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Abstract—Deep space communication systems operate in the
presence of high atmospheric attenuation and the capacity of
the on-board energy generator is limited which produces a very
low signal to noise ratio (SNR) at the reception. In order to
satisfy the required transmission quality of deep space mission in
terms of power and spectral efficiency, a coherent demodulation
is mandatory. Coherent demodulation performance depends on
the carrier phase synchronizer ability and its robustness against
transmission constraints such as time-varying Doppler effect
(Doppler rate). An efficient and well designed carrier phase
recovery scheme is required to assure the synchronization.
This paper analyses the performance of a blind carrier phase
synchronizer derived from the maximum a posteriori criterion
(MAP) and Laurent expansion for precoded Gaussian Minimum
Shift Keying (GMSK) modulation. Due to the scarcity of spectral
resources allocated for deep space transmission, the data-aided
approach is not allowed. In the previous works, the carrier phase
recovery system performance was evaluated in tracking phase
without assessing its capacity in locking phase. In this paper,
we present a more complete analysis of a GMSK carrier phase
synchronizer covering the nonlinear acquisition phase and the
theoretical operating limits in terms of SNR and input phase
offset (Doppler, Doppler rate) in a closed-loop structure.

Index Terms—Carrier phase synchronization, deep space com-
munication, GMSK modulation, nonlinear acquisition, phase
detector S-curve, phase plane analysis.

I. INTRODUCTION

Spectrum resources allocated for deep space missions are
limited (X-band at 8 GHz). In order to optimize the spectral
efficiency, the Consultative Committee for Space Data System
(CCSDS) recommends [1] precoded GMSK modulation with a
Gaussian filter 3-dB bandwidth-bit period product BTb = 0.5
for Category B missions (deep space missions) and GMSK
BTb = 0.25 for Category A missions (low altitude missions).
GMSK is a continuous phase modulation (CPM) having sev-
eral interesting properties such as constant envelope which
allows the amplifier to operate in full-saturation mode and
maximize conversion efficiency without undergoing any form
of spectral distortion. GMSK BTb = 0.5 outperforms binary
phase shift keying (BPSK) in terms of bandwidth efficiency
with a bit error rate performance nearly identical in the case
of a perfect carrier phase synchronization. Synchronization
is an essential task in any coherent digital communication
system. In most cases, this task is provided by a digital phase-
locked loop (DPLL). The DPLL is a good trade-off between
implementation complexity and performance. By definition,

DPLL is a closed-loop carrier phase estimator including three
basic elements:

1) Phase detector (PD)
2) Loop filter (LF)
3) Numerically controlled oscillator (NCO)

In order to define the PLL model and correctly set the
system parameters (equivalent noise bandwidth, damping fac-
tor...), which is the main objective of this paper, we need to
characterize the phase detector by the so-called S-curve. By
definition, the S-curve S(θ) is the averaged value of the phase
error detector output (in open-loop structure) in the presence
of a constant phase offset at its input. In the tracking phase
(near zero phase error), the phase error detector is represented
by α the slope at the origin of the S-curve. In the acquisition
phase, this approximation is no longer valid and the phase error
detector must be represented by the entire S-curve analytic
expression in the nonlinear carrier phase loop model.

Using Laurent expansion [2] of GMSK modulated signal,
several carrier phase detectors were proposed in previous
works and their tracking performance was evaluated in terms
of squaring loss and bit error rate. In [3], the author derives the
optimal blind carrier phase detector by applying the maximum
a posteriori phase estimation method. In order to reduce the
complexity of MAP carrier phase detector of [3], the authors in
[4] propose two simplified versions based on high (tanh(x) '
sign(x)) and low (tanh(x) ' x) SNR approximations of the
nonlinear hyperbolic tangent function. In [5], the simplified
GMSK phase detector with the low SNR approximation has
been compared in terms of detection threshold and BER
performance to a modified offset quadrature phase shift keying
(OQPSK) phase detector adapted to GMSK signal.

Taking into account the deep space data transmission con-
straints (very low SNR), we consider in this work the GMSK
phase detector with the low SNR tanh function approximation
of [4]. The contributions of our paper are the following: first,
we derive the analytic S-curve expression of this detector. To
the best of our knowledge, this expression does not exist in the
literature. Second, using the derived analytical expression of
the S-curve, we present a new study of the nonlinear behavior
of a phase locked loop with a phase error detector having
the following form: S(θ) ∝ sin(2θ). This study is based on
the phase plane method [6] which is a graphical method for
nonlinear system analysis. In the literature [6] we find several



analyses of the phase locked loop (PLL) nonlinear behavior
with sinusoidal phase error detector S(θ) ∝ sin(θ) which is
not the case of the phase error detector considered in this work.

The paper is organized as follows: section II describes the
GSMK data transmission system and Laurent expansion. We
derive in section III the phase error expression using the
MAP criterion and the low SNR approximation of the tanh
function. In section IV, we detail a mathematical determination
of the S-curve expression of the considered detector. Section
V is dedicated to the nonlinear analysis and the last section
concludes the paper.

II. SYSTEM DESCRIPTION

The deep space transmission channel is a mono-path chan-
nel disturbed by an additive white Gaussian noise (AWGN).
Note that in this work we are interested in the carrier phase
synchronization and the clock offset is assumed to be perfectly
estimated and equal to zero. Fig.1 shows a block diagram
of the precoded GMSK communication system. The system
consists of a binary data source (delivering the information
bits dk), a data precoder, a GMSK modulator and a coherent
receiver with carrier phase recovery scheme.

Figure 1. GMSK communication system

GMSK modulation (BTb = 0.5) is a partial-response
CPM scheme obtained by filtering the input binary NRZ data
symbols dk with a filter having a gaussian impulse response
and frequency modulating the filter output onto a carrier signal
with a modulation index h = 0.5. B is the 3-dB bandwidth
of the gaussian filter and Tb is the bit period. Using the Lau-
rent expansion for binary CPM [2] modulation, the complex
envelope of the GMSK BTb = 0.5 signal can be exactly
represented by a superposition of two amplitude-modulation
pulses (AMP) (1). For this BTb value, the Gaussian filter is
truncated in time to two bit intervals.

SGMSK(t) =

√
Eb
Tb

∞∑
k=0

{a0,kC0(t− kTb) + a1,kC1(t− kTb)}

(1)
where Eb is average energy per bit, {a0,k, a1,k} are the data
symbols and {C0, C1} are the Laurent pulses. the duration of

the main pulse C0(t) is 3Tb while the second pulse C1(t) has
a duration of Tb and:

a0,k =

k∏
n=0

jβn = jβka0,k−1, (2)

a1,k = jβka0,k−2 (3)

and

a0,−1 = 1, a0,−2 = j (4)

with βk = (−1)kdkdk−1, obtained by differential encoding of
the information data bits dk as presented in Fig. 1.

III. CARRIER PHASE ESTIMATION

The received signal r(t) is described by:

r(t) = SGMSK(t)ejθ(t) + n(t) (5)

where n(t) is an additive white Gaussian noise (AWGN) with
single-side PSD N0 W/Hz and SGMSK(t) is given by (1). The
phase difference φ(t) between the carrier phase θ(t) and the
phase generated by the receiver local NCO θ̂(t) degrades the
system BER performance. Therefore, to satisfy the required
transmission performance, we need to estimate the carrier
phase at the reception and use it to coherently demodulate
the received signal and eliminate the BER loss. According
to the MAP estimation criterion, the most likely phase θ̂(t) is
that which maximizes the a posteriori probability p(θ̂(t)|r(t)).
Moreover, it is assumed that θ(t) is uniformly distributed over
the interval [−π, π], which means that maximizing p(θ̂(t)|r(t))
is equivalent to maximizing p(r(t)|θ̂(t)) (maximum-likelihood
ML estimation). In the case of GMSK BTb = 0.5, 99.97%
of the signal energy is carried by the first Laurent pulse C0.
Therefore, in order to simplify the error phase expression, we
ignore the second Laurent pulse C1. For an AWGN channel
and a constant envelope modulation the likelihood probability
has the form:

p(r(t)|θ̂(t), â) = C exp(
2

N0
<(

∫ T0

0

r(t)s∗(t, θ̂, â)dt) (6)

where

s(t, θ̂, â) =

√
Eb
Tb

∞∑
k=0

{â0,kC0(t− kTb))}ejθ̂(t) (7)

where [0, T0] is the observation interval, {â, θ̂(t)} are the
estimates of the parameters that need to be determined and
C is a normalization constant.



A. Closed-loop carrier phase estimation

To arrive at the blind closed loop synchronizer, we consider
a sliding window implementation of the MAP carrier esti-
mator. In other words, we decompose the observation period
[0, T0] into a set of sub-periods with a time length equal to
kbTb. During the kth sub-observation period [kTb, (k+Kb)Tb]
we assume that the carrier phase θ(t) is constant and equal to
θk (θ(t) can be a time-varying phase over the interval [0, T0]).
Afterward, at each instant kTb we take the natural logarithm of
the likelihood probability (6) calculated over the time interval
kTb 6 t 6 (k + Kb)Tb and averaged over the data sequence
â, differentiate it with respect to the estimated phase at this
interval θ̂k and finally use this as an estimation error signal
e(φk), where φk = θk − θ̂k: is the phase offset. By tacking
Kb = 4 and considering only the even instants (k is even), we
obtain:

ek(φk) = −<(Ik) tanh(=(Ik)) + =(Ik+1) tanh(<(Ik+1))
(8)

where

Ik =
2

N0

√
Eb
Tb
{
∫
r(t)C0(t− kTb)dt}e−jθ̂k (9)

which is the matched filter output sampled at kTb and multi-
plied by (2/N0)

√
Eb/Tb and the estimated phase. At very low

signal to noise ratio, the nonlinear hyperbolic tangent function
can be approximated by a linear function as tanh(x) ' x.
Once the hyperbolic tangent function is approximated by the
linear function, the multiplication by 2/N0, which was used
to place the matched filter output in the appropriate region of
the tanh function (linear or constant region), becomes useless.
Therefore, we introduced the new variables I ′ = (N0/2)I
(which is the sampled matched filter output multiplied only
by the signal power and the estimated phase) and the approx-
imated phase error signal becomes:

e′k(φk) = −<(I ′k)=(I ′k) + =(I ′k+1)<(I ′k+1) (10)

Figure 2. Carrier phase recovery scheme for GMSK BTb = 0.5

Fig.(2) illustrates a block diagram for the closed-loop carrier
phase estimator. The system consists of a phase error detector
(10), a first order proportional-integrator loop filter whose
transfer function F (s) is described by (11) and a NCO.

F (s) = Kf (1 +
a

s
) (11)

where Kf is the loop filter gain and a is the integrator
gain. These parameters will be set according to the mission
constraints (Doppler, Doppler rate, phase error variance, ac-
quisition time). The main objective of the nonlinear analysis,
which will be detailed in the last section, is to express the
operating limits of the carrier phase recovery scheme as a
function of the loop parameters.

IV. DERIVATION OF THE S-CURVE

To define the equivalent model of the carrier phase recovery
loop and investigate its performance using system model
analysis, we need to characterize the phase detector by the
so-called S-curve. By definition (12) the S-cure is the average
value of the phase detector output in the presence of a constant
phase offset φ between the carrier signal and the receiver
N.C.O in an open loop structure.

S(φ) = E[e′k(φ)|φ] (12)

It can be shown that

E[e′k(φ)|φ] = 2E[−<(I ′k)=(I ′k)] = 2E[<(I ′k+1)=(I ′k+1)]
(13)

By Substituting (5) in (9) and multiplying the result by N0/2,
we obtain

<(I ′k) = Eb((dk−1+dk+1)R(1) cos(φ)−dkR(0) sin(φ))+nk,I
(14)

=(I ′k) = Eb((dk−1+dk+1)R(1) sin(φ)+dkR(0) cos(φ))+nk,Q
(15)

where

R(l) =
1

Tb

∫ 3Tb

0

C0(t)C0(t− lT b)dt (16)

nk,I and nk,Q are uncorrelated zero mean Gaussian random
variables with variance σ2

N = R(0)EbN0/2. Multiplying
<(I ′k) and =(I ′k) and substituting the result into (13) produce
the phase detector S-curve:

S(φ) = E2
b (R2(0)− 2R2(1)) sin(2φ) (17)

The slope at the origin of the S-curve is given by

α =
dS(φ)

dφ)
|φ=0 = 2E2

b (R2(0)− 2R2(1)) (18)

The S-curve of the detector is plotted versus the phase error
in Fig.3. Notice that the S-curve S(φ) is π-periodic and the
synchronizer can lock either on the correct phase (φ = 0) or on
the opposite phase (φ = π). This phase ambiguity (equal to π)
cannot be resolved inside the synchronizer. Therefore, a phase
ambiguity resolution scheme must be included. Fig.3 proves
the reliability of the analytic expression of the S-curve (17)
which will allow us to define the carrier phase loop equivalent
linear and nonlinear models. Using these models we present in
the next section a new nonlinear study for the GMSK carrier
phase loop. Obtained results can be generalized for all carrier
phase loop employing semi-sinusoidal phase detector (S(φ) ∝
sin(2φ)) such as the BPSK Costas loop [7].



Figure 3. S-curve of the phase detector

V. CARRIER PHASE LOOP NONLINEAR ANALYSIS

Figure 4. Nonlinear PLL equivalent model

A block diagram of the carrier phase loop nonlinear equiv-
alent model is shown in Fig. 4. Where, θ(t) and θ̂(t) are
the instantaneous phase of the carrier signal and that of
the NCO signal, respectively, e(t) represents the error signal
and u(t) the loop filter output (or the NCO control signal).
Kg is known as the NCO again. Note that the nonlinear
analysis has been developed in the continuous time domain.
However, the transformation (dividing the loop parameters by
the sampling period) used for the digital transition does not
directly influence the behavior of the system and the obtained
results remain applicable.

In the first part of this section we consider the case of a
phase ramp input, i.e.

θ(t) = ∆wt+ θ0 (19)

where ∆w = wi − w0 is the difference between the carrier
signal frequency wi and the center frequency of the NCO w0

and θ0 is the phase offset at t = 0.
1) System nonlinear equation: firstly, we derive the nonlin-

ear differential equation governing the system behavior. The
mathematical model of the NCO is:

dθ̂(t)

dt
= Kgu(t) (20)

The transfer function of the loop filter can be represented
in the time domain as

du(t)

dt
= Kf (ae(t) +

de(t)

dt
) (21)

By Differentiating (20) with respect to t and substituting
(21) into the result, we obtain

d2θ̂(t)

dt2
= KgKf (ae(t) +

de(t)

dt
) (22)

The time derivative of the error signal e(t) can be replaced
by

de(t)

dt
=
de(t)

dφ(t)

dφ(t)

dt
(23)

where φ(t) = θ(t) − θ̂(t). In the nonlinear loop model, the
phase detector is represented by the analytic expression of the
S-curve (17)

e(t) = Kd sin(2φ(t)) (24)

where Kd = E2
b (R2(0)− 2R2(1)).

By using (22), (23) and (24), the system differential equa-
tion can be expressed as

d2φ(t)

dt2
+ 2G cos(2φ(t))

dφ(t)

dt
+Ga sin(2φ(t)) = 0 (25)

where G = KdKfKg is the closed-loop gain.
Finally, we normalize the equation (25) by the closed-loop

gain G

d2φ(t)

dτ2
+ 2 cos(2φ(t))

dφ(t)

dτ
+ a′ sin(2φ(t)) = 0 (26)

where τ = Gt and a′ = a/G is the normalized integrator
gain.

The system equation (26) is a second-order nonlinear
differential equation which does not have a known analytic
solution. Therefore, the phase plan is used to analyze the
nonlinear system behavior.

2) Equilibrium points: decompose (26) in a set of equations
as follows

dφ(t)

dτ
= φ̇(t) (27)

dφ̇(t)

dτ
= −2 cos(2φ(t))φ̇(t)− a′ sin(2φ(t)) (28)

where (φ(t),φ̇(t)) are the phase and the frequency offset
respectively.

By definition, M(φ0, φ̇0) is an equilibrium point for the
system described by (26) if it satisfies the following conditions

dφ0(t)

dτ
= 0 (29)



dφ̇0(t)

dτ
= 0 (30)

Then the equilibrium point is defined as follows

φ̇0 = 0 (31)

φ0 = k
π

2
, k ∈ Z (32)

It can be shown [6] that the equilibrium point M(φ0, φ̇0) is
a spiral stable node if k is even and an unstable equilibrium
point if k is odd.

According to (31) and (32), once the tracking phase is
reached, the frequency offset φ̇ will be completely eliminated,
but the loop can lock on the opposite phase (φ = θ+π) since
the points M(φ = nπ, φ̇ = 0), n = 1, 3, 5..., are also stable
equilibrium points.

Figure 5. Phase Plane

3) Phase plane: by dividing (28) by (27), we obtain

dφ̇

dφ
= −2 cos(2φ(t))− a′ sin(2φ(t))

φ̇(t)
(33)

For an initial condition M0(φ(t = 0), φ̇(t = 0)), the
equation (33) allows us to calculate (by using a numerical
calculator) the tangent at each instant t0 and so to obtain
point by point the trajectory describing the evolution of the
phase and the frequency offset during the time. By moving
the initial point M0 and using this approach, we can plot
the so-called phase plane of the carrier phase loop. Fig.5
illustrates the phase plane of the carrier phase loop around
the equilibrium point M0 (φ = 0, φ̇ = 0) and during the first
period (φ ∈ [−π2 ,

π
2 ]) for a′ = 0.25 (this value corresponds

to the range of the damping factor usually used in practice
[6]). For small |φ̇| , the trajectories have a spiral form
and approach the local stable equilibrium point without φ
advancing multiples of π (this phenomenon is called cycle
slipping), at this point the carrier phase loop is in locked state.
For very large |φ̇| the right-hand side of (33) is dominated
by the first term cos(2φ(t)) and the trajectories in this area
are nearly sinusoidal and slip one or more cycle before
arriving at an equilibrium point (the carrier loop is in pull-in
process). The two particular trajectories (plotted in red on
Fig.5) separating these two types of trajectories (spiral and

sinusoidal) are known as separatrix.

4) Lock-in range: Assume that the PLL is initially in locked
state (in an equilibrium point of the phase plane). The pull-out
frequency Ωpo is defined as the maximum value (in absolute
value) of the frequency offset that may arise between the NCO
and the carrier signal and still the carrier loop is able to relock
without slipping any cycle (return to the same equilibrium
point). Exceeding this frequency, the PLL will slip one or
more cycle before reaching another stable equilibrium point
(relocking). The frequency interval [−Ωpo,Ωpo] is known as
the lock-in range in the PLL theory. The pull-in process can
be too slow and unreliable for many applications. Therefore,
the lock-in range is very important parameters to satisfy the
required transmission constraints.

Figure 6. Pull-out frequency

According to the phase plane description above and the
lock-in definition, the pull-out frequency can be determined
as the intersection of the frequency axis and the separatrix.
Fig. 6 illustrates the pull out frequency Ωpo as a function of
the normalized loop filter integrator gain a′. An approximate
analytic expression (34) of the pull-in frequency is also plotted
in dashed-line. Using the analytic expression of the phase
detector S-curve (17) and the pull-out frequency (34), we
are able to well configure the carrier phase loop (the closed-
loop gain and the integrator gain) and assure the system
performance in terms of acquisition time.

Ω′po = 1.24(0.74 +
√
a′) (34)

The left-hand side of Fig.7 illustrates the phase and
frequency offset of Fig.2 in two different scenarios. First, the
initial frequency offset is smaller than the pull-out frequency.
The carrier loop returns to the locked-state without slipping
any cycle. In the second scenarios the initial frequency
offset is larger than the pull-out frequency. In this, case the
carrier loop slip one π-cycle and converges to the stable
point (φ = π, φ̇ = 0). On the right-hand side, the two
corresponding trajectories of the phase plane are plotted and
we notice that we obtain exactly the same results which



Figure 7. Carrier phase loop nonlinear behavior

proves the reliability of this analysis method.

5) Pull-in time: starting from an initial frequency offset
φ̇0 larger than the pull-out frequency, the time required for
the carrier phase loop to arrive at an equilibrium stable point
(locked state) is known as the pull-in time. In this section, an
approximation of this parameter is presented. Firstly, a few
assumptions must be made:

1) The frequency offset changes slowly from a cycle to
another.

2) The phase detector output contains an ”AC” component
and a ”DC” component vDC .

3) The ”DC” component has a negligible effect on the NCO
frequency.

4) The NCO is controlled by the loop filter integrator
output vint only.

Under these assumptions, the instantaneous frequency offset
can be expressed as

φ̇(t) = φ̇0 − aKfvint(t) (35)

dφ̇(t)

dt
= −aKfvDC(t) (36)

It can be shown that

vDC(t) =
KdG

2φ̇(t)
(37)

Substituting (37) in (36), we obtain

dt = − 2

aG2
φ̇(t)dφ̇(t) (38)

Finally, by integrating (38) between φ̇0 and 0 (which
presents a frequency locked state), the pull-in time is given
by

Tpull =
φ̇20
aG2

(39)

Figure 8. Carrier phase loop frequency offset in pull-in process

Fig.8 illustrates the frequency offset evolution during the
time for a closed-loop gain G = 500, a loop filter integrator
gain a = 125 and an initial frequency offset φ̇0 = 2π×220Hz.
For this configuration, the pull-out frequency Ωpo = 2π ×
120Hz. Using (39), the analytic pull-in time is equal to 0.0611
seconds. The performance of this carrier phase synchronizer
in terms of phase error variance and bit error rate can be found
in [8].

VI. CONCLUSION

In this paper, a nonlinear analysis for a GMSK carrier phase
recovery scheme was presented. Using, the derived analytic
expression of the phase detector S-curve, the nonlinear carrier
phase loop equivalent model was defined and investigated by
the phase plane method. Several computer simulation were
carried out in different scenarios and the reliability of the
obtained resulted was proved. This study can be generalized
for all carrier phase loop with a semi-sinusoidal phase detector
(S(φ) ∝ sin(2φ)) which presents the important contribution
of our paper.
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