∈ [0,+∞),

XL(τ(t)) < 1.

Therefore we can define the stochastic process Yt = (Y 1
t , . . . , Y

L−2
t )t≥0 such that Y it = Xi

1−XL (τ(t)) for

all 1 ≤ i ≤ L−2 and for any t ∈ [0,+∞). From Lemma 2.3, the stochastic process (Y 1
t , Y

2
t , ..., Y

L−2
t )t≥0

is a L − 2 dimensional Wright-Fisher diffusion process. By induction assumption, this diffusion process
experiences L− 2 successive and non simultaneous extinctions, at times denoted by SY1 < ... < SYL−2 <
+∞. Therefore τ(SY1 ) < ... < τ(SYL−2) < τ(+∞) = TL1 . Under the event { TL1 < +∞}, the times
τ(SY1 ), ..., τ(SYL−2) and TL1 correspond to the L − 1 extinction times experienced by the population,
which gives the result, since P(∪Li=1{T i1 < +∞}) = 1 from (i).

3 Long time behavior of the diffusion process (1)

In this section, we focus on the stochastic diffusion process (N(t), X2(t), X3(t), ..., XL(t))t≥0 whose in-
finitesimal generator is given in (1) and whose existence is obtained by the scaling limit of a multi-type
birth-and-death process (see Appendix A, Theorem A.4 for existence and uniqueness). Here the genetic
dynamics of the population depends on both the selection and the competition between individuals, and
the population size dynamics depends on the allelic repartition. The following theorem generalizes the
results obtained in Theorem 2.1, to this very general class of demogenetics models. The main intuition
(for the proof) is that the speed of allelic extinctions is inversely proportional to population size. So we
introduce an appropriate time change to compensate the population size variability.

Theorem 3.1. (i) The population size process (N(t))t≥0 is absorbed at 0 (extinction of the population)
almost surely in finite time.

(ii) One of the allele will eventually get fixed before the extinction of the population, almost surely.

(iii) Till that time, the population experiences successive (and not simultaneous) allele extinctions.

Proof. (i) From (1), using that xi ∈ [0, 1] for all i, and setting ρ̄ = supi,j{ρ+ sij} and α = infi,j,k,l{α+
cij,kl}, one can easily see that the process (N(t))t≥0 is stochastically dominated by the logistic Feller

diffusion process (N(t))t≥0 satisfying dN t = N t(ρ̄ − αN t)dt +
√

2γN tdBt which is known to reach 0
almost surely in finite time ([16], Chapter VI.3).

(ii) and (iii). We first use a multi-dimensional Girsanov transform to reduce the study to the neutral
diffusion process (for which sij = cij,kl = 0 for all i, j, k, l). We introduce an appropriate time change
to compensate the population size variability. That allows us to deduce the long time behavior of the
diffusion process (1) from that of the classical Wright-Fisher diffusion process, obtained in Theorem 2.1.

The infinitesimal generator (1) writes
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L1f(n, x2, ..., xL) = n

(
ρ− αn+

∑
1≤i,j≤L

(
sij − n

∑
1≤k,l≤L

cij,klxkxl

)
xixj

)
∂f

∂n
(n, x2, ..., xL)

+ γn
∂2f

∂n2
(n, x2, ..., xL)

+

L∑
i=2

bi(n, x2, ..., xL)
∂f

∂xi
(n, x2, ..., xL)

+
1

2

∑
i,j∈[[2,N ]]

a(n, x2, ..., xL)ij
∂2f

∂xi∂xj
(n, x2, ..., xL),

where the diffusion matrix a(n, x2, x3, ..., xL) satisfies for i 6= j

a(n, x2, x3, ..., xL)ii = γ
xi(1− xi)

n
and a(n, x2, x3, ..., xL)ij = −γ xixj

n
.

Remark that this matrix is related to the covariance matrix of a L−1-dimensional multinomial (n, x2, x3, ..., xL)
vector Y : a(n, x1, ..., xL) = γCov((Y2, ..., YL)/n). Therefore it is a symmetric positive semi-definite ma-
trix. The vector b is defined by

bi(n, x2, ..., xL) = xi

L∑
j=1

L∑
k=1

xjxk

[
(sik − sjk)− n

∑
1≤l,m≤L

(cik,ml − cjk,ml)xmxl
]
.

We first prove that for all (n, x2, ..., xL) ∈
◦
S, a(n, x2, ..., xL) is an invertible matrix.

Lemma 3.2. Assume that n 6= 0, then

det(a) =
1

nL−1
(
1−

L∑
i=2

xi
) L∏
i=2

xi.

Proof. It is well known that det(a) is a polynomial of degree less than 2L− 2. It is obvious that any xi,

i = 2, . . . ,L, is a factor of det(a). Moreover adding all columns, we also obtain that (1 −
∑L
i=2 xi) = x1

factorizes det(a). The derivative of det(a) is of degree one in any variable xi, since it is a multilinear form
on its columns whose derivatives are of degree one. The conclusion follows by computing the determinant
with xi = 1/L (which allows us to check that the value of the dominating constant is 1/nL−1).

We remark that a(n, x2, ..., xL) = ã(x2, ..., xL)/n where the second derivative of ã is bounded. Then
from Theorem 5.2.3 of Stroock-Varadhan [25], there exists a Lipschitz square root σ̃ of the matrix ã.

Let us note that bi(n, x2, ..., xL) = xi(Si −
∑L
j=2 Sjxj) where

Si(n, x2, ..., xL) =

L∑
k=1

sikxk − n
∑
k,l,m

cml,ikxmxlxk.

We have the remarkable identity: If Σ denotes the vector of coordinates Si(n, x2, ..., xL), i = 2, . . . ,L,
then

a(n, x2, ..., xL).Σ =
γ

n
b(n, x2, ..., xL). (5)

Then for (n, x) ∈
◦
S,

‖σ−1(n, x2, ..., xL)b(n, x2, ..., xL)‖2 =< b(n, x2, ..., xL), a−1(n, x2, ..., xL)b(n, x2, ..., xL) >

=
n

γ
< b(n, x2, ..., xL),Σ > .
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Therefore there exists a constant C > 0 such that for all (n, x2, ..., xL) ∈ S,

‖σ−1(n, x2, ..., xL)b(n, x2, ..., xL)‖2 ≤ C (1 + n2). (6)

Let (N,X2, ..., XL) be solution to the stochastic differential system{
dNt =

√
γNt dB

1
t +Nt

(
ρ− αNt +

∑L
i=2 Si(Nt, X

2
t , ..., X

L
t )Xi

t

)
dt

dXt = σ(Nt, Xt) dBt + b(Nt, Xt)dt
; (N0, X0) ∈

◦
S (7)

where X = (X2, ..., XL) and B1 and B are two independent Brownian motions respectively one and

L − 1-dimensional. The system is well defined as soon as the solutions stay in
◦
S and then for any time

t < TN0 ∧ TX
1

0 ∧ TX2

0 ∧ ... ∧ TXL0 , where X1 = 1−X2 − ...−XL.
We now use the following L-dimensional Girsanov transformation ([16], p. 192). Let us introduce

k ∈ N and define τk = TN0 ∧ TNk ∧ TX
1

0 ∧ TX2

0 ∧ ... ∧ TXL0 . We introduce the exponential martingale
E(M)t∧τk where for any t ≤ τk,

Mt = −
(( L∑

i=2

Si(Ns, X
2
s , ..., X

L
s )

∫ t

0

Xi
s

√
Ns
γ

)
dB1

s

+

L∑
i=2

∫ t

0

σ−1(Ns, X
2
s , ..., X

L
s ) b(Ns, X

2
s , ..., X

L
s )dBs

)
.

For each k, the martingale E(M)t∧τk is uniformly integrable, thanks to (6). Under the probability

Q such that dQ
dP |Ft = E(M)t, the process (B̃1, B̃) = (B1 − 〈B1,M〉, B − 〈B,M〉) is a L-dimensional

Brownian motion, and the process (N,X2, ..., XL) is solution to the stochastic differential system

{
dNt =

√
γNt dB̃

1
t +Nt

(
ρ− αNt

)
dt

dXt = σ(Nt, Xt) dB̃t
; (N0, X0) ∈

◦
S, (8)

for t < τk.
The end of the proof of (ii) and (iii) consists in using a time change in order to apply Theorem 2.1

(i) and (ii). Using Example 2 in Section B, we know that∫ TN0

0

γ

2Ns
ds = +∞

a.s. Hence we can define the time change τ(t) defined for all t ∈ [0,+∞) as the unique positive real
number satisfying ∫ τ(t)

0

γ

2Ns
ds = t. (9)

In particular, τ is increasing and, under Q, the process defined for any t by X̂t = Xτ(t) is a Markov
process whose generator is given in (3).

Since τ(·) is increasing, we deduce that, Q-almost surely,

TX
1

0 ∧ TX
2

0 ∧ ... ∧ TX
L

0 = τ(T X̂
1

0 ∧ T X̂
2

0 ∧ ... ∧ T X̂
L

0 )

and that, up to a Q-negligible event,{
TX

1

0 ∧ TX
2

0 ∧ ... ∧ TX
L

0 < TN0

}
=
{
T X̂

1

0 ∧ T X̂
2

0 ∧ ... ∧ T X̂
L

0 < +∞
}
.

Using Theorem 2.1, we deduce that

Q
(
TX

1

0 ∧ TX
2

0 ∧ ... ∧ TX
L

0 < TN0

)
= 1.
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Hence, one has

P
(
TX

1

0 ∧ TX
2

0 ∧ ... ∧ TX
L

0 < TN0

)
= lim
k→+∞

P
(
TX

1

0 ∧ TX
2

0 ∧ ... ∧ TX
L

0 < TNk ∧ TN0
)

= lim
k→+∞

EQ
(
1
TX

1
0 ∧TX2

0 ∧...∧TXL0 <TNk ∧T
N
0
E(−M)TNk ∧TN0

)
≥ lim
k→+∞

EQ
(
1TN0 <TNk

E(−M)TNk ∧TN0

)
= lim
k→+∞

P
(
TN0 < TNk

)
= 1.

Using the same induction argument as in the proof of Theorem 2.1, this concludes the proof of (ii) and
(iii) and hence of Theorem 3.1.

4 Demography and maintenance of biodiversity

The general demogenetics model (1) was obtained from a specific scaling of the parameters in the
individual-based model. Other scalings will lead to different coefficients. In particular we can gener-
alize the linear form of the size diffusion coefficient (Feller diffusion). Our aim in this section is to
emphasize the importance of the variance effects, both in the demographic and in the genetic part of
the system, on the long time behavior. The main question is whether one allele gets fixed almost surely
before the population goes extinct. We will see that it depends on the behavior of the diffusion coefficient
near extinction in the equation satisfied by the population size. The next theorem notably highlights
the major effect of the demography on the maintenance of genetic diversity by giving a necessary and
sufficient criterion ensuring almost sure fixation before extinction.

For simplicity we consider in this section the bi-allelic framework.

Let us consider the process (Nt, Xt)t≥0 solution to the system of stochastic differential equations{
dNt = σ(Nt) dBt +Nt(ρ− αNt)dt, N0 > 0, α > 0

dXt =
√

Xt(1−Xt)
f(Nt)

dWt

, t < TN0+, (10)

where B,W are independent one-dimensional Brownian motions, σ : (0,+∞) → (0,+∞) is locally
Lipschitz and f : (0,+∞)→ (0,+∞) is locally bounded away from 0 and where

TN0+ := lim
n→+∞

TN1/n.

Note that lim infx→0 f(x) can be null or not, nevertheless the former case is more interesting and
biologically motivated (see [8]). Note also that the system admits a pathwise unique strong solution,
as will be explained in the proof of the following theorem (if σ is only locally Hölder continuous, an
adaptation of our proof leads to the weak existence and pathwise uniqueness of a solution to this system,
so that the following result remains valid).

Theorem 4.1. Fixation occurs before extinction with probability one if and only if∫
0+

y

σ2(y)f(y)
dy = +∞. (11)

In particular, if f is the identity function, the behavior of σ(N) near extinction plays a main role. Whereas
for the usual demographic term σ(N) =

√
N (studied in the previous sections), fixation occurs almost

surely before extinction, a small perturbation of this diffusion term, taking for example σ(N) = N (1−ε)/2,
ε > 0, leads to extinction before fixation with positive probability. An example of trajectory for which
fixation does not occur before extinction is given in Figure 1, and the effect of ε on the probability of
extinction before fixation is numerically studied in Figure 2.
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Note that the demographic term σ(N) =
√
N can be explained from an individual-based stochastic

system in a case of large size combined with accelerated birth and death. This corresponds to population
dynamics with allometric demographies whose time scale is explained by the metabolic theory which
relates the individuals characteristics and their mass (Cf. [3], [27], [15]). This leads in the limit to systems
in which the organisms with short lives and fast reproduction create a demographic stochasticity modeled
by the Brownian part (Cf Champagnat et al. [5]). In the case where some specific density-dependence
impacts the birth and death rates, we can obtain, in the limit of large population, a demographic term of
the form σ(N) = N (1−ε)/2, ε > 0. For the mathematical statement of such limits, we refer to Bansaye-
Méléard [2].

Figure 1: We plot a trajectory of the 2-dimensional diffusion process (N,X) such that dNt =

√
N

(1−ε)
t dBt +

Nt(ρ − αNt)dt and dXt =
√

Xt(1−Xt)
Nt

dWt, with ε = 0.4, ρ = −1 and α = 0.1. For this trajectory, fixation does

not occur before extinction.
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Figure 2: For different values of ε, we simulate 10000 trajectories of the 2-dimensional diffusion process (N,X)

such that dNt =

√
N

(1−ε)
t dB1

t + Nt(r − cNt)dt and dXt =
√

Xt(1−Xt)
Nt

, with r = −1 and c = 0.1. We plot the

number of simulations for which fixation does not occur before extinction.

Proof. Let us first prove that the system (10) admits a unique (strong) solution up to time TN0+, which in
particular implies the strong Markov property used in the sequel. Given B and W , for all n ≥ 1, there
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exists a pathwise unique strong solution Nn to the equation dNn
t = σ(Nn

t ) dBt + Nn
t (ρ − αNn

t )dt for
all time t < TN1/n := inf{s ≥ 0, Nn

s ≤ 1/n} (this is an immediate consequence of Theorem 3.11 p.300

in [12]). Setting Nt = Nn
t for all t ∈ [TN1/n, T

N
1/n+1), one obtains a pathwise unique strong solution to

dNt = σ(Nt) dBt +Nt(ρ− αNt)dt up to time TN0+ (in the case where σ is only Hölder continuous, weak
existence holds true, see for instance in Section 12.1 of [7]).

We define the random number

Tmax =

∫ TN0+

0

1

f(Ns)
ds

and the time change τ(t), for all t ∈ [0, Tmax), as the unique positive real number satisfying∫ τ(t)

0

1

f(Ns)
ds = t.

In particular, τ is increasing and TN0+ = τ(Tmax).

We define W̃t :=
∫ τ(t)
0

1
f(Ns)

dWs for all t < Tmax (which is a standard Brownian motion), and consider

X̂t the unique strong solution to

dX̂t =

√
X̂t(1− X̂t) dW̃t, X̂0 = X0, t ∈ [0, Tmax)

(strong existence and pathwise uniqueness of such a solution is a consequence of Proposition 2.13 p.291

of [18]). Then the process Xt := Xτ−1(t) is a strong solution to dXt =
√

Xt(1−Xt)
f(Nt)

dWt for all t < TN0+.

Pathwise uniqueness up to time TN1/n,n := inf{t ≥ 0, Nt /∈ [1/n, n]} for all n ≥ 1 is proved using the

same approach as in the proof of Theorem 3.8 p.298 of [12], using the fact that infy∈[1/n,n] f(y) > 0.
Since limn→+∞ TN1/n,n = TN0+ almots surely, one concludes that the system (10) admits a pathwise unique
strong solution.

We denote by T̂F = inf{t > 0, X̂t ∈ {0, 1}} the (possibly infinite) absorption time of X̂.

Assume first that
∫
0+

y
σ2(y)f(y) dy = +∞. In this case, using (21), we note that s(y) ∼y→0 y s

′(y). Hence

Tmax = +∞ by Corollary B.3, and X̂ reaches 0 or 1 in finite time almost surely. Then, TF = τ(T̂F ) <
τ(Tmax) = TN0+ (i.e. fixation occurs before extinction) almost surely.

Assume now that
∫
0+

y
σ2(y)f(y) dy < +∞. In this case Tmax < +∞ with probability one by Corollary

B.3. Let W̃ ′ be a Brownian motion independent from B and consider X̂ ′ the solution to the SDE

dX̂ ′t =

√
X̂ ′t(1− X̂ ′t) dW̃ ′t , X̂ ′0 = X0. We define for t < TN0+ the time changed X ′t = X̂ ′τ−1(t), so that

(N,X ′) is solution to the SDE system (10) and hence, by uniqueness in law of the solution to this system,
(N,X ′) and (N,X) have the same law. Since (N, X̂ ′) and (N, X̂) can be obtained as the same function
of (N,X ′) and (N,X) respectively, we deduce that they share the same law up to time Tmax. Then we
have

P(Xt ∈ (0, 1) ∀t < TN0+ and XTN0+− exists in (0, 1))

= P(X̂t ∈ (0, 1) ∀t < Tmax and X̂Tmax− exists in (0, 1))

= P(X̂ ′t ∈ (0, 1) ∀t < Tmax and X̂ ′Tmax− exists in (0, 1)) > 0,

since N and X̂ ′ are independent and X̂ ′ is a Wright-Fisher diffusion. This concludes the proof, since
{Xt ∈ (0, 1),∀t < TN0+ and XTN0+− exists in (0, 1)} ⊂ {TN0+ < TF }, therefore P(TN0+ < TF ) > 0.

Acknowledgements: This work was partially funded by the Chair ”Modélisation Mathématique et
Biodiversité” of VEOLIA-Ecole Polytechnique-MnHn-FX and also supported by public grants as part of
the ”Investissement d’avenir” project, reference ANR-11-LABX-0056-LMH, LabEx LMH, and reference
ANR-10-CAMP-0151-02, FMJH, and by the Mission for Interdisciplinarity at the CNRS.
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A Derivation of the generator (1) from an individual-based model

A.1 The model

We consider a population of diploid hermaphroditic organisms, characterized by their genotype at one
locus. There exist L versions (alleles) of the gene at this locus and we denote by 1, 2,.., L, these alleles.
Individuals can then have genotype ij for all i and j in [[1, L]] (genotypes ij and ji are not distinguished),
and we study the dynamics of the respective numbers of individuals with each genotype. We introduce a
scaling parameter K ∈ N\{0} that scales the initial population size and goes to infinity. The population
is then represented at any time t ≥ 0 by a symmetric positive matrix with size L, whose coefficients
belong to Z+/2K:

NK(t) = (nKij (t))1≤i,j≤L,

where for all i ∈ [[1, L]], nKii (t) ∈ Z+/K is the number of individuals with genotype ii at time t, divided by
K and for all i 6= j ∈ [[1, L]], nKij (t) +nKji(t) = 2nKij (t) ∈ Z+/K is the number of individuals with genotype

ij at time t, divided by K. For any time t, and for all K, NK(t) belongs to the space SL([0,+∞)) of
symmetric matrices with positive real-valued coefficients.

Notation A.1. For any matrix ν = (νij)1≤i,j≤L ∈ SL([0,+∞)), we define ν{ii} = νii and ν{ij} = 2νij
for all i 6= j.

We assume that the population follows a non-linear birth-and-death process with Mendelian reproduction
and competition whose jump rates will be given later.

The following quantities play a main role in this study:

• NK(t) =
∑

i,j∈[[1,L]]
nKij (t) is the rescaled population size at time t,

• nKi (t) = 2
∑L
j=1 n

K
ij (t) is the rescaled number of occurrences of allele i at time t,

• xKi (t) =
nKi (t)
2NK(t)

=
∑
j n

K
ij(t)∑

i,j
nKij(t)

is the proportion of alleles i at time t,

• xKij (t) =
nK{ij}(t)

NK(t)
is the proportion of genotypes ij at time t,

• εKij (t) = xKi (t)xKj (t)− xKij(t)

2 is called the deviation of the population from Hardy-Weinberg structure,
for genotype ij with i 6= j.

For all n = (nij)i,j∈[[1,L]] ∈ SL([0,+∞)) \ 0, we set for all i 6= j,

ψij(n) = εij =
(
∑
k nik)(

∑
l njl)(∑

i,j nij
)2 − nij∑

i,j nij
.

We obtain the following result:

Lemma A.2. For all n = (nij)i,j∈[[1,L]] ∈ SL([0,+∞)) \ 0, let us define

φ1(n) =

L∑
i,j=1

nij ; φi(n) =

∑
j nij∑
i,j nij

for all i ∈ [[2, L]],

(φL+1(n), ..., φL(L+1)/2(n)) = ((ψ1j(n))1<j≤L, (ψ2j(n))2<j≤L, ..., ψ(L−1)L(n))

The function
φ : SL([0,+∞)) \ 0→ φ(SL([0,+∞)) \ 0)

n 7→ φ(n) =
(
φ1(n), ..., φL(L+1)

2
(n)
)

is a bijection.
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Proof. Setting x1 = 1− x2 − x3 − ...− xL, we get that

(n, x2, x3, ..., xL, (ε1j)1≤i<j≤L, (ε2j)2≤i<j≤L, ..., ε(L−1)L) = φ(x)

if and only if
nij = n(xixj − εij) for all i 6= j, and

nii = n(xi)
2 +

∑
j 6=i

εij , which gives the result.

For all i, j ∈ [[1, L]], we now denote by eij the square matrix with size L such that for all k, l ∈ [[1, L]],

eij(k, l) =
δ
(k,l)

(i,j)
+δ

(k,l)

(j,i)

2 . Individuals experience panmictic Mendelian reproduction. Therefore, for all
i < j ∈ [[1, L]], as long as the total population size

∑
1≤i,j≤L nij = n 6= 0, the rate λKij (n) (resp. λKii (n))

at which the stochastic process NK jumps from n = (nij)i,j∈[[1,L]] ∈ SL([0,+∞)) to n + eij/K (resp.
n + eii/K) is given by:

λKij (x) = 2KbKijnxixj

λKii (x) = KbKii nx
2
i ,

(12)

where bKij ∈ [0,+∞) for all i ≤ j ∈ [[1, L]]. These birth rates are naturally all equal to 0 if n = 0.
Each individual can die either naturally or due to the competition with other individuals. More

precisely, for all i ≤ j ∈ [[1, L]], the rate µKij (x) at which the stochastic process XK jumps from x =

(xij)i,j∈[[1,L]] ∈ SL([0,+∞)) to x− eij/K, is given by

µKij (x) = K

dKij +K
∑

1≤k,l≤L

cKij,klxkl

x{ij}, (13)

where dKij ∈ [0,+∞) is the intrinsic death rate of an an individual with genotype ij, and cKij,kl ∈ ]0,+∞) is
the rate at which a given individual with genotype ij dies due to the competition with a given individual
with genotype kl (we have used Notation A.1). We obviously assume that cKij,kl = cKij,lk = cKji,kl for all i,
j, k, and l, since the two genotypes ij and ji are indistinguishable.

Note that for all K ∈ N\{0}, the pure jump process XK is well-defined for all time t ∈ [0,+∞).

Indeed, the process (NK(t), t ≥ 0) is stochastically dominated by a logistic birth-and-death process N
K

with birth, intrinsic death and competition parameters respectively equal to sup
i,j

bKij < +∞, inf
i,j
dKij and

inf
i,j,k,l

cKkl,ij > 0, which, from Chapter 8 of [1], does not explode, almost surely.

The stochastic process (XK(t), t ≥ 0) is therefore a pure jump process with values in SL(R+) (endowed
with the distance r such that r(x,y) = max

i,j
|xij − yij |, for instance), absorbed at 0, and defined for all

t ≥ 0 by

XK
t =XK

0 +
∑

1≤i≤j≤L

[∫ t

0

eij
K

1{θ≤λKij(XK
s−

)}η
ij
1 (ds, dθ)−

∫ t

0

eij
K

1{θ≤µKij(XK
s−

)}η
ij
2 (ds, dθ)

]

where the measures ηijk for i ≤ j ∈ [[1, L]] and k ∈ {1, 2} are independent Poisson point measures

on [0,+∞)
2
, with intensity dsdθ. For all K, the law of XK is then a probability measure on the

space of trajectories D([0,+∞),SL([0,+∞))) which is the space of càd-làg functions, from [0,+∞) to
SL([0,+∞)), endowed with the Skorokhod topology. The extended generator LK of (XK(t), t ≥ 0)
satisfies, for all measurable function f from SL([0,+∞)) to R, and for all x ∈ SL([0,+∞)):

LKf(x) =
∑

1≤i≤j≤L

[
λKij (x)

(
f
(
x +

eij
K

)
− f(x)

)
+ µKij (x)

(
f
(
x− eij

K

)
− f(x)

)]
, (14)

where the rates λKij (x) and µKij (x) have been defined in Equations (12) and (13) for all i ≤ j.
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A.2 Slow-fast dynamics

We now study the convergence of the sequence of stochastic processes (XK(t), t ≥ 0)K∈N\{0} toward a
slow-fast stochastic diffusion dynamic, as done in [8]. To this aim, demographic parameters must be
properly rescaled, according to the following assumptions, for γ > 0:

bKij = γK + βij ∈ ]0,+∞), dKij = γK + δij ∈ [0,+∞), and cKij,kl =
αij,kl
K
∈ ]0,+∞).

Besides, we assume that

there exists a constant C <∞ such that sup
K

E((NK(0))3) ≤ C. (15)

Then, from Lemma 1 of [6] and the proof of Theorem 5.3 of [14]:

(i) There exists a constant C > 0 such that

sup
K

sup
t≥0

E((NK(t))3) ≤ C.

(ii) For all T < +∞, there exists a constant CT such that

sup
K

E
(

sup
t≤T

(NK(t))3
)
≤ CT .

The following proposition gives the convergence of the fast variables ((εKij (t))1≤i<j≤L, t ≥ 0) toward
0 and is an extension of Proposition 3.2 of [8] for a larger number of alleles. The proof of this result can
be found in [9], Chapter 4, Appendix A.

Proposition A.3. Under the Hypothesis (15), for all times s, t > 0 and for all i 6= j ∈ [[1, L]],
sup

t≤u≤t+s
E((εKij (u))2)→ 0 when K goes to infinity.

We next study the asymptotic behavior of the sequence of stochastic processes constituted of the re-
maining variables (NK(t), xK2 (t), xK3 (t), ..., xKL (t))t≥0 introduced in Lemma A.2, when K goes to infinity.
For more simplicity, we first consider the sequence of stochastic processes ((nK1 (t), nK2 (t), ..., nKL (t))t≥0)K∈N\{0}
giving the respective numbers of occurrences of the different alleles, whose dynamics are simpler. The
proof of the following can be found in [9], Chapter 4, Appendix A and is a generalization of the proof of
Theorem 1 in [8].

Theorem A.4. Under (15), if the sequence (nK1 (0), nK2 (0), ..., nKL (0))K∈N\{0} converges in law toward a

random variable (n1(0), n2(0), ..., nL(0)) ∈ [0,+∞)
L

when K goes to infinity, then for all T > 0, the se-

quence of stochastic processes ((nK1 (t), nK2 (t), ..., nKL (t)), t ∈ [0, T ]) converges in law in D([0, T ], [0,+∞)
L

)
when K goes to infinity, toward a time-continuous diffusion process ((n1(t), n2(t), ..., nL(t)), t ∈ [0, T ])
starting from (n1(0), n2(0), ..., nL(0)), which is the unique continuous solution of the martingale problem:

g(n1(t), n2(t), ..., nL(t))− g(n1(0), n2(0), ..., nL(0))−
∫ t

0

Lg(n1(s), n2(s), ..., nL(s))ds (16)

is a martingale for all function g ∈ C2b ([0,+∞)
L
,R) where L satisfies

Lg(n1, ..., nL) =

L∑
i=1

∂g

∂ni
(n)

 L∑
j=1

βij − δij −∑
k,l

αij,kl
nknl

2
∑
k nk

 ninj∑
k nk


+ γ

L∑
i=1

∂2g

∂n2i
(n)

[
(ni)

2∑
k nk

+ ni

]
+ γ

∑
i<j

∂2g

∂ni∂nj
(n)

[
2ninj∑
k nk

] (17)

for all point n = (n1, ..., nL) of [0,+∞)
L

.
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Note that the diffusion coefficients of the generator L go to 0 when the total
∑
k nk goes to 0. The

system of equations (16) and (17) admits a unique strong solution up to time Tε = inf{t > 0, n1(t) +
n2(t) + ... + nL(t) ≥ ε}. Then from Theorem 6.2, Chapter 4 of [12], it admits a unique strong solution
up to time T0+ = limε→0 Tε.

From Theorem A.4, we deduce for all ε > 0 the convergence of the sequence of stochastic processes
(NK(t), xK2 (t), xK3 (t), ...xKL (t))t≥0 stopped when NK(t) ≤ ε, toward a L-dimensional diffusion process
(N(.), x2(.), ..., xL(.)).∧Tε , stopped when N(t) ≤ ε:

Corollary A.5. For all ε > 0 and T > 0, let us define TKε = inf{t ∈ [0, T ] : NK(t) ≤ ε}. If the
sequence of random variables (NK(0), xK2 (0), xK3 (0), ...xKL (0)) ∈ [ε,+∞[×[0, 1]L−1 converges in law when
K goes to infinity, toward a random vector (N(0), x2(0), x3(0), ...xL(0)) ∈]ε,+∞[×[0, 1]L−1, then the
sequence of stopped stochastic processes {(NK(t∧TKε ), xK2 (t∧TKε ), xK3 (t∧TKε ), ..., xKL (t∧TKε ))0≤t≤T }K≥1
converges in law in D([0, T ], [ε,∞[×[0, 1]L−1) when K goes to infinity, toward a continuous diffusion
process (N(t ∧ Tε), x2(t ∧ Tε), ..., xL(t ∧ Tε))0≤t≤T stopped at time Tε = inf{t ∈ [0, T ] : Nt = ε}, starting
from (N(0), x2(0), x3(0), ...xL(0)) and whose infinitesimal generator L1 is defined for all function f ∈
C2b ([ε,∞[×[0, 1]L−1,R) by

L1f(n,x2, ..., xL) = n

 ∑
1≤i,j≤L

βij − δij − ∑
1≤k,l≤L

αij,klnxkxl

xixj
∂f
∂n

(n, x2, ..., xL)

+ γn
∂2f

∂n2
(n, x2, ..., xL)

+

L∑
i=2

[
xi

L∑
j=1

L∑
k=1

xjxk

(
(βik − βjk)− (δik − δjk)

−
∑

1≤l,m≤L

(αik,ml − αjk,ml)nxmxl
)] ∂f

∂xi
(n, x2, ..., xL)

+

L∑
i=2

γ
xi(1− xi)

2n

∂2f

∂x2i
(n, x2, ..., xL)−

∑
i 6=j∈[[2,N ]]

γ
xixj
2n

∂2f

∂xi∂xj
(n, x2, ..., xL)

The link with the generator (1) can be seen by setting ρ = β11 − δ11, sij = (βij − δij)− (β11 − δ11),
α = α11,11 and cij,kl = αij,kl − α11,11.

B Integrability properties for diffusion processes

Proofs of Theorems 2.1, Lemmas 2.2, 2.3 and Theorem 3.1 rely on the integrability of paths of diffusion
processes. This section is devoted to the statement and the proof of a criterion for such integrability
(Theorem B.2). More precisely, this result states that, depending on the behavior of the diffusion and
drift coefficients near absorption, the integral of the paths of diffusion processes are either almost surely
finite or almost surely infinite. This 0-1 law criterion has already been proved by various methods, using
a combination of the local time formula and Ray-Knight Theorem [11, 21, 19] (see also [10, 13] for proofs
in particular settings). We give a simpler proof of this criterion, which also provides explicit bounds for
the moments of perpetual integrals and can be easily extended to more general one dimensional Markov
processes. Then, we extend this result to a diffusion taking values in a compact subset and finally to
non-homogeneous processes by the use of Girsanov’s transform.

B.1 General diffusion processes on [0,+∞)

Let us consider a general one-dimensional diffusion process (Zt, t ≥ 0) (that is a continuous strong
Markov process) with values in [0,+∞). We denote by Tz the hitting time of z ∈ [0,+∞) by the process
Z:

Tz = inf{t ≥ 0, Zt = z}.
When the process Z has to be specified, this time will be denoted TZz .
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Let us denote by Pz the law of Z starting from z. We assume that Z is regular (∀z ∈ (0,+∞),∀y ∈
(0,+∞), Pz(Ty < +∞) > 0). This implies that for any a < b ∈ (0,+∞) and a ≤ z ≤ b, Ez(Ta∧Tb) < +∞
and we can associate with Z a scale function s and a locally finite speed measure m on [0,+∞) (see [22,
Chapter VII]). We moreover assume that for all z ∈ (0,+∞),

Pz(T0 = T0 ∧ Te < +∞) = 1, (18)

where Te is the explosion time.

Lemma B.1. Condition (18) is equivalent to

s(+∞) = +∞ ; s(0) > −∞ ;

∫
0+

(s(y)− s(0))m(dy) < +∞. (19)

Note that Condition (19) is well known in the case where Z is solution of a stochastic differential equation
(cf. [18] p.348, [16] p.450).

Proof. Assume first that (18) is satisfied. As Z has scale s, s(Z) is a local martingale on (s(0), s(+∞))

such that T
s(Z)
s(0) < T

s(Z)
s(+∞) a.s.. We deduce that s(0) > −∞ and s(+∞) = +∞. The diffusion s(Z)

has a natural scale with speed measure m̃ = m ◦ s−1 (see [22], Chapter VII). Since it attains s(0) in
finite time almost surely, we deduce using [23, Theorem 51-2] that

∫
s(0)+

(u − s(0)) m̃(du) < +∞. As∫
s(0)+

(u − s(0)) m̃(du) < +∞ ⇐⇒
∫
0+

(s(y) − s(0))m(dy) < +∞, we obtain (19). Conversely, assume

(19). Conditions s(0) > −∞ and s(+∞) = +∞ imply that the local martingale s(Z) doesn’t explode
a.s.. Since

∫
0+

(s(y)−s(0))m(dy) < +∞, then
∫
s(0)+

(u−s(0)) m̃(du) < +∞ and the process s(Z) attains

s(0) in finite time a.s., so does the process Z.

Since the function s is defined up to a constant, we choose by convention s(0) = 0 as soon as s(0) > −∞.
The following theorem gives a 0− 1 law criterion for the finiteness/infiniteness of perpetual integrals

of diffusion processes, for which we provide a new and simple proof.

Theorem B.2. Let (Zt, t ≥ 0) be a regular diffusion process on [0,+∞) with scale function s and
speed measure m on (0,+∞) satisfying (19). Let also f be a non-negative locally integrable function on
(0,+∞). Then, for all z > 0 and all n ≥ 1,

Ez

[(∫ T0

0

f(Zs) ds

)n ]
≤ n!

(∫ ∞
0

s(y) f(y)m(dy)

)n
and ∫

0+
s(y) f(y)m(dy) < +∞ ⇐⇒

∫ T0

0

f(Zs) ds < +∞ Pz − almost surely∫
0+
s(y) f(y)m(dy) = +∞ ⇐⇒

∫ T0

0

f(Zs) ds = +∞ Pz − almost surely.

Proof. Because of the non-explosion assumption (19), we have
∫ T0

0
f(Zs) ds < +∞⇔ ∀k ∈ N,

∫ T0

0
f(Zs)1Zs≤k ds <

+∞ and
∫ T0

0
f(Zs) ds = +∞ ⇔ ∃k ∈ N such that

∫ T0

0
f(Zs)1Zs≤k ds = +∞. Hence it is sufficient to

prove Theorem B.4 for functions f satisfying
∫∞
a
f(x) s(x)m(dx) < +∞ for all a > 0. We make this

assumption from the rest of the proof.
As Z has scale function s and speed measure m, the process s(Z) is on a natural scale with speed

measure m ◦ s−1. Then it is enough to prove the result for Z on a natural scale. In particular, we have
the following Green formula (see [Chapter 23] of [17])

Ex
(∫ T0

0

f(Zs) ds
)

=

∫
(0,+∞)

2 (x ∧ y) f(y)m(dy).
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Noting that ∫ T0

0

f(Zs) ds =

∞∑
k=1

∫ Tx/(k+1)

Tx/k

f(Zs) ds,

one easily checks that, under Px for any x ∈ (0,+∞),
∫ T0

0
f(Zs) ds < +∞ satisfies a 0−1 law. Indeed, the

random variables
∫ Tx/(k+1)

Tx/k
f(Zs) ds, k ≥ 1 are non-negative and independent (strong Markov property)

and almost surely finite because of our assumptions and the Green’s formula applied under Px/k up to
time Tx/k+1. Hence the above series is finite with probability zero or one.

Let us now assume that
∫
(0,+∞)

y f(y)m(dy) < +∞. Then
∫ T0

0
f(Zs)ds < ∞ almost surely and, for

all n ≥ 1,

Ex

[(∫ T0

0

f(Zs)ds

)n]
= Ex

n ∫ T0

0

f(Zs)

(∫ T0

s

f(Zu) du

)n−1
ds


= n

∫ ∞
0

Ex

1s<T0
f(Zs)

(∫ T0

s

f(Zu) du

)n−1 ds
= nEx

∫ T0

0

f(Zs)EZs

(∫ T0

0

f(Zu)du

)n−1 ds

 ,
where we used the Markov property. We immediately deduce by induction that

Ex

[(∫ T0

0

f(Zs)ds

)n]
≤ n!

(∫
(0,+∞)

2yf(y)m(dy)

)n
.

This concludes the proof of the first part of Theorem B.2 (the inequality is trivial when
∫
(0,+∞)

y f(y)m(dy) =

+∞).

Assume now that
∫
(0,+∞)

y f(y)m(dy) = +∞ and fix x ∈ (0,+∞). For all k ≥ 1, we set

fk(y) =

{
f(y) if y ≥ 1

f(y) ∧ k if y < 1.

In particular,
∫
(0,+∞)

fk(y) ym(dy) <∞ for all k ≥ 1 and hence, using the inequalities established above

and then the fact that
∫
(0,+∞)

2yfk(y)m(dy) goes to infinity and the fact that yf(y)m(dy) is assumed

to be finite on neighborhood of +∞, we deduce that for k large enough

Ex

(∫ T0

0

fk(Zs)ds

)2
 ≤ 2

(∫
(0,+∞)

2y fk(y)m(dy)

)2

≤ 2

(∫
(0,+∞)

2 (y ∧ x)fk(y)m(dy) +

∫ ∞
x

2(y − x)f(y)m(dy)

)2

≤ 4

(∫
(0,+∞)

2 (y ∧ x)fk(y)m(dy)

)2

+ 4

(∫ ∞
x

2(y − x)f(y)m(dy)

)2

≤ 5

(∫
(0,+∞)

2 (y ∧ x)fk(y)m(dy)

)2

≤ 5

[
Ex

(∫ T0

0

fk(Zs)ds

)]2
.

16



We deduce that, for k large enough,

Px
(∫ T0

0

fk(Zs)ds ≥
Ex
(∫ T0

0
fk(Zs)ds

)
2

)
≥ 1

20
.

Indeed, for any random variable Y ≥ 0 such that E(Y 2) ≤ 5E(Y )2, we have, setting M = E(Y ),

5M2 ≥ E(Y 2) ≥ E(Y 2 | Y ≥M/2)P(Y ≥M/2) ≥ E(Y | Y ≥M/2)2 P(Y ≥M/2)

≥
E(Y 1Y≥M/2)2

P(Y ≥M/2)
≥ M2/4

P(Y ≥M/2)

and hence P(Y ≥M/2) ≥ 1/20. Now using the fact that fk is increasing in k, we deduce that, for k large
enough,

Px
(∫ T0

0

f(Zs)ds ≥
Ex
(∫ T0

0
fk(Zs)ds

)
2

)
≥ 1/20.

Since Ex
(∫ T0

0
fk(Zs)ds

)
is not bounded in k, we deduce that Px

( ∫ T0

0
f(Zs)ds = +∞

)
≥ 1/20. This

and the fact that {
∫ T0

0
f(Zs)ds = +∞} satisfies a 0− 1 law conclude the proof.

The equivalences stated in Theorem B.2 are particularly useful when Z is solution of

dZt = σ(Zt)dBt + b(Zt)dt ; Z0 > 0, (20)

where B is a one dimensional Brownian motion, and σ : (0,+∞) → (0,+∞) and b : (0,+∞) → R are
measurable functions such that b/σ2 is locally integrable. The scale function (up to a constant) and speed
measure equal to

s(x) =

∫ x

c

exp
(
− 2

∫ y

c

b(z)

σ2(z)
dz
)
dy ; m(dx) =

2dx

s′(x)σ2(x)
, (21)

(cf. [17, Chapter 23]).

Corollary B.3. Assume that Z is solution of (20) with s(+∞) = +∞ and
∫
0+
s(y)m(dy) < +∞. Let

us consider a non negative locally integrable function f on (0,+∞). Then, under Pz,∫
0+

f(y)s(y)

s′(y)σ2(y)
dy = +∞ ⇐⇒

∫ T0

0

f(Zs) ds = +∞ almost surely,∫
0+

f(y)s(y)

s′(y)σ2(y)
dy < +∞ ⇐⇒

∫ T0

0

f(Zs) ds < +∞ almost surely.

Let us give two examples for population size processes.

Example 1. Branching process with immigration. Let us consider the solution of the stochastic differential
equation dNt = σ

√
NtdBt+βdt, β > 0. Computing s and m as in (21), we easily obtain that (18) ⇐⇒

β/σ2 < 1/2. Applying Corollary B.3 with f(y) = 1/yα, we have

∫ T0

0

1

(Ns)α
ds = +∞ a.s. ⇐⇒ α ≥ 1 ;

∫ T0

0

1

(Ns)α
ds < +∞ a.s. ⇐⇒ α < 1. (22)

In the particular case α = 1, the authors of [13] propose an other approach based on self-similarity
properties.
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Example 2. Logistic diffusion process. Let us consider the process

dNt =
√
Nt dBt +Nt (b− cNt) dt ; N0 > 0,

where c > 0. Then s(y) =
∫ y
0
ecz

2−2bzdz and m(dy) =
2e−cy

2+2by

y
dy and

∫
0+
s(y)m(dy) < +∞, since

s(y)
s′(y) y →y→0 1. (Note that if c = 0, the condition s(+∞) = +∞ is not satisfied). It is immediate to

check that (22) also holds.

B.2 General diffusion processes on (a, b)

Let us consider a general diffusion process (Xt, t ≥ 0) with scale function s and locally finite speed
measure m on (a, b), with −∞ < a < b < +∞. Let us denote by Ta and Tb the hitting times of a and
b respectively by the process X. We assume that, for all x ∈ (a, b), Px(Ta ∧ Tb < +∞) = 1. This is the
case if and only if one of the following properties is satisfied

(i)−∞ < s(a) < s(b) < +∞ ;
∫
a+

(s(y)− s(a))m(dy) < +∞ and
∫ b−

(s(b)− s(y)m(dy) < +∞;

(ii)−∞ < s(a) and s(b) = +∞ ;
∫
a+

(s(y)− s(a))m(dy) < +∞;

(iii) s(a) = −∞ and s(b) < +∞ ;
∫ b−

(s(b)− s(y))m(dy) < +∞.

Theorem B.4. Fix x ∈ (a, b) and let f : (a, b)→ R+ be a locally bounded measurable function. Then∫ b−

(s(b)− s(y)) f(y)m(dy) =∞ ⇔ Px
(
{
∫ Tb

0

f(Xs)ds =∞} ∩ {Tb < Ta}
)

= Px
(
Tb < Ta

)
∫ b−

(s(b)− s(y)) f(y)m(dy) <∞ ⇔ Px
(
{
∫ Tb

0

f(Xs)ds <∞} ∩ {Tb < Ta}
)

= Px
(
Tb < Ta

)
.

A similar result holds at the boundary a.

Proof. As in the proof of Theorem B.2, it is enough to prove the result in the case where s is the identity
function. Without loss of generality, we take (a, b) = (0, 1). Let us consider x ∈ (0, 1), fix ε ∈ (0, 1 − x)
and consider a locally finite measure mε on (0,+∞) such that the restriction of mε on (0, 1− ε) is equal
to the restriction of m on (0, 1−ε). Let Xε be a diffusion process on natural scale on (0,+∞) with speed
measure mε and starting from x, built as a time change of the same Brownian motion as X. Because of
this construction, X and Xε coincide up to time T0 on the event {T0 < T1−ε}.

Now, by Theorem B.2 applied to Xε and fε : y 7→ f(y)1y≤1−ε, we deduce that∫ T0

0

f(Xε
s )1Xεs≤1−ε ds = +∞ almost surely ⇐⇒

∫
0+
y f(y)m(dy) = +∞,∫ T0

0

f(Xε
s )1Xεs≤1−ε ds < +∞ almost surely ⇐⇒

∫
0+
y f(y)m(dy) < +∞.

Since on the event T0 < T1−ε, X and Xε coincide up to time T0 and Xs ≤ 1 − ε holds for s ≤ T0, then
up to Px-negligible events,∫

0+
y f(y)m(dy) = +∞ =⇒

∫ T0

0

f(Xs)ds = +∞ on T0 < T1−ε.∫
0+
y f(y)m(dy) < +∞ =⇒

∫ T0

0

f(Xs)ds < +∞ on T0 < T1−ε.
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The continuity of the paths of X implies that {T0 < T1} = ∪0<ε<1−x{T0 < T1−ε}, which yields, up to
negligible events, ∫

0+
y f(y)m(dy) = +∞ =⇒

∫ T0

0

f(Xs)ds = +∞ on T0 < T1.∫
0+
y f(y)m(dy) < +∞ =⇒

∫ T0

0

f(Xs)ds < +∞ on T0 < T1.

This concludes the proof of the direct implications in Theorem B.4.

Now, assume for instance that
∫ T0

0
f(Xs)ds = +∞ on T0 < T1. Then, a fortiori,

∫ T0

0
f(Xs)ds = +∞

on T0 < T1−ε for any ε ∈ (0, 1 − x). This implies that
∫ T0

0
f(Xε

s )ds = +∞ on T0 < T1−ε. But
T0 < T1−ε happens with probability x/(1 − ε) > 0 by definition of the natural scale. We deduce
from Theorem B.2 that

∫
0+
y f(y)m(dy) < +∞ does not hold and hence, because f is non-negative, that∫

0+
y f(y)m(dy) = +∞. This provides the first⇐ implication in Theorem B.4. The second⇐ implication

in Theorem B.4 is proved using similar arguments.

The result at boundary b is proved similarly.

B.3 Extension to non-homogeneous processes by use of Girsanov transform

We are interested in generalized one-dimensional stochastic differential equations of the form

dXt = σ(Xt)dBt + b(Xt)dt+ q(Xt, θt)dt,X0 > 0, (23)

where (Bt, t ≥ 0) is a Brownian motion for some filtration (Ft)t and (θt, t ≥ 0) is predictable with respect
to (Ft)t. The process (θt)t can for example model an environmental heterogeneity.

Assumption (H): We consider real functions σ and b such that for any Brownian motion W on some
probability space, the one-dimensional stochastic differential equation dZt = σ(Zt)dWt + b(Zt)dt, Z0 > 0
satisfies the assumptions of Corollary B.3.

Theorem B.5. Let us consider a solution X of (23) where σ and b satisfy Assumption (H). We also
assume that T0 = TX0 < +∞ almost surely and that the sequence (TXk )k∈N∗ tends almost surely to infinity
as k tends to infinity.

Next, we assume that for any k ∈ N\{0},

E
(

exp
(1

2

∫ TXk

0

q2(Xs, θs)

σ2(Xs)
ds
))

< +∞. (24)

Let f be a non negative locally bounded measurable function on (0,+∞). We have∫
0+
f(y)s(y)m(dy) = +∞ ⇐⇒

∫ TX0

0

f(Xs)ds = +∞ almost surely,∫
0+
f(y)s(y)m(dy) < +∞ ⇐⇒

∫ TX0

0

f(Xs)ds < +∞ almost surely,

where s and m are defined in (21).

Note that (24) holds true as soon as, for all k ∈ R+,

sup
x∈(0,k),θ

|q(x, θ)/σ(x)| < +∞. (25)
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Proof. We use the Girsanov Theorem, as stated for example in Revuz-Yor [22] Chapter 8 Proposition
1.3.

Let us consider the diffusion process Xk on [0, k], absorbed when it reaches 0 or k, at time τk := TX0 ∧TXk .

The exponential martingale E(Lk)t, where Lkt = −
∫ t∧τk
0

q(Xs,θs)
σ(Xs)

dBs, is uniformly integrable thanks to

(24) and Novikov’s criterion. Define for any x > 0 the probability Qx with dQx
dPx |Ft = E(L)t. Then, the

process ω = B − 〈B,L〉 is a Qx-Brownian motion and, under Qx, X is solution to the SDE dXt =
σ(Xt)dωt + b(Xt)dt. Hence s restricted to (0, k) is the scale function of Xk under Qx. Since s and f are
both bounded in a vicinity of k, we deduce from Theorem B.4 that∫ τk

0

f(Xt)dt < +∞ a.s., under Qx(· | TXk < TX0 ).

Note also that, since we assumed that Tk tends almost surely to infinity, we have up to a Px-negligible
event, {∫ T0

0

f(Xt) dt = +∞

}
=

+∞⋃
k=0

{∫ τk

0

f(Xt) dt = +∞
}

and hence

Px
(∫ T0

0

f(Xt) dt = +∞
)

= lim
k→+∞

Px
(∫ τk

0

f(Xt) dt = +∞
)
.

But, by definition of Qx and by Theorem B.4, we have

Px
(∫ τk

0

f(Xt)dt = +∞
)

= EQx
(
1∫ τk

0 f(Xt)dt=+∞ E
(∫ τk

0

q(ωs, θs)

σ(ωs)
dωs

))
(26)

=

{
0 if

∫
0+
s(y)f(y)m(dy) < +∞

EQx
(
1T0<Tk E

(∫ τk
0

q(ωs,θs)
σ(ωs)

dωs

))
otherwise

(27)

=

{
0 if

∫
0+
s(y)f(y)m(dy) < +∞

Px(T0 < Tk) otherwise.
(28)

Letting k tend to infinity concludes the proof.
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[2] Bansaye, V., Méléard, S. Stochastic models for structured populations, Mathematical Biosciences,
Institute Lecture Series 1.4, Springer, 2015.

[3] Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., and West, G. B. Toward a metabolic
theory of ecology. Ecology, 85(7), (2004), 1771–1789.

[4] Byers, D. L., and D. M. Waller. Do plant populations purge their genetic load? Effects of population
size and mating history on inbreeding depression. Annual Review of Ecology and Systematics 30.1
(1999): 479-513.

[5] Unifying evolutionary dynamics: from individual stochastic processes tomacroscopic models. N.
Champagnat, R. Ferrière, S. Méléard. Theoretical Polulation Biology 69 (2006) 297–321.

[6] N. Champagnat. A microscopic interpretation for adaptive dynamics trait substitution sequence
models. Stochastic Process. Appl., 116(8), (2006) 1127–1160.

20



[7] N. Champagnat, D. Villemonais. General criteria for the study of quasi-stationarity. Arxiv e-prints,
1712.08092, 2018.

[8] C. Coron. Slow-fast stochastic diffusion dynamics and quasi-stationarity for diploid populations with
varying size. J. Math. Biol. 72 (1-2), 171–202, 2016.

[9] C. Coron. Stochastic modeling and eco-evolution of a diploid population. PhD the-
sis under the supervision of Sylvie Méléard, Palaiseau, École Polytechnique, 2013.
http://www.theses.fr/2013EPXX0052

[10] H.J. Engelbert, T. Senf. On Functionals of a Wiener Process with Drift and Exponential Local
Martingales. Stochastic Processes and Related Topics, Series Mathematical Research, pp. 45 - 58,
Akademie-Verlag, Berlin, Friedrich-Schiller-Univ., 1991.

[11] H.J. Engelbert, G. Tittel. Integral functionals of strong Markov continuous local martingale. In
Stochastic Processes and Related Topics: Proceedings of the 12th Winter School Siegmundsburg,
Germany, edited by R. Buckdahn, H.J. Engelbert and M. Yor. Taylor & Francis, 2002.

[12] S.N. Ethier, T.G. Kurtz. Markov Processes. Characterization and convergence. Wiley series in statis-
tics and probability. John Wiley & Sons, 1986.

[13] C. Foucart, O. Hénard. Stable continuous stat branching processes with immigration and Beta-
Fleming-Viot processes with immigration. Electron. J. Probab.18 (23), 1–21, 2013.
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