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Abstract—We estimate the power and efficiency of a thermal 

energy harvesting thermodynamic Brayton cycle using a first and 

second order magnetocaloric materials as active substance. The 

thermodynamic cycle was computed using a simple thermal 

exchange model and an equation of state deduced from a 

phenomenological Landau model. For the first and second order 

materials, narrow and high frequency cycles are optimum and give 

similar performances. Considering technological issues hindering 

the increase of frequency, we introduced a more detailed approach 

where we take into account the time needed to switch the material 

between two heat reservoirs. We show that the first order material 

equation of state leads thermodynamic cycle shape keeping it 

closer to the optimum cycle. Conditions to improve the 

performance of second order materials are discussed. In addition, 

we infer key remarks for prototype design regarding the power 

density and efficiency reachable in different configurations. 

 

Index Terms—magnetocaloric materials, thermal energy 

harvesting, thermomagnetic cycle, simulation. 

 

The supply of waste heat represents a huge and freely available 

amount of energy that makes it a key target for energy 

conversion technologies, notwithstanding the small 

thermodynamic efficiency to be expected because of the limited 

working temperature difference. Energy harvesting systems 

from waste heat based on thermomagnetic generation (TMG) 

have been studied since the 1948 paper by Brillouin and 

Iskenderian [1]. The new generation of magnetocaloric 

materials (MCM) raised a renewed interest towards this 

technology [2]. Recently we published numerical simulations 

of isofield-isotemperature and adiabatic-isotemperature cycles 

using a finite-time thermodynamics approach [3] (i.e. where 

thermal exchange is taken into account in a non-quasistatic 

regime). This allowed to estimate the efficiency at maximum 

power (EMP) using the first and second order phase transition 

magnetocaloric materials as active substance. Our preliminaries 

results made possible the comparison with thermoelectric 

generators [4]–[6], showing a similar power density for 

temperature span below 10°C, but a much higher relative 

efficiency from 0.05 to 0.2 is attained in the case of 

thermomagnetic cycles. However, these cycles are still highly 

idealized as we assume a perfect control of their shapes based 

on field feedback. Indeed, the isotemperature transformations 

(i.e. a finite-time heat exchange where the temperature 

difference between the engine and the source is kept constant) 

used in [3] to work out best efficiency can be hardly achieved 

in an actual device that would more easily work on an isofield-

adiabatic cycle (i.e. a Brayton cycle). 

Here we will show how the constitutive relation (equation of 

state) of the material leads the actual shape of a finite-time 

thermodynamic cycle. Our main result is that in the first order 

MCM the isofield transformation stays closer to the 

isotemperature one allowing a significant efficiency 

improvement with respect to the second order MCM. Using the 

method presented in [3], we study the potential benefit of the 

first order MCM in terms of power density and efficiency as 

compared to the second order MCM for a cycle with adiabatic 

and isofield processes. In other words, we study how the shape 

of the cycle resulting from the state function of the MCM 

affects the efficiency at maximum power of the system. 

I. SYSTEM AND MATERIAL MODELING 

Two approaches are commonly envisaged to harvest the 

magnetic energy produced by cycling of the active material 

around a temperature induced ferromagnetic-paramagnetic 

transition. The first one uses the magnetization change in time 

to drive electric current [7], [8], whereas the second one uses 

the mechanical work associated with the difference of magnetic 

force due to magnetization change [9], [10]. Because of design 

constraints, a thermodynamic cycle composed by two isofield 

and two adiabatic processes (Brayton cycle) is a common 

choice for systems of the latter class. 

Here we compute the thermodynamic cycle following [3], 

namely using an equation of state deduced from a 

phenomenological Landau model with magnetoelastic coupling 

[12] (for a review of similar approaches see also [11]). This 

model was developed to describe the first order phase transition 

in the Mn1.3Fe0.65P0.5Si0.5 magnetocaloric compound. The 

equation of state is presented in a dimensionless form, and the 

scale parameters connecting the internal variables with 

observed temperature, field and magnetization are roughly 

fitted to the real material. As for the second order transition, we 

use the fact that the magnetic behavior of this thermodynamic 

system is affected by the Landau coefficient related to strain. 

By modifying this coefficient, we can change the order of 

temperature-induced phase transition. Therefore, we slightly 

modify this parameters to be at the limit where we obtain a 

continuous transition i.e. a second order transition The obtained 

equation of state still may (or may not) correspond to a real 

material as, depending on the chemical composition, both first 

and second order transitions are observed in the Mn-Fe-P-Si 

system. In any case, this comparison is useful to emphasize the 

differences between sharp and smooth phase transitions. 

Because Landau model does not fit the total thermal capacity, a 

logarithmic term 𝐶 ln(𝑇) is added to the entropy to introduce a 

constant 𝐶 (lattice contribution) in the thermal capacity [3]. 

Here we use 𝐶 values similar to those encountered in most 

MCM (3.9 𝐽 ∙ 𝐾−1 ∙ 𝑐𝑚−3).  

Figure 1 and Figure 2 show two examples of thermodynamic 

Brayton cycles, calculated using the equation of state of the first 

order MCM, represented in the 𝑇(𝑆) (temperature-entropy) and 

𝑀(𝐻) (magnetization-field) planes, respectively. In Figure 2, 
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during adiabatic magnetization (process 1), the cycle crosses 

the isotherms (thin lines) as the temperature of the MCM 

increases. Figure 3 shows an example of the second order 

MCM. 

 

Figure 1. Two Brayton cycles on T(S) diagram for the first order MCM with 

isofields in thin lines. Numbers from 1 to 4 indicate respectively the adiabatic 
magnetization, the isofield heat exchange with the hot reservoir, the adiabatic 

demagnetization, the isofield heat exchange with the cold reservoir. 

 

 Figure 2. 𝑀(𝐻) cycle for a first order material. Thin lines represent isotherms 

from 291.91 𝐾 to 300.07 𝐾 with step of 0.48 𝐾. Numbers from 1 to 4 have the 

same meaning as in Fig. 1. The dashed thick lines represent a loaded cycle as 

described in section IV. 

 

Figure 3. Cycle on 𝑀(𝐻) diagram for the second order MCM with isotherms 

from 291.28 𝐾 to 303.28 𝐾 with step of 1.2 𝐾, numbers 1 to 4 have the same 

meaning as in Fig. 1. 

The MCM exchanges heat with reservoirs at the temperature 

𝑇𝑟𝑒𝑠 , where 𝑇𝑟𝑒𝑠 = 𝑇ℎ𝑜𝑡  or 𝑇𝑟𝑒𝑠 = 𝑇𝑐𝑜𝑙𝑑  when it is in contact 

with the heat source or with the heat sink, respectively. The heat 

exchange model, used to mimic the finite-time heat exchange, 

is given by 

𝛿𝑄 = [−𝑘ℎ𝑖𝑔ℎ(𝑇 − 𝑇𝑟𝑒𝑠)]𝑑𝑡 (1) 

where the heat exchange coefficient 𝑘ℎ𝑖𝑔ℎ is chosen as 1  𝑊 ∙

𝑐𝑚−3 ∙ 𝐾−1. It is estimated by considering a 1 𝑚𝑚 thickness 

sheet of MCM separated from the reservoir by an air layer of 

25 𝜇𝑚 due to bad mechanical contact associated with surface 

roughness. The thermal conductance of a typical metallic MCM 

is much higher than the air gap conductance. 

II. THERMODYNAMIC SIMULATIONS 

Considering the MCM at thermodynamic equilibrium 𝛿𝑄 =
𝑇𝑑𝑠 and the equation of state 𝑠(𝑇, 𝐻), integration of (1) gives 

the time of exchange 𝑡𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒: 

𝑡𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 = ∫ 𝑑𝑡
𝑐𝑦𝑐𝑙𝑒

=  ∫
𝑇𝑑𝑠

[−𝑘ℎ𝑖𝑔ℎ(𝑇 − 𝑇𝑟𝑒𝑠)]𝑐𝑦𝑐𝑙𝑒

 (2) 

In the first approximation we assume 𝑡𝑝𝑒𝑟𝑖𝑜𝑑 = 𝑡𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 , 

namely the time 𝑡𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 spent along the adiabatic processes 

is assumed to be negligible. For example, if the temperature was 

fixed during the isofield process, then the time of exchange 

would be proportional to the entropy span. Therefore, the size 

of the cycle is correlated to the time of exchange, i.e. wider 

cycle has greater exchange time (dashed lines in Figure 2 show 

a tiny cycle associated with small 𝑡𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒). Given the power 

density, the maximum relative efficiency 𝜂𝑟𝑒𝑙 , with respect to 

the Carnot efficient 𝜂𝐶𝑎𝑟𝑛𝑜𝑡 , is achieved by minimizing the 

entropy production 𝑠𝑖 as shown in the following equation: 

𝜂𝑟𝑒𝑙 =
𝜂

𝜂𝐶𝑎𝑟𝑛𝑜𝑡

= 1 −
𝑠𝑖𝑇𝑐𝑜𝑙𝑑

𝜂𝐶𝑎𝑟𝑛𝑜𝑡𝑄ℎ𝑜𝑡

 (3) 

where 𝑄ℎ𝑜𝑡 is the heat exchanged with the hot reservoir. Here 

we take into account only the entropy production associated 

with the finite-time heat exchange (i.e. the hysteresis and 

kinetics associated with the magnetic transition are neglected, a 

state of things often referred to as endoreversibility), which 

defines the degree of departures from thermal equilibrium. We 

have: 

𝛿𝑠𝑖(𝑇, 𝐻) = (
1

𝑇
−

1

𝑇𝑟𝑒𝑠(𝐻)
) 𝛿𝑄(𝑇, 𝐻) (4) 

Using the heat exchange model (1), the entropy produced is 

given by the following expression: 

𝑠𝑖 = 𝑘ℎ𝑖𝑔ℎ ∫
(𝑇𝑟𝑒𝑠(𝑡) − 𝑇(𝑡))

2

𝑇𝑟𝑒𝑠(𝑡)𝑇(𝑡)
𝑑𝑡

𝑡𝑝𝑒𝑟𝑖𝑜𝑑

 (5) 

therefore the efficiency and power are deduced from (3) and 

𝑃 = 𝜂𝑟𝑒𝑙𝜂𝐶𝑎𝑟𝑛𝑜𝑡𝑄ℎ𝑜𝑡/𝑡𝑝𝑒𝑟𝑖𝑜𝑑 (6) 

It can be shown using (5) that 𝑠𝑖 is minimum when the heat 

exchange takes place at a constant temperature difference 

(HECTD). This means that efficiency is maximum when the 

difference between the temperature 𝑇(𝑡) of the MCM as a 

function of time t and the temperature of the reservoirs, 𝑇ℎ𝑜𝑡  or 

𝑇𝑐𝑜𝑙𝑑 , respectively for the hot and cold reservoirs, are constant 

during the heat exchange process. That is why we use the term 

isotemperature rather than isotherm to name this process. 
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III. PARAMETERS AFFECTING THE POWER DENSITY AND THE 

EFFICIENCY 

A sound comparison between materials with the first and 

second order transitions needs a careful definition of the 

relevant parameters affecting the efficiency and the power 

density. We first define the maximum power conditions and 

eventually work out the efficiency at maximum power (EMP). 

In section IV we will argue that, when the period 𝑡𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒  

tends to zero, all the cycles approach the isotemperature and 

isofield ones, whatever the order of the transition. For this class 

of cycles we worked out an analytical expression in [3], 

allowing easy determination of the relevant parameters. The 

power will be considered negative using standard 

thermodynamic convention. Maximum power is achieved when 

thermodynamic cycles are centered between the temperatures 

of the reservoirs to ensure the same driving temperature 

difference 𝑇 − 𝑇𝑟𝑒𝑠 during heat exchange processes. Using the 

results presented in [3], we write: 

𝜂𝑟𝑒𝑙 =
Δ𝑇𝑎𝑑𝑖𝑎

Δ𝑇𝑟𝑒𝑠

 (7) 

𝑃(𝜂𝑟𝑒𝑙) = −
𝛥𝑇𝑟𝑒𝑠

2 𝑘ℎ𝑖𝑔ℎ

4𝑇ℎ𝑜𝑡

𝜂𝑟𝑒𝑙(1 − 𝜂𝑟𝑒𝑙) (8) 

Here Δ𝑇𝑎𝑑𝑖𝑎(𝑇, 𝐻𝑓 , 𝐻𝑖), where 𝐻𝑓 and 𝐻𝑖  are the final and initial 

applied fields, depends on the equation of state [13] and 

Δ𝑇𝑟𝑒𝑠 =  𝑇ℎ𝑜𝑡 − 𝑇𝑐𝑜𝑙𝑑 . Indeed, the maximum power is achieved 

when the temperature span of the reservoir is twice the adiabatic 

temperature change (i.e. Δ𝑇𝑎𝑑𝑖𝑎 = Δ𝑇𝑟𝑒𝑠/2). As long as the 

field available is strong enough to reach this  condition, the 

power increases proportionally to 𝛥𝑇𝑟𝑒𝑠
2  with 

𝑃 = −
𝛥𝑇𝑟𝑒𝑠

2 𝑘ℎ𝑖𝑔ℎ

16𝑇ℎ𝑜𝑡

 (9) 

keeping the relative efficiency around 50 %. This is a key 

technological issue inciting researches towards materials 

showing high Δ𝑇𝑎𝑑𝑖𝑎   under low applied fields as in an actual 

device fields higher than 1 𝑇 can be hardly achieved. When the 

maximum field is reached, the system does not work anymore 

with the best cycle, i.e. with the maximum power cycle among 

all. The system works at its maximum power for its maximum 

Δ𝑇𝑎𝑑𝑖𝑎  and the power increases proportionally to Δ𝑇𝑟𝑒𝑠 with 

𝑃 = −
(Δ𝑇𝑟𝑒𝑠 − Δ𝑇𝑎𝑑𝑖𝑎)Δ𝑇𝑎𝑑𝑖𝑎𝑘ℎ𝑖𝑔ℎ

4𝑇ℎ𝑜𝑡

 (10) 

In addition, the EMP decreases as indicated in (7). These 

expressions are useful tools to estimate the harvested power. In 

the following, we numerically find the maximum power cycle 

keeping constant Δ𝑇𝑎𝑑𝑖𝑎 and Δ𝑇𝑟𝑒𝑠. But we should be aware that 

for a given isotemperature, isofield cycle, an increase of 𝑘ℎ𝑖𝑔ℎ 

will increase the performance (power density and/or efficiency) 

whereas an increase of temperature span Δ𝑇𝑟𝑒𝑠 will increase the 

power density but also decrease the efficiency unless 

accompanied by equal Δ𝑇𝑎𝑑𝑖𝑎  increase. In our simulations, the 

applied field for the first and second order MCM is chosen in 

order to have the same maximum adiabatic temperature 

change Δ𝑇𝑎𝑑𝑖𝑎. 

IV. CYCLE SHAPE FOR THE FIRST AND SECOND ORDER 

MATERIALS 

In Figure 4 we show the calculated cycles with 𝑇ℎ𝑜𝑡 = 298 𝐾, 

𝑇𝑐𝑜𝑙𝑑 = 291 𝐾. Full line cycles, corresponding to 𝑡𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 =

10 𝑠 (the wide cycles in the figure) give for first order 𝑃𝑚𝑎𝑔 =

−9.2 𝑚𝑊. 𝑐𝑚−3  and 𝜂𝑟𝑒𝑙 = 0.41, and for second order 

𝑃𝑚𝑎𝑔 = −8.2 𝑚𝑊. 𝑐𝑚−3 and 𝜂𝑟𝑒𝑙 = 0.41. Tiny cycles, 

corresponding to 𝑡𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 = 0.1 𝑠 (dashed line in the figure), 

give the same results for the first and second order MCM, 

namely 𝑃𝑚𝑎𝑔 = −10 𝑚𝑊. 𝑐𝑚−3, 𝜂𝑟𝑒𝑙 = 0.45. Figure 4 shows 

that the first order MCM in isofield processes keeps closer to a 

HECTD (i.e. closer to the optimum cycle) than the second order 

MCM. The difference is apparent when comparing the low 

temperature isofield line in Figure 4, the first order material (red 

line, right) shows a horizontal line (a perfect isotemperature 

process) whereas the second order one (black line, left) shows 

a steeper slope. Results for the same 𝑡𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒  show the same 

efficiency but not the same power density. Therefore, 

considering cycles with the same power density, the efficiency 

will be lower for the second order MCM as expected. 

 

Figure 4. Brayton cycles on 𝑇(𝑆) diagram for the second order MCM (black) 
on the left and the first order MCM (red) on the right for large (solid line) and 

small cycles (dotted line). Thin lines represent three isofields in black for the 

second order MCM and in blue for the first order MCM. 

Nevertheless, it is worth noting that both second and first order 

MCM can approach HECTD by drastically reducing the 

entropy span of the isofield process, as in the dashed line cycles 

in Figure 4. This means EMP for the first and second order 

materials will be very similar when working on tiny cycles at a 

rather high frequency. We shall use the term low loaded cycle 

to describe tiny cycles close to the HECTD. Indeed, only for a 

given heat exchange coefficient and temperatures of the 

reservoirs, low loaded cycles correspond to higher frequency 

than high loaded cycles. 

V. MAXIMUM POWER CYCLE FOR DIFFERENT EXCHANGE 

TIMES 

Low loaded cycles deal with small amount of energy including 

heat exchanged, that is why exchange time (2) is also small. It 

is not trivial to estimate the power density, especially as the 

cycles are not always close to isotemperature processes. An 

algorithm, based on simulations at constant reservoir 

temperatures, explores all possible cycles, i.e. all possible 𝑇𝑢𝑝 

and 𝑇𝑑𝑜𝑤𝑛, the temperatures of the ascending and descending 

adiabatics processes (as shown in Figure 1), to find the 
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maximum power cycle for different 𝑡𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 . Results are 

shown in Figure 5 for the first and second order MCM. The 

choice of 𝑡𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒  as a variable to study the power density will 

be discussed in the next section. In Figure 5 a slight increase of 

the power density for the first order MCM for longer periods is 

apparent. Cycles corresponding to exchange time of 0.1 s and 

10 s are shown in Figure 4. 

 

Figure 5. Maximum magnetic power and its relative efficiency for different 

exchange times for the first order in solid line (𝐻𝑎𝑝𝑝𝑙𝑖𝑒𝑑 =

0.67 𝑇, max (Δ𝑇𝑎𝑑𝑖𝑎) = 3.4 𝐾) and for the second order in dashed line 

(𝐻𝑎𝑝𝑝𝑙𝑖𝑒𝑑 = 1 𝑇, max (Δ𝑇𝑎𝑑𝑖𝑎) = 3.4 𝐾) with Δ𝑇𝑟𝑒𝑠 = 6.8 𝐾, 𝑇ℎ𝑜𝑡 = 298 𝐾 

and 𝑇𝑐𝑜𝑙𝑑 = 291 𝐾. 

As we argued in the previous section, both first and second 

order MCM show maximum power density and efficiency close 

to the optimum cycle for exchange time that tends to zero, i.e. 

for a low loaded cycles. 

To emphasize the difference between the second and first order 

transitions, the adiabatic temperature change from now on is 

changed from 3 to 1.5 K, accordingly Δ𝑇𝑟𝑒𝑠 is changed from 6.8 

to 3.7 K in order to keep in same configuration. Power density 

and efficiency for this case are shown in Figure 6 

 

Figure 6. Maximum magnetic power and its relative efficiency for different 

time periods for the first order in solid line (𝐻𝑎𝑝𝑝𝑙𝑖𝑒𝑑 = 0.28 𝑇, max(Δ𝑇𝑎𝑑𝑖𝑎) =

1.5 𝐾) and for the second order in dashed line (𝐻𝑎𝑝𝑝𝑙𝑖𝑒𝑑 =

0.33 𝑇, max (Δ𝑇𝑎𝑑𝑖𝑎) = 1.5 𝐾) with Δ𝑇𝑟𝑒𝑠 = 3.75 𝐾, 𝑇ℎ𝑜𝑡 = 295.53 𝐾 and 

𝑇𝑐𝑜𝑙𝑑 = 291.8𝐾. 

A careful analysis of the results reveals some subtle details. The 

relative efficiency does not reach 0.5 because the system does 

not work exactly at 2Δ𝑇𝑎𝑑𝑖𝑎 = Δ𝑇𝑟𝑒𝑠, using (7) the relative 

efficiency is estimated around 0.4. For the first order MCM, 

where isofield lines are horizontal in the TS diagram, the power 

density and the efficiency are nearly constant whatever the 

exchange time (highlighted line in Figure 6). Because 𝑇(𝐻) 

isofield lines are not perfectly horizontal due to the lattice 

thermal capacity, the power and relative efficiency are slightly 

decreasing (highlighted line in Figure 6). Eventually, the 

relative efficiency does not exactly follow (7), because of not 

ideal isotemperature process. 

VI. SWITCHING TIME 

In a real device the period 𝑡𝑝𝑒𝑟𝑖𝑜𝑑   of the cycle is the sum of the 

time spent to exchange heat 𝑡𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 (phases 2 and 4 in Figure 

1) and the time spent along the two adiabatic branches (phases 

1 and 3 in Figure 1), we refer to the latter as the switching time 

𝑡𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔. The switching time has been hitherto neglected 

assuming 𝑡𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 ≪ 𝑡𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒  so that 𝑡𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒~𝑡𝑝𝑒𝑟𝑖𝑜𝑑 . 

Now we would like to briefly discuss the case where the 

switching time cannot be neglected. 

 

Figure 7. Example of thermomagnetic generator converting magnetization 

change to mechanical power (motion-force). 

In Figure 7 we show a typical device to harvest the energy due 

to the difference of magnetic force during displacement 

between the hot and cold reservoirs [9]. If we assume 

𝑡𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔~ 0, the power transfer through the mechanical force 

and motion is infinite because the MCM passes between from 

one magnetic state to another in zero time, which is not 

physically possible. A finite switching time is needed to 

properly model the actual harvesting process. Therefore, we 

write 𝑡𝑝𝑒𝑟𝑖𝑜𝑑 = 𝑡𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒  + 𝑡𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔. The power density being 

the area of the cycle divided by the period 

𝑃 =
1

𝑡𝑝𝑒𝑟𝑖𝑜𝑑

∫ 𝑇𝑑𝑆
𝐶𝑦𝑐𝑙𝑒

  (11) 

for a fixed cycle, the power density depends only on 𝑡𝑝𝑒𝑟𝑖𝑜𝑑. 

Because in the previous part we considered 𝑡𝑝𝑒𝑟𝑖𝑜𝑑 = 𝑡𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 , 

we can deduce the power as a function of switching time by 

replacing the period 𝑡𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 with 𝑡𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒  + 𝑡𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔. 

Therefore, the previous power density has to be multiplied by 

the switching factor 

𝑐𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 =
𝑡𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒

𝑡𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 + 𝑡𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔

 (12) 

Taking into account the switching time defines an upper bound 

to the maximum power that becomes relevant in the case of low 

loaded cycles where 𝑡𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 is vanishing and therefore 

𝑡𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 cannot be neglected. 

Thin solid lines in Figure 8 show the power density as a function 

of 𝑡𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔, normalized to its low loaded cycle value, 

calculated for different fixed periods (i.e. fixed 𝑡𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒). It is 

worth noting that, in this case, normalizing to the low loaded 

cycle power makes the first and second order lines collapse on 

the same curve. In the same figure we show the maximum 

normalized power density as a function of the switching time 

(dashed lines). In this case, our algorithm selects the maximum 

power cycle given 𝑡𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 (dashed line in Figure 8) by 
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changing the exchange time; namely, each point on the dashed 

lines corresponds to a cycle with different period using power 

maximization as a constraint. The set of cycles found for 

different switching times considered, limits the decrease of the 

power density as shown by dashed line in Figure 8. 

 

Figure 8. Effect of the switching time on the power density normalized with 

respect to the low loaded cycle, with Δ𝑇𝑎𝑑𝑖𝑎 = 1.5 𝐾. Dashed lines are the 

maximum power cycle for different 𝑡𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔. Solid lines represent the 

normalized power density for a fixed 𝑡𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒. 

The power maximization algorithm tends to compensate the 

switching time decrease by selecting cycles with larger 

𝑡𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒  (i.e. larger periods, as shown in Figure 9). However, 

as discussed in the previous sections, larger 𝑡𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒  is getting 

the isofield transformations away from the isotemperature 

curves drastically reducing the cycle relative efficiency for the 

second order MCM. 

 

Figure 9 Relative efficiency (black) and period (red) of the maximum power 

cycle for different 𝑡𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 with Δ𝑇𝑎𝑑𝑖𝑎 = 1.5 𝐾 for the first order (circles) 

and for the second order (asterisks). 

In Figure 10, maximum power cycles for 𝑡𝑠𝑤𝑖𝑡𝑐ℎ~0 and 0.8 s 

show that the first order cycles are closer to HECTD compared 

to the second order ones when 𝑡𝑠𝑤𝑖𝑡𝑐ℎ equals 0.8 s. 

This is a key point to compare the first and second order MCM 

performances. First order materials can increase the 𝑡𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒  

without reducing significantly the efficiency of the cycle, 

because they keep closer to HECTD (Figure 10). As shown in 

Figure 8 and Figure 9, EMP and power density of the first order 

MCM are less sensitive to the effect of increasing 𝑡𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔. 

 

Figure 10. Maximum power Brayton cycles for 𝑡𝑠𝑤𝑖𝑡𝑐ℎ~0 i.e. small cycles 

(dotted line) and 𝑡𝑠𝑤𝑖𝑡𝑐ℎ = 0.8 𝑠 i.e. large cycles (solid line) on 𝑇(𝑆) diagram 

for the second order MCM (black) around 16.45 𝐽. 𝐾−1𝑐𝑚−3 and the first order 

MCM (red) around 16.47 𝐽. 𝐾−1𝑐𝑚−3. Thin lines represent three isofields in 

black for second order and in blue for first order. 

VII. CONCLUSION 

This study evaluates the benefit of using MCM with high 

Δ𝑇𝑎𝑑𝑖𝑎  and systems with high heat exchange coefficient 𝑘ℎ𝑖𝑔ℎ 

for thermomagnetic energy conversion. Our simulations reveal 

that low loaded cycles are beneficial in terms of efficiency and 

power density but involve an increase of the operating 

frequency. At low frequency, the time taken along the adiabatic 

processes can be neglected. Because of the frequency increase 

and considering technical constraints, the model needs to take 

into account the time to switch between the reservoirs, called 

the switching time. 

The first order MCM shows its robustness to the introduction 

of the switching time as compared to the second order MCM in 

terms of power and relative efficiency. An increase of the heat 

exchange coefficient 𝑘ℎ𝑖𝑔ℎ paves the way to potentially much 

higher power densities, due to a decrease of 𝑡𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 . 

However, in this case, the reduction of the switching time 

becomes a key technological issue. 

In section V we did show that, when the switching time can be 

neglected, the first and second order MCM may show similar 

performances only in the case of low loaded cycles when 

𝑡𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒  becomes small. However, in section VI we argued 

that in low loaded cycle case 𝑡𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 can hardly be neglected 

and, also in this case, the power density at maximum efficiency 

of the second order materials is drastically reduced, with respect 

to the first order ones, when switching time is relevant. 

However, high frequency excitations will very possibly 

increase the role of transition kinetics (neglected in our 

approach) and tiny thermodynamic cycles will be more affected 

by hysteresis. Both effects have been neglected in our 

discussion and can be relevant in the case of the first order 

MCM. 

Small period cycles are expected to be achievable mostly in 

micro-systems where a fast heat exchange and a fast switching 

are expected. We can conclude that, while the first order 

materials are definitely better suited for bulk applications, 

further investigations must be devoted to the case of high-

frequency micro-systems, taking into account the possible 

shortcomings of the first order materials associated with the role 

of non-equilibrium phenomena in the phase transitions. 
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