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Complex singularities in the plane planetary three-body problem

In the plane planetary three-body problem, the Hamiltonian is the sum of two uncoupled Kepler problems and a small, perturbing function. As KAM and Nekhoroshev theories show, the stability of the system depends crucially on the analytic continuation of the perturbing function on a complex extension of the phase space, its complex singularities and its analyticity domain. This paper is devoted to determining these singularities, which fall into the two kinds of planet-star and planet-planet complex collisions, and to estimating the norm of the continuation of the perturbing function.

Introduction

Consider the plane three-body problem, in the planetary regime, i.e. assuming that two of the masses (planets) are small with respect to the third one (Sun). Over a fixed, finite time interval, the mutual attraction of planets only has a limited influence on the Keplerian dynamics of the planets around the Sun. In the 18th century, Lagrange and Laplace managed to compute the averaged mutual attraction, which led them to a remarkable description of the secular dynamics, consisting of the slow rotations and deformations of the Keplerian ellipses of the planets, over a longer time interval, outside mean motion resonances [START_REF] De Lagrange | Oeuvres de Lagrange. Number v. 6 in Oeuvres de Lagrange[END_REF][START_REF] De | Laplace and Académie des sciences (France)[END_REF]. This average may be seen as the first order normal form of the perturbation. Taking into account the remainder of this or higher order normal forms has proved a difficult task, with Poincaré showing, in particular, the generic divergence of perturbation series. In addition, Poincaré famously proved the non-integrability of the three-body problem, which dashed any hope to an easy solution to stability issues in the problem [START_REF] Poincaré | Les méthodes nouvelles de la mécanique céleste[END_REF][START_REF] Poincaré | Les méthodes nouvelles de la mécanique céleste[END_REF][START_REF] Poincaré | Les méthodes nouvelles de la mécanique céleste. Tome III. Les Grands Classiques Gauthier-Villars[END_REF].

Since then, two groundbreaking theories have been developped, which may be applied to the problem. The first one is KAM theory. Arnold has proved a refinement of Kolmogorov's theorem which can tackle some degenerates cases and has successfully applied it to the plane planetary three-body problem [START_REF] Arnold | Small denominators and problems of stability of motion in classical and celestial mechanics[END_REF]. Arnold's theorem shows the existence of quasi-periodic motions, if the ratio of masses between the planets and the star is small enough. The second theory was initiateed by Nekhoroshev [START_REF] Nekhoroshev | An exponential estimate of the time of stability of nearly-integrable hamiltonian systems[END_REF]. It proves stability of action variables over a time which is exponentially long with respect to the size of the perturbation.

The properties needed to apply both these theories depend on the singularities of the complex extension of the perturbing function of the three-body problem in symplectic coordinates. Many expansions of the perturbing function and of Kepler's equation have been studied carefully, but none is directly relevant for our problem. One exception is Niederman's study, to apply Nekhoroshev's theorem to the planetary three-body problem [START_REF] Niederman | Stability over exponentially long times in the planetary problem[END_REF], who estimated of the complex perturbing function simply based on its real behavior. Some related results, using computer-assisted methods, have been obtained in the application of KAM theory to truncated resricted plane three-body problems which are relevant in astronomy [START_REF] Celletti | On the stability of realistic three-body problems[END_REF][START_REF] Celletti | Kam stability for a three-body problem of the solar system[END_REF][START_REF] Locatelli | Invariant tori in the Sun-Jupiter-Saturn system[END_REF] In this paper, we study the complex extension of the perturbing function, by localizing its (complex) collisions and estimating its complex norm. It is the first part a set of article aiming at applying KAM and Nekhoroshev theories to the plane planetary three-body problem [START_REF] Castan | Sufficient condition for the application of the kam theorem to the plane planetary three-body problem[END_REF][START_REF] Castan | Sufficient condition for the application of the kam theorem to the plane planetary three-body problem[END_REF][START_REF] Castan | Estimates on stability over exponentially long times in the plane planetary problem[END_REF]. We first determine a domain in the space of Poincaré coordinates, in which Kepler's equation induces a diffeomorphism, as well as a sufficient condition to avoid the singularities of the perturbing function. In order not to have a too small domain, we use three different analyticity widths: one for the action variables, one for the angles, and one for the Cartesian coordinates. We also need to determine the radius of convergence of the expansion of the disturbing function in powers ot the semi-major axes ration, which requires estimates of the Legendre polynomials in the complex domain. We then give two estimates of the perturbating function: one relying on complicated formulas and an implicit function, and a simplified one, which is useful to understand the behaviour of the perturbation close to the real domain of Poincaré variables, and the dependency of the bound in the different analyticity widths. This makes it possible to consider relating the stability time of a system with its initial geometry. 1 2 Preliminaries

Jacobi coordinates

In the plane planetary three-body problem, we consider a bigger body, called the star, and two smaller bodies, called planet 1 and planet 2, orbiting the star. In the planetary setting, we ask as well that the two orbits do not cross at any time; in the following, the planet 1 will be on the inner orbit, and the planet 2 on the outer one. Let us call (p 0 , q 0 ) the coordinates (momentum-position) of the star, and (p i , q i ) the coordinates of the planet i, with i ∈ {1, 2}. The phase space is obtained by removing the collisions between the bodies:

D = (p i , q i ) 0≤i≤2 ∈ R 2 × R 2 3 | ∀0 ≤ i < j ≤ 2, q i = q j
The Hamiltonian of this isolated system given by Newton's law is the following: H(p 0 , p 1 , p 2 , q 0 , q 1 , q 2 ) = 1 2

0≤j≤2 |p j | 2 m j - 0≤i<j≤2 G grav m i m j |q j -q i | , (1) 
where m 0 is the mass of the star, m i the mass of the planet i, and G grav the gravitational constant (we will keep track of this constant along the calculations), and | • | is the Euclidian norm.

The usual heliocentric coordinates will not be used here, since it lets a term p 1 • p 2 appear, and we wish to focus on the least amount of different terms. We hence use the Jacobi transformation (see [START_REF] Poincaré | Les méthodes nouvelles de la mécanique céleste[END_REF], or [START_REF] Féjoz | Global secular dynamics in the planar three-body problem[END_REF] for a concise statement) to express our Hamiltonian. This symplectic transformation is written as follows:

   P 0 = p 0 + p 1 + p 2 P 1 = p 1 + σ 1 p 2 P 2 = p 2    Q 0 = q 0 Q 1 = q 1 -q 0 Q 2 = q 2 -σ 0 q 0 -σ 1 q 1
where the two coefficients σ 0 and σ 1 are

σ 0 = m 0 m 0 + m 1 , σ 1 = m 1 m 0 + m 1 .
Consider the following masses:

µ 1 = m 0 m 1 m 0 + m 1 , µ 2 = (m 0 + m 1 )m 2 m 0 + m 1 + m 2 , M 1 = m 0 + m 1 , M 2 = m 0 + m 1 + m 2 .
In the frame of reference attached to the center of mass of the system, and Q 2 = 0 (which will always be satisfied in the planetary motion since the planet 2 is on the outer orbit and we do not have collisions), the Hamiltonian H of the system is:

H(P 1 , P 2 , Q 1 , P 2 ) = H Kep (P 1 , P 2 , Q 1 , P 2 ) + H pert (P 1 , P 2 , Q 1 , P 2 ) (2) 
           H Kep (P 1 , P 2 , Q 1 , P 2 ) = |P 1 | 2 2µ 1 - G grav µ 1 M 1 |Q 1 | + |P 2 | 2 2µ 2 - G grav µ 2 M 2 |Q 2 | H pert (P 1 , P 2 , Q 1 , Q 2 ) = G grav m 2 m 0 + m 1 |Q 2 | - m 0 |Q 2 + σ 1 Q 1 | - m 1 |Q 2 -σ 0 Q 1 | (3)
Observe that the Hamiltonian does not depend on Q 0 , by symmetry of translation. The system is described by the 4 Jacobi coordinates (P 1 , P 2 , Q 1 , Q 2 ) outside the collisions. The first part H Kep can be thought of as the sum of two integrable fictitious Kepler problem Hamiltonian. The first one corresponds to the planet 1 orbiting the star, but each of these bodies having a different mass, and the second one as the planet 2 orbiting the center of mass of the star and the planet 1, with different masses for each of these bodies as well. As for the perturbation of this Kepler problem Hamiltonian, it contains three terms, that are proportional to

1 |Q 2 | , 1 |Q 2 + σ 1 Q 1 | , 1 |Q 2 -σ 0 Q 1 | .
The singularities in these coordinates corresponds to the points where the denominators are null. Two of those terms are mixing the coordinates of the two planets, and one only the coordinates of the second planets. When investigating the location of the singularities, we will hence start by the simplest case, which corresponds to the singularities of the term 1/|Q 2 |.

In order to study the norm of the Hamiltonian, it is useful to expand, at least formally for now, the previous formula in terms of the semi-major axes. We obtain the following series:

H pert (P 1 , P 2 , Q 1 , Q 2 ) = G grav µ 1 m 2 |Q 2 | n≥2 σ n P n (cos(S)) |Q 1 | |Q 2 | n , (4) 
with

σ n = σ n-1 0 + (-1) n σ n-1 1 ,
where P n (cos(S)) is the n th Legendre polynomial and S is the oriented angle between Q 1 and Q 2 . Observe that in Jacobi coordinates, with the choice of mass we made, the series starts at n ≥ 2, and therefore will decrease quickly with the ratio of the semi-major axes. Bounding each of the term in this series expansion, we will be able to obtain an upper bound on the norm of the perturbation as wanted.

Reminder on the plane Delaunay and Poincaré variables

In this section, we recall the main identities that we will use in our study. From the initial variables, we define the elliptic coordinates of the system, which are not symplectic. We then display the formulas of the Delaunay variables, and finally the Poincaré variables, which are both symplectic coordinates.

In the plane case, the elliptic variables are (a, e, v, g), where a is the semi-major axis, e the eccentricity, v the true anomaly and g the angle of the perihelion. In this setting, one can consider the ellipse given by the values (a, e, g), the position of the planet being determined by v. In a Cartesian framework, the planet have coordinates (x, y) given by the relations

   x = r cos(v + g) y = r sin(v + g) z = x + ıy = r exp(ıv) exp(ıg) (5) 
where r is the distance from the planet to the star. A set of symplectic variables that is useful when studying the motion given by the Kepler problem Hamiltonian is the Delaunay variables. To learn more about their construction, one can refer to [START_REF] Chenciner | Intégration du problème de Kepler par la méthode de Hamilton-Jacobi : coordonnées "action-angles" de Delaunay; Jacques Laskar : Les variables de Poincaré et le développement de la fonction pertubatrice[END_REF] and [START_REF] Laskar | Andoyer construction for Hill and Delaunay variables[END_REF]. Before introducing them, let us define the eccentric anomaly u, another common angle in celestial mechanics. It satisfies the relations:

r cos(v) = a(cos(u) -e) r sin(v) = a √ 1 -e 2 sin(u) . (6) 
The Delaunay coordinates are the action-angle coordinates (L, G, l, g). Defining them from the elliptic coordinates, we have

   L = µ G grav M a G = L (1 -e 2 ) l = u -e sin u = u -(e exp(ıu)) . ( 7 
)
and g being the argument of the perihelion. G is the angular momentum, and l is given by Kepler's equation, to which we shall return later. Observe that for L = G, in other words for a zero eccentricity, the argument of the perihelion is not defined, and leads to the presence of a singularity when L = G. This problem can be avoided using Poincaré coordinates, which are well-defined for zero eccentricity. For a proof that these variables are symplectic, peruse [START_REF] Chenciner | Intégration du problème de Kepler par la méthode de Hamilton-Jacobi : coordonnées "action-angles" de Delaunay; Jacques Laskar : Les variables de Poincaré et le développement de la fonction pertubatrice[END_REF] and [START_REF] Féjoz | On action-angle coordinates and the Poincaré coordinates[END_REF]. In the plane case, those are composed of two action-angle coordinates and two Cartesian coordinates for each body: (Λ, λ, ξ, η). Their formulas can be summarized, using Delaunay variables, as follows:

           Λ = L λ = l + g Γ = L -G ξ = √ 2Γ cos(-g) η = √ 2Γ sin(-g) . (8) 
The angle λ is called the mean longitude. Define as well the eccentric longitude w = u + g. To simplify the use of the Cartesian coordinates, we define the following variable:

F = ξ + ıη = √ 2Γ exp(-ıg) = √ 2Λ 1 -1 -e 2 exp(-ıg).
Another variable that can prove to be useful while switching from Delaunay's point of view to Poincaré's is the eccentricity vector E = e exp(ıg). We have the following relation:

F = √ 2L 1 + G L Ē.
We can rewrite the Kepler Hamiltonian in these variables. Recall that

H = G 2 2µr 2 - G grav M µ r .
In the planetary case, the distance r of the planet to the star oscillates between the extremal values a(1 + e) and a(1 -e) on its ellipse. Those are the roots of the polynomial of degree 2 (the energy being constant along the motion). In Poincaré coordinates, it takes the form

H = - G 2 grav M 2 µ 3 2Λ 2 .

Notation for the analytic continuation

Studying the complex singularities or the norm of the disturbing function on a complex domain means that we are looking at the analytic continuation of the Hamiltonian on some complex neighborhood of the initial set. For some insight about the theory of analytic continuation for functions of several variables, one can consult [START_REF] Narasimhan | Several complex variables[END_REF] or [START_REF] Young | On the Theory of Functions of two Complex Variables[END_REF], but we will not need any abstract result. The motivation of this section is the introduction of some notations, so as to simplify our work later. Let f be a real analytic function defined on some domain D ∈ R.

f : D → R, x → f (x) = n≥0 a n x n
Let D C be a complex neighborhood of the set D. The analytic continuation of f over the set D C is given by:

f : C → C, x → f (x) = n≥0 a n xn
The sign " ˜" will be used to indicate that we are looking at a complex variable (for instance x) that is in a complex neighborhood of the initial variable (x); we use it as well to show that we are considering the analytic continuation of f . Besides, we will decompose x in the following way:

x = x + ıx , where (x, x ) ∈ R 2 .
Consider now the following simple function

g : D ⊂ R 2 → C, (x, y) → x + ıy = z
The analytic continuation of this function is:

g : D C ⊂ C 2 → C, (x, ỹ) → x + ıỹ
Let us then call z = g(x, ỹ). This simplified notation will be useful later. Using the previous notations, we have:

z = x + ıỹ = x -y + ı(x + y).
Hence, we can define as well z = z + ız , where (z, z ) ∈ R 2 with z = x -y and z = x + y. Consider now the function h(x, y) = x -ıy = z that is a real analytic function of two real variables (though h : z → z is not complex analytic, which is in fact the main reason for this paragraph). Its analytic continuation is:

h : D C ⊂ C 2 → C (x, ỹ) → x -ıỹ
Writing z = h(x, ỹ), we have

z = x + y + ı(x -y).
An important remark is that complexification and conjugation do not commute: z = z. Indeed:

z = x + y + ı(x -y) = x -y -ı(x + y) = z.
These definitions of the variables z and z are the main motivation of this discussion. We will use them when it simplifies the computations throughout the whole paper. Let us now study some function where the last notations reveal to be useful.

1. Real part and imaginary part: Let (x, y) ∈ D ⊂ R 2 , and define z = x + ıy. We have:

x = (z) = z + z 2 , y = (z) = z - z 2ı
.

Now, for (x, ỹ) ∈ D C , with our previous notations we have:

x = x + ıx = (z) = z + z 2 , ỹ = y + ıy = (z) = z - z 2ı .
2. Analytic continuation of a function of two variables: Let f be an analytic function depending on two variables:

f : D ⊂ R 2 → R (x, y) → ∞ m,n=0 a m,n x m y n
where a m,n ∈ R. The analytic continuation of f is defined on some extension D C of D, by:

f : D C ⊂ C 2 → C (x, ỹ) → ∞ m,n=0
a m,n xm ỹn

Since the variables x and ỹ can be expressed using z and z, there exists a domain D C and a sequence (b m,n ) m,n≥0 with b m,n ∈ C, such that we can write:

g : D C → C (z, z) → ∞ m,n=0
b m,n zm zn and that f (x, ỹ) = g(x + ıỹ, x -ıỹ) on D C . This correspondence will be of great importance in our work.

Cosine of the oriented angle between two vectors:

In the formula of the perturbation of the three-body problem, the Legendre polynomial composed with the cosine of the angle S appears, S being the oriented angle between the vectors Q 1 and Q 2 . Let us compute the analytic continuation of this function, using our previous notations. Let

u 1 = x 1 y 1 , u 2 = x 2 y 2
be two vectors of R 2 , with u i = 0, and S = (u 1 , u 2 ). We have:

cos(S) = x 1 x 2 + y 1 y 2 u 1 u 2 .
Working with z i = x i + ıy i for i = 1, 2, we get

cos(S) = 1 2 z 1 z2 + z1 z 2 √ z 1 z1 z 2 z2 = 1 2 z 1 z2 z1 z 2 + z1 z 2 z 1 z2 . ( 9 
)
When considering a complex neighborhood of the initial set of definitions of the two vectors u 1 and u 2 , one needs to take care of the fact that none of the fractions zi / zi goes to zero. Then, the analytic continuation is straightforward, replacing z by z and z by z.

Euclidean norm of the difference between two vectors:

Let us now take a look at the Euclidean norm, and more precisely at its analytic continuation on a domain not containing zero. Following our notations, we have for (x, ỹ) = (0, 0):

x y ≡ x 2 + y 2 = √ z z.
Several remarks are necessary. Observe that we are using the analytic continuation of the square root function. We can indeed consider a determination of the root of a complex number under some conditions on the initial set. Let D be the initial set of real values we are considering such that 0 / ∈ D. Consider the function d(x, y) = x 2 + y 2 . Assume that D C is a complex neighborhood of D such that 0 / ∈ D C , and consider the analytic continuation of d on this set. If D C is close enough to D, then d(D C ) will be close to d(D), and hence close to the real axis. Hence, the square root will be well-defined on the set d(D C ). Consider now the Euclidean norm of the difference between two vectors, which appears when looking at the singularities of the perturbing function. Let us consider for instance two points M 1 = (x 1 , y 1 ) and M 2 = (x 2 , y 2 ) in the plane case. The vector between these two points is u =

x 2 -x 1 y 2 -y 1 . We are interested in the case where the norm of u goes to zero. This question is closely related to the singularities of the perturbation, since we have terms of the form 1/(Q 2 -cQ 1 ). In the real case, we can let z = x + ıy, and then the distance is the following:

d = √ z z.
Letting

z 1 = x 1 + ıy 1 , z 2 = x 2 + ıy 2 , and z = z 2 -z 1 , we get d = √ z 2 -z 1 √ z2 -z1 .
Using the analytic continuation, we see that we have a singularity in the case z1 = z2 or z1 = z2 .

This remark will make it easier to find the singularities related to the complex collisions between the two planets. Observe that in this case, we have two singularities occurring at the same time. One singularity comes from the value of a denominator of the disturbing function going to zero, and the other coming from the fact that the square root function is not analytic at zero.

Definitions of the domains and their complex extension

Real domain

The initial set we are interested in for the orbits of the planets is the set of orbits with fixed semi-major axes, of eccentricities bounded by some value, and for any angle of the perihelion or of the planets. Define T = R/2πZ. In Poincaré coordinates, for Λ 0 = (Λ 0,1 , Λ 0,2 ) ∈ (R ++ ) 2 (where R ++ = (0, +∞)) and ρ > 0, this set is given by

D Λ0,ρ = (Λ, λ, ξ, η) ∈ R 2 × T 2 × R 4 , s.t. Λ = Λ 0 , ξ 2 i + η 2 i < ρ 2 for i = 1, 2 . ( 10 
)
The relation between the eccentricity for each body is given by:

e i < ρ Λ 0,i 1 - ρ 2 4Λ 0,i .
Hence, we require that ρ < min i=1,2 ( 2Λ 0,i ), so that the eccentricities are uniquely defined.

Observe that we ask that the semi-major axes (or the Λ) are fixed. Changing this requirement to have Λ ∈ [Λ 0 -r, Λ 0 + r] will be straightforward after our computations. Besides, the set of eccentricities are both defined using the same variable ρ, though not the same value of Λ 0,i . The choice of choosing different ρ i for each planet is a viable choice in our computation. Since most of the work will be done considering one body only, it is straightforward to adapt the results with such constants. When working on Kepler's equation, it will be useful to consider the variables (Λ, w, ξ, η), where instead of the mean longitude λ we consider the eccentric longitude w. The real domain associated to it will be:

D w Λ0,ρ = (Λ, w, ξ, η) ∈ R 2 × T 2 × R 4 , Λ = Λ 0 , ξ 2 i + η 2 i < ρ 2 for i = 1, 2 . (11) 

Complex neighborhood

When studying the complex singularities, or the norm of the perturbation on a complex domain, we consider a complex neighborhood of the real domains defined previously. The complex neighborhood for the variables that were defined on the real axis R is now a subset of C, and for the angular variables it is a subset of

T C = T × R.
Defining first the ball of center x 0 and radius r in C by

B(x 0 , r) = {x ∈ C, |x -x 0 | < r},
we can define the complex neighborhoods of the previous sets. Our approach is to consider polydiscs around each real variable. Let us first define the sets for only one planet, that will be necessary in the next section.

Let Λ 0 ∈ R ++ , 0 < r < Λ 0 , 0 < ρ < 2(Λ 0 -r), 0 < ρ < √ Λ 0 -r -ρ/ √ 2,
and λ max > 0. Define:

D 1 Λ0,r,ρ,ρ ,λ max = {( Λ, λ, ξ, η) ∈ C × T C × C 2 : Λ ∈ B(Λ 0 , r), | λ| < λ max , ∃(ξ 0 , η 0 ) ∈ B(0, ρ) s.t. ξ ∈ B(ξ 0 , ρ ), η ∈ B(η 0 , ρ )}. (12) 
In this set, with the constraints we gave, the Poincaré coordinates are well-defined. Regarding the set for the variables (Λ, w, ξ, η), we define

D w,1 Λ0,r,ρ,ρ ,w max = {( Λ, w, ξ, η) ∈ C × T C × C 2 : Λ ∈ B(Λ 0 , r), | w| < w max , ∃(ξ 0 , η 0 ) ∈ B(0, ρ) s.t. ξ ∈ B(ξ 0 , ρ ), η ∈ B(η 0 , ρ )}. (13) 
We need as well to define the same kind of sets, but for both planets, to state the final results of this paper.

Let Λ 0 ∈ (R ++ ) 2 , 0 < r < min i=1,2 Λ 0,i , 0 < ρ < min i=1,2 ( 2(Λ 0,i -r)), 0 < ρ < min i=1,2 ( Λ 0,i -r) -ρ/ √ 2,
and λ max > 0. Define:

D Λ0,r,ρ,ρ ,λ max = {( Λ1 , Λ2 , λ1 , λ2 , ξ1 , ξ2 , η1 , η2 ) ∈ C 2 × T 2 C × C 4 : for i=1,2: Λi ∈ B(Λ 0,i , r), | λi | < λ max , ∃(ξ 0,i , η 0,i ) ∈ B(0, ρ) s.t. ξi ∈ B(ξ 0,i , ρ ), ηi ∈ B(η 0,i , ρ )}. ( 14 
)
As for the variables (Λ, w, ξ, η), we have

D w Λ0,r,ρ,ρ ,w max = {( Λ, w, ξ, η) ∈ C 2 × T 2 C × C 4 : for i=1,2: Λi ∈ B(Λ 0,i , r), | wi | < w max , ∃(ξ 0,i , η 0,i ) ∈ B(0, ρ) s.t. ξi ∈ B(ξ 0,i , ρ ), ηi ∈ B(η 0,i , ρ )}. ( 15 
)
3 Complex Kepler's equation

An important part of our work is the study of Kepler's equation, which links the mean anomaly to the eccentric anomaly through the transcendent Kepler equation. In the real case, this equation induces an analytic diffeomorphism (and therefore a well-defined change of variables when the eccentricity is small enough). Yet, in the study of the analyticity width of the disturbing function, not only the angles can be taken in a complex set, but also the eccentricity. First, we determine the singular points of the change of variables induced by the complex Kepler equation in the complex case. With this work, we can determine a set as defined in [START_REF] Féjoz | On action-angle coordinates and the Poincaré coordinates[END_REF] in which the equation defines a local diffeomorphism at every point of this set. Secondly, we want to find a set of the type [START_REF] Féjoz | Global secular dynamics in the planar three-body problem[END_REF], with analyticity widths positive, that is included in the image of the first set. It is therefore necessary to study the surjectivity of the change of variables. With the different results, and a theorem in appendix A, we will have proven that the complex Kepler equation defines a diffeomorphism on a whole set D 1 Λ0,r,ρ,ρ ,λ max with r, ρ , λ max > 0.

Complex elliptic coordinates

The map

f : T → T, u → u -e sin u
is diffeomorphic if and only if |e| < 1. Let us now consider its analytic continuation. The complex eccentricity is ẽ = e + ıe , with e, e ∈ R. The complex angles will take their values in the set T C . Consider the function:

f : T C → T C , ũ → l = ũ -ẽ sin ũ
We are interested in determining if f is an analytic diffeomorphism (at least locally), in every points of a set T × (-u max , u max ). Hence, we want to determine the singular points of f . Consider the function ( f , f ) : ( ũ, ũ) → ( l, l), it has the same singular points as f , that is why we will shift from one point of view to another without self-restraint. This function is defined by the formulas

f = l = u -e sin(u) cosh(u ) + e cos(u) sinh(u ) f = l = u -e sin(u) cosh(u ) -e cos(u) sinh(u ) (16) 
The derivative of f is f (ũ) = 1 -ẽ cos ũ. Hence, there is a singular point if and only if

(ẽ cos ũ) = 1 (ẽ cos ũ) = 0
In the real variables, it gives:

e sin(u) sinh(u ) = e cos(u) cosh(u ) e cos(u) cosh(u ) + e sin(u) sinh(u ) = 1

Consider first the case ẽ = e + ıe = 0. Then it is straightforward to see that there exists no singular point, since f = Id.

The second case we can consider is the case e = 0, in other words for a real eccentricity. There exists three different type of singular points. For 0 < |e| < 1, for e > 0 (respectively e < 0) there exists two singular points in (u, u ) = (0, ± arccosh(1/e)) (resp. (π, ± arccosh(1/e)). When e = 1, there is one singular point in (0, 0), and when e = -1 in (π, 0). Finally, when |e| > 1, there exists two singularities for (u, u ) = (arccos(1/e), 0). Now let us assume e = 0. For the sake of simplicity, we consider that e ≥ 0 (the case e < 0 can be obtained by symmetry consideration). To find the singular points, we deduce the angle u in the first equation, and solve the second in u . Assume u ∈ [0, π/2], e > 0, u > 0 (again, by symmetry of the equations, the study of this case is enough to compute the other cases), the first equation gives

e 2 (1 -cos 2 (u)) sinh 2 (u ) = e 2 cos 2 (u) cosh 2 (u ).
Call µ = e 2 cosh 2 (u ) + e 2 sinh 2 (u ) (since e = 0, we have µ > 0):

     cos(u) = e sinh(u ) µ sin(u) = e cosh(u ) µ (18) 
Observe that in every case, i.e. for e > 0, u > 0 or e < 0, u > 0 or e > 0, u < 0 or e < 0, u < 0, there exists two solutions (obtained by adding π to the first solution) of the first equation in T.

The second equation can now be written

e 2 cosh(u ) sinh(u ) + e 2 cosh(u ) sinh(u ) = µ.
Let m = e 2 + e 2 > 0, squaring this equation, and using hyperbolic trigonometry identities, we obtain a unique possible value for u :

u max = arccosh 1 2 1 + 1 m 1 + (m + 1) 2 -4e 2 . ( 19 
)
By symmetry arguments, we obtain two curves of singular points. We represented those in figure 1 and2, for small eccentricities e, and in figure 3 and4 for large eccentricities e. Observe that if we release the constraint e positive, and authorize it to be negative, we obtain the same figure as figure 1 and3, though shifted by π, which represents the real singular point in the case e = -1. The case |e| = 1 corresponds to a change of mode, where there is the existence of a singular point on the real axis when e = 0.

To summarize, we have the following singular points:

• m = 0: there are no singular points, for all ũ ∈ T C • ẽ ∈ R \ {0}: for real eccentricities |e| / ∈ {0, 1}, there are 2 singular points depending on the value of e. When |e| = 1, only one singular points exists.

• e = 0: for each possible sign of the variables u , e, e there exists two singular points.

When fixing the value of the eccentricity, the complex Kepler equation defines an analytic local diffeomorphism at each point that is not singular, where the latter are determined by the formulas above.

Singular points in Poincaré coordinates

When switching to Poincaré coordinates, Kepler's equation loses its symmetry. Besides, the relation between the Cartesian coordinates F = (ξ, µ) and the eccentricity is quite cumbersome, and makes the research of singular points more difficult since there are now six parameters to take into account. In the continuity of our work, we fix the value of Λ and F , which fixes the eccentricity vector Ẽ. Using this vector, we give the expression of the singular points in the eccentric longitude w = (w, w ). This section is divided in three parts. First, we start with a study of the real case to get familiar with the transformation, then we compute the singular points using the variable Ẽ, and finally, we define a domain in which Kepler's equation induces an analytic local diffeomorphism at each points in Poincaré coordinates.

Real Case

In terms of the eccentric and mean longitude w = u + g and λ = l + g, Kepler's equation can be rewritten as:

λ = w -e sin(w -g). ( 20 
)
As mentioned before, we use the temporary variable E = e exp(ıg).

λ = w - e 2ı (exp(ı(w -g)) -exp(-ı(w -g))) = w - Ē 2ı exp(ıw) + E 2ı exp(-ıw) = h(w).
In order for h to define a local diffeomorphism, we want its derivative with respect to w to be non-null. The singular points verify

1 - Ē 2 exp(ıw) - E 2 exp(-ıw) = 0. (21) 
We preferred the exponential notation to simplify our upcoming work. Decomposing the variable E into E = E 1 + ıE 2 , the previous equation becomes

E 1 cos w + E 2 sin w = 1.
The first singular points arising in coordinates (E 1 , E 2 ), in other words the minimal modulus of E such that we have a singular point, corresponds to the case |E| = 1, the singular points is then in w = arg(E).

Considering the variable F , recall that its relation with E is given by the formula

F = 2Λ 1 + (1 -E Ē) 1 2 
Ē.

In our case, we have E Ē = 1. Hence, the first singular points occurring in term of the modulus of F are on a circle of radius |F | = √ 2Λ. The angle of the singular point is then w = -arg(F ). In contrast with the elliptic case, the singulars point are not located in 0, it can take every values in T.Indeed, the angle of the periapsis is not originally related to Kepler's equation, hence, when studying the mean longitude, the singular points describe the whole circle with the value of g. Besides, we can reach continuously a negative value e = -1 when changing g from 0 to π.

Singular points for a fixed Ẽ

Considering the analytic continuation of the previous function defined in the real case, its singular points satisfy

Ẽ 2 exp(ıw) exp(-w ) + Ẽ 2 exp(-ıw) exp(w ) = 1. (22) 
Fixing Ẽ and Ẽ, we are looking at singular points in the plane (w, w ). We can distinguish different cases.

• Case Ẽ = Ẽ = 0: it is clear that equation ( 22) cannot be verified. There is no singular points as soon as Ẽ and Ẽ are null, this corresponds to the case of a zero-eccentricity.

• Case Ẽ = 0, Ẽ = 0: call Ẽ/2 = s exp(ıσ) with s > 0 and σ ∈ T, equation [START_REF] Poincaré | Les méthodes nouvelles de la mécanique céleste[END_REF] becomes:

s exp(-w ) cos(w + σ) + ıs exp(-w ) sin(w + σ) = 1.

We obtain w = -σ + kπ for k ∈ Z, and w = log(s) = log | Ẽ| 2 . There exists two singularities w ∈ [0, 2π], at the same distance w = log(s) from the set of real angles T × {0}.

• Case Ẽ = 0, Ẽ = 0: as well, there exists singular points for w = -arg Ẽ + kπ, k ∈ Z, and w = log | Ẽ| 2 .

• Case Ẽ = 0, Ẽ = 0: in the general case, let Ẽ/2 = r exp(ıθ) and Ẽ/2 = s exp(ıσ).

Lemma 1. The complex Kepler equation [START_REF] Poincaré | Les méthodes nouvelles de la mécanique céleste[END_REF] has two singular points given by the formulas:

       w 1 = log(2s) - 1 2 log (1 + √ ∆) + ( √ ∆ + 1) 2 -16(rs) 2 w 2 = -log(2r) + 1 2 log (1 + √ ∆) + ( √ ∆ + 1) 2 -16(rs) 2 , ( 23 
)
where ∆ = (1 -4rs) 2 + 8rs(1 -cos γ) and γ = θ + σ.

Proof. Equation ( 22) can be rewritten:

s exp(-w ) exp(ı(σ + w)) + r exp(w ) exp(ı(θ -w)) = 1.
Call x = σ + w and γ = θ + σ, a = r exp(w ) and b = s exp(-w ). The previous equation becomes:

b exp(ıx) + a exp(ı(γ -x)) = 1. (24) 
The equation verified by the singular points of the function induced by the complex Kepler equation are:

(b + a cos γ) cos x + a sin γ sin x = 1 (b -a cos γ) sin x + a sin γ cos x = 0 (25)

Case γ = π: since a, b > 0, the second equation implies sin x = 0, and hence the first one becomes: (b-a) cos(v) = 1. This implies that there exists two singular points, one for x = 0, the other one for x = π. In x = 0, we obtain w = log(-1+ √ 1 + 4rs)-log(2r) and in x = π, w = log(1+ √ 1 + 4rs)-log(2r). Case γ = 0: the second equation of ( 25) implies (b -a) sin x = 0, and the first one (b + a) cos x = 1. Notice that since a + b > 0, there exist no singular point as soon as cos x ≤ 0. We can again divide the study in two cases. In x = 0, the equation to solve is b + a = 1. There exists at least a singular point if and only if rs ≤ 1/4, and their coordinates are given by w = log(1 ± √ 1 -4rs) -log(2r). General case (γ = 0, γ = π): in order to study the general case, we do as in the elliptic case. The second equation of the system (25) gives:

         cos x = ± a cos γ -b µ sin x = ± a sin γ µ
where µ = a 2 + b 2 -2ab cos γ = 0, and cos x and sin x have same signs. Injecting in the first equation, we get

(a 2 -b 2 ) 2 = a 2 + b 2 -2ab cos γ.
Changing to our coordinate w , we have:

r 4 exp(4w ) -r 2 exp(2w ) -2r 2 s 2 + 2rs cos γ -s 2 exp(-2w ) + s 4 exp(-4w ) = 0 (26) 
This equation is of order 4 in exp(2w ). It turns out that it has either a repeated root, either 2 real roots. Indeed, letting x = 2(w -log( s/r)) = 2w -log(s/r), the equation in x is:

(rs) 2 (exp(2x ) + exp(-2x ) -2) -rs(exp(x ) + exp(-x ) -2 cos γ) = 0 ⇔ 2(rs) 2 (cosh(2x ) -1) -2rs(cosh(x ) -cos γ) = 0.

Putting this equation under the form of a polynomial of order 2 in cosh x :

2rs cosh 2 (x ) -cosh(x ) -(2rs -cos γ) = 0. ( 27 
)
This polynomial is even, hence, if x > 0 is a solution, then -x is also one. By making this equation symmetric using the variable x , we can obtain explicit solutions. Let V = cosh(x ). the discriminant of this polynomial is ∆ = (1 -4rs) 2 + 8rs(1 -cos γ), and is always positive. Observe how the other cases cos γ = 1 and 4rs = 1 arise naturally. We have two solutions in the case cos γ = 1:

       V 1 = 1 4rs + 1 4rs (1 -4rs) 2 + 8rs(1 -cos γ) = 1 4rs 1 + √ ∆ V 2 = 1 4rs - 1 4rs (1 -4rs) 2 + 8rs(1 -cos γ) = 1 4rs 1 - √ ∆ Yet V = cosh x , therefore only the solutions V i ≥ 1 must be considered, which is V 1 . The solutions of equation (27) are x = ± arccosh V 1 = ± log V 1 + V 2 1 -1 .
Observe as well that V 2 1 -1 = V 1 /(2rs) -cos γ/(2rs), hence the two symmetrical solutions are

x = ± log(4rs) -log (1 + √ ∆) + ( √ ∆ + 1) 2 -16(rs) 2 . ( 28 
)
Using the relation between x and w , we recover the expressions of the lemma.

With the formulas of the lemmas, we get interested in two different matters, that are interesting when trying to find a domain on which the analyticity widths of the diffeomorphism induced by Kepler's equation is non-null. First, for a fixed r, s and γ, we want to determine the closest singular point to the real axis T × {0}. Secondly, we want to determine if it is possible that one of the singular points is on the real axis.

In the case γ = π, when r < s, the closest singular point is in w = log(-1 + √ 1 + 4rs) -log(2r), and in the opposite case r > s, it is in w = log(1 + √ 1 + 4rs) -log(2r). There exists two lines for which w = 0, the line of equation s = r + 1 and the one of equation s = r -1.

In the case γ = 0, if s > r, then the the first singular point occurs for w = log(1 + √ 1 -4rs) -log(2r), in the opposite case for w = log(1 -√ 1 -4rs) -log(2r), and they are at the same distance when r = s. Moreover, if s+r = 1, then the width w is zero. Besides, after passing through the line s+r = 1 (hence for s + r > 1 but rs ≤ 1/4), both solutions have same sign, they are positive if s > r and negative if r < s. When x = 0, we get the equation b -a = 0, and therefore 2a cos v = 1. There exists solutions only if √ rs ≥ 1/2, and in this case, w = 1/2 log(s/r) and x = ± arccos(1/2 √ rs). The width w is null for r = s, and we can see that it is continuous at √ rs = 1/2. In the general case, by symmetry, the closest solution to the origin depends on the ratio s/r. Indeed, the two solutions are symmetrical about the value log( s/r). They are both of the same sign if log( s/r) is greater than the norm of the solution x of the equation ( 27), which corresponds to passing through a point where the width w is zero. Hence, as in the case γ = 0, the "line" of width zero indicates a shift from two solutions of different signs to a case of identical sign. Moreover, the only case of repeated root occurs in the cases rs = 1/4 or cos γ = 1, and after passing through this line, i.e. for r = s and rs > 1/4, the width w stays null.

Null-width line (w = 0): To complete our study, we are interested in the singular points on the real axis for w, i.e. for which w = 0 (the other variables being complex). We have already seen that in the case γ = 0, there exists singular points such that w = 0 on the line r + s = 1, and the half-line r = s for rs ≥ 1/4. In γ = π, this corresponds to the two lines s = 1 + r et s = -1 + r. Finally, in (r, s) = (0, 1) and (r, s) = (1, 0), we also have w = 0. In the other cases, we ask that:

(r 2 -s 2 ) 2 = r 2 + s 2 -2rs cos γ. ( 29 
)
For each γ, this equation defines implicitly s as a function of r. Notice that the couples (0, 1) and (1, 0) verify this equation for every γ. Rewrite (29) as follows:

(r -s) 2 (r + s) 2 -1) = 2rs(1 -cos γ).
Since the second term is strictly positive, and that (r -s) 2 is positive (if cos γ = 1 there are no solution such that r = s), a necessary condition is r + s > 1. Hence, when cos γ = 1, the singular points on the real axis are the closest in norm l 1 for (r, s). In norm l 2 (the Euclidean one), the closest singular point occurs at the coordinates (r, s, γ, w ) = (1/2, 1/2, 0, 0).

To be able to study more precisely the solutions of equation ( 29) when cos γ = 1, let z = r + s, and y = r -s. The previous equation can then be written:

z 2 y 2 = z 2 2 (1 + cos γ) + y 2 2 (1 -cos γ).
We can describe y as a function of z, there exists two branches:

y ± (z) = ± z 2 (1 + cos(γ)) 2z 2 + cos γ -1 (30) 
We can determine the domain of definition of z. We mentioned before the fact that we restrict the discussion to the case r + s > 1, i.e. z > 1. Indeed, we could consider values smaller than 1, but they would give negative values for either r or s, which does not interest us. The function y is then well-defined, since the denominator in the square root is strictly positive under the condition z > 1.

Let us study the limit of y when z goes to infinity:

lim z→∞ y pm (z) = ± 1 + cos γ 2 
Hence, in the plane (r, s), the solution s(r) defined implicitly by equation (29) have two branches, which start in (r, s) = (1, 0) (respectively (0, 1)) and which admits, when r goes to infinity, an asymptote

D -: s = r -1+cos γ 2 (respectively D + : s = r + 1+cos γ 2
). The figure 5 represents the cases γ = 0, γ = π, and a transitional case (here γ = π/4), it helps identifying the difference between those cases, and understanding the evolution from the curve of singular points for a null-width with the value γ. When γ increases from 0 to π, we can see on the figure the detachment of the curves from the case γ = 0 to finally reach the two curves of the case γ = π. We can therefore identify three main zones (or connected components): the first one is the one containing the origin r = s = 0, which corresponds to two singular points in w of different signs, the case r = s corresponding to the line where the two singularities are at same distance of the origin; the second one is the upper zone and corresponds to the existence of singular points with w 1 and w 2 positive; finally the lower zone for which the singular points have negative values for w i .

Singular points using the Cartesian coordinates F

Using the variables ( Λ, w, ξ, η), it is possible to determine if the complex Kepler equation has a singular point for fixed ( Λ, ξ, η) at a point (w, w ). Indeed, using the relation between ( Λ, F and ( Ẽ, Ẽ), one can use the previous work on the latter coordinates to check if the point we are looking at is singular.

Here we are interested on finding a domain T × (-w max , w max ) such that the complex Kepler equation define an analytic local diffeomorphism at each point of this set. Moreover, we do not want to fix the other variables, but only to consider a small neighborhood of an initial real set. As mentioned before, our set of study will be D w,1 Λ0,r,ρ,ρ ,w max as defined in [START_REF] Féjoz | On action-angle coordinates and the Poincaré coordinates[END_REF]. Later, we will prove that we have a semi-global diffeomorphism on this whole set into another interesting set. The relation between F and E makes it difficult to study the set D w,1 Λ0,r,ρ,ρ ,w max in the variables ( Λ, w, Ẽ, Ẽ). Indeed, it is not straightforward to understand well the domain in terms of the variable ( Ẽ, Ẽ), and to deduce an exact maximum width. We will therefore only look for a sufficient condition to avoid the singular points in the complex Kepler equation.

Let Λ 0 ∈ R ++ and 0 < r < Λ 0 , and consider the coordinate Λ ∈ B(Λ 0 , r). Let w max > 0 and w ∈ T × (-w max , w max ). Let 0 < ρ ≤ 2(Λ 0 -r) and ρ < √ Λ 0 -r -ρ/ √ 2. Under these conditions, D w,1 Λ0,r,ρ,ρ ,w max is well-defined.

As shown before, for small values of | Ẽ| and | Ẽ|, the width w max on which we have a local diffeomorphism is strictly positive. In the set of variables using F , we determine values of ρ and ρ small enough to be sure that it is still the case.

Lemma 2. Under the assumption

1 √ Λ 0 -r 1 + 3ρ 2 2(Λ 0 -r) (ρ + 2ρ ) < 1, (31) 
the value of w max on which the complex Kepler equation induces a local diffeomorphism at every point of the set D w,1 Λ0,r,ρ,ρ ,w max is strictly positive. Besides, the following inequality holds:

w max > arccosh Λ 0 -r 1 + 3ρ 2 2(Λ0-r) 1 (ρ + 2ρ ) . ( 32 
)
Proof. Consider the complex Kepler equation ( 22) and the definition of Ẽ and Ẽ as a function of F and F , it gives

1 2 Λ 1 - F F 4 Λ F exp(ıw) exp(-w ) + F exp(-ıw) exp(w ) = 1. ( 33 
)
The sufficient condition will rely on determining an upper bound for each of these terms independently (instead of maximizing them at the same time), and checking that this bound is less than 1. Indeed, it is not immediate to maximize together the term under the square root sign and the terms where w appears. Let us start by bounding the first term Λ-1 2 : the norm of Λ is simply bounded from below by Λ 0 -r, hence | Λ-1 2 | ≤ (Λ 0 -r) -1 2 on the wanted set. By definition of the set D w,1 Λ0,r,ρ,ρ ,w max , there exists r 0 , r 1 , r 2 ∈ R + = [0, +∞), σ 0 , σ 1 , σ 2 ∈ T such that F = ξ + ıη = r 0 exp(ıθ 0 ), ξ -ξ = r 1 exp(ıθ 1 ) and η = r 2 exp(ıθ 2 ). In the previous equation, considering the second term of the product under the square root sign, since in real coordinates we have F F = ξ 2 + η 2 , we get:

1 - F F 4 Λ = 1 - ξ2 + η2 4 Λ < 1 + 1 4(Λ 0 -r) sup r0,r1,r2 -r 2 0 + 2r 0 (r 1 + r 2 ) + r 2 1 + r 2 2 < 1 + 1 4(Λ 0 -r) sup r0,r1,r2 -(r 0 -r 1 -r 2 ) 2 + (r 1 + r 2 ) 2 + r 2 1 + r 2 2 < 1 + 3ρ 2 2(Λ 0 -r) .
This bound is independent of ρ, using the fact that |F F | = r 2 0 , and that it has a negative sign in front of it. It therefore depends only on ρ and r .

Regarding the last term, observe that the maximal value taken by | F | is the same as the one taken by | F | because of the symmetry of the domains. We have

F exp(ıw) exp(-w ) + F exp(-ıw ) exp(w ) < sup D w,1 Λ 0 ,r,ρ,ρ ,w max | F | × sup |w |<w max 2 cosh(w ) < 2(ρ + 2ρ ) cosh(w max ).
Hence, a sufficient condition for the initial set to avoid the singular points in our domain is:

1 √ Λ 0 -r 1 + 3ρ 2 2(Λ 0 -r) (ρ + 2ρ ) cosh(w max ) < 1.

Induced diffeomorphism

Injectivity and semi-global inversion

The complex Kepler equation, seen as a complex change of variables is associated to the function:

f : T C → C w → w - Ẽ 2ı exp(ı w) + Ẽ 2ı exp(-ı w)
This function is clearly holomorphic, and is a sum of the identity function plus a perturbation. Therefore, (Id, ũ) is a holo-decomposition of f (see appendix A), where:

ũ : T C → C w → - Ẽ 2ı exp(ı w) + Ẽ 2ı exp(-ı w)
To apply the semi-global inversion theorem 3 of appendix A, it remains to find an open set A such that for every closed subset B ⊂ A, we have f (z) = 0 and ũ A < 1. In the set D w,1 Λ0,r,ρ,ρ ,w max determined before, these two conditions are verified.

Proposition 1. Let 0 < r < Λ 0 , 0 < ρ ≤ 2(Λ 0 -r), 0 < ρ ≤ √ Λ 0 -r -ρ/ √ 2 and 
w max = arccosh Λ 0 -r 1 + 3ρ 2 2(Λ0-r) 1 (ρ + 2ρ ) .
In the set D w,1 Λ0,r,ρ,ρ ,w max , defined in (13), the complex Kepler equation induces an analytic diffeomorphism f from the set A = T × (-w max , w max ) onto its image.

Surjectivity and domain for the mean longitude

After finding a domain on the eccentric longitudes on which Kepler's equation induces a diffeomorphism, it remains to find a domain in the mean longitude for which this property holds. The image of a domain U = T×] -w max , w max [ by this diffeomorphism is for now unknown. In Poincaré coordinates, we want to find a domain V = T×] -λ max , λ max [ whose image by the inverse map is contained in U .

Elliptic coordinates:

Consider, for (e, e ) ∈ R + × R and t ≤ u max :

f U t = T × (-t, t) → g(U ) (u, u ) → (u -e sin(u) cosh(u ) + e cos(u) sinh(u ),
u -e sin(u) cosh(u ) -e cos(u) sinh(u )) To understand better the image of U t by f , we can consider the image of the sets T × {t} and T × {-t}. An example for e = 0.2, e = 0.2 and t = u max /2 is given in figure 6. The image of the set U t by f is contained between those curves (figure 7).

To define a rectangular set T×] -l max , l max [ in the image of the set U t by f , it is therefore enough to concentrate on the minimum of l when u varies. Besides, we show that this value is maximal for t = u max , which means that the maximum value l max on which there exists a diffeomorphism is as well a singular point of Kepler's equation. Indeed, we have l = u -e sin(u) cosh(u ) -e cos(u) sinh(u ),

and for u = u max , the location of a minimum of this function is a point for which u and u goes to zero at the same time. Therefore, the width l max corresponds to the minimal value of l such that the inverse map has a singular point.

Recall the definition of µ = e 2 cosh 2 (u ) + e 2 sinh 2 (u ). If µ = 0 then l = u . Now if µ > 0, equation ( 18) was giving:

     cos(u) = ± e sinh(u ) µ sin(u) = ± e cosh(u ) µ
Injecting in the equation of l , it gives l = u ∓ µ.

For µ ≥ 0, the minimum of the right term is l = u -µ. As said before, this value is maximal in the set u ∈ [u max , u max ] when u = u max . Observe that for e and e sufficiently small, l is positive. The width l max is hence given by the formula:

l max = u max -e 2 cosh 2 (u max ) + e 2 sinh 2 (u max ).
In our work, we are interested in the case l max > 0. Figure 8 shows the limit case when t = u max , on which we drew the limit value l max and -l max . We can observe different limit cases for which l max goes to zero:

• In the case the eccentricity is large enough, then l max defined as before might be negative. Hence, there would exist angles l for which the fiber of (l, 0) is not in the set U umax . The width l will then be considered to be null. This case is represented in figure 9. • In the case of a non-null eccentricity, when choosing a value t < u max , if t is too small then we would have l max < 0. Indeed, a small enough t implies that we did not "fill" any set of the form T×] -l max , l max [. The width l will again be considered to be 0. This case is represented in figure 10.

Since solving the equation l max > 0 requires to solve an equation of the form exp x + cx = 0, we will express the solution implicitly. Lemma 3. Let e > 0, e ∈ R, and l max = u max -e 2 cosh 2 (u max ) + e 2 sinh 2 (u max ). If l max > 0, then g -1 is a (analytic) diffeomorphism on the set T×] -l max , l max [, and its image is contained in the set U u max .

Poincaré coordinates:

Let Λ 0 > 0, 0 < r < Λ 0 , 0 < ρ ≤ 2(Λ 0 -r), 0 < ρ ≤ √ Λ 0 -r -ρ/ √ 2.
The function we want to consider this time is the following:

h T×] -t, t[→ C w → w - 1 2ı Λ 1 - F F 4 Λ F exp(ı w) -F exp(-ı w)
Now let w > 0, and consider the following definitions:

                     a 1 = 1 √ Λ 0 -r b 1 = r √ Λ 0 (Λ 0 -r) a 2 = 1 + 3ρ 2 2(Λ 0 -r) b 2 = 2ρ (Λ 0 + r)(ρ + √ 2ρ) + r(ρ + √ 2ρ ) 2 4(Λ 0 -r) 2 a 3 (w ) = (ρ + 2ρ ) cosh w b 3 (w ) = ρ sinh w + 2ρ cosh w (35) 
We shall prove the following statement:

Proposition 2. Let Λ ∈ B(Λ 0 , r) and ( ξ, η) ∈ C 2 such that there exists ξ 0 + ıη 0 ∈ B(0, ρ) with ξ ∈ B(ξ 0 , ρ ) and η ∈ B(η 0 , ρ ). Let t be such that

0 < t ≤ w max = arccosh Λ 0 -r 1 + 3ρ 2 2(Λ0-r) 1 (ρ + 2ρ )
.

Define:

λ max = t -(a 1 a 2 b 3 (t) + a 2 a 3 (t)b 1 + a 1 a 3 (t)b 2 + b 1 b 2 b 3 (t)). (36) 
If λ max > 0 and 4r < 3Λ 0 , then the function ( h) -1 is a diffeomorphism on the set T×] -λ max , λ max [ onto its image, which is a subset of the set T×] -t, t[.

Observe that the variable λ max for a fixed t is positive if r and ρ are small enough. Hence, we can always find a value of r and ρ such that we have a diffeomorphism. Lemma 4. Let z be a complex number of the form z = a + ıb. Consider a complex number c + ıd such that (c + ıd) 2 = 1 + z. If |a| ≤ 3 4 , then |d| ≤ |b|. We can now prove the proposition, letting the proof of this lemma to the reader.

Proof. First, define λ = ( h(w, w )). We want to know, as before, if for a value of w > 0 this function have a minimum that is strictly positive. Using the same arguments as in the previous paragraph, we will then have a width λ strictly positive such that the inverse map is a diffeomorphism. Let us take a look at the value

λ max = w - sup D w,1 Λ 0 ,r,ρ,ρ ,w max (| Ẽ|) cosh w .
We showed earlier that:

sup D w,1 Λ 0 ,r,ρ,ρ ,w max | Ẽ| < 1 √ Λ 0 -r 1 + 3ρ 2 2(Λ 0 -r)| (ρ + 2ρ ) .
Yet, this estimate is not precise enough to work with. Indeed, looking at the case w = w max , and injecting the results in the value of λ max , we obtain min λ = u max -1. The 1 comes from the maximal value of the derivative we found before, when we bounded at the same time the factor sin x and cos x. We need here to be more precise, trying not to "break" the real structure of Kepler's equation when considering its analytic continuation. We therefore have to take a closer look to the imaginary part of h, which can be seen as a perturbation of the real case for small values of the r, ρ , w . Let us study the expression of F exp(ı w) + F exp(-ı w) , in order to separate its real and imaginary part of it. First, there exists 0 ≤ r 0 < ρ, 0 ≤ r 1 , r 2 < ρ , and θ, θ 1 , θ 2 ∈ T such that: F = r 0 exp(ıθ) + r 1 exp(ıθ 1 ) + ır 2 exp(ıθ 2 ) F = r 0 exp(-ıθ) + r 1 exp(ıθ 1 ) -ır 2 exp(ıθ 2 )

Hence,

1 2ı
F exp(ı w) + F exp(-ı w) = r 0 sin(θ + w) + r 1 exp(ıθ 1 ) sin( w) + r 2 exp(ıθ 2 ) cos( w).

We deduce the 2 following inequalities:

           1 2ı F exp(ı w) + F exp(-ı w) < (ρ + 2ρ ) cosh(w ) = a 3 (w ) 1 2ı F exp(ı w) + F exp(-ı w) < ρ sinh(w ) + 2ρ cosh(w ) = b 3 (w ) (37) 
In the imaginary part, we have the small terms ρ or sinh w in factor. We will now try to bound from above the imaginary and real parts of the two other terms appearing in the imaginary part of h. observe that we are not interested in a precise estimate for the real terms, since they are not small. Yet, it is necessary to highlight the fact that the imaginary parts remains small. Recall that we showed

  1 - F F 4 Λ   ≤ 1 - F F 4Λ ≤ 1 + 3ρ 2 2(Λ 0 -r) = a 2 .
As for the imaginary part, we will use lemma 4. Before, we need to make a further assumption to verify the hypothesis of the lemma. Observe that |a| ≤ |a + ıb| = |z|. Hence, we can ensure that the norm of z is small enough to verify our hypothesis. We know that

F F 4 Λ < (ρ + √ 2ρ ) 2 4(Λ 0 -r) ,
hence, to apply the lemma, we require

(ρ + √ 2ρ ) 2 (Λ 0 -r) < 3 ⇔ ρ < 3 2 (Λ 0 -r) - ρ √ 2 , (38) 
which is a hypothesis of the proposition.

We can now determine the norm of the imaginary part of the term we are studying, so as to deduce the desired bound. We have:

F F 4 Λ = ξ2 + η2 4 Λ ⇒ F F 4 Λ = ξ2 + η2 4 Λ = 1 4| Λ| 2 Λ( ξ2 + η2 ) .
At the frontier of our domain, we have ξ = ρ cos θ + ρ exp(ıθ 1 ), and η = ρ sin θ + ρ exp(ıθ 2 ). We get:

ξ2 + η2 = ρ 2 + ρ 2 (cos(2θ 1 ) + cos(2θ 2 )) + 2ρρ (cos θ cos θ 1 + sin θ cos θ 2 )

+ ı ρ 2 (sin(2θ 1 ) + sin(2θ 2 ) + 2ρρ (cos θ sin θ 1 + sin θ sin θ 2 ) .

Whence,

| ( ξ2 + η2 )| ≤ 2ρ ( √ 2ρ + ρ ),
as for the real and imaginary parts of Λ, the upper bounds | Λ| < Λ 0 + r, and | Λ| < r are straightforward. Multiplying these two terms, we obtain the following upper bound

  1 - F F 4 Λ   < 1 4(Λ 0 -r) 2 2ρ (Λ 0 + r)(ρ + √ 2ρ) + r(ρ + √ 2ρ ) 2 = b 2 .
Gathering the computations, we have the following implication:

(ρ + √ 2ρ ) 2 (Λ 0 -r) < 3 ⇒   1 - F F 4 Λ   ≤ b 2 .
It remains to consider the term Λ-1 . It can be put under the form:

1 Λ = Λ | Λ| .
Yet Λ = Λ 0 + s exp(ıθ) with 0 < s < r. Using again lemma 4, we get the upper bounds:

             1 Λ ≤ 1 | Λ| < 1 √ Λ 0 -r = a 1 1 Λ < r √ Λ 0 (Λ 0 -r) = a 2 if r Λ 0 ≤ 3 4
With all these estimates, one can bound the imaginary part of the product of the three terms, using either their real parts a i or their imaginary parts b i for i = 1, 2, 3. Then, using the considerations we made while studying the same problem in elliptic coordinates, the result follows.

Estimates on the norm of the disturbing function

In this part, we determine a bound on the norm of the perturbation in the plane planetary three-body problem. Recall the formula (4) of the perturbation:

H pert (P 1 , P 2 , Q 1 , Q 2 ) = G grav µ 1 m 2 |Q 2 | n≥2 σ n P n (cos(S)) |Q 1 | |Q 2 | n , with σ n = σ n-1 0 + (-1) n σ n-1 1
. There are different terms to study before deriving an explicit bound. First, we need to study the terms |Q 1 | and |Q 2 |. Secondly, we need to study the norm of P n (cos S) for a complex angle S. We will need to do some initial work on Legendre polynomials, and on the analytic continuation of their expression, as well as finding a bound on the complex cosine.

Discussion on the singularities

Before studying the norm of the perturbation, let us take a closer look at the singularities. Before expanding the perturbation with respect to the semi-major axis, we had three terms in the expression of the perturbation. These terms had the following denominators:

|Q 2 |, |Q 2 -σ 0 Q 1 | and |Q 2 +σ 1 Q 1 |.
Therefore, for real variables, there are different points where a singularity can arise. In terms of the variables (q 0 , q 1 , q 2 ), the first one corresponds to the distance between the outer planet and the center of mass of the star and the inner planet, the second to the distance between the two planets, and the third one to the distance between the star and the outer planet. Hence, in the problem we consider, since the orbit of the second planet is outside the orbit of the first planet, the first singularity that can arise between the orbits corresponds to the term related to the distance between the two planets:

|Q 2 -σ 0 Q 1 |.
When studying the analytic continuation, we saw that there were two possibilities for this denominator to go to zero. First, if Q1 = Q2 , and secondly if Q1 = Q2 . Since we are looking at a symmetrical complex neighborhood (more exactly polydiscs) around the real set of orbits, these two conditions are equivalent. Now, looking at the elliptic coordinates, we have Qi = ãi (1 -ẽi cos(ũ i + gi )), for i = 1, 2. Therefore, bounding from above ã1 and from below ã2 , we are left with the derivative of Kepler's equation. Since |Q 1 | > 0, we are not looking at the singular points of Kepler's equation. Indeed, those corresponds to the singularity between the star and the outer planet, though the singularity of the distance between the two planets occurs before this one. When |ã 2 (1 -ẽ2 cos(ũ 2 + g2 )| ∼ |ã 1 |, we reach this singularity. Hence, the formula of a singularity depends on the variables of the two bodies, and it occurs before the eventual singular points of the diffeomorphism between the eccentric and mean longitudes of the second planet. Besides, if we let the eccentricities of the two planets belong to the same set, this singularity happens before the singularity between the inner planet and the star, as well as the singular points of the diffeomorphism between the eccentric and mean longitudes for the first planet. We need to derive a sufficient condition in Poincaré coordinates to avoid this singularity. Yet, a necessary condition would necessitate to overcome the difficulties of finding exactly the singular points of the complex Kepler equation in Poincaré coordinates.

Bound on the norm of the complex distances star-planet

We are looking at the terms |Q i | for i = 1, 2. Before the step of analytic continuation, their formulas are given by q = |Q| = a(1 -e cos u).

After this step, we therefore have q = ã(1 -ẽ cos ũ).

Notice that the estimates on 1-ẽ cos ũ was already obtained when studying the singular points of the complex Kepler equation, it only remains to adapt these here. For two bodies, we defined in ( 14) the set D Λ0,r,ρ,ρ ,λ max for suitable strictly positive values of Λ 0 ∈ R 2 , r, ρ, ρ and λ max . Forgetting the indices, we write:

h : ( w, ξ, η) → w - Ẽ 2ı exp(ı w) + Ẽ 2ı exp(-ı w),
where the variable E depends on the coordinates ξ and η. We have

q = Λ2 G grav M µ 2 ∂ h ∂ w ( w, ξ, η). If Λ ∈ B(Λ 0 , r) with r < Λ 0 , then the term Λ2 verifies (Λ 0 -r) 2 < | Λ2 | < (Λ 0 + r) 2 .
Let us define the variable t (specific to each body) implicitly with the help of λ max and of the other analyticity width, such as done in proposition 2, in the following way:

λ max = t -(a 1 a 2 b 3 (t) + a 2 a 3 (t)b 1 + a 1 a 3 (t)b 2 + b 1 b 2 b 3 (t)).
If there exists indeed t > 0 solution of this implicit equation, then the study of singular points in the Poincaré coordinates gave:

1 - ∂ h ∂ w ( w, ξ, η) < 1 √ Λ 0 -r 1 + 3ρ 2 2(Λ 0 -r) (ρ + 2ρ ) cosh t = l(Λ 0 , r, ρ, ρ , t).
Moreover, if we had l(Λ 0 , r, ρ, ρ , t) < 1, then Kepler's equation was inducing a diffeomorphism between the eccentric longitudes and the mean longitudes for | λ| < λ max . Hence, we deduce that, under the assumption l(Λ 0 , r, ρ, ρ , t) < 1 and λ max > 0:

4.3 Estimates on Legendre polynomials

The complex Legendre polynomials

In this section, we first recall some results on the Legendre polynomials, and then we give an upper bound on the Legendre polynomials evaluated on some complex set. We focus here on relations that are interesting in our study, although a lot of work have been done on these polynomials (see [START_REF] Abramowitz | Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables[END_REF][START_REF] Arfken | Mathematical Methods For Physicists International Student Edition[END_REF] for instance). In our problem, these polynomials arise in the plane planetary three-body problem because of the following relation:

1 √ 1 -2xz + z 2 = ∞ n=0 P n (x)z n .
One can work on those using the polynomials U n (x) = (x 2 -1) n for n ≥ 0, we have:

P n (x) = U (n) n (x) = d n U n dx n (x).
Observe that the polynomial U n is of degree 2n, and admits two repeated roots of order n: -1 and 1. Hence, considering the successive derivatives of these polynomials, the polynomial P n is of degree n, and all of its roots are simple roots belonging to the set ] -1, 1[. One more definition will be important for us, it is the explicit form of P n for n ≥ 0:

P n (x) = 1 2 n n/2 k=0 (-1) k n k 2n -2k n x n-2k .
From this relation, we can deduce several results. First the Legendre polynomial are either even or odd, depending on the parity of n. Next, the leading coefficient of P n is

(2n)! 2 n (n!) 2 = n k=1 2k -1 k . (40) 
The polynomials are also defined by a recurrence relation, the formula for n > 0 being (n + 1)P n+1 (x) = (2n + 1)xP n (x) -nP n-1 (x), with P 0 (x) = 1, and P 1 (x) = x. We therefore deduce that P n (1) = 1 and P 2n+1 (0) = 0 for all n. We want to find a suitable way of expressing the Legendre polynomials, and derive estimates on an upper bound. We have, for all n ≥ 0: 

             P 2n (x) = ( 
Theorem 1. On the set D Λ,r,ρ,ρ ,λ max , if the following hypotheses are verified:

(1) There exists t i > 0 s. 

M (Λ 0,2 -r) 2 1 1 -l 2 A 2 1 -A + m 1 m 0 A 2 1 + m1 m0 A . ( 52 
)
Proof. The proof is pretty much straightforward. We divide the series of the perturbation (4) into two terms, because of the expression σ n = σ n-1 0 + (-1) n σ n-1

1

. As for the leading coefficient of the Legendre polynomials that appears in the series, observe that (2n)! 2 n (n!) 2 ≤ 3 8 2 n .

We then gather all the terms into A and B. The sum of these series are straightforward to compute. The hypotheses (1), ( 2) and (3) ensure that we can apply proposition 4, and the fourth one ensures the convergence of the series.

Remark: Observe that we used the bound on the Legendre polynomial, starting from n = 2. This estimate is the only estimate where we did not make appear the analyticity widths as factors, and therefore, it is the less optimal bound in this sense. However, to improve the computation, since the first Legendre polynomials are easy to compute, one can work on their expression directly, instead of the estimates. By doing this, one should be able to reduce the leading coefficient in front of the first terms, and hence the factor 3/8 in the formula of the theorem.

A Semi-global inversion theorem

Another tool we will need later is a semi-global inversion theorem. Indeed, when looking at Kepler's equation, we want the change of variables related to it to be a diffeomorphism on a precise subset. Therefore, neither a local inversion theorem (since we want to be diffeomorphic on a precise subset), neither a global inversion theorem (since it is not diffeomorphic on the whole space) fit our need. We must therefore make a suitable theorem for our work. We will derive this theorem from a classical global theorem.

We will consider in the following three different framework for the theorem: the case of a Lipschitz function, the case of a C k function with k ≥ 1, and the case of a holomorphic function. To simplify the statements, consider the following definitions: Observe that the decomposition is not unique.

Remark:

The hypothesis sup B (u • h -1 ) < 1 for any closed subset B ⊂ A implies that there is no singularity in the open set A, though it is possible to have one on the boundary of A, in other words, it does not prevent the case sup A (u • h -1 ) = 1.

Proof. Let A be an bounded domain of R n and f a function satisfying the hypotheses of the lemma, with (h, u) its C k -decomposition. Let B ⊂ A be a compact set, then h and (h -1 ) are bounded on B, and therefore h : B → h(B) is a lipeomorphism. For the same reason, u is Lipschitz on B, and therefore u • h -1 too. Calling K = max B (u • h -1 ) , we have K < 1, u • h -1 is therefore K-Lipschitz with K < 1. The hypothesis of corollary 1 are satisfied, and therefore f B is a lipeomorphism on its image. The regularity in the set B is straightforward (see [START_REF] Chaperon | Calcul différentiel et intégral de troisième année[END_REF]) for instance), hence the function f : B → f ( B) is a C k -diffeomorphism. Choosing a sequence of increasing closed subset of A, (B i ) i≥1 , such that their union is equal to A, we can apply the preceding scheme on each of these sets. Hence, since B⊂A, B closed B = A, the function f :

A → f (A) is a C k -diffeomorphism.

Complex case:

Corollary 3. Holomorphic semi-global inversion theorem: Let A ⊂ C n a bounded domain, and f : A → C n a holomorphic map. Assume that f there exists a holodecomposition (h, u) of f such that for all z ∈ A, its real Jacobian evaluated at the point z is non-null, and such that for all closed subset B ⊂ A, we have sup B (u • h -1 ) < 1, then f : A → f (A) is a biholomorphism.

Proof. Identifying C and R 2 , the hypotheses of corollary 2 are satisfied for k ≥ 1, and the complex valued function can be seen as a diffeomorphism of 2n real variables. Besides, its inverse satisfies the Cauchy-Riemann equations (as in the case of the holomorphic local inversion theorem), and therefore, its inverse seen as a function of C n to C n is holomorphic. Hence the corollary.
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 1 Figure 1: Real part u of the eccentric anomaly of singular points as a function of e for a fixed small e. Increasing values of e (0.05, 0.1, 0.2, 0.4) are represented respectively on the blue, orange, purple, and brown curve.

Figure 2 :

 2 Figure 2: Imaginary part u of the eccentric anomaly of singularities as a function of e for a fixed small real part e. Increasing values of e (0.05, 0.1, 0.2, 0.4) are represented respectively on the blue, orange, purple, and brown curve.

Figure 3 :Figure 4 :

 34 Figure 3: Real part u of the eccentric anomaly of singular points as a function of e for a fixed large e. Increasing values of e (0.9, 1, 1.1, 1.5) are represented respectively on the blue, orange, purple, and brown curve. The orange line divides the two different modes.

4 πFigure 5 :

 45 Figure 5: Singular points on the real axis (w = 0) on the plane (r, s) for different values of γ: in blue, γ = 0, in red γ = π 4 , in green γ = π.
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 67 Figure 6: Image of the sets T × {-t} and T × {t} by f , for t = u max /2, e = 0.2, e = 0.2.

Figure 8 :

 8 Figure 8: Image of the set T×] -u max , u max [ by the function g and of the lines of equation l = ±(u max -µ), with e = 0.2, e = 0.2.

Figure 9 :

 9 Figure 9: Image of the set T×] -u max , u max [ by g and of the lines of equation l = ±(u max -µ), with e = 0.9, e = 0.7.

Figure 10 :

 10 Figure 10: Image of the set T×] -t, t[ by g, with t = u max /15, e = 0.2, e = 0.2.

,Proposition 3 .

 3 where the roots λ n,i ∈] -1, 1[. Define for ρ > 0:B 0 (ρ) = {z ∈ C, ∃x ∈] -1, 1[ s.t. |z -x| < ρ} . ∀x ∈ [-1, 1], ∀n ≥ 0: |P n (x)| ≤ 1. (42) ∀z ∈ B 0 (ρ) with ρ ≥ 0, ∀n ≥ 0 |P n (z)| ≤ |P n (ıρ)| ≤ (2n)! 2 n n! 1 + ρ 2 n .

Definition 1 .

 1 Let U be an open subset of C n , and f :U → f (U ) ⊂ R n a function. If h, u : U → R n , with h a lipeomorphism (resp. a C k -diffeomorphism) and u a Lipschitz function (resp. C k -function) such that f = h + u, we call the couple (h, u) a lipeo-decomposition of f (resp. a C k -decomposition of f ). Let U be an open subset of C n , and f : U → f (U ) ⊂ C n a function. If h, u : U → C n ,with h a biholomorphism and u a holomorphic function such that f = h + u, we call the couple (h, u) a holo-decomposition of f .

  t. t i verifies λ max = t i -(a 1,i a 2,i b 3,i (t i ) + a 2,i a 3,i (t i )b 1,i + a 1,i a 3,i (t i )b 2,i + b 1,i b 2,i b 3,i (t i )), (2) l 1 , l 2 < 1, A(Λ 0,1 , Λ 0,2 , r, ρ, ρ , t 1 , t 2 ) < 1,

	(3)	r Λ 0	≤	3 4	,
	(4) then the following inequality holds
			Hpert	D Λ,r,ρ,ρ ,λ max	<	3 8

Proof. For n ≥ 1, and x ∈ [-1, 1]:

The polynomial Q n is even, let us show that it is increasing for x ∈ [0, 1]. The fact that Q n (1) = 1 and that (P n (x)) 2 ≤ Q n (x) then finishes the proof.

Q n (x) = 2P n (x)P n (x) -2xP n (x) n(n + 1) + 2(1 -x 2 )P n (x)P n (x) n(n + 1) = 2P n (x) n(n + 1) n(n + 1)P n (x) -xP n (x) + (1 -x 2 )P n (x) .

Besides, U n (x) = 2nx(x 2 -1) n-1 , whence

Computing the (n+1)-th derivative, we obtain:

(x 2 -1)P n (x) + 2xP n (x) = n(n + 1)P n (x).

Injecting this relation in equation ( 44), we obtain:

Thus, for x ≥ 0, the derivative is increasing, and

To show the second result, notice that the Legendre polynomials can be decomposed in two types of polynomials: z 2 -λ 2 with 0 < λ < 1 or z. Let us begin by a study on these polynomials to deduce the final result.

• R(z) = z: it is straightforward that the norm of R on B 0 (ρ) is bounded by ρ.

• R(z) = z 2 -λ 2 , 0 < λ < 1: let z = r exp(ıθ), with r ≤ ρ. We can start by bounding the norm of this polynomial using the argument of z. We have R(z) = r 2 exp(2ıθ) -λ 2 and hence,

The norm of this polynomial is therefore maximal for θ ∈ {π/2, 3π/2}, in other words, if the real part of z is null. We then have |R(z)| = r 2 + λ 2 . Given the domain of definition of these value, we have the following bound:

The study of these two types of polynomials is in fact enough to conclude. Indeed the maximum of those terms can be taken on the imaginary axis, or in other words letting z go to ±ıρ. Even if we do not know where the roots of the n th Legendre polynomial exactly are, we know that they are simple and in the set ] -1, 1[. We will therefore consider the worst case, and take |λ| ≤ 1. As well, even if 0 is the root of the polynomial R(z) = z, we can bound it by 1 + ρ 2 on our domain in order to simplify the final result. In the end, we have:

Multiplying this expression by the leading coefficient we determined before, and finally, for z ∈ B 0 (ρ):

This series is convergent for y ∈ B 0 1

, in other words for |y| 1 + ρ 2 ≤ 1.

Application to the complex oriented angle between the planets

Recall the formula (9) of the complex oriented angle between the two planets:

First, it is straightforward to see that this expression does not depend on the semi-major axes of the planets. Hence, we consider the following expression for the variables z in coordinates (w, e, g, λ):

With the help of the Poincaré Cartesian coordinates (ξ, η), we can express z in the following way:

This quantity is well defined when F goes to zero, or in other words when the eccentricities are null, whence the interest of these coordinates created by Poincaré. In order to bound the expression of the cosine in complex Poincaré coordinates, we are going to determine an upper bound of the numerator and a lower bound for the denominator. In order get a better result, we decompose z in two parts:

The numerator then becomes:

The bound we will find on the norm of fi and fi being the same, it allows us to make appear the expression of hyperbolic cosines instead of exponential terms. On the domain we previously considered, described by the coordinates Λ 0 , ρ, r, ρ , λ max , we have seen that under some conditions, we could define t 1 and t 2 such that the complex Kepler equation defined a diffeomorphism for w i ∈ T×] -t i , t i [. Hence, on this domain, we have:

Regarding the difference between the eccentric longitude and the mean one, we have for each body:

Hence, the final bound on the norm of f i is given by:

The terms in the denominator can be easily bounded using our previous work on the complex Kepler equation. Indeed, we showed that we have sup | zi zi | ≥ 1 -l i , where l i = c 1 (Λ 0,i , t i ) cosh t i . Hence, we deduce the following formula:

We proved the following proposition, using the definition of c 1 , c 2 , c 3 , l i in equations ( 46), (47), (48):

Proposition 4. On the set D Λ0,r,ρ,ρ ,λ max , assume that the following hypotheses are satisfied for i = 1, 2:

(1) There exists t i > 0 s.t. t i verifies

where the variables a i and b i are defined in (35); Then the following inequality hold on D Λ0,r,ρ,ρ ,λ max :

Final upper bound

Using the work of the two last sections, we are able to derive a bound on the norm of the Hamiltonian. The version we give is intended to a computer calculation. First, we recall every equations we need to state the result.

Let the variables Λ 0,1 , Λ 0,2 , r, ρ, ρ , λ max ∈ R + be such that

where Λ 0 = min i=1,2 Λ 0,i . Call as well Λ = (Λ 0,1 , Λ 0,2 ). Now define

Call, for t 1 , t 2 > 0:

With these definitions, the theorem on the size of the perturbation is

Lipschitz case:

Recall the following classical global inversion theorem:

Theorem 2. Let f : R n → R n a function and (h, u) a lipeo-decomposition of f such that

then h + u is a lipeomorphism and

We will need another theorem before stating our result. This theorem is dealing with the Lipschitz extension of a map Lipschitz on some subset of a Hilbert space, and was stated and proved in the case of an Euclidean space by Kirszbraun.

Theorem 3. (Kirszbraun theorem) Let H 1 and H 2 be Hilbert spaces. Let A ⊂ H 1 , and f : A → H 2 a K-Lipschitz map. Then there exists F :

The original proof in the Euclidean case can be found in [START_REF] Kirszbraun | Über die zusammenziehende und lipschitzsche transformationen[END_REF], a full outline of the proof can be found in the very pedagogical paper of Fremlin [START_REF] Fremlin | Kirszbraun's theorem[END_REF]. Now we can show the following corollary:

With the two previous theorems, the proof is rather easy.

Proof. Let A and f satisfy the hypotheses of the corollary, call (h, u) the lipeo-decomposition such that lip(u • h -1 ) < 1. Call v = u • h -1 and K = lip v, we have f = (Id + v) • h. Using Kirszbraun theorem 3, there exists V : R n → R n such that V is K-Lipschitz, and V A = v. Since Id is a lipeomorphism with Lipschitz constant 1, the hypotheses of theorem 2 are verified for the function Id + V . Hence, Id + V : R n → R n is a lipeomorphism and

It is therefore still the case for the restriction of Id+V to A, and Id+v : A → (Id+v)(A) is a lipeomorphism. Whence, f : A → f (A) is a lipeomorphism and

C k case:

Consider now the case of a function that is C k for k ≥ 1. In addition to the global inversion theorem, we need to add a proposition on the regularity. Consider the following (and classical) proposition:

Corollary 2. Semi-global inversion theorem C k : Let k ≥ 1 be an integer, A ⊂ R n be a bounded domain (i.e. a connected and open set), and f : A → R n a C k -function. Assume there exists a C k -decomposition (h, u) of f , such that for all x ∈ A, det f (x) = 0, and such that for all closed subset B ⊂ A, sup B (u • h -1 ) < 1, then f : A → f (A) is a C k -diffeomorphism.