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Abstract – The Finite Element (FE) method is able to address the stress analysis of 

adhesively bonded joints. However, analyses based on FE models are computationally 

expansive and it would be profitable to develop simplified approaches enabling extensive 

parametric studies. Firstly, a 1D-beam simplified model for the bonded joint stress 

analysis assuming a linear elastic adhesive material is presented. This model, derived 

from an approach inspired by the finite element (FE) method and based on the semi-

analytical formulation of a 4-nodes macro-element, is able to simulate an entire bonded 

overlap. Secondly, a numerical procedure allowing for nonlinear adhesive stress-strain 

relationships to be accounted for is presented. This procedure allows for various non-

linear adhesive behaviors (ie. softening, plastic, etc) to be accounted for with no 

restriction on the specimen geometry. The possible mixed-mode I/II response of the 

adhesive layer is introduced through an extension of the classical Cohesive Zone 

Modeling (CZM) procedure. This allows for various mixed mode criteria (ie. elliptic, Von-

Mises, Benzeggagh-Kenane, etc) to be accounted for. The aforementioned procedure is 

illustrated using a bi-linear, an exponential, a polynomial and a perfectly plastic stress-

strain evolution law. The results obtained by the simplified 1D-beam model are compared 

with time consuming 3D FE models predictions. Good agreement is shown. 

 

keywords: bonded joint, cohesive zone model, mixed-mode I/II, Finite Element method, 

semi-analytical formulation, macro-element 

 

NOMENCLATURE AND UNITS 

 

Aj extensional stiffness (N) of the adherend j 

Bj extensional and bending coupling stiffness (N.mm) of the adherend j 

Dj bending stiffness (N.mm2) of the adherend j 

E Young’s modulus (MPa) of the adhesive 

Ej Young’s modulus (MPa) of the adherend j  

F vector of nodal forces 



G Coulomb’s modulus (MPa) of the adhesive 

K stiffness matrix 

KBBe stiffness matrix of the Bonded-Beam macro-element 

L length (mm) of the overlap  

Mj bending moment (N.mm) in the adherend j around the z direction 

Nj normal force (N) in the adherend j in the x direction 

Q nodal normal force (N) applied to the node  in the x direction ( = i,j,k,l) 

R vector of imbalanced loads (N) 

R nodal shear force (N) applied to the node  in the y direction ( = i,j,k,l) 

S adhesive peel stress (MPa) 

S nodal bending moment (N.mm) applied to the node  around the z direction ( = 

i,j,k,l) 

T adhesive shear stress (MPa) 

U vector of nodal displacements  

Vj shear force (N) in the adherend j in the y direction 

b width (mm) of the adherends  

e thickness (mm) of the adhesive  

ej thickness (mm) of the adherend j  

n number of macro-elements 

uj displacement (mm) of the adherend j in the x direction 

ua displacement (mm) of the node a in the x direction (a = i,j,k,l) 

wj displacement (mm) of the adherend j in the y direction 

wa displacement (mm) of the node a in the y direction (a = i,j,k,l) 

 length (mm) of a macro-element 

 characteristic constant

 characteristic constant

j Poisson’s ratio of the adherend j  

j angular displacement (rad) of the adherend j around the z direction 

a angular displacement (rad) of the node a around the z direction (a = i,j,k,l) 



(x,y,z) system of coordinates 

 

 
1. INTRODUCTION  

 

1.1. Context 

 

In the frame of the design of structural components, the choice of joining technologies is 

essential. Adhesive bonding can be considered as an attractive joining technology, 

compared to conventional ones, such as bolting or riveting. Indeed, adhesive bonding 

offers the possibility of joining without damaging various combinations of materials, 

including plastics and metals. Moreover, since the amount of adhesive required to sustain 

static or fatigue loads is very low, adhesive bonding allows for weight benefits. However, 

the interest of adhesive bonding remains while the integrity of the joint is ensured. To 

take advantage of adhesive bonding, accurate strength predictions are thus required.  

The strength prediction of bonded joints requires the determination of computed criteria 

and experimentally characterized allowable. Several approaches are proposed in the open 

literature. These approaches could besides be used in the experimental characterization 

process of allowable.  

The stress analysis approach, based on the Strength of Materials, is the classical 

approach. It aims at localizing the maximal values of stresses and strains, as highlighted 

in several literature surveys [1-4]. Another approach is based on the Fracture Mechanics. 

Assuming the presence of an initial crack, judiciously localized and sized by the user, it 

allows for the computation of strain energy release rate or J-integral parameters at crack 

tip as a function of applied forces or adhesive stresses [4-7]. In the coupled stress and 

energy criterion approach, the crack length at initiation is not assumed but derived from 

the analysis [8-9]. Then, the computed crack length at initiation is not a material 

characteristic and depends both on geometrical parameters as well as on material critical 

stress and energy release rate.  Finally, the Cohesive Zone Modeling – denoted CZM – is 



based on Damage Mechanics. It enables a diagnostic of the current damage state and an 

update of the strength prediction. The damage, associated to micro-cracks or voids, 

results in a progressive degradation of the material stiffness before failure. Both damage 

initiation and propagation phases are included in the formulation, without assuming any 

initial cracks [10-12]. Experimental approaches based on classical Fracture Mechanics 

tests allow for the characterization of the mechanical constitutive cohesive behavior of 

adhesive layers [13-14]. 

 

1.2. Objective 

 

The Finite Element – denoted FE – method is able to address the stress, fracture and 

damage analyses of bonded joints [4]. Nevertheless, since analyses based on FE models 

are computationally expansive, it would be profitable both to restrict them to refined 

analyses and to develop for designers simplified approaches, enabling extensive 

parametric studies. The objective of this paper is then to present a simplified approach 

for the mixed-mode I/II non-linear analysis of adhesively bonded joints.  

A large number of simplified approaches for the stress analysis of bonded joints exist in 

the open literature [1-3]. The joint kinematic is then simplified. The displacement field of 

adherends is supposed relevant to the beam or plate theory while the adhesive 

displacement field is expressed in terms of that of adherends, then restricting the 

number of components of the adhesive stress tensor. A widespread modeling of the 

adhesive layer consists in an elastic foundation, supporting both adherend interfaces [15-

16]. The adhesive stresses are then function of the relative displacements of the 

adherend interfaces, which is consistent with the CZM. Depending on the additional 

simplifying hypotheses taken, a closed-form solution is not always available, so that 

mathematical procedures [17-19] are needed to integrate the governing system of 

differential equations in view of boundary conditions.  

The semi-analytical solution presented in [19] considers the adherends as Euler-Bernoulli 

laminated beams supported by an infinite number of elastic shear and peel springs. 



Besides, an original procedure allowing for non-linear adhesive behaviors to be accounted 

for is presented. However, the authors show that the aforementioned procedure is 

theoretically limited to the analysis of single-lap joint configurations only. 

In the present paper, a reworked semi-analytical procedure enabling for various non-

linear adhesive behaviors to be accounted for with no restriction on the specimen 

geometry is presented. The possible mixed mode I/II response of the adhesive layer is 

introduced through an extension of the classical CZM procedure [10-13]. The semi-

analytical procedure is illustrated using a bi-linear softening, an exponential softening, a 

polynomial softening and a perfectly plastic adhesive stress-strain evolution law. The 

results obtained with the simplified 1D-beam model are then compared with the results 

obtained from both theoretical and 3D FE analyses. 

 

1.3. Overview of the paper 

 

In a first part, for lecturer comfort, the description of the linear elastic 1D-beam model 

for the stress analysis of a single-lap bonded joint is provided. In a second part, an 

original procedure allowing for the mixed-mode I/II response of the adhesive layer to be 

addressed is presented. In the third part, an iterative procedure based on an adaptation 

of the classical Newton-Raphson convergence scheme, and allowing for various non-

linear adhesive stress-strain relationships to be accounted for is presented and developed 

in view of its implementation. Finally, the results obtained from the simplified 1D-beam 

model are compared with those of 3D FE models involving interface elements. 

 

2. LINEAR ELASTIC 1D-BEAM MODEL 

 

2.1. Overview 

 

The simplified linear elastic method is inspired by the FE method and allows for the 

resolution of the bonded overlap system of governing differential equations. The 



displacements and forces of both adherends, as well as the adhesive stresses, are then 

computed. The method consists in meshing the structure. A fully bonded overlap is 

meshed using a unique 4-nodes macro-element, which is specially formulated to allow for 

the resolution of the bonded overlap system of governing differential equations. For 

convenience, this macro-element is thereafter referred as the Bonded-Beam (BBe) 

element. The outer adherends are meshed using classical Euler-Bernoulli beam elements. 

According to the classical FE rules, the stiffness matrix of the entire structure – termed K 

– is assembled and the selected boundary conditions are applied. The minimization of the 

total potential energy is then ensured by solving the equation F=KU, where F is the 

vector of nodal forces and U the vector of nodal displacements. This approach based on 

the use of BBe elements takes the advantage of the flexibility of the FE method and 

allows for the semi-analytical resolution of the bonded overlap system of differential 

equations at low computational costs. Indeed, by using BBe elements as elementary 

bricks, it offers the possibility to simulate complex structures involving single-lap bonded 

joints at low computational costs [20]. 

 

2.2. Formulation of the BBe element 

 

2.2.1. Hypotheses. The model is based on the following hypotheses: (i) the thickness 

of the adhesive layer is constant along the overlap, (ii) the adherends are simulated by 

linear elastic Euler-Bernoulli laminated beams, and (iii) the adhesive layer is simulated by 

an infinite number of elastic shear and peel springs linking both adherends. Note that (iv) 

the adherend shear stress can possibly be assumed as varying linearly with the adherend 

thickness. 

 

2.2.2. Governing differential equations. The local equilibrium of both adherends (see 

Fig.1) leads to the following system of six equations:   
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where S is the adhesive peel stress, T the adhesive shear stress, N1 (N2) the normal force 

in the adherend 1 (2), V1 (V2) the shearing force in the adherend 1 (2) and M1 (M2) the 

bending moment in the adherend 1 (2).          

This local equilibrium is the one derived and employed by Goland and Reissner [16] in 

their classical theory. Furthermore, considering possible extensional and bending 

coupling stiffnesses in the adherends, the constitutive equations are expressed as:  
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with Aj the extensional stiffness, Bj the coupling stiffness, and Dj the bending stiffness of 

the adherend j (j=1,2). For demonstration purpose it is assumed that Δj=AjDj-Bj
2 is not 

equal to zero. The adhesive is considered as linear elastic and is simulated by an infinite 

number of elastic shear and elastic peel springs. The adhesive shear stress and the 

adhesive peel stress are then expressed as: 

 





















21

221112
2

1

2

1

ww
e

E
S

eeuu
e

G
T 

        (3) 

where E is the peel modulus of the adhesive, G the shear modulus of the adhesive, u1 

(u2) the normal displacement of the adherend 1 (2), w1 (w2) the transverse deflection of 

the adherend 1 (2), and θ1 (θ2) the bending angle of the adherend 1 (2). 

 

2.2.3. Stiffness Matrix of the BBe element.  



 

System of differential equations in terms of adhesive stresses. Equation (2) is written 

as: 
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By combining equations (1) to (4), the following linear differential equation system in 

terms of adhesive stresses is obtained: 
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By successive differentiations and linear combinations, the system of differential 

equations (5) can be uncoupled as:  
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The system (7) is then solved and the adhesive shear and peel stresses are written as: 
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Nodal displacements and forces. The determination of the stiffness matrix of BBe 

element requires the determination of both nodal displacements and nodal forces (see 

Fig.2). Following the resolution scheme introduced in [21], the displacements (forces) in 

each adherend are expressed as functions of both the adhesive stresses and their 

derivatives. The computation of the displacements (forces) of each adherend is fully 

detailed in [18]. However it is shown that the entire problem is dependent on a total 

number of 12 integration constants only:  

 753217654321
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The nodal displacements (forces) are then computed from the values of displacements 

(forces) at x=0 and x=Δ. It is shown that the nodal displacements (forces) are linearly 

dependent on the 12 integration constants listed in (9), through a coupling parameter 

matrix M (N): 
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where Q, R and S respectively refer to the nodal normal forces, shearing forces and 

bending moments acting on the BBe element. 



 

Stiffness matrix. Classically, the coefficients of the stiffness matrix are obtained by 

differentiating each component of the nodal forces by each component of the nodal 

displacements: 
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so that: 

UKF BBe            (12) 

But, considering the expression for the vector of nodal forces (F) as a function of the 

vector of integration constants (C) as well as the vector C as a function of the vector of 

nodal displacements (U), the stiffness matrix of the BBe element can be computed as 

follows: 

-1
NMKBBe              (13) 

The stiffness matrix of the entire structure – termed K – is then assembled from both the 

elementary stiffness matrix KBBe and the elementary stiffness matrix of the Euler-

Bernoulli laminated beam elements (see Appendix.1). 

 

3. SEMI-ANALYTICAL COHESIVE ZONE MODELING 

 

In this section, the adhesive layer is assumed to have a non-linear behavior. To take into 

account the non-linear behavior of the adhesive layer, an iterative procedure derived 

from the classical FE theory [22] is presented. The possible mixed-mode I/II response of 

various non-linear adhesive behaviors is then addressed through an extension of the 

classical CZM procedure [10-13]. This procedure allows for various non-linear adhesive 



behaviors and (or) mixed-mode criteria to be accounted for with no restriction on the 

specimen geometry. 

 

3.1. Mixed-mode modeling 

 

In the present paper, a particular emphasis is given to the modeling of 3 softening and 1 

perfectly plastic adhesive behaviors (see Fig.3). However the given procedure is not 

limited to these particular behaviors only, and can easily applies to coupled elasto-plasto-

damaging behaviors. For convenience, the adhesive stress-strain relationship is 

thereafter referred as the adhesive traction-separation law. 

 

3.1.1. Description of the mixed-mode I/II adhesive behavior. Because of the 1D-beam 

foundation of the BBe element system of governing differential equations, it is necessary 

to account for the possible mixed-mode I/II response of the specimen. The mixed-mode 

I/II response of such structures can be accounted for through the definition of the 

following parameters: 
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where β, δI, δII, δm, respectively refer to the mixed-mode ratio, the peeling deformation, 

the shearing deformation and the mixed-mode deformation of the adhesive layer. A 

schematic representation of those parameters is given in Fig.4. 

 

3.1.2. Description of the pure modes adhesive behavior. The basic idea of mixed-mode 

modeling is to combine pure mode traction-separation laws through both initiation and 

propagation criteria. The effective properties of the adhesive layer traction-separation 

laws are then computed with respect to those initiation and propagation criteria. 

Numbers of those criteria can be found in the open literature (see Tab.1). To allow for 

the combination of the pure mode traction-separation laws, both the elastic energy (Y0i) 



and the fracture energy (GCi) of pure modes i (i=I,II) are generally required. A 

mathematical description of such pure modes is then needed (see Tab.2-3). 

 

3.1.3. Combination of the pure modes adhesive behavior. To compute the effective 

properties of the pure mode traction separation laws, both the elastic energy (Y0,mi) and 

fracture energy (GC,mi) of the pure mode projections of the mixed-mode traction-

separation law have to be computed (see Fig.4). Since the shape of the projected 

traction-separations laws is assumed as identic as the initial pure mode traction-

separation laws,  the elastic and fracture energies of the projected traction-separation 

laws (Y0,mi, GC,mi) can be derived from the expression of the pure mode elastic and 

fracture energies (Y0,i, GC,i) by changing the subscript i in mi. Considering the projected 

elastic and fracture energies (Y0,mi, GC,mi) as a function of the effective pure mode 

traction-separation thresholds (δ0,mi, δC,mi), both initiation/propagation criteria can be 

expressed in the form of: 

 
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
       (15) 

where Fk(δ0,mi,δC,mi,ki,δ0,i,δC,i,β) refers to a function of the effective initiation/propagation 

thresholds (δ0,mi, δC,mi), the mixed-mode ration (β), and the initial pure mode properties 

(ki, δ0,i, δC,i). 

Since simple algebraic expressions of the effective initiation/propagation thresholds 

cannot be always written [13], an iterative procedure based on the false position method 

is derived to compute those pure mode projections of the mixed-mode traction-

separation law. Assuming two initial sets of physically acceptable test values (a, b), the 

solution of the problem Fk(δ0,mi,δC,mi,ki,δ0,i,δC,i,β)=0 is iteratively approached using the 

root of the secant line between (a, F(a)) and (b, F(b)) (see Fig.5). The given procedure 

allows for the effective pure mode properties (δ0,mi, δC,mi) for various non-linear adhesive 

stress-strain evolution laws and (or) initiation/propagation criteria, to be computed from 

both the mixed-mode ratio (β) and the initial pure mode properties (ki, δ0,i, δC,i). 

 



3.2. Non-linear iterative convergence scheme (Numerical approach) 

 

3.1.1. Overview of the Newton-Raphson procedure. The Newton-Raphson procedure is 

a numerical procedure which allows for the root of non-linear equations to be iteratively 

approached. The method consists in building a vector series Xn converging towards the 

solution X of a non-linear problem F(X)=0. To allow for the next iteration Xn+1 to be 

computed from the knowledge of Xn, the function F(X) is approached by its first order 

Taylor expansion around Xn such that: 

      nnnnn FFF XXXXX   11 '0       (16) 

Assuming Xn+1 as satisfying F(Xn+1)≈0, the next iteration Xn+1 can be computed as 

follows: 

    nnnn FF XXXX
11 '
          (17) 

Where F’(X) refers to the tangent linear application associated with the function F(X). 

Then, the exact value of F(Xn+1) is recomputed and the function F(X) relinearized using 

its first order Taylor expansion around Xn+1. The given procedure is then repeated until 

the difference between two following iterations falls below a given convergence criterion. 

The recomputation of F(Xn+1) is generally referred as the projection step. In the case of 

linear applications, the derivative F’(X) is referred as the Jacobian matrix of F(X) at point 

X. 

One of the greatest advantages of the Newton-Raphson procedure is that the 

convergence rate near to the solution X is quadratic. However, the use of this procedure 

requires the computation of the tangent linear application at each convergence step, 

implying time-consuming computations, possible divergence of the algorithm and (or) 

numerical issues. 

Since the computation of the Newton-Raphson iteration Xn+1 has not necessarily to be 

approached using the first order Taylor expansion of F(X), numbers of authors suggests 

the use of other linear elastic applications. These modified procedures are referred as 

quasi Newton-Raphson procedures. 



 

3.1.2. Global equilibrium of the joint. Because of the FE like formulation of the BBe 

element, the global equilibrium of the bonded overlap can be expressed in the form of: 

extS FUUKU
TT   0          (18) 

where KS refers to the secant stiffness matrix, U to the vector of nodal displacements 

and Fext to the applied nodal forces defined in section 2. The given equilibrium condition 

derives from the application of the Principle of Virtual Work and applies to each BBe 

element. 

 

3.1.3. Adaptation of the Newton-Raphson procedure 

 

Adaptation of the general Newton-Raphson procedure. As presented in the previous 

section, the equilibrium condition of the BBe element is given in equation (18). Note that 

the given condition individually applies to each BBe element. The following demonstration 

then refers to the equilibrium condition of a unique BBe element and can be easily 

extended to the entire structure using the classical assembly FE rules. 

Assuming that δUT as kinematically acceptable, the aforementioned equilibrium can be 

expressed as: 

   ULUL
extint            (19) 

where Lint=KsU and Lext=Fext respectively refer to the internal reactions and the external 

forces acting on the BBe element. Note that in the general case, both Lint and Lext 

depend on the vector of nodal displacements U. Considering that no following forces1, 

such as load pressure or centrifugal forces, are applied to the joint, Lext does not depend 

on the vector of nodal displacements U. 

The expression of the element equilibrium can then be simplified as: 

  extint
LUL             (20) 

                                                 
1 Following forces – Forces that depend on the vector of nodal displacement (ie. load pressure, centrifugal 

forces, etc). 



Defining the linear application R as the difference between Lint and Lext, the research of 

the solution of the element equilibrium can be reduced to the research of the root of 

R(U)=0. For convenience, the linear application R(U) will be thereafter referred as the 

vector of imbalanced loads. 

    extint
LULU  0R          (21) 

The research of the solution of the non-linear problem R(U)=0 can thus be seen as a 

direct application of the Newton-Raphson procedure. Considering Un as an increasingly 

better estimation of the equilibrium solution U, the next iteration Un+1 can be computed 

as follows: 

    nnnn RR UUUU
11 '
          (22) 

Within the original Newton-Raphson procedure, the tangent linear application F’(X) has to 

be computed at each convergence iteration. In equation (22), R’(U) refers to the tangent 

linear application associatied with R(U). In the absence of following forces1, the tangent 

linear application R’(U) can be expressed as: 
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where the derivative of Lint refers to the Jacobian matrix of the linear application 

Lint=KSU (26). Note that if following forces1 are applied to the joint, the tangent linear 

application R’(U) cannot be reduced to the single derivative of Lint. 
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However, as the secant stiffness matrix KS depends on the BBe element nodal 

displacement U, the exact computation of the tangent linear application is not possible. 

The tangent linear application R’(U) can be at best approached using the definition of the 

tangent linear growth rate of Lint (equation (25)). 
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As a result of the complexity of the computation of the tangent linear application (the 

Newton-Raphson iterations must be sufficiently small to justify the use of the tangent 

linear growth rate of Lint), it is decided to focus on quasi Newton-Raphson procedures. 

 

Computation of the vector of imbalanced loads. Since the exact computation of the 

imbalance load vector highly determines the convergence of the series Un toward the 

equilibrium solution U, a particular attention has to be given to its correct estimation. As 

previously presented, the imbalance load vector is defined as the difference between the 

vectors of internal reactions Lint and applied forces Lext acting on the BBe element 

(equation (21)). 

The vector of internal reactions Lint=KSU can then be computed from both the secant 

stiffness matrix KS of the BBe element and the vector of nodal displacements U. 

However, the secant stiffness matrix is defined on a set of constant adhesive peel and 

shear moduli (see Section.2). Since the projection of the adhesive stresses can lead to 

dissimilar left side and right side adhesive secant stiffnesses (see Fig.6), it is decided to 

update the secant stiffness matrix using the averaged peel and shear moduli along the 

element. 

The vector Lext=Fext can in turn be computed from the external forces applied to the BBe 

element. Using the definition of the secant stiffness matrix KS, Lext can be expressed 

from the secant stiffness matrix at iteration Un-1 and the vector of the BBe element nodal 

displacements at iteration Un. 

Finally, the vector of imbalanced loads R(U) can be expressed in the form of: 

      nnnnR UUKUUKU SS  1
        (26) 

 



Implementation of modified Newton-Raphson procedures. By discretizing the adhesive 

overlap with an adequate number of BBe element, it is then possible to address the non-

linear response of the adhesive layer so that: 

 

1. Initialization of the first iteration of the vector of nodal displacements (U=0) 

2. Computation of the initial elastic stiffness matrix of each element 

3. Assembly of the initial elastic stiffness matrix of the entire structure (K) 

4. Assembly of the vector of applied loads (F) 

5. Initialization of the vector of imbalanced loads (R=-F) 

6. Computation of the first/next iteration of vector U (Un+1=Un-K-1R) 

7. Computation of the mixed-mode traction-separation parameters 

8. Projection of the adhesive stresses (T, S) with respect to the computed effective 

traction-separation properties. 

9. Computation of the updated secant stiffness matrix of each element 

10. Assembly of the updated secant stiffness matrix of the entire structure (K) 

11. Computation of the updated vector of imbalanced loads (R) 

(Repeat steps 6 to 11 until a given convergence criterion is satisfied) 

 

4. COMPARISON WITH FINITE ELEMENT PREDICTIONS  

 

4.1. Description of the Finite Element models 

 

The mechanical response of three adhesive joint specimens is investigated (ENF2, DCB3 & 

MMB4). Those specimens are characteristic of pure mode I, pure mode II and mixed-

mode adhesive solicitations, and have been widely used for the mechanical 

characterization of adhesive interfaces [23-24]. A schematic representation of each 

specimen is presented in Fig.7. The geometry of each specimen is balanced. The 

                                                 
2 ENF – End Notched Flexure specimen. Allows for the pure mode II adhesive characterization. 
3 DCB – Double Cantilever Beam specimen. Allows for the pure mode I adhesive characterization. 
4 MMB – Mixed Mode Bending specimen. Allows for mixed-mode I/II adhesive characterization. 



simulations are performed using SAMCEF FE Code v14-1.02. Both adherends are 

modeled as facing purely linear elastic deformations only. To obtain a width independent 

distribution of stresses, the y-axis displacement field is fixed to zero. To account for the 

Poison’s effect, the effective properties of each adherend are here considered (see 

Tab.4). The adhesive layer is modeled using a bi-linear cohesive traction-separation law. 

Both linear energetic initiation and propagation criteria are assumed (see Tab.5). 

The adherends are meshed using 3D brick SAMCEF type T008 elements. The degree of 

the elements is 1. SAMCEF type T008 elements have linear interpolation functions and 9 

internal modes (ie. 8 nodes and 24 degrees of freedom). The normal integration scheme 

is chosen. The adhesive interface is meshed using 2D cohesive interface SAMCEF type 

T146 elements. The degree of the elements is 1. SAMCEF type T146 elements have linear 

interpolation functions and no internal modes (ie. 4 nodes and 8 degrees of freedom). 

Because of numerical convergence issues, the Gauss-Lobatto integration scheme is here 

chosen [27]. Loads and boundary conditions are applied to the neutral fiber of each 

adherend. 

 

4.2. Convergence of the Finite Element models 

 

To allow for the comparison of converged results, the mesh of each FE models is 

optimized so that the solution obtained is independent on the mesh refinement. The 

optimization of the mesh is based on the following hypotheses: (i) the mesh of the 

specimen is uniformly distributed over the length, the width and the thickness of the 

adherends, (ii) the mesh of the upper adherend, the adhesive interface, and the lower 

adherend are corresponding, (iii) the aspect ratio of each element of the structure is 

equal to 1. It is shown from hypotheses (i) to (iii) that the mesh of the entire specimen is 

then dependent on the number of elements within the length of the adhesively bonded 

overlap only (see Appendix.2).  

 

4.3. Description of the semi-analytical models 



 

A schematic representation of the semi-analytical models is presented in Fig.8. The 

adhesive overlap is meshed using n uniformly distributed BBe elements. The outer 

adherends are meshed using a unique Euler-Bernoulli beam element. Both adherends are 

modeled as monolithic beams. The adhesive layer is modeled using a bi-linear cohesive 

traction-separation law. Both linear energetic initiation and propagation criteria are 

assumed. 

 

4.4. Convergence of the semi-analytical models 

 

As presented in section 2, when facing purely linear elastic deformations, the adhesive 

overlap can be modeled using a unique 4-nodes BBe element. However, the 

aforementioned procedure needs the adhesive overlap to be meshed with an adequate 

number of BBe elements to address the correct non-linear behavior of the adhesive layer. 

Since the adhesive overlap has to be meshed, the results obtained can depend on its 

refinement. To allow for the comparison of converged results, the overlap mesh is then 

optimized so that the solution obtained is independent on its refinement (see 

Appendix.2). 

 

4.5. Comparison with Finite Element predictions 

 

The End-Notched Flexure specimen. Fig.9 presents the comparison between semi-

analytical results and Finite Element predictions in term of load versus displacement 

curve (a), distribution of adhesive stresses (b) and distribution of the damage variable 

(c) along the overlap. Good agreement is shown with Finite Element predictions. 

 

The Double Cantilever Beam specimen. Fig.10 presents the comparison between semi-

analytical results and Finite Element predictions in term of load versus displacement 



curve (a), distribution of adhesive stresses (b) and distribution of the damage variable 

(c) along the overlap. Good agreement is shown with Finite Element predictions. 

 

The Mixed-Mode Bending specimen. Fig.11 presents the comparison between semi-

analytical results and Finite Element predictions in term of load versus displacement 

curve (a), distribution of adhesive stresses (b) and distribution of the damage variable 

(c) along the overlap. Good agreement is shown with Finite Element predictions. 

 

6. CONCLUSION AND DISCUSSION 

 

In the present paper, an original procedure derived from the FE method is adapted to the 

particular formulation of the BBe element. The procedure allows for various non-linear 

adhesive behaviors to be accounted for (ie. softening, plastic, etc) with no restriction on 

the specimen geometry. A general procedure allowing for the effective mixed-mode I/II 

properties of the adhesive layer to be accounted for is presented. A particular attention is 

given to the modeling of 3 types of cohesive damage and 1 perfectly plastic evolution 

laws (see Fig.3). However the aforementioned procedure is not limited to these particular 

behaviors only. Note that the procedure has been recently adapted to coupled 

elastoplastic-damaging behaviors and extended to user-defined adhesive traction-

separation laws. 

The mechanical response of three classical Fracture Mechanics adhesive specimens is 

investigated (ie. ENF2, DCB3 & MMB4). It is seen from Fig.9-11 that semi-analytical 

results are in extremely good agreement with classical 3D Finite Element strength 

predictions (during both initiation and propagation phases). The suggested simplified 

joint kinematic is then shown as consistent with the simulation of the mechanical 

response of the investigated specimens. Since the ENF2, DCB3 and MMB4 specimens are 

representative of either pure mode I, pure mode II and mixed-mode I/II adhesive 

solicitations, it is legitimate to think that the simplified joint kinematic will be consistent 



with the mechanical analysis of other pure mode or mixed-mode I/II adhesive joint 

specimens, such as bSLJ5, IbSLJ6, CLS7, T-Stiff8, etc. 

When facing purely linear-elastic deformations, the semi-analytical results are shown as 

independent on the mesh refinement (see Fig.A2-1 and Fig.A2-2). This independency on 

the mesh refinement is due to the specific formulation of the BBe element and allows for 

linear elastic bonded overlaps to be modeled using a unique 4-nodes BBe. However, 

when facing non-linear deformations, the semi-analytical results are shown as dependent 

on the mesh refinement. To account for the non-linear behavior of the adhesive layer the 

adhesive overlap has then to be meshed with an adequate number of BBe elements. 

However, it is shown that the results obtained are rapidly converging toward an 

asymptote (see Fig.A2-3 and Fig.A2-4). On the contrary, the 3D Finite Element 

predictions are shown as dependent on the mesh refinement in the case of both linear-

elastic and non-linear deformations (see Fig.A2-5, Fig.A2-6, Fig.A2-7, and Fig.A2-2). 

Moreover, in the case of non-linear analyses, FE results are shown as not clearly 

converging toward an asymptote (see Fig.10-11). According to the authors of the present 

paper, these slight variations of the FE predictions result from the choice of inherent 

convergence criterion (ie. Newton-Raphson iteration scheme). 

By the suggested simplified joint kinematic, it is shown that the mechanical response of a 

large range of bonded overlaps can be simulated using a restricted number of elements 

(ie. only one when facing linear-elastic deformations only). Each of those elements is 

specifically formulated and allows for the modeling of adhesively bonded overlaps at low 

computational costs. This approach based on the use of BBe elements thus takes the 

advantage of the flexibility of FE methods (ie. wide application range, simple assembly 

procedure, account of the boundary conditions, specific linear and non-linear resolution 

schemes, etc.) and the robustness of theoretical approaches (ie. analytical resolution of 

the set of governing differential equations, results independent on the mesh refinement 

                                                 
5 bSLJ – balanced Single-Lap Joint 
6 IbSLJ – imbalanced Single-Lap Joint 
7 CLS – Cracked-Lap Shear 
8 T-Stiff – T-Stiffener 



when facing linear-elastic adhesive deformations, results shown as rapidly converging 

toward an asymptote when facing non-linear adhesive deformations, etc.). 

Since no simplifying assumptions are made on the joint kinematic in classical 3D FE 

analyses, converged FE results generally imply highly refined meshes and time-

consuming computations. However the use of specially formulated elements, such as BBe 

elements, allows for the mechanical analyses of such specimens with a restricted number 

of elements, and so degrees of freedom. It is shown from Fig.12 that the gain in term of 

degrees of freedom involved in the problem can vary from a factor 15 to 35, depending 

on the specimen geometry (ie. ENF2, DCB3 and MMB4). 

Using BBe elements as elementary bricks of larger models also offer the possibility to 

simulate more complex structures involving single-lap bonded overlaps at low 

computational costs. 

As shown as consistent with classical FE predictions of either pure mode I, pure mode II 

and mixed-mode I/II adhesive specimens, the suggested approach thus finds it interest 

in many extensive parametric studies and/or experimental characterization techniques of 

adhesively bonded joints (ie. allowing fast and reliable adhesive stress analyses for 

extensive parametric studies and/or inverse characterization techniques). 
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APPENDIX 1 - STIFFNESS MATRIX OF A SINGLE-LAP JOINT 

 

A1.1. Stiffness matrix of the outer adherends 

 

The equations of local equilibrium of beams outside the overlap are written as follows: 
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In addition to the constitutive equations of adherends (equation (2)), the stiffness matrix 

of a beam element – denoted KBeam – can be computed following the same method as 

the one described in section 2. The stiffness matrix of the single beam element can be 

finally written as follows: 
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A1.2. Stiffness matrix of the single lap joint 

 

The stiffness matrix of the entire single-lap joint is then assembled from the elementary 

stiffness matrices KBBe and KBeam, according to the classical FE rules (see Fig.A-1). 

 



 
 

Figure A1-1. Assembly of the single-lap joint configuration. Linear elastic 1D-beam 

model. 
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APPENDIX 2 – CONVERGENCE OF THE NUMERICAL RESULTS 

 

A2.1. Convergence of the Finite Element models 

 

Convergence of the linear-elastic FE results. Since the DCB3 specimen has been largely 

shown as the critical configuration in term of convergence of the numerical results, the 

results are then presented for this configuration only. Fig.A2-1 then shows the evolution 

of the maximum displacement at loaded nodes as a function of the number of elements 

within the length of the adhesively bonded overlap of the DCB3 specimen facing linear-

elastic deformations only. Fig.A2-2 shows the evolution of the adhesive peel and shear 

stresses at crack tip as a function of the number of elements within the length of the 

adhesively bonded overlap of the same specimen. It is seen from Fig.A2-1 and Fig.A2-2 

that the linear elastic analyses clearly converge towards an asymptote. 

 

Convergence of the non-linear FE results. Fig.A2-3 shows the evolution of the 

maximum displacement at loaded nodes as a function of the number of elements within 

the length of the adhesively bonded overlap of the DCB3 specimen facing non-linear 

adhesive deformations. Fig.A2-4 shows the evolution of the adhesive peel and shear 

stresses at crack tip as a function of the number of elements within the length of the 

adhesively bonded overlap of the same specimen. In comparison to linear elastic 

analyses, the non-linear solutions do not appear as clearly converging toward an 

asymptote (see Fig.A2-3 and Fig.A2-4). However, and since SAMCEF uses a Newton-

Raphson based procedure to account for the non-linear behavior of the adhesive layer, 

the converged results can be noised by the inherent convergence criterion. The number 

of elements within the length of the overlap is then fixed to 200 for both the ENF2, the 

DCB3, and the MMB4 specimens. 

 

A2.2. Convergence of the semi-analytical models 

 



Convergence of the linear-elastic semi-analytical results. Fig.A2-5 shows the evolution 

of the maximum displacement at loaded nodes as a function of the number of elements 

within the length of the adhesively bonded overlap of the DCB3 specimen facing linear-

elastic deformations only. Fig.A2-6 shows the evolution of the adhesive peel and shear 

stresses at crack tip as a function of the number of elements within the length of the 

adhesively bonded overlap of the same specimen. It is seen from Fig.A2-5 and Fig.A2-6 

that the linear elastic semi-analytical analyses are clearly independent on the mesh 

refinement. 

 

Convergence of the non-linear semi-analytical results. Fig.A2-7 shows the evolution of 

the maximum displacement at loaded nodes as a function of the number of elements 

within the length of the adhesively bonded overlap of the DCB3 specimen facing non-

linear adhesive deformations. Fig.A2-8 shows the evolution of the adhesive peel and 

shear stresses at crack tip as a function of the number of elements within the length of 

the adhesively bonded overlap of the same specimen. In comparison to linear elastic 

analyses, the non-linear solutions appear as depending on the mesh refinement. 

However, it is seen from Fig.A2-7 and Fig.A2-8 that the non-linear solutions rapidly 

converge towards an asymptote. The number of BBe elements within the length of the 

overlap is then fixed to 200 for both the ENF2, the DCB3, and the MMB4 specimens. 

 

  



 

 

 

 

 
 

DCB specimen 

 

Figure A2-1. Evolution of the maximum displacement at loaded nodes as a function of 

the number of elements within the length of the adhesive bondline. Convergence of the 

solution facing linear-elastic deformations. Convergence of the Finite Element models. 

 

 

 

 

 

 

 
 

DCB specimen 

 

Figure A2-2. Evolution of the adhesive peel and shear stresses at crack tip as a function 

of the number of elements within the length of the adhesive bondline. Convergence of 

the solution facing linear-elastic adhesive deformations. Convergence of the Finite 

Element models. 
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Figure A2-3. Evolution of the maximum displacement at loaded nodes as a function of 

the number of elements within the length of the adhesive bondline. Convergence of the 

solution facing non-linear adhesive deformations. Convergence of the Finite Element 

models. 

 

 

 

 

 

 
 

DCB specimen 

 

Figure A2-4. Evolution of the adhesive peel and shear stresses at crack tip as a function 

of the number of elements within the length of the adhesive bondline. Convergence of 

the solution facing non-linear adhesive deformations. Convergence of the Finite Element 

models. 
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Figure A2-5. Evolution of the maximum displacement at loaded nodes as a function of 

the number of elements within the length of the adhesive bondline. Convergence of the 

solution facing linear-elastic adhesive deformations. Convergence of the semi-analytical 

models. 
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Figure A2-6. Evolution of the adhesive peel and shear stresses at crack tip as a function 

of the number of elements within the length of the adhesive bondline. Convergence of 

the solution facing linear-elastic adhesive deformations. Convergence of the semi-

analytical models. 
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Figure A2-7. Evolution of the maximum displacement at loaded nodes as a function of 

the number of elements within the length of the adhesive bondline. Convergence of the 

solution facing non-linear adhesive deformations. Convergence of the semi-analytical 

models. 
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Figure A2-8. Evolution of the adhesive peel and shear stresses at crack tip as a function 

of the number of elements within the length of the adhesive bondline. Convergence of 

the solution facing non-linear adhesive deformations. Convergence of the semi-analytical 

models. 
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Figures 

 

Nj : Normal force of adherend (j) [N] ; Vj : Shear force of adherend (j) [N] ; Mj : Bending moment of adherend 
(j) [Nm] ; T : Adhesive shear stress [Mpa] ; S : Adhesive peel stress [Mpa] ; 

 

Figure 1. Schematci representation of the local equilibrium of the bonded adherends. 

Linear elastic 1D-beam model. 

 

 

uj : normal displacement of adherend (j) [mm] ; wj : transverse displacement of adherend (j) [mm] ; θj : 
bending angle of adherend (j) [rad] ; Nj : Normal force of adherend (j) [N] ; Vj : Shear force of adherend (j) ; 

Mj : Bending moment of adherend (j) [Nm] ; 

 

Figure 2. Definition of the nodal displacements and the nodal forces acting on the BBe 

element. Linear elastic 1D-beam model. 
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Figure 3. Restriction to bi-linear (a), exponential (b), polynomial (c), and perfectly 

plastic (d) softening behavior. However the procedure is not limited to these particular 

behaviors only. Cohesive zone model. 
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Figure 4. Graphical representation of the mixed-mode parameters. Description of the 

mixed-mode I/II adhesive behavior. 

 

 

 

Tab 1. Examples of initiation/propagation mixed-mode criteria. Description of the pure 

mode adhesive behavior. 

 

Linear energetic criterion 
 

[12] 

Benzeggagh-Kenane criterion 
 

[24] 

𝐺𝐶,𝑚𝐼

𝐺𝐶,𝐼

+
𝐺𝐶,𝑚𝐼𝐼

𝐺𝐶,𝐼𝐼

− 1 = 0 𝐺𝐶,𝐼(𝐺𝐶,𝐼𝐼 − 𝐺𝐶,𝐼) (
𝐺𝐶,𝑚𝐼𝐼

𝐺𝐶,𝑚𝐼 + 𝐺𝐶,𝑚𝐼𝐼

)

𝜂

− (𝐺𝐶,𝑚𝐼 + 𝐺𝐶,𝑚𝐼𝐼) = 0 

Quadaratic energetic criterion 
 

[25] 

JR Reeder criterion 
 

[23] 

(
𝐺𝐶,𝑚𝐼
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)
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+ (
𝐺𝐶,𝑚𝐼𝐼
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− 1 = 0 𝐺𝐶,𝐼 +  𝜌 (
𝐺0,𝑚𝐼𝐼

𝐺0,𝐼𝐼

) + 𝜐 (
𝐺0,𝑚𝐼𝐼

𝐺0,𝐼𝐼
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2

− (𝐺𝐶,𝑚𝐼 + 𝐺𝐶,𝑚𝐼𝐼) = 0 
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Mode I 

Pure 
Mode II 

Shearing deformation [δII] 

Peeling deformation [δI] 

Equivalent stress [Mpa] 

Mixed mode ratio [β] 

Mixed 
mode 

Mixed mode deformation [δm] 

Projection of the mixed 
mode on pure mode II 

Initiation criteria 

Propagation criteria 

Projection of the mixed 
mode on pure mode I 

Pure 
Mode i 

σi [Mpa] 

Projection of the mixed 
mode on pure mode i 

σ0,i 

σ0,mi 

δ0,mi δ0,i δC,mi δC,i 

δi 

Initial slope : ki 



Tab 2. Mathematical representation of classical softening behaviors. Description of the 

pure mode adhesive behavior. 

 

i=(I,II) 

Linear elastic 

representation 

(δi<δ0,i) 

Non-linear softening 

representation 

(δ0,i<δi<δC,i) 

Linear elastic 𝜎𝑖(𝛿𝑖) = 𝑘𝑖𝛿𝑖 N.A 

Bi-linear cohesive 

damage 
𝜎𝑖(𝛿𝑖) = 𝑘𝑖𝛿𝑖 𝜎𝑖(𝛿𝑖) = [1 − (1 −

𝛿0,𝑖(𝛿𝐶,𝑖 − 𝛿𝑖)

𝛿𝑖(𝛿𝐶,𝑖 − 𝛿0,𝑖)
)] 𝑘𝑖𝛿𝑖 

Polynomial 

cohesive damage 
𝜎𝑖(𝛿𝑖) = 𝑘𝑖𝛿𝑖 𝜎𝑖(𝛿𝑖) = [1 − (1 −

𝛿0,𝑖(𝛿𝑐,𝑖
𝑛 − 𝛿𝑖

𝑛)

𝛿𝑖(𝛿𝑐,𝑖
𝑛 − 𝛿0,𝑖

𝑛 )
)] 𝑘𝑖𝛿𝑖 

Exponential 

cohesive damage 
𝜎𝑖(𝛿𝑖) = 𝑘𝑖𝛿𝑖 𝜎𝑖(𝛿𝑖) = [1 − (1 − 𝑒𝑥𝑝(1 − 𝛿𝑖 𝛿0,𝑖⁄ ))] 𝑘𝑖𝛿𝑖 

Perfectly plastic 

cohesive damage 
𝜎𝑖(𝛿𝑖) = 𝑘𝑖𝛿𝑖 𝜎𝑖(𝛿𝑖) = [1 − (1 −

𝛿0,𝑖

𝛿𝑖
)] 𝑘𝑖𝛿𝑖 

 

 

 

Tab 3. Mathematical description of the elastic energy (Y0,i) and the fracture energy (GC,i) 

of pure mode i (i=II). Description of the pure mode adhesive behavior. 

 

i=(I,II) 
Elastic 

Energy (Y0,i) 

Fracture 

Energy (GC,i) 

Linear elastic 𝑌0,𝑖 =
1

2
𝑘𝑖𝛿0,𝑖

2  N.A 

Bi-linear cohesive 

damage 
𝑌0,𝑖 =

1

2
𝑘𝑖𝛿0,𝑖

2  𝐺𝐶,𝑖 = 𝑌0,𝑖 [1 + (
𝛿𝐶,𝑖

𝛿0,𝑖
− 1)] =

1

2
𝑘𝑖𝛿0,𝑖𝛿𝐶,𝑖 

Polynomial 

cohesive damage 
𝑌0,𝑖 =

1

2
𝑘𝑖𝛿0,𝑖

2  𝐺𝐶,𝑖 = 𝑌0,𝑖 [1 + 2
𝛿𝐶,𝑖

𝑛 (𝛿𝐶,𝑖 − 𝛿0,𝑖)

𝛿0,𝑖(𝛿𝐶,𝑖
𝑛 − 𝛿0,𝑖

𝑛 )
(1 −

1

𝑛 + 1

(𝛿𝐶,𝑖
𝑛+1 − 𝛿0,𝑖

𝑛+1)

𝛿𝐶,𝑖
𝑛 (𝛿𝐶,𝑖 − 𝛿0,𝑖)

)] 

Exponential 

cohesive damage 
𝑌0,𝑖 =

1

2
𝑘𝑖𝛿0,𝑖

2  𝐺𝐶,𝑖 = 𝑌0,𝑖 [5 − 2 (
𝛿𝐶,𝑖

𝛿0,𝑖
+ 1) 𝑒𝑥𝑝 (1 −

𝛿𝐶,𝑖

𝛿0,𝑖
)] 

Perfectly plastic 

cohesive damage 
𝑌0,𝑖 =

1

2
𝑘𝑖𝛿0,𝑖

2  𝐺𝐶,𝑖 = 𝑌0,𝑖 [1 + 2 (
𝛿𝐶,𝑖

𝛿0,𝑖
− 1)] 



 
 

Figure 5. False position method. Computation of the effective initiation/propagation 

properties of the adhesive layer. Combination of the pure modes adhesive behaviors. 

 

 

 

Figure 6. Dissimilar left side and right side adhesive secant stiffnesses. Computation of 

the secant stiffness matrix KS. Adaptation of the Newton-Raphson procedure. 

Computation of the vector of imbalanced loads. 
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Figure 7. Schematic representation of ENF, DCB & MMB adhesive specimens. Description 

of the Finite Element models. 
 

 

Tab 4. Adherend elastic properties. Initial and effective* mechancial properties. 

Description of the Finite Element models. 

 

Adherends elastic properties. 

E 74200   Mpa E* 66120.   Mpa 

G 27900   Mpa G* 24860.   Mpa 

ν 0.34 ν* - 
 

 

Tab 5. Adhesive mechanical properties. Description of the Finite Element models. 

 

 

 

 

 

 

 

 

 

Adhesive properties. 

kI 185   Mpa kII 65   Mpa 

Y0,I 2.      J/mm2 Y0,II 2.    J/mm2 

GC,I 4.      J/mm2 GC,II 5.    J/mm2 

Initiation 
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Linear 
energetic 

Propagation 
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Linear 
energetic 

ENF
1
 : 

DCB
2
 : 
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3
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Adhesive interface 

Adhesive interface 
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Figure 8. Schematic representation of ENF, DCB & MMB adhesive specimens. Description 

of the semi-analytical models. 

 

 
 

Load versus displacement (a) 
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Adhesive shear and stress distributions (b) 

 

 
 

Distribution damage variable (c) 

 

Figure 9. Comparison between semi-analytical results and Finite Element analyses. End-

Notched Flexure specimen. Confrontation with classical Finite Element analyses. 
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Adhesive shear and stress distributions (b) 
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Figure 10. Comparison between semi-analytical results and Finite Element analyses. 

Double Cantilever Beam specimen. Confrontation with classical Finite Element analyses. 
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Adhesive shear and stress distributions (b) 
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Figure 11. Comparison between semi-analytical results and Finite Element analyses. 

Mixed-Mode Bending specimen. Confrontation with classical Finite Element analyses. 

 

 
Figure 12. Comparison between semi-analytical and Finite Element converged 

predictions. Comparison of the total number of degrees of freedom. 
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