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Abstract—Synchronous Dataflow (SDF) is the most commonly
used dataflow Model of Computation (MoC) for the specifica-
tion of Digital Signal Processing (DSP) systems. The Interface-
Based SDF (IBSDF) model extends the semantics of the SDF
model by introducing a graph composition mechanism based
on hierarchical interfaces. Computing the throughput of an
application is essential when designing DSP systems. This article
introduces and assesses new methods to compute the throughput
of DSP applications specified with IBSDF graphs. First, a basic
method inspired from the state-of-the-art techniques that relies
on a transformation of the IBSDF graph to an equivalent non-
hierarchical graph of potentially exponential size. Second, a new
technique that takes advantage of the hierarchy semantics of the
IBSDF MoC to speed-up the throughput evaluation without any
conversion. The proposed technique makes it possible to compute
the throughput of large IBSDF graphs in a few milliseconds,
where the basic method fails to produce a result.

I. INTRODUCTION

Multiprocessor Systems-on-Chips (MPSoCs) are chips es-
pecially designed to support the specifications of complex
applications in terms of computing power, power consumption,
size and per-unit cost. The programming of MPSoCs is more
and more complex due to the increasing number of Processing
Elementss (PEs) and their heterogeneity.

The use of dataflow graphs gains popularity for the de-
sign and the programming of MPSoC [1]–[3]. Synchronous
Dataflow (SDF) [4] is the first and the most studied dataflow
model to describe applications in this context. SDF graph
G = 〈A,F 〉 decomposes an application into a set of actors A
interconnected by a set of First-In First-Out queues (FIFOs)
F to exchange data tokens. An actor is a computational
entity, whose internal behavior is described using a traditional
programming language, called host code. Each actor consumes
(resp. produces) a fixed number of data-tokens on its input
FIFOs (resp. output FIFOs) at each execution.

The popularity of SDF graphs is due to their decidability,
which enables the use of compile-time analyses to verify
key properties of applications, such as consistency (deadlock-
freeness), schedulability and throughput [5], [6]. The expres-
sivity limitation of SDF graphs and the increasing complexity
of Digital Signal Processing (DSP) applications lead to the
introduction of new dataflow Models of Computation (MoCs).
The Interface-Based SDF (IBSDF) MoCs [7] extends the
SDF MoCs with a hierarchy mechanism that enables the

specification of the internal behaviour of actors with a SDF
subgraph instead of host code. The hierarchy mechanism of
IBSDF graph is based on interfaces that insulate each subgraph
from its upper graph in term of schedulability.

In the design of real-time signal processing applications, the
throughput is one of the required properties to be evaluated
as early as possible by the developer. Very fast evaluation
of this property is mandatory for real-time feedback to the
developer during the application development, for the map-
ping/scheduling of the application on MPSoCs, and for the
MPSoC Design Space Exploration (DSE) i.e. the research of
the best hardware for a specific application.

This paper formalizes and assesses new methods to evaluate
the throughput of IBSDF graphs. The first method is inspired
from the state-of-the-art throughput evaluation methods for
SDF graphs, based on a conversion of the IBSDF graph
to a non hierarchical graph. Next, our main contribution is
a new method named Schedule-Replace technique that take
advantage of the semantics of the IBSDF MoC to compute its
throughput without any conversion.

Section II presents basic definition of SDF properties and
how to evaluate its throughput. The Hierarchical SDF (HSDF)
and the IBSDF graph are presented in section II. In section III,
we presents the conversion of an IBSDF graph to a non
hierarchical graph and discuss how it can be avoided to
compute the throughput with a Schedule-Replace technique. A
performance comparison of the presented methods is presented
in section IV. Section V concludes the paper.

II. BACKGROUND

A. Consistency and Schedulability of SDF graph

Before computing the throughput of an SDF graph, the
consistency of the graph must be verified. An SDF graph is
said to be consistent when it can be executed without causing
an infinite accumulation of data tokens in a bounded memory
storage. In [4], the consistency is checked by solving the
matrix equation Γ ∗ RV = 0 where the topology matrix Γ
represents the consumption and production rates of actors. RV
is the Repetition Vector (RV). The elements of RV represents
the number of executions needed for each actor to restore the
initial marking: the data tokens already present in the FIFOs
before a first execution of the graph. A graph iteration is



completed when each actor a ∈ A is executed RV (a) times
without a lack of data tokens caused by an insufficient initial
marking. In Figure 1, the graph composed by the three actors
A, B, and C represents a consistent SDF graph for which the
repetition vector is RV = [2 3 3].

Once the consistency of a SDF graph is verified, a schedule
to define the starting time of each actor execution is con-
structed. The As Soon As Possible (ASAP) schedule [8] is the
most used schedule. It consists of executing actors as soon as
there is enough data tokens on their input FIFOs. It allows the
graph to reach its maximum throughput. The periodic schedule
introduced in [9] for SDF graphs consists of defining a periodic
execution for each actor. The advantage of periodic schedules
σ is that the starting time Sσ〈a,k〉 of all executions k of an
actor a ∈ A are defined only by the starting time of the first
execution Sσ〈a,0〉 and the execution period wσa of a, such that:

∀k ∈ N∗, Sσ〈a,k〉 = Sσ〈a,0〉 + (k − 1) · ωσa
However, the fact that SDF graphs may not expose all the
parallelism of an application, the periodic schedule of an SDF
graph does not guarantee a maximum throughput.

In contrast, the Single-Rate Synchronous Dataflow (srSDF)
graph [6] exposes all the parallelism of an application by
duplicating RV (a) times each actor a ∈ A. Thus, a periodic
schedule of the srSDF graph results in a maximum throughput
execution. An algorithm for the conversion of SDF graph to
srSDF graph is described in [6]. Figure 2a shows the equivalent
srSDF graph of the SDF graph ABC of the Figure 1.

B. Throughput Evaluation of SDF graph

As the state-of-the-art throughput evaluation methods, all
presented methods do not consider constraints on the number
of PEs.

In [6], the maximum throughput of an SDF graph is defined
as one divided by the Maximum Cycle Mean (MCM) of its
equivalent srSDF graph. Efficient algorithms for calculating
MCMs are compared in [10]. However, converting an SDF
graph to a srSDF graph may results in an exponentially large
graph which makes the MCM computation a havy task.

In [11], the throughput is computed with a method based on
maxplus algebra. It consists of solving the Maximum Cycle
Ratio (MCR) of the equivalent Linear Constraint Graph (LCG)
of the SDF graph. The LCG is a conversion similar to the
srSDF conversion. It expresses the SDF graph as a linear time-
invariant maxplus system with less actors and edges than the
srSDF graph.

In [8], a method to compute the maximum throughput
without any conversion is introduced. The method simulates an
ASAP schedule of the SDF graph which results in a transient
phase followed by a periodic phase. The throughput is then
computed as the duration of one iteration in the periodic phase.
This method is efficient when the execution does not start with
a long transient phase.

For large SDF graphs, computing the maximum throughput
with the previous methods may failed due to the large size.
Hence, an approximation of the maximum throughput can
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Fig. 1: Example of IBSDF graph in which actor B is described by
an SDF subgraph.

be computed with the periodic schedule using the following
equation:

Thσ
∗

max(G) =
1

maxai∈A{ωσ
∗
ai }

where σ∗ is the optimal periodic schedule [9] of the SDF graph
which can be computed either by a mathematical model or by
a polynomial time algorithm [10].

In this paper, [8] and [9] will be our base methods for the
analysis of the IBSDF graph throughput.

C. Throughput Evaluation of HSDF graph

The HSDF MoC [5] was the first model to add a hierarchy
mechanism to SDF graph. In the HSDF MoC, the hierarchy
consists of encapsulating a set of SDF actors into a composite
SDF actor that can be connected with other SDF actors. As
described in [12], the HSDF MoC is not compositional: a
composite SDF actor cannot be represented as an atomic
SDF actor without loss of information that can lead to rate
inconsistency or deadlock.

In [2], a clustering technique based on SDF composition
theorem to transform a consistent SDF graph into an HSDF
graph without creating deadlocks is proposed. The clustering
technique allows to hierarchically schedule the graph which
reduces the complexity of scheduling SDF graphs onto multi-
ple processors.

The throughput evaluation of HSDF graphs is not addressed
in the literature because of the non-compositionality of the
graph. In this context the throughput is evaluated after con-
verting the HSDF graph to an SDF graph.

D. Interface-Based SDF (IBSDF) model

The Interface-Based SDF (IBSDF) MoC [7] is a hierarchical
extension of the SDF MoC. In the IBSDF MoC, the internal
behaviour of actors can be specified either with host code, as it
is with SDF, or with IBSDF subgraph. As presented in [7], for
each input (resp. output) port of a hierarchical actor, an input
(resp. output) interface is added in the associated subgraph.
The purpose of interfaces is to transmit data tokens to and
from a subgraph and to insulate levels of hierarchy in terms
of consistency and schedulability analysis. To achieve this
purpose, input interfaces may duplicate the same data tokens
received from the upper level of hierarchy if the subgraph



requires more data tokens to complete an iteration. Similarly,
output interfaces receiving more data tokens than necessary
will only transmit to the upper level of hierarchy the number
of data tokens defined by the hierarchical actor. In order to
consume all data tokens available on the input interfaces and
produce the number of data tokens required by the output
interfaces, the SDF subgraph may execute several iterations.
Figure 1 shows an example of IBSDF graph in which actor B
is a hierarchical actor. The input interface duplicates 3 times
the data tokens received from its parent actor B and the output
interface transmits one data token while it receives 12 times
the data tokens needed. In this context, the sub-actors E, F ,
and D are executed twice their minimum repetition factor.

Execution rules for the IBSDF graph to ensure the insulation
property of the MoC are defined in [7]. An iteration of
a subgraph cannot start if its input interfaces are not full.
Similarly, the output interfaces cannot transmit data tokens
to upper level if the subgraph iteration is not complete.

III. THROUGHPUT EVALUATION OF IBSDF GRAPH

In this section we present first how to compute the through-
put of IBSDF graphs with a srSDF conversion based method.
Next, we show how to take advantage of the interface-based
hierarchy to compute the throughput without any conversion.

A. Flat srSDF conversion based methods
A basic method to compute the throughput of an IBSDF

graph is to transform it to a flat srSDF graph with no hierarchy
i.e. flattening the hierarchy, and use state-of-the-art methods
for SDF graphs to compute the throughput.

Converting an IBSDF graph to an equivalent flat srSDF
graph consists of converting first the SDF topgraph, the graph
of the upper level in the hierarchy, to srSDF graph and then
replace each instance of a hierarchical actor with the equivalent
srSDF graph of its SDF subgraph. This process is repeated
for each level of the hierarchy to obtain the global flat srSDF
graph. During the conversion, some extra edges are added to
ensure the IBSDF execution rules. The conversion process
may result in an exponentially large graph that makes the
throughput evaluation an heavy task.

The equivalent flat srSDF graph of the IBSDF graph in
Figure 1 is obtained by converting the topgraph to an srSDF
graph as shown in Figure 2a, then the three instances of B
are replaced with the srSDF graph of B subgraph shown in
Figure 2b. The global srSDF graph contains 47 actors (2A+
3× (1In+ 2D + 6E + 4F + 1out) + 3C) and 170 edges.

Once the IBSDF graph is converted, the throughput is
computed by the ASAP based method [8] or by the Periodic
Schedule [9]. For both methods the resulting throughput is
maximum since the flat srSDF graph is used. The LCG
conversion based method [11] is not usable since the graph
is already converted to a flat srSDF graph.

B. Schedule-Replace method
The Schedule-Replace technique is based on constructing an

ASAP schedule of the IBSDF graph in a bottom-up approach
and computes the throughput as follows:
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(a) The equivalent srSDF graph
of the topgraph (Figure 1).
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Fig. 2: The global flat srSDF graph of the IBSDF graph of the
Figure 1 is obtained by replacing the instances B1, B2, and B3
of actor B with the srSDF graph version of its subgraph.
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Fig. 3: ASAP schedule of IBSDF graph of the Figure 1, in which
the duration of regular actors set to one unit time. The duration of
actor B is equal to 6 time units.

1) Starting from the bottom level of the hierarchy up to the
topgraph, for each level:

a) Compute the duration of the hierarchical actors by
scheduling their subgraph using [8] technique.

b) Replace each hierarchical actor with a regular actor
with the same duration computed in step 1a.

c) Move to the upper level and repeat step 1a and 1b.
2) Convert the resulting SDF graph to a srSDF graph and

add a self-loop edge for actors originally hierarchical to
ensure the IBSDF execution rules.

3) Compute the throughput of the srSDF graph with [9].

Based on the IBSDF execution rules defined in section II-D,
an execution of a hierarchical actor is defined as the execution
of a complete iteration of its subgraph. It means scheduling
an iteration of a subgraph in the hierarchy allows to measure
the execution duration of its parent actor in the upper level.

Thanks to the compositionality feature of the interface-
based hierarchy, each IBSDF subgraph can be scheduled in-
dependently. Hence, at each level of hierarchy, the duration of
each hierarchical actors is defined by scheduling its subgraphs.
Applying this principle, starting from the bottom level of the
hierarchy up to the topgraph, results in an ASAP schedule
of IBSDF graphs. Figure 3 shows the ASAP schedule of the



TABLE I: Performance comparison between the Schedule-Replace
technique and the srSDF conversion based methods.

IBSDF Graph srSDF Exec.Time
Name Levels Actors Actors ASAP [8] Periodic [9] Sched.-Rep.

Crypto 2 10 34 4 ms 8 ms 43 ms
Large FFT 2 10 267 29 ms 48 ms 46 ms
LTE 4 18 250 22 ms 32 ms 47 ms
Stereo 2 41 1604 3676 ms 151 ms 51 ms

Graph 1 3 15 503 493 ms 67 ms 47 ms
Graph 2 5 20 17727 >5 min 3060 ms 46 ms
Graph 3 6 24 84440 >5 min 14600 ms 43 ms
Graph 4 5 150 653289 >5 min 234000 ms 69 ms
Graph 5 8 240 39 E 10 - - 70 ms
Graph 6 10 100 31 E 15 - - 73 ms

IBSDF graph of Figure 1 in which, each execution of actor B
is represented as one bloc abstracting its subgraph execution.

In terms of time analysis, a hierarchical actor can be
replaced with a regular actor once its duration is defined.
The replacement does not affect the ASAP schedule since
the duration abstract the subgraph execution. Furthermore,
replacing all the hierarchical actors of the topgraph allows
to abstract the complete execution of the IBSDF graph in
one SDF graph (step 1). The equivalent srSDF graph of
the resulting SDF graph has the same execution time as the
original IBSDF graph and so, the same throughput (step 2-3).

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

To evaluate the performance of our method to compute
the throughput of IBSDF graphs, we compared the Schedule-
Replace technique with the srSDF conversion followed by the
state-of-the-art throughput evaluation methods [8], [9].

For each method we have measured the running time to
compute the throughput including the srSDF conversion when
relevant. Experimental results are summarized in Table I for
two categories of graphs. The first category is a set of real DSP
applications modeled as IBSDF graphs, available in [13]. The
second category is a set of synthetics IBSDF graphs generated
randomly using a newly developed generator based on Turbine
tool [14]. The ASAP based method [8] used is the open
source implementation of SDF 3 [15]. A mathematical model
to compute the optimal period solved with the mathematical
programming solver Gurobi [16] is used for the Periodic
Schedule [9]. All methods were tested on one core of an
Intel i5-6300 processor clocked at 2.40 GHz, and with 8GB
of RAM. The Schedule-Replace method is implemented in the
open-source Preesm framework [1].

B. Results

As Table I shows, the number of actors grows exponentially
with the srSDF conversion. In fact, it was not possible to
convert the last two synthetics graphs with the available RAM
and so, to compute their throughput with [8] and [9] methods.

For small graphs, [8] is faster than [9] and Schedule-Replace
technique. The results confirm that [9] is suitable for larger
graph than [8]. However, the execution time of both methods

[8] and [9] increases exponentially as the number of levels
and the size of the srSDF graph grow.

Since the Schedule-Replace technique does not rely on
the srSDF conversion, it computes the throughput of all the
graphs in a few milliseconds. For the Stereo-Matching DSP
application, the Schedule-Replace technique is 3 times faster
than [9] and 70 times faster than [8].

V. CONCLUSION

We have introduced a new method named Schedule-Replace
technique to compute the throughput of IBSDF graphs without
any complex graph conversion. Experiments show that new
method outperforms methods based on srSDF conversion for
a fast evaluation of the throughput of large IBSDF graphs.
With this work, the developer is able to analyze in real-time
the performance of DSP applications during the development
process and thus accelerate the MPSoCs DSE.

A future work is to extend the Schedule-Replace technique
for throughput evaluation under constrained PE or memory
resources.
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