
HAL Id: hal-01514638
https://hal.science/hal-01514638v1

Submitted on 26 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a change-aware process environment for system
and software process

Mojtaba Hajmoosaei, Hanh Nhi Tran, Christian Percebois, Agnes Front,
Claudia Roncancio

To cite this version:
Mojtaba Hajmoosaei, Hanh Nhi Tran, Christian Percebois, Agnes Front, Claudia Roncancio. Towards
a change-aware process environment for system and software process. International Conference on
Software and System Process (co-located with ICSE) (ICSSP 2015), Aug 2015, Tallinn, Estonia.
pp.32-41, �10.1145/2785592.2785596�. �hal-01514638�

https://hal.science/hal-01514638v1
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 17015

The contribution was presented at ICSSP 2015 :
http://icssp-conferences.org/

To cite this version : Hajmoosaei, Mojtaba and Tran, Hanh Nhi and Percebois,
Christian and Front, Agnes and Roncancio, Claudia Towards a change-aware
process environment for system and software process. (2015) In: International
Conference on Software and System Process; co-located with ICSE (ICSSP
2015), 24 August 2015 - 26 August 2015 (Tallinn, Estonia).

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Towards a Change-Aware Process Environment
for System and Software Process

Mojtaba Hajmoosaei
IRIT, University of Toulouse

Toulouse, France
mojtaba.hajmoosaei@irit.fr

Hanh Nhi Tran
IRIT, University of Toulouse

Toulouse, France
hanh-nhi.tran@irit.fr

Christian Percebois
IRIT, University of Toulouse

Toulouse, France
christian.percebois@irit.fr

Agnes Front
LIG, University of Grenoble

Grenoble, France
agnes.front@imag.fr

Claudia Roncancio
LIG, University of Grenoble

Grenoble, France
claudia.roncancio@imag.fr

ABSTRACT

Managing changes for knowledge-intensive processes like System
and Software Engineering is a critical issue but far from being mas-
tered due to the lack of supporting methods and practical tools. To
manage changes systematically, a process environment is needed
to control processes and to handle changes at run-time. However,
such an effective environment satisfying these requirements is still
missing. The reason is two-folds: first, operational process envi-
ronments for system and software engineering is scarce; second,
there is a lack of efficient change management mechanism inte-
grated in such process environments.

In order to address these concerns, we aimed at developing a
change-aware process environment for system and software engi-
neering. To this aim, we proposed a change management mech-
anism based on (1) the Process Dependency Graph (PDG) repre-
senting the dependencies among running process instances man-
aged by a process environment ; (2) a Change Observer process to
catch change events and update the PDG with run-time informa-
tion; (3) a Change Analyzer component to extract the impacts of
change by reasoning the PDG. In terms of implementation, to gain
the benefits from the Business Process Community, where many
mature Business Process Management Systems have been devel-
oped, we chose jBPM to enact and monitor processes. The key
strengths of this study are: first, the PDG makes hidden dependen-
cies among process instances emerge at run-time; second, the pro-
cess observer inside the BPMS allows to handle the change events
in a timely manner. Finally, the Neo4j graph database, used to store
the PDG, enables efficient traversal and queries.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSSP’15 , August 24–26, 2015, Tallinn, Estonia
Copyright 2015 ACM 978-1-4503-3346-7/15/08 ...$15.00.

Keywords

Change Management Process, Change Impact Analysis, Change-
Aware, PSEE, BPMS

1. INTRODUCTION
Nowadays, changes in System and Software Engineering projects
are almost inevitable due to evolving requirements, resources and
technologies. Changes occurring in control-flows, data-flows or re-
sources of a running task can affect, in a chaining-fashion, other
tasks either inside one organization or among different organiza-
tions. Badly managed changes can lead to unwanted reworks and
cause projects to fall behind schedule, go over budget and even fail.
Applying a holistic, structured approach to manage changes is then
crucial to avoid adding extra cost and risk to both the project and
organization levels.

Modern System and Software Engineering (SSE) projects are of-
ten extremely complex, involve multi-teams, multi-disciplines and
can be realized on multi-sites. Moreover, they are inherently uncer-
tain and highly constrained. Such a complexity makes change man-
agement in these domains a challenging issue that is far from being
mastered [19]. Generally, SSE processes are coarsely described
and manually implemented (especially in small-to-medium enter-
prises), rely on humans to follow the process models[11]. Conse-
quently, for process performers, there is no clear understanding of
process life-cycle and the connections of their tasks to others tasks
in the same project or organization. This unawareness results in
a loosely controlled process execution where the communication
among process performers is ad hoc or ignored and the visibility of
development’s activities is low. In such a situation, although each
organization does have a certain change management process, it is
often specially poorly applied due to the lack of a global control on
process performers’ works. As pointed out in [22], no automation
support for change notification and propagation is one of the most
popular causes of defects in multi-disciplinary engineering envi-
ronments.

From a practical point of view, we argue that even a good change
management process could be failed if it is not respected by process
performers. Thus, first a process environment that offers an over-
all control on running processes of an organization is needed. To
facilitate the changes management process, this process environ-
ment should provide the effective mechanisms for first capturing

the change, second analyzing impact of the change and finally
based on the results of the analysis deciding whether implement

the change or not, all in a timely and systematically manner.
Traditionally the existing process environments are classified into

two major groups known as Process-Centered Software Engineer-

ing Environments (PSEE) [1, 13, 2] and Business Process Manage-

ment Systems (BPMS) [41]. The former belongs to the Software

and System Process community and the latter belongs to Business

Process community. In general, BPMSs have attained operational
level but they are typically applied in domains with foreknown and
predictable activity sequences such as production, business, and lo-
gistics [30]. But for PSEEs, afters three decades of development,
their maturity has stayed low [13, 24]. This phenomena can be ex-
plained by the characteristic of low-level operational and collabo-
rative workflows in system and software development which makes
automated process coordination in these domains especially chal-
lenging [30]. As pointed out in [24], lack of change management
supports is still one of the reasons to the problem of limited accep-
tance of process environments in system and software industry.

Motivated by the deficiency on the tooling level, we aim at a
Change-Aware Process Environment. Of course we don’t have the
ambition to propose a complete solution for change management.
In this paper, we are primarily interested in the change notifica-
tion issue. Change propagation is out of the scope of the presented
work. Our objective is to provide an effective assistance for pro-
cess performers to anticipate change implementation. Concretely,
this paper addresses the following questions:

1. how to integrate a change management component into a pro-
cess environment to make it become change-aware?

2. how the change management can identify automatically all
of the potential process elements impacted by a change in
order to notify them in a timely manner?

In resolving the above questions, the contributions of our work are:

1. an extension of the Business Process Management System
(BMPS) jBPM [20] to implement explicitly a Change Man-

agement Component that captures in a centralized and con-
tinuous way all change requests sent asynchronously by var-
ious process performers. By choosing jBPM, our solution
benefits from all the advantageous features of an existing,
operational BPMS. To some extent, our work helps to bridge
the gap between the Software and System Process and Busi-
ness Process communities.

2. definition and implementation of the Process Dependency

Graph (PDG) in Neo4j [31] in order to represent dependen-
cies existing among all process elements of the system at run-
time. While the dependencies inside one process instance
can be extracted at build-time from the process model, the
dependencies among different running processes only emerge
at run-time via shared resources. In contrast to most of exist-
ing works who have concentrated on the dependencies inside
one process instance, our proposition describes also inter-
process dependencies, thus allows a more thorough impact
analysis of changes. When a change request is made, PDG
provides a sound and effective basis to traverse inside the
process instance and also through other process instances to
derive the affected elements.

The remain part of the paper is organized as follows. Section 2
gives a brief description of our approach based on a motivating

example. Section 3 presents the dependency graph PDG. The ar-
chitecture of our Change-Aware Process Environment as well as
its implementation are reported in Section 4. Some related works
are discussed in Section 5 and Section 6 concludes our paper and
presents some on-going and future works.

2. APPROACH
In this section first we describe a typical situation of a change in
process execution through a simple example and focus on some
problem of synchronization if this change is not well managed.
Then we present our general approach to tackle this issue.

In [19], the authors classified change process existing inside com-
panies into two types: o f f icial and uno f f icial. Official change

process is a macro-level process defining formal protocols to be
respected to handle changes concerning to a company or a prod-
uct. Normally at this level the change process is rather well de-
fined and conducted. Unofficial change process happens generally
inside technical processes, in the pre-certification phases, as back-

wards patching/debugging redesign processes where developers at-
tempted to fix a problem quickly during the development. This type
of process is often informal or semi-formal and poorly managed
due to the lack of coordination among developers.

In this paper we focus on the problem of change management in
the context of unofficial change processes. The following example
illustrates a situation of an unofficial change based on our industry
partner’s real process.

2.1 Motivating Example

Figure 1: Processes of a System Development phase

Fig.1 shows a portion of a system engineering process simplified
from the V-model. This example describes the happy path of the
system development phase containing two technical processes Sys-

tem Development process denoted as Psd and Verification & Vali-

dation process denoted as Pvv. In our example, these two processes
are performed by two different teams, respectively System Team

and Test Team. The System Team defines two roles Analyst and
Developer; the Test team has one role Tester.

The process starts when the Analyst receives the stakeholders’
needs and carries out the activity Define System Requirement to
specify the work product System Requirement that represents char-
acteristics of the future system (or sub-system) to be developed.

To simplify the process model, we consider the work product Sys-

tem Requirement that includes all necessary information for start-
ing the development project, such as verification plan. Afterwards,
Developer performs the activity Design System and produces the
Design Model. Then, while the Developer performs the activi-
ties Implement System to produce the system, in parallel Tester

starts the activity Prepare Testbench to develop the test environ-
ment that will be used to verify the system resulted from Implement

System. These two general processes can be used for various de-
velopment projects, thus, may be adapted to a specific context of a
given project as illustrated in the following scenario.
Scenario ∆: Assume that there are two development projects, de-
noted as pro j1 and pro j2 which use the same processes in Fig.1 to
develop two different systems. Each project contains then two pro-
cess instances respectively belonging to the System Development

and the V&V processes. Thus, in the development environment of
the organization there are four process instances denoted as p1.sd ,
p1.vv, p2.sd , p2.vv

1. The scenario includes an analyst a1, two de-
velopers d1,d2 and two testers t1, t2. a1 and d1 participate in both
projects; d2 and t1 participate in pro j1; t2 is involved in pro j2.

We consider the following change that is identified as a common
change that frequently occurs during system development.
Change: Assume that in pro j1, the analyst a1 has defined the sys-
tem requirement SR1. The developer d1 is implementing the Sys-
tem S1 and the tester t1 is preparing the test bench for it. Analyst a1
switches to pro j2 in order to define the system requirement SR2. In
the meanwhile, project manager informs the analyst a1 of a change
in stakeholders needs in pro j1. Then analyst a1 returns to pro j1
and produces the new version of the system requirement SR1.

In practice, if the organization does not have a supporting tool
to coordinate the execution of their processes, such a change may
happen with the ignorance of the concerned actors. For example,
the analyst a1 can inform the developer d1 in his team about the
change but forget to notify the tester t1 in another team. As a result,
the tester t1 may be unaware of the change on SR1 and continue his
works based on an out of date requirement. Consequently, the test
environment being developed by t1 will be obsolete and not corre-
sponding to the real system developed by d1. This situation always
requires costly and stressful reworks for the Test team as well as for
the project pro j1. Furthermore, because of extra works for dealing
with the change request in the project pro j1, the analyst a1 may
perform his job in the project pro j2 with delay. This delay may
create a domino effect and add delays to the work of other actors in
the project pro j2.

The above case illustrates some negative impacts of a change
that is badly managed. Of course this situation could be avoided
if all the actors respect the change management process so that
no unnoticed change happens. Unfortunately, in reality, the sce-
nario discussed in the above example is frequent, and it occurs in a
throughout manner due to the lack of a supporting tool to handle a
change.

2.2 Proposal
The image in left of Fig.2 shows the current model of a develop-
ment environment where an explicit Change Management Process

is absent. Consequently, changes are handled manually, commu-
nication between concerned actors is free and ad-hoc. In such
environments, the poor coordination can lead to unawareness of
changes which in its turn can lead to reworks.

1 pi. j indicates the process j belonged to project i

Figure 2: Current and Desired Development Environment

In this paper, we seek to remedy the problem of unnoticed changes
in order to permit concerned people to anticipate and respond to
changes in order to avoid obsolete works. The ultimate goal of
our work is replacing the model in left by the model in right of
Fig.2. In the desired development environment in the right, we aim
at providing an explicit, centralized Change Management Process

which is reactive to change requests but proactive to change imple-
mentations. More precisely, first our Change Management Process

must be able to capture all the change requests sent from different
actors in the development as they detect some problems in their cur-
rent works. Second, our Change Management Process must have
a global view on the status of running elements inside the develop-
ment environment.

To satisfy the first requirement, we consolidated process man-
agement mechanism and change management mechanism. Thus,
our Change Management Process was developed as a component
of a process environment that provides a controlled environment
to systematically execute and monitor processes. Section 4 will
present in details this solution.

The second requirement was fulfilled by integrating the process
management mechanism and the query mechanism on the runtime
process data. The result of this consolidation is the abstract graph
Process Dependency Graph (PDG) which represents dependencies
existing among running processes in the system (c.f. Section 3 for
a more throughout description of PDG). This knowledge provides
a sound base to analyze the impact of change among process ele-
ments in a timely and systematically manner.

3. PROCESS DEPENDENCY GRAPH
In general, existence of shared process elements lead to the depen-
dencies among processes. As mentioned before, because of these
dependencies, effects of a change in one process can extend to other
dependent elements in other processes (as illustrated in the scenario
∆ via the share of actor a1 by two projects pro j1 and pro j2). In or-
der to investigate the impact of change, we need to have a global
view about the system. In other words, we need a structure that
specifies the existing dependencies between all running processes
in the system. To this aim, we define a structure named as Process
Dependency Graph (PDG). PDG is constructed based on the pro-
cess information existing in the development environment. In the
next section, we describe this information thoroughly.

3.1 Process Information
Generally, process information existing in the development envi-
ronment can be seen in two levels:
Schema-level: this level relates to process information existing at
build-time that is extracted from the process models. For example
the process models in Fig.1 give us the following information:

• List of system projects:
Pro ject = {system pro ject}

• List of processes models:
P models = {Psd , Pvv}

• List of roles:
role = {analyst,developer, tester}

• List of task definitions:
task = {de f ine system requirement, design system, implement

system, prepare testbench, test system}
• List of work products:

workproduct = {stakeholder need,system requirement,

design model, system, test report}
• Temporal information:

any information about processes and activities duration.
Instance-level: this level relates to process information existing at
run-time. When a process is executed, its model is instantiated and
we obtain a process instance representing the running process. If
a Process Management Suite (PMS) is used to manage and exe-
cute processes, at run-time PMS stores the information of running
process instances in its process logs (repositories). Thus, based on
these process logs, we can extract information about process in-
stances in the system. For instance, the process logs of the system
corresponding to the scenario ∆ give us the run time information
as illustrated in Fig.3. This figure illustrates all process informa-
tion in both schema and instance levels. An element at instance
level (marked as the white circle) is an instance of an element
in the process model at schema-level (marked as the gray circle).
For example, T R1 and T R2 are two instances of the work product
Test Report, respectively belonged to process instances P1.vv and
P2.vv.

Figure 3: Process Information for the scenario ∆ at schema and

instance level

3.2 Structure of PDG
As mentioned above, PMS maintains a significant amount of in-
formation about the project under development in the process logs
that can be manipulated as a database. However, making complex
queries directly from the process logs is not an easy task because
of the heterogeneity of the process data together with the process

log’s access characteristics (within the context of activities that are
long-lived, open-ended, and interactive) [4]. That’s why we pro-
pose PDG, an abstract graph to represent process information ex-
isting in the development environment. Querying about the status
of running process instances on the PDG will be more efficient than
querying directly the process logs.

PDG is defined as a directed graph composed of a set V of nodes
and a set E of edges. Nodes and edges of a PDG are typed to de-
scribe different types of process elements (at instance level) and
relations between them. We have three types of nodes and three
types of edges, specified in the following definitions:

PDG = (V , E)
V : {nodetask} ∪

{

nodeworkproduct

}

∪ {nodeactor}
E : {edgedata} ∪ {edgeprecede} ∪ {edgeper f orm}

3.2.1 Nodes of PDG

Each type of nodes has properties and status which are defined as
follows:
••• nnnooodddeeetttaaassskkk : represents a task of a process instance.

nodetask = (taskname , taskid , processid , taskstatus , duration)
taskstatus ∈ { created , inprogress , completed, f ailed}

A newly created task starts in the "created" stage. The task will
stay "created" until one of actors claims the task, indicating that he
or she will be executing it. When the user who has claimed the
task starts executing it, the task status will change from "created"
to "inprogress". Lastly, once the user has performed and completed
the task, the task status will change to "completed". In this step,
the user can optionally specify the result data related to the task. If
the task could not be completed, the user could also indicate this by
using a fault response, possibly including fault data, in which case
the status would change to "failed".
••• nnnooodddeeewwwooorrrkkkppprrroooddduuucccttt : represents a concrete work product (data) in-
side a process instance. The status of a work product is the same as
the status of the task producing it.

nodeworkproduct = (wproductname ,wproductid ,wproductstatus)
wproductstatus ∈ { created , inprogress , completed, f ailed}

••• nnnooodddeeeaaaccctttooorrr : represents a real actor in the system. An actor may
involve in several process instances. We assume that the status of
an actor is managed by both the task management component and
the resource management component integrated to the PMS.

nodeactor = (actorin f o , actorstatus)
actorstatus ∈ {not available , idle , active, waiting}

Actor can be seen as a special kind of resources of an organization.
Other kind of share-able resources as test-benches, locals, etc. can
also be treated in a similar way.

3.2.2 Edges of PDG

Edges in PDG are used to represent different types of relation-
ships among process elements. Properties and status of each type
of edges are defined as follows:
••• eeedddgggeeepppeeerrr fff ooorrrmmm : represents the association between an actor and the
task that he performs. Status of the edge is the same as the status of
the task that it points to. The reason to store this information twice
is to facilitate the traversal that we will discuss later.

edgeper f orm = (edgein f o , processid , tstart , duration ,

status)
status ∈ { inprogress , completed , waiting}

••• eeedddgggeeedddaaatttaaa : represents the association between a data and the task
that uses or produces it:

edgedata = (edgein f o , nodesrc , nodedes, status)
status ∈ {sent ,not− sent }

•••eeedddgggeeeppprrreeeccceeedddeee : represents association between two sequential tasks
that share nothing between each other (i.e., no exchanged work

Figure 4: PDG representing the scenario ∆

product or shared actor).
edgeprecede = (edgein f o)

In order to clarify the structure of the PDG, Fig.4 is provided to
illustrate the PDG presenting the system in the scenario ∆ at run
time. To simplify the visualization of the PDG, two projects along
with their processes are annotated inside the dashed rectangles. In
our scenario, shared elements among processes are established by
the work products System Requirement SR and System S inside each
project and the actor a1 among two projects.

3.3 Storing PDG in a Graph Database
The PDG describing the running processes of an organization can
be huge. Thus, in order to store and manipulate efficiently the PDG,
we explored the use of NoSQL data management system, in partic-
ular on systems proposing native graph data management. A graph
database is typically substantially faster for connected data sets and
uses a schema-less, bottoms-up model that is ideal for capturing ad-
hoc and rapidly changing data [39].

To this aim, Neo4j [31], an object oriented and open-source graph
databases, has been chosen. Neo4j allows us to store and query the
PDG in an efficient way thanks to its following advantages:
- powerful traversal framework for high-speed traversals, 2

- declarative graph query language Cypher,
- high integration capability for running as embedded in JVM pro-
cess via a Neo4j Core-Java-API,
- access to the standalone Neo4j Server via its HTTP API.

4. CHANGE-AWARE PROCESS ENVIRON-

MENT
This section describes our solution to deal with poorly managed
changes during execution of processes. Although this work targets
more specially on technical software and system engineering pro-
cess, it can be also used by processes in other domains. Our aim is

2According to [15] Neo4j traverses depths of 1000 levels and be-
yond at millisecond speed.

Figure 5: Change-Aware Process Environment

to consolidate two mechanisms of process management and change
management to form a change-aware process environment as illus-
trated in Fig.5 .
This environment is composed of two main components: a PMS

to support process management and a Change Management Com-

ponent to handle changes. In the next sections, we explain each
component in details.

4.1 Process Management System
As introduced in Section 1, Process Management System or PMS
is a software that supports modeling, execution, and monitoring of
processes throughout their life cycles. In our proposal, PMS pro-
vides the basis to control systematically process worker’s activities
and to obtain a global view on the organization’s development en-
vironment status. Our idea is to enrich an existing PMS with a
change management mechanism and not develop a new PMS from
scratch. Moreover, to facilitate the adoption of our work, we con-
sider the PMSs supporting the standardized process modeling lan-
guages. The benefits of this choice is obvious, but it also imposes
some limitations on our selection (not too many choices) and some

difficulties on our implementation (dependent on a complex archi-
tecture and API of an existing system).

Our motivation is assisting software and system processes, so
first we looked for PSEEs supporting the SPEM [34] modeling lan-
guage. However, very few academic works as [5, 36] attempting
to offer prototypes to enact SPEM process model. There is the
commercial tool IBM Rational Team Concert [17], but it offers a
limited extensibility. To enact SPEM, the solutions suggested by
OMG [34] are: mapping the processes into Project Plans and en-
acting them with project planning systems; or mapping the process
to a business flow or execution language and then executing this
representation using a workflow engine.

The later solution is more tempting for us thanks to its large
choices of operational and open-source Business Process Manage-
ment Systems. Most of BPMSs support the business process mod-
eling standard BPMN [35] and their workflow engine execute the
operational process model in BPEL [32] or transforming them to
their internal process definition structure (object process defini-
tion). BPMN is not dedicated to software and system processes,
but several solutions have been proposed to convert process models
in SPEM to an operational process modeling language for BPMS,
such as the works in [42, 9]. Although we did some adjustments
and learned some interesting lessons on using BPMN to model soft-
ware and system processes, discussion about the similarity between
these two standards is out of scope of this paper. Here, we make an
assumption that we have well-defined process models of software
and system engineering processes in BPMN that can be executed
in a supporting BPMS.

Based on the features of existing BPMSs, we chose jBPM [20], a
flexible, light-weight, fully open-source and extensible BPMS, for
developing our PMS component. Like other BPMS, jBPM is com-
posed of several components that each one resolves one particular
function inside the BPMS architecture as shown in Fig.5. The core
part of jBPM is the run-time environment who receives the process
models modeled by an integrated web editor and stored in a process
repository. The jBPM process engine is the module in charge of en-
acting processes. It creates new process instances and keeps track
of their states and their internal steps. jBPM also provides persis-
tence for the process’s executions by storing running process steps
into the Persistence and Transaction database to make restoring
the process instance as efficient as possible. Furthermore, in order
to keep historical information about process executions separately,
it uses the Audit/History logs that later can be used to conduct pro-
cess analysis.

jBPM is used as the core of our process environment. Thanks to
its API we can extend jBPM by:

1. Developing a new end user interface to allow process work-
ers notifying a change during executing a task in an asyn-
chronous manner,

2. Developing a central Change Management Process and in-
tegrating it as a component of the whole jBPM system to
capture and analyze any signaled change in the development
environment.

The next section presents in detail the Change Management Com-

ponent and the above extensions.

4.2 Change Management Component
The core of our proposal is the change management component.
This component turns the process environment (PMS) to a change-
aware environment by providing a layer between the process work-

ing environment and the core process execution environment (pro-
cess engine). This layer provides coordination among main roles of
the process environment known as process manager, process work-
ers and change manager in order to manage changes systematically
inside the system. At this stage of our work, to stay generic, we
don’t focus on integrating tools or service-tasks but concentrate on
human tasks. Thus, we used the jBPM task management compo-
nent and developed a new end user interface for human process per-
formers. The Change Management Component provides differ-
ent functionalities for each type of process performers. Fig.7 shows
some screen shots for different process performers. A process man-

ager can instantiate a process as shown in Fig.7(a). For a process

worker, beside the basic interactions with the process environment
to request their task list, to claim and complete the tasks assigned
to them, now thanks to the new layer interface, he can signal a
change request during his execution as illustrated in Fig.7(b). After
signaling the change, the process worker can continue or terminate
his work without notifying directly the concerned persons of the
change. Fig.7(c) shows the interface for a change manager who can
capture a change request sent by any process worker then perform
an impact analysis, by using the PDG of the development’s envi-
ronment, to identify the elements affected by the potential change.
Based on the analysis result, the change manager can decide about
the change and inform the concerned elements in a timely manner.

The whole centralized change management process’s behavior is
described by the sequence diagram in Fig.6.

Figure 6: Procedure of Change Management

The above functionalities are provided by three sub-components
inside the Change Management : the Parser, the Change Observer

and the Analyzer as shown in Fig.5. We discuss each sub–component
separately in the following sections.

4.2.1 Parser

The functionality of this sub-component is constructing the struc-
ture of a new process instance and adding this structure to the PDG
of the development environment (c.f. Section 3). To this aim, we
developed a parser that receives a process model and extracts from
this model the process information at schema-level to construct the
structure of the PDG. Whenever a process engine creates a pro-
cess instance, it informs the parser of the new instance. The parser
then looks into the process repository to find the process model
corresponding to the process instance’s name, parses the found pro-
cess model (BPMN file) and finally converts it to the corresponding

Figure 7: Interfaces for different roles in the Change-Aware

Process Environment

graph structure in PDG. Algorithm 1 resumes these steps.

input : ProcessInstanceName piname

output: ProcessInstaceStructure pistruct

Procedure Parser()

pmodel = SearchProcessModel(processrepository, piname);
pistruct = Parse(pmodel);
add (pistruct , PDG);

Algorithm 1: Parser Algorithm

Afterwards, at the time of change, the PDG will be updated with
run-time information (i.e. state of the tasks and process instances)
by the Observer component as discussed in the next section.

4.2.2 Observer

As explained in Section 4.2, our process environment provides a
mechanism to allow process workers to send a change request at
any moment when executing a task (c.f. Fig.7(b)). The sub-component
Observer is responsible to catch the change requests and invoke the
Analyzer to handle each received change request.

It means that the Change Management has to allow the actions
sending change request which cannot be foreseen and modeled pre-
viously in the process models. To enable this concurrency and
asynchronous execution of change request signaling, we imple-
mented the Observer as an asynchronous handler. Thanks to the
advanced features of jBPM 6.0, i.e. Multiple knowledge sessions,

persistence and WorkItemHandler backed with jbpm executor, the
implementation of Observer, even complicated, was done success-
fully.

Whenever a change occurs, the process worker (also known as
change initiator) signals the change request CR along with the spec-
ification of the concerned element.

DEFINITION 1. A change request (CR) is defined as a tuple

CR(tid , Pid , nconcerned) where,

• tid is the task id,

• Pid is the process id,

• nconcerned is the concerned change element.

In the implementation of the change request CR, the tid and Pid of
the change initiator process are obtained automatically from jBPM
logs. On the other side, Observer, as a change handler, takes care
of these change requests as described in Algorithm 2.

For each received change request, Observer updates the schema
of the PDG (that is already constructed by the Parser as presented
in the previous section) by adding to PDG’s nodes and edges the
run-time information such as current state of the processes, tasks,
list of actors, temporal information, etc. This run-time informa-
tion, achieved thanks to the APIs provided by jBPM, is obtained
from two jBPM’s process logs: persistence and history log. The
former stores the information of the active processes (in-memory)
and the latter stores the historical information of completed process
instances. Result of this phase is a PDG that represents the run-
time situation of process instances at the time of change. Based on
the information of CR, Observer calls the Analyzer to extract from
PDG the elements affected by the change request CR.

input : Change Request cr , PDG = (V, E)
output: U pdated PDG updg = (V,E)
Procedure Observer()

listen to the change request cr;
impact graph← n;
for each cr do

update PDG;
call Analyzer (updg, nodeconcerned node);

end

Algorithm 2: Observer Algorithm

4.2.3 Analyzer

This component has the responsibility of traversing the PDG and
extracting the elements potentially affected by a change request CR.
The result of the traversal is a digraph so-called Impact Graph (IG)

which is defined as follows:
IG = (V, E)
V : a f f ected nodes

E = {e1, e2, ..., en}
∀e ∈ E | e = (ni, n j)⇒ ni impacts n j

Invoked by Observer, Traversal starts by receiving the updated
PDG and the concerned change initiator nodeconcerned . It traverses
the PDG in two directions by using three types of edges: by edgedata

and edgeprecede to traverse inside a process instance; by edgeper f orm

and edgedata to go outside a process instance.
Finally Analyzer outputs the impact graph IG which is an ex-

traction of the global PDG but contains only the process elements
impacted by a (future) change. These elements are detected by
the emerging dependencies among run-time process elements in the
PDG based on shared data, actor or on the temporal sequences.

Algorithm 3 gives the pseudo code of the traversal. For its im-
plementation we used the Neo4j Core-Java-API to develop a Neo4j
embedded application in our JVM process. Thus, we can bene-
fit not only an object-oriented approach to manipulate the graph
database, working with Nodes, Relationships and Paths, but also
highly customizable high-speed traversal- and graph-algorithm im-
plementations.

The obtained IG is considered as the base to conduct impact
analysis at different levels according to a specific need of change
manager. For instance, IG can show only the dependencies at pro-
cess, data or actor level. This can be achieved by defining some

query templates in Cypher language [31] that look up the IG from
different points of interest. For instance, Fig.8 shows the IG of
the scenario ∆ in the process and data levels. In Fig.8(a) we can
observe the dependency between two process instances p1.sd and
p2.sd (by sharing the same actor a1, but this information is hidden
in the process models). Fig.8(b) shows only the data dependencies
among the work products.

In principle, we can go further in such analysis by annotating
the nodes of the IG with some interesting metrics such as work
product completion percentage. That means that, for any affected
work product the percentage of its completion at the time of change
can be estimated based on the duration of the task that produces it.
However, this feature, which is dependent on a specific given do-
main for calculating the required metrics, is not presented in this
paper but in our previous work [14, 27].

p1.sd

p1.vv p2.vv

p2.sd

(a) IG for
Process-level

SR1

DM1 S1

T R1

(b) IG for
Data-level

Figure 8: Example of different Impact Graphs

input : UPDG = (V,E) & nodeconcerned node = n

output: ImpactGraph = (V,E)
Procedure GenImpactGraph (UPDG, n)

queue← n;
impact graph← n;
while queue is not empty do

x← queue;
for each y such that (x, y) is edgedata or edgeper f orm

or edgepercede do
if

(x,y) isedgedata & t
be f ore
src 6= t

a f ter
src & t

a f ter
src 6=< tdes

then

GenImpactGraph(PDG, y);
queue← y;

else if (x, y) isedgeper f orm &status 6=
completed &edgeper f orm affectsbyadaptation

then
for each z such that (y, z) affects by

adaptation do

GenImpactGraph(UPDG, z);
queue← z;

end

else if

(x, y) isedgepercede &(x.y)status == not visited

then

GenImpactGraph(UPDG, z);
end

end

Algorithm 3: Analyzer Algorithm

5. RELATED WORK
Change management can be tackled from different perspectives,
such as process perspective, tool perspective and product perspec-

tive [19]. Also according to [19], tools and methods to support the
change process can be divided into two groups: (1) those that help
managing the workflow or documentation of the process and (2)
those which support engineers in making decisions at a particular
point in the engineering change process (e.g. the risk/impact anal-
ysis phase).

We use this structure to discuss some similar works on the tool
perspective in Business Process, System and Software Engineering
communities.

Work flow/documentation support: computer-based tools has been
recognized as an essential to support engineering change [16]. In
terms of academic works, Chen et al. [8] proposed a tool to support
distributed engineering change management linking with Concur-
rent Engineering. Lee et al [23] introduced a prototype for col-
laborative environment for engineering change management which
combines ontology-based representations of engineering cases, case-
based reasoning for retrieval and a collaboration model. In Busi-
ness Process community, many of existing works on change man-
agement focus on proposing mechanisms to enable process adapta-
tion and changes propagation. Most of the researches [37, 28, 29,
25, 26, 6] have investigated solutions for process adaptation. Re-
ichert et al. gave in [38] a good survey on the flexibility of work-
flow system in order to response better to changes. However, these
studies stay as prototypes which are difficult to be validated for in-
dustries.

In terms of commercial tools, in Engineering domain, tools such
as IBM Rational Team Concert [17] and Siemens TeamCenter [40]
provide the control for collaborative work. However, these tools
in general are costly, very complex to use and to customize, thus
few companies have adopted them in their environment. In busi-
ness process domain, many commercial tools have been developed,
among them we cite the most interesting such as Bonita [7], jBPM
[20] and AristaFlow [3]. The good point of these BPMSs is that
they offer partial or full open-source API that enable extensions in
staying with standardized and operational environments. Envisag-
ing an validation of our prototype in software and system industry,
we need to keep this vision as standard and operational. That’s why
we developed our academic prototype based on jBPM.
Decision making support: a wide variety of techniques are used in
the context of impact analysis and change propagation [16]. There
is currently no commercial package that helps predict the effect of
a change, however some work is being carried out in academic in-
stitutions [19]. A tool called Change Prediction Method (CPM)
aims at realizing of how changes spread through a product by using
Design Structure Matrix (DSM) as the basis of the product model.
The tool uses a simple model of risk, where the likelihood of a
change propagating is differentiated from the impact of such an oc-
currence. This technique has been used in many other works [18,
33, 21]. Grantham-Lough et al [12] applied prediction methods for
change propagation and risk estimations based on the functional de-
composition of the product in early design stages. Their methods
utilize history of design failures and assume that the behavior of
past products is sufficiently similar to current or new products. As
a result, tools show a diversity of approaches but based on predic-
tion approaches. Their applicability reduces in the real-time change
analysis when time plays a major role in informing the change af-
fected partners.

Impact Analysis of change is also an important topic in business
process research. In [10], a change propagation approach called
Refine Process Structure Tree is proposed to deal with change in
process choreographies. This approach addresses both phases of
process change but only inside one process instance. Approval of a

change is done by negotiations among change initiator and affected
partners. By contrast, our approach derives the impact of change
inside and among process instances and also provides useful met-
rics in order to facilitate the negotiation phase. Muler in [29] dealt
with logical failures management in inter-workflow collaboration
scenarios and extends the previous work [28] by adding tempo-
ral and qualitative implications of workflow adaptation. Temporal
implications of an adaptation are determined by estimating the du-
ration required to execute the dynamically adapted workflow and
by comparing it with originally fixed time constraints. The metrics
used in their approach are for deriving the essence of adaptation
not for measuring the impact of the adaptation. Impact of change
among process instances was not investigated as they considered
only the impact of adaptation in one process instance.

6. CONCLUSIONS
To date, lack of gap between the process management and change
management is visible. Companies have a general lack of under-
standing of how changes are connected; if the change situation is
not really realized (lack of communication), a tool can only provide
limited help. Advantages of combing both approaches in a tool can
lead to decreasing the highly cost of reworks by providing commu-
nication and synchronization through the system [19].

Convinced by the above statement, we have developed a pro-
totype of a Change-Aware Process Environment that consolidates
the process management and the change management into one tool.
The assistance provided to process performers allows them handle
the change in a centralized and proactive way so that they can bet-
ter anticipate and response to changes.

One key strength of this work is the tool development that is
aligned to existing standards (BPMN, XPDL) and operational pro-
cess environment (jPBM). Another contribution is the exploitation
of run-time process information to analyze the hidden dependen-
cies via shared resources. Thanks to this emergent dependencies,
our solution can detect the affected elements outside a process in-
stance initiating the change. The prototype, implemented in Java
with the APIs of jBPM and Neo4j, is operational and is being vali-
dated with the case studies provided by our industry partners.

In the first stage, this work confirms the possibility of extending
a BPMS to manage software and system process. The major limi-
tation of the proposed process environment is that it was not inte-
grated to the working environment of process performer, i.e. sepa-
rated to their own development tools. We recognized that this point
is one of the biggest obstacles for making process environments
adopted by industry, especially by software and system engineers.
We envisage to study how to make some connections between the
process environment and the process performer working tools with-
out losing the genericity of the process environment.

On learning using a (B)PMS for modeling and enacting a real
software and system process, we also perceived an important limit
of the traditional process environments in practice: they require as
input the well-defined, executable process models which, in gen-
eral do not exist. To remedy this problem, our future works aim at
a bottom-up approach for process environment in order to enable
operational process model to emerge from the end-users side.

7. ACKNOWLEDGMENTS
Part of this research has been supported by the French research

projects ANR InnoServ (Innovation de Services pour personnes
fragiles).

8. REFERENCES
[1] V. Ambriola, R. Conradi, and A. Fuggetta. Assessing

process-centered software engineering environments. ACM

Trans. Softw. Eng. Methodol., 6(3):283–328, July 1997.
[2] S. Arbaoui, J.-C. Derniame, F. Oquendo, and H. Verjus. A

comparative review of process-centered software engineering
environments. Annals of Software Engineering,
14(1-4):311–340, 2002.

[3] AristaFlow. Aristaflow website : http://www.aristaflow.com/.
[4] N. S. Barghouti, W. Emmerich, W. SchÃd’fer, and A. Skarra.

Information management in process-centered software
engineering environments. In In A. Fugetta and A. Wolf,

editors, Software Process Trends in Software, pages 53 – 87.
Wiley, 1996.

[5] R. Bendraou, B. Combemale, X. Cregut, and M.-P. Gervais.
Definition of an executable spem 2.0. In Proceedings of the

14th Asia-Pacific Software Engineering Conference, APSEC
’07, pages 390–397, Washington, DC, USA, 2007. IEEE
Computer Society.

[6] R. Bergmann, A. Freßmann, K. Maximini, R. Maximini, and
T. Sauer. Case-based support for collaborative business. In
ECCBR, pages 519–533, 2006.

[7] BonitaSoftware. Bonita website:http://www.bonitasoft.com/.
[8] Y.-M. Chen, W.-S. Shir, and C.-Y. Shen. Distributed

engineering change management for allied concurrent
engineering. Int J Comput Integr Manuf, 15(2):127–151,
2002.

[9] M. P. Cota, D. Riesco, I. Lee, N. Debnath, and
G. Montejano. Transformations from spem work sequences
to bpmn sequence flows for the automation of software
development process. J. Comp. Methods in Sci. and Eng.,
10(1-2S1):61–72, Sept. 2010.

[10] W. Fdhila, C. Indiono, S. Rinderle-Ma, and M. Reichert.
Dealing with change in process choreographies: Design and
implementation of propagation algorithms. Information

Systems, 49:1–24, April 2015.
[11] G. Grambow, R. Oberhauser, and M. Reichert. Towards

automatic process-aware coordination in collaborative
software engineering. In 6th Int’l Conference on Software

and Data Technologies (ICSOFT’11), pages 5–14.
SciTePress, July 2011.

[12] T. I. Grantham-Lough K, Stone MC. Prescribing and
implementing the risk in early design (red) method. 2006.

[13] V. Gruhn. Process-centered software engineering
environments, a brief history and future challenges. Ann.

Softw. Eng., 14(1-4):363–382, Dec. 2002.
[14] M. Hajmoosaei. Impact analysis of workflow adaptation at

run-time. Master thesis, University of Grenoble, 2014.
[15] T. Hoff. Neo4j - a graph database that kicks buttox at

http://highscalability.com.
[16] G. Huang and K. Mak. Computer aids for engineering

change control. Journal of Materials Processing Technology,
76:187 – 191, 1998.

[17] IBM. Rational team concert :
http://www.ibm.com/developerworks/downloads/r/rtc/.

[18] T. A. W. Jarratt, C. M. Eckert, P. J. Clarkson, and
L. Schwankl. Product architecture and the propagation of
engineering change. In 7th International Design Conference

(Design 2002), pages 75–80, 2002.
[19] T. A. W. Jarrett, C. M. Eckert, N. H. M. Caldwell, and P. J.

Clarkson. Engineering change: an overview and perspective

on the literature. Research in Engineering Design,
22(2):103–124, April 2011.

[20] JBoss. jbpm website : http://www.jbpm.org.
[21] S. F. KöNigs, G. Beier, A. Figge, and R. Stark. Traceability

in systems engineering - review of industrial practices,
state-of-the-art technologies and new research solutions. Adv.

Eng. Inform., 26(4):924–940, Oct. 2012.
[22] O. Kovalenko, D. Winkler, M. Kalinowski,

E. Serral Asensio, and S. Biffl. Engineering process
improvement in heterogeneous multi-disciplinary
environments with the defect causal analysis. In Proceedings

of the 21th EuroSPI Conference on Systems Software and

Service Process Improvement, Communication in Computer

and Information Science, pages 73–85. Springer, 2014.
[23] H. J. Lee, H. J. Ahn, J. W. Kim, and S. J. Park. Capturing and

reusing knowledge in engineering change management: A
case of automobile development. Information Systems

Frontiers, 8(5):375–394, 2006.
[24] R. Matinnejad and R. Ramsin. An analytical review of

process-centered software engineering environments. In
IEEE 19th International Conference and Workshops on

Engineering of Computer-Based Systems, ECBS 2012, Novi

Sad, Serbia, April 11-13, 2012, pages 64–73, 2012.
[25] M. Minor, R. Bergmann, S. Görg, and K. Walter. Towards

case-based adaptation of workflows. In Proceedings of the

18th International Conference on Case-Based Reasoning

Research and Development, ICCBR’10, pages 421–435,
Berlin, Heidelberg, 2010. Springer-Verlag.

[26] M. Minor, D. Schmalen, Koldehoff, and R. Bergmann.
Structural Adaptation of Workflows Supported by a
Suspension Mechanism and by Case-Based Reasoning. In
Proceedings of WETICE 2007, pages 370–375, 2007.

[27] H. Mojtaba, T. Hanh Nhi, P. Christian, F. Agnes, and
R. Claudia. Impact analysis of process change at run-time. In
Proceedings of The 24th IEEE International Conference on

Enabling Technologies: Infrastructure for Collaborative

Enterprises (to be appeared), WETICE 2015, 2015.
[28] R. Muller, U. Greiner, and E. Rahm. Agent work: a

workflow system supporting rule-based workflow adaptation.
Data Knowledge Engineering, pages 223–256, 2002.

[29] R. Muller and E. Rahm. Dealing with logical failures for
collaborating workflows. In O. Etzion and P. Scheuermann,
editors, CoopIS, volume 1901 of Lecture Notes in Computer

Science, pages 210–223. Springer, 2000.
[30] B. Mutschler, M. Reichert, and J. Bumiller. Unleashing the

effectiveness of process-oriented information systems:
Problem analysis, critical success factors, and implications.
Systems, Man, and Cybernetics, Part C: Applications and

Reviews, IEEE Transactions on, 38(3):280–291, May 2008.
[31] Neo4j. Neo4j website : http://www.neo4j.com.
[32] Oasis. Web services business process execution language

version 2.0, 2007.
[33] S. Oh, B. Park, S. Park, and Y. S. Hong. Design of

change-absorbing system architecture for the design of
robust products and services. In J. A. Jacko, editor, HCI (4),
volume 4553 of Lecture Notes in Computer Science, pages
1110–1119. Springer, 2007.

[34] O. M. G. (OMG). Software Process Engineering Metamodel
(SPEM), 2007.

[35] O. M. G. (OMG). Business process model and notation
(bpmn) version 2.0, jan 2011.

[36] C. Portela, A. Vasconcelos, S. Oliveira, A. A. Silva, and
S. Elder. Spider-pe: A set of support tools to software
process enactment. In Proceedings of the 9th International

Conference on Software Engineering Advances, ICSEA’14,
2014.

[37] M. Reichert, S. Rinderle, and P. Dadam. Adept workflow
management system: Flexible support for enterprise-wide
business processes. In Proceedings of the 2003 International

Conference on Business Process Management, BPM’03,
pages 370–379, Berlin, Heidelberg, 2003.

[38] M. Reichert and B. Weber. Enabling Flexibility in

Process-Aware Information Systems - Challenges, Methods,

Technologies. Springer, 2012.
[39] I. Robinson, J. Webber, and E. Eifrem. Graph Databases.

O’Reilly Media, Inc, 2013.
[40] Siemens. Teamcenter

website:http://www.plm.automation.siemens.com/.
[41] W. M. P. Van Der Aalst, A. H. M. T. Hofstede, and

M. Weske. Business process management: A survey. In
Proceedings of the 2003 International Conference on

Business Process Management, BPM’03, pages 1–12, Berlin,
Heidelberg, 2003. Springer-Verlag.

[42] F. Yuan and L. Ming-Shu. Towards Software Process
Enactment Based on the SPEM2XPDL Model
Transformation. Journal of Software, 18, 2007.

