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On the Optimization of a PSP-based CPM Detection
Malek MESSAI Student Member, IEEE, Karine AMIS and Frédéric GUILLOUD, Member, IEEE,

Abstract—This paper deals with a reduced-complexity per
survivor processing-based CPM demodulation. It relies on a
trellis with reduced state number and defined from a rational
modulation index possibly different from the transmit modulation
index and referred to as virtual receiver modulation index.
The virtual receiver modulation index should be chosen so
as to achieve a tradeoff between error-rate performance and
complexity reduction. The main purpose of this paper is the
choice of the virtual receiver modulation index. It gives guidelines
to discard the values of the virtual receiver modulation index,
that degrade the error-rate performance. Two criteria are used.
The first one considers the uncoded CPM case and is based on
an approximation of the minimal Euclidean distance. The second
one is related to the bit interleaved coded CPM case and resorts
to an EXIT chart to analyse the convergence of the iterative
receiver.

Index terms: continuous phase modulation, EXIT charts,
minimum Euclidean distance, per survivor processing, iterative
decoding.

I. INTRODUCTION

Continuous phase modulation (CPM) [1] is an attractive
modulation which combines a constant signal envelope and
an excellent bandwidth efficiency [2], [3]. These properties ac-
count for its widespread use in digital communication systems.
CPM has gained extensive attention since it was developed
in 1980s [1]. Recently some results show that CPM is more
adequate than linear modulation in power efficient systems
including satellite [4], [5], deep-space [6], DVB [7], optical
fiber [8], telemetry communication [9], etc. The analysis of
communication evolution predicts an increase in the number
of connected machines. This is related especially to the
regular emergence of surveillance applications/remote control
in various fields such as the environment (to anticipate the
volcanic eruptions for example), health (for tracking a patient
at home since the surgery) or industry (sensor networks, smart
meters) [10], [11]. Power and cost efficient digital modulation
is required for both environmental and economical reasons, the
power consumption in the link should be as low as possible.
Continuous phase modulation offers the possibility to use non-
linear cost-effective and power efficient amplifiers. However,
in the case of optimal detection, the advantages of CPM are
balanced with the complexity at the receiver side. Therefore,
receiver complexity reduction techniques are necessary. Due
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to the memory property introduced by the phase continuity
[12], optimal detection of CPM signals relies on a maximum
likelihood sequence detection (MLSD) approach, which can
be implemented using the Viterbi algorithm (VA) [13]. The
complexity of the MLSD demodulator highly depends on the
number of matched filters and on the number of states in the
VA. The Viterbi algorithm is optimal, but has two major draw-
backs. First, it can be implemented only when the modulation
index is a rational number of the form k

p , where k and p are
relatively prime positive integers [14], [15]. Otherwise, the
number of states is unbounded and the Viterbi receiver has
infinite complexity. Secondly, to achieve optimal performance,
it requires the exact knowledge of the modulation index.
Indeed, whatever the signal to noise ratio, any mismatch
on the modulation index can yield errors that accumulate
over the whole observation interval. Such a mismatch may
have several origins. For example, in analog implementations,
the modulation is performed by voltage-controlled oscillators
(VCO). In this case, the modulation index is defined by the
specifications of electronic components which may vary from
one transmitter to another and is hardly exactly the same
as specified. Another example is when the modulation index
is not specified by a single value but rather by a minimum
and a maximum value, like in the Bluetooth standard. It
could then be desirable to come up with a receiver having
a single structure whatever the modulation index is. Several
approaches for reducing the receiver complexity, applied to the
coherent detection of CPM signals, have been presented in the
literature. The reduction of complexity is generally obtained
by decreasing the number of trellis states and/or the number
of matched filters (MF). As for only reducing the number of
processed trellis states, a reduced-search algorithm performed
on the full trellis has been proposed in [16]. In [17] a decision
feedback equalizer is used on a smaller trellis. Neither of these
methods has any impact on the number of MFs. Svensson
and Aulin [18] proposed a detector based on a CPM scheme
simpler than the one used at the transmitter. The main idea is to
deform the frequency pulse response so as to obtain a shorter
frequency pulse response length, thereby reducing the number
of trellis states and the number of MFs simultaneously. This is
called a mismatched detector, since the internal signal model
in the detector is mismatched (different frequency pulses) with
respect to the signal produced by the transmitter. Other works
are based on the exact decomposition of the CPM signal on
an orthonormal basis. The complexity reduction is achieved at
the receiver by using a subset of orthonormal basis functions
instead of the entire set. In [19], the Gram-Schmidt procedure
is applied to obtain the orthonormal basis functions. Other
approaches have used sampling functions [20], [21], Walsh
functions [22], and regularly spaced sinusoids [19]. Another
interesting representation of CPM was introduced by Laurent
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in 1986 [23]. In his paper, Laurent showed that any binary
CPM signal can be exactly represented by a linear combination
of pulse amplitude modulated (PAM) waveforms. The PAM
representation of CPM has received a lot of attention in the
literature. It has been exploited by Kaleh to design reduced
complexity detectors [24]. These detectors are based on a small
subset of pseudo-symbols and pulses yielding a reduction of
the MFs number. Therefore, PAM-based detectors achieve a
simultaneous reduction in the number of MFs (pulses) and
trellis states. The Rimoldi decomposition proposed in [25]
gives a concise description of CPM as the concatenation of a
continuous-phase encoder (CPE) and a memoryless modulator
(MM). This CPM decomposition is of great interest when con-
catenated with an outer forward error correction (FEC) code.
It opens the door to iterative receivers of the concatenated
scheme, with near-optimum error rate performance. Different
schemes for bit interleaved coded CPM (BIC-CPM) have been
proposed [26], [27].
In this paper, we focus on two low-complexity algorithms
recently proposed by the authors in [28] and [29], for uncoded
and coded coherent CPM signal detection, the CPM modula-
tion index h being not necessarily rational. We first recall the
construction of a trellis defined from a rational modulation
index hv possibly different from h. We then describe a
decoding algorithm based on this reduced state-number trellis
by modifying the branch metric so as to take into account the
difference between hv and h. The hard-decision (respectively
soft-decision) demodulation is achieved by a modified Viterbi
algorithm [28] (respectively modified BCJR algorithm [30]).
The modified BCJR algorithm can be used for soft-in soft-out
CPM detection in the iterative receiver of a BIC-CPM scheme
[29]. The major contribution of this paper deals with the choice
of hv . We give guidelines to discard the bad values of hv , that
is to say the values that degrade the error-rate performance.
We use two criteria, one based on an approximation of the
minimal Euclidean distance and the other based on an EXIT
chart analysis [31].
The paper is organized as follows: we first briefly introduce the
signal model and the notations in Section II. Then, we describe
the low complexity coherent receiver for CPM signals for any
modulation index, initially proposed in [28] and [29] in Section
III. The virtual reception modulation index choice is studied
in Section IV. Finally a conclusion and some perspectives are
given in Section V.

II. SIGNAL MODEL

The complex baseband CPM signal is defined as:

s(t, h,a) =

√
E

T
ejφ(t,h,a), (1)

where E is the average symbol energy, T is the symbol
duration and φ(t, h,a) is the information-bearing phase given
by:

φ(t, h,a) = 2πh

∞∑
i=0

aiq(t− iT ). (2)

a = {ai} denotes the information sequence. The information
symbols ai are assumed to be independent and identically

distributed and to take values in the M -ary alphabet M =
{±1,±3, ...,±(M − 1)}. q(t) is the phase response and it is
expressed as:

q(t) =

∫ t

−∞
g(τ)dτ, (3)

where g(t) is the normalized frequency pulse, defined for t ∈
[0, LT ] with L the frequency pulse length. The normalized
frequency pulse should satisfy the two following conditions:

g(t) = g(LT − t),∫ t

0

g(τ)dτ = q(LT ) =
1

2
, t ≥ LT. (4)

Using the properties of q(t) and g(t) given in Eq. (3) and
Eq. (4), the information-bearing phase during the n-th time
interval, t ∈ [nT, (n+ 1)T ], n ∈ N, can be written as:

φ(t, h,a) = 2πh

∞∑
i=0

aiq(t− iT ),

= πh

n−L∑
i=0

ai + 2πh

n∑
i=n−L+1

aiq(t− iT ),

= θh,n + φh,n(t). (5)

From Eq. (5) we observe that the modulated signal over
the n-th time interval depends both on the phase state
denoted by θh,n and on the L most recent symbols, i.e
(an, an−1, ..., an−L+1). For a rational modulation index h =
l
p , the phase state θh,n modulo 2π can take only p different
values. Therefore, the phase evolution can be described by
a finite-state machine, where each state is represented by
an L-dimensional vector (θh,n, an−1, an−2, ..., an−L+1) and
where the number of such states is pML−1 or 2pML−1

respectively for l even or odd. The tilted phase obtained via the
Rimoldi decomposition [12] yields a number of states equal
to pML−1 whatever the parity of l. In this paper, the classic
phase definition will be considered. Note however that the
algorithms and the reasoning proposed in this paper still apply
on Rimoldi decomposition-based trellis. We assume that the
signal is transmitted over a Gaussian channel. The equivalent
baseband received signal, denoted by r(t), is defined as:

r(t) = s(t, h,a) + n(t), (6)

where n(t) is a realization of a zero-mean wide sense station-
ary complex circularly symmetric Gaussian noise, independent
of the signal, and with double-sided power spectral density
2N0 over the bandwidth of s(t, h,a). The Maximum Likeli-
hood sequence estimation (MLSE-detector) aims at maximiz-
ing the scalar product between r(t) and all the realizations
of s(t, h,a). Assuming N transmitted symbols, the MLSE
estimation of the information symbols a0, a1, ..., aN−1 is given
by:

(â0, â1, , ..., âN−1) = arg max
a∈MN

<
[∫ NT

0

r(t)s∗(t, h,a)dt

]
,

(7)
where <(X) denotes the real part of X . As∫ NT

0
r(t)s∗(t, h,a)dt =

∑N−1
n=0

∫ (n+1)T

nT
r(t)e−jφ(t,h,a)dt,
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the computation of all scalar products over [0, NT ] is
equivalent to the sum of all scalar products over a symbol
duration given the previous phase state θh,n. Let xjn stand
for the j-th state at the time epoch n. We introduce
and denote by BM(n)

i,k the branch metric corresponding
to the scalar product associated to the transition from
state xkn =

(
θkh,n, a

k
n−1, a

k
n−2, ..., a

k
n−L+1

)
to state

xin+1 =
(
θih,n+1, a

i
n, a

i
n−1, ..., a

i
n−L+2

)
, where ain is

the symbol related to this transition during the n-th time
interval, akn−` = ain−` and θih,n+1 = θkh,n + πhakn−L+1.
BM(n)

i,k is calculated as follows:

BM(n)
k,i = <

{∫ (n+1)T

nT

r(t)e−jφk,i(t,h)dt

}
, (8)

with φk,i(t, h) = θkh,n + 2πh
∑n−1
`=n−L+1 a

k
` q(t − `T ) +

2πhainq(t − nT ). The Viterbi algorithm is based on the
recursive computation of the accumulated metric at state xin+1

and time instant (n + 1)T denoted by CM(n+1)
i and defined

as:
CM(n+1)

i = maxk

(
CM(n)

k + BM(n)
k,i

)
. At the end, the MLSE-

based decision is given by the sequence â yielding the
maximum of CM(N)

i over i.

III. REDUCED-STATE TRELLIS-BASED CPM RECEIVERS

In this section, the algorithm developed in [28] for any type
of CPM is reminded for clarity’s sake. The resulting reduced-
complexity receiver relies on the decomposition of h in the
form h = hv + ∆h with hv = lv

pv
being a rational number.

hv is referred to as a virtual receiver modulation index. The
key idea is to use either the Viterbi or the BCJR algorithm
with modified branches and state metrics on a trellis designed
upon hv . It takes into account a phase difference proportional
to ∆h and computed on a Per Survivor Processing basis [32].

A. Design of a Trellis with a Reduced State Number
Thanks to the decomposition of h in the form h = hv +

∆h, the information-bearing phase given in Eq. (5), can be
expressed as a function of hv and ∆h:

φ(t, h,a) = πh

n−L∑
i=0

ai + 2πh

n∑
i=n−L+1

aiq(t− iT ),

= πhv

n−L∑
i=0

ai + π∆h

n−L∑
i=0

ai

+2πhv

n∑
i=n−L+1

aiq(t− iT )

+2π∆h

n∑
i=n−L+1

aiq(t− iT ),

= θhv,n + φhv,n(t)︸ ︷︷ ︸
φ(t,hv,a)

+ ∆θin + 2π∆h

n∑
i=n−L+1

aiq(t− iT )︸ ︷︷ ︸
φ(t,∆h,a)

, (9)

with θhv,n = πhv
∑n−L
i=0 ai, φhv,n(t) =

2πhv
∑n
i=n−L+1 aiq(t− iT ) and ∆θin = π∆h

∑n−L
i=0 ai.

The first two terms in Eq. (9) are tracked by the Viterbi
algorithm and the third term is the resulting phase difference
which is accumulated at every symbol. This accumulation is
calculated using the PSP technique by associating to each
state an additional parameter ∆θin. The last term of Eq. (9)
is calculated at the output of the matched filter. We can write
the following relation:

θih = ∆θin + i
lv
pv
π, i = {0, 1, 2, ..., pv − 1},

= ∆θin + θihv
. (10)

The modified branch metric is equal to the scalar product
which is calculated as follows:

BMmodified
k,i = <

(
e−j∆θ

k
n

∫ (n+1)T

nT

r(t)e−jφk,i(t,hv).e−jψk,i(t,∆h)dt
)
.

(11)
where

φk,i(t, hv) = θkhv,n + 2πhv

n−1∑
`=n−L+1

ak` q(t− `T )

+2πhva
i
nq(t− nT )

ψk,i(t,∆h) = 2π∆h

n−1∑
`=n−L+1

ak` q(t− `T )

+2π∆ha
i
nq(t− nT ). (12)

1) PSP-based Modified Viterbi Algorithm: The only addi-
tional task that needs to be performed on the Viterbi algorithm
is the PSP update of the phase difference for each state, ∆θin.
The update equation is given by:

∆θin+1 = ∆θk
∗

n + a(k∗,i)π∆h, (13)

where k∗ is selected from the M previous states of xi(n+1),
as the index of the maximum cumulative metric and a(k∗,i) is
the last component of the state vector xk

∗

n . We apply Eq. (11)
to compute the scalar product between the received signal and
the signal corresponding to the transition xkn → xin+1 used in
the modified Viterbi algorithm:(

θkhv
(∆θkn), akn−1, a

k
n−2, ..., a

k
n−L+1

) an−→(
θihv

(∆θin+1), ain, a
i
n−1, , ..., a

i
n−L+2,

)
,

with ain = an, ain−1 = akn−1, · · · , ain−L+2 = akn−L+2.
2) PSP-based Modified BCJR Algorithm: The optimal co-

herent soft output detection which minimizes the symbol
error probability is achieved by maximum a posteriori (MAP)
symbol detection of the information symbol an.
The corresponding symbol-by-symbol MAP detector maxi-
mizes the a posteriori probability (APP) p(an|r(t)) :

ân = arg max
a∈M

p(an = a|r(t)). (14)

In the modified BCJR algorithm, we first carry out the forward
recursion αn, where the branch metric between states xkn and
xin+1 is modified as follows:

γn(xkn,x
i
n+1) ∝ exp

(
BMmodified

k,i

2N0

)
p(xkn|xin+1), (15)
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where the term ∆θin+1 is calculated recursively accord-
ing to Eq. (13), with index k∗ defined as k∗ =
arg maxk{αn(xkn)γn(xkn,x

i
n+1)}, and a(k∗,i) defined as the

last component of the state vector xk
∗

n . Here, it is important
to mention the main difference between the original BCJR
algorithm for which the forward and backward recursions are
calculated in parallel: in the trellis with a reduced number of
states, the backward recursion is carried out once the forward
recursion is over. It is thus necessary to keep track of the
survivor associated to each transition at each epoch in the
forward recursion of αn(xkn). Then, these survivors are used
in the backward recursion of βn(xkn). It means that the value
of γn(xkn,x

i
n+1) will be saved during the forward recursion to

be used in the backward recursion. In fact, the PSP approach
is only incorporated in the forward recursion. The reasons for
that are twofold: first, the accumulated phase ∆θN associated
to last symbol period is unknown, whereas the accumulated
phase ∆θ0 is known and equals zero; second, since the branch
metric depends on the accumulated phase state (computed by
the PSP process), using the PSP in both the forward and the
backward recursions would produce different branch metrics
for the same transition, which is not acceptable.

The proposed algorithm is summarized below:

PSP-based modified BCJR algorithm

• Step 1: Initialization (n = 0)
∆θk0 = 0, for all states xk0 ,
α0(x0) = 1, α0(xk) = 0, k 6= 0.

• Step 2: Forward Recursion n : 0→ N − 1
Calculate for all possible transitions xkn → xin+1 in
the reduced state number trellis, the branch metrics
γn(xkn,x

i
n+1) according to Eq. (15). Then, for each

xin+1, update ∆θin+1 according to Eq. (13).
• Step 3 : Backward Recursion n : N → 0

Initialize βN (xkN ) = 1
Ns
∀ k, where Ns denotes the

number of states.
Update backward-accumulated metric βn by using the
branch metrics calculated in the forward step.

B. Iterative Soft Detection for Bit Interleaved Coded CPM

The serially concatenated CPM signals with iterative decod-
ing were first studied in [25]. The combination of continuous
phase modulation (CPM) and bit interleaved coded modulation
(BICM) is referred to as BIC-CPM. The PSP-based modified
BCJR algorithm has been applied in the iterative receiver
by the authors in [29]. The BIC-CPM system is described
in Fig. 1. The transmitted bits, b = {bn}, are encoded
using a convolutional channel encoder. Then, the coded bits
c = {cn} are interleaved and mapped to an M -ary alphabet
{±1,±3, ...,±(M −1)} to define a symbol sequence denoted
by a = {an}.

At each iteration, the proposed soft CPM demodulator
computes extrinsic LLRs Λext

dem from the channel observations
r(t) and a priori LLRs LA which are then passed through
the bit interleaver, to become a priori information for the
decoder. The latter feeds back in turn extrinsic LLRs Λext

dec
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b
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v
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[33] Laurent Decomp. K=2

[33] Laurent Decomp. K=1

[18] optimized g
R

(t)

Fig. 2: BER performance comparison for binary 3RC modu-
lation with h = 3

8 .

which are deinterleaved to become new a priori information
for the proposed soft CPM demodulator.

C. Simulations

1) Comparison with Existing Reduced Complexity Re-
ceivers: The proposed receiver is compared with two algo-
rithms described in [18] and [33]. The key idea of [18] is
to use a receiver with a modified frequency pulse having a
shorter length compared to the frequency pulse used at the
transmitter. For example, the binary 3RC transmitted signal is
demodulated using a trellis of the binary 2REC modulation. In
[33], the Laurent decomposition into a superposition of PAM
waveforms is considered with K principal components. Hence,
both [18] and [33] consider a signal space at the receiver side
which is different from the transmitter side. Note that this is
not the case in the proposed receiver where the signal space
is unchanged.

For this comparison, we considered the modulation format
used in [18], namely a binary 3RC modulation with h set to 3

8 .
The phase follows the classical phase definition for CPM, as
opposed to the titled phase introduced by Rimoldi. The BER
performance is illustrated in Fig. 2, and a comparison of the
complexities in terms of number of states is given in Table I.

Compared to the full-state receiver, the proposed reduced-
state receiver based upon hv = 2

3 , has 12 states instead of
64 and allows to have a negligible loss for low Eb/N0 and
optimum performance from Eb/N0 = 4 dB. However, the
algorithm proposed in [18] based on a trellis of 32 states,
performs 0.6 dB away from the optimum performance at BER
= 10−2. For the receiver proposed in [18], the approximation
of the signal by its two principal components leads to achieve
optimal demodulation for each Eb/N0 with a trellis of 32
states. The approximation of the signal by only its principal
component leads to a degradation of 0.3 dB at BER = 10−2

with a trellis of 16 states.
2) Influence of the choice of the virtual receiver modulation

index: This section provides numerical results to assess the
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Soft Bit to Symbol

Convertor
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π

r(t)

Λext
dec

LA

Λext
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b̂

(b) Receiver.

Fig. 1: BIC-CPM system

TABLE I: Complexity reduction vs performance degradation
for Binary 3RC modulation, h = 3/8

Number Reduction Loss (dB) at
of states percentage BER = 10−2

Full-state receiver 64 − −
Proposed receiver (hv = 2/3) 12 81.25% 0
[18] 32 50% 0.6
[33], K = 2 32 50% 0
[33], K = 1 16 75% 0.3

performance of the studied algorithms with reduced state
number on an AWGN channel for both uncoded CPM and
BIC-CPM cases. They also illustrate the need for optimization
developed in Section IV. In the simulations of the BIC-
CPM, we use a binary convolutional code defined by its
polynomials (7,5) in octal and a pseudo-random interleaver.
The interleaver length (equal also to the binary coded sequence
length), denoted by K, takes on its values in {4096, 20000}.
We consider a Quaternary and partial response CPM with
a raised-cosine frequency pulse of length L = 2, referred
to as Quaternary 2RC CPM in the remainder of the paper.
This modulation format is often used in the literature (see for
example [34], [35] and [33]). The transmission modulation
index is assumed to be rational to enable a comparison with
the optimum CPM demodulation.

In the figure legends, uncoded refers to the uncoded scheme,
where hard Viterbi-based detection is carried out; coded refers
to the BIC-CPM with soft BCJR-based detection involved in
the iterative decoding process; hv = h means an optimum
CPM demodulation algorithm (either Viterbi or BCJR), work-
ing on the trellis with full state number, whereas hv 6= h means
a CPM demodulation with the help of the PSP-based modified
algorithm (either Viterbi or BCJR), working on a trellis with
reduced state number. In the text, we refer to the receiver based
on a trellis with the full state number (respectively the receiver
based on a trellis with a reduced state number) as full-state
receiver (respectively reduced-state receiver).

We consider two reduced-state receivers. The first designed
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b
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2
5

coded hv =
1
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, K=20000

coded hv =
1
4
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coded hv =
2
5
, K=4096

coded hv =
2
5
, K=20000

coded hv =
2
3
, K=20000

coded hv =
2
3
, K=4096

Fig. 3: BER performance of the reduced-state receiver for
a Quaternary raised cosine CPM with L = 2 and h = 1

4 .
BIC-CPM: CC(7,5), pseudo-random interleaver and K ∈
{4096, 20000}.

with hv = 2
5 has a 20-state trellis, while the second designed

with hv = 2
3 has a 12-state trellis. The question to be answered

is: should we always choose the hv yielding the lowest
number of states whatever h? Partial answer is illustrated by
the simulation results given below whereas Section IV will
provide a deeper analysis. In Fig. 3 (respectively Fig. 4), we
have plotted the BER curve for both uncoded CPM and BIC-
CPM cases, when the transmission modulation index is set to
h = 1

4 (respectively h = 2
5 ).

Let us first focus on the uncoded case. We observe that
for h = 1

4 , both reduced-state receivers achieve the same
performance as the full-state receiver. For h = 2

5 , the receiver
with hv = 2

5 becomes the reference full-state receiver and it
performs 0.75 dB better than the reduced-state receiver.

Let us now consider the BIC-CPM case and analyze the
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Fig. 4: BER performance of the reduced-state receiver for
a Quaternary raised cosine CPM with L = 2 and h = 2

5 .
BIC-CPM: CC(7,5), pseudo-random interleaver and K ∈
{4096, 20000}.

receiver convergence depending on hv and K. For the BIC-
CPM with h = 2

5 (cf. Fig. 4), the BER performance of the
reduced-receiver is significantly poor compared to the full-
sate receiver performance for both interleaver sizes, which was
predictable from the uncoded case observation. The SNR gap
is of roughly 1 dB as long as BER < 10−3 and it keeps
increasing below BER = 10−3 due to a change of slope
beyond around 3 dB. This change of slope is a typical BER
shape for iterative receivers. There is first a slow decrease of
the BER: the initial BER is too high to enable the iterative
process to converge. As soon as the iterative process gain
is engaged, the BER decreases quickly with the SNR (the
cliff effect): this behaviour can be analysed by computing
the iterative transfer of extrinsic information (EXIT charts).
Then, from a given SNR value, one observes a change of slope
(called the error floor), which corresponds to the convergence
of the receiver towards the lower union bound. The union
bound depends on the minimum distance of the BIC-CPM
scheme and the error floor is all the lower as the minimum
distance is high, where the minimum distance is the minimal
Euclidean distance between two different coded and modulated
sequences.

In the case of the BIC-CPM with h = 1
4 and K = 4096

(cf. Fig. 3), the convergence of the full-state receiver occurs
after 8 iterations. Comparatively, the reduced-state receiver
with hv = 2

5 (respectively hv = 2
3 ) converges to its steady

state after 15 iterations (respectively 20 iterations) with a loss
of 0.2 dB (respectively 0.65 dB) at BER = 10−5. In the case
of K = 20000, the convergence of the full-state receiver is
achieved after 10 iterations. The reduced-state receiver used
with hv = 2

5 (respectively hv = 2
3 ) performs close to the full-

state receiver with a slight loss of 0.1 dB (respectively 0.2
dB) at BER = 10−5 and with convergence occurring after 14
iterations (respectively 20 iterations). We deduce that in that

particular case, hv = 2
5 (respectively hv = 2

3 ) achieves a good
tradeoff between error rate and complexity (iteration number
required to converge and trellis state number) for medium
codeword lengths (respectively high codeword lengths).

3) Conclusion: The proposed receiver has a lower number
of states compared to the MLSE receiver, and compared to
popular state reduction techniques from the state of the art. The
state reduction results from the suppression of parallel paths
in the full-state trellis. Two distinct symbol sequences a and
b correspond to parallel paths in the full-state trellis from t =

nT if their respective states x(a)
h,n = (θ

(a)
h,n, an−1, ..., an−L+1)

and x
(b)
h,n = (θ

(b)
h,n, bn−1, ..., bn−L+1) satisfy θ

(a)
h,n 6= θ

(b)
h,n and

ai = bi for i ≥ n−L+1. These two parallel paths in the full-
state trellis can superimpose in the reduced-state trellis (i.e. the
path with the lowest metric is suppressed), if the accumulated
phase state of the path a, ∆θ

(a)
n = π∆h

∑n−L
i=0 ai (resp. of

the path b, ∆θ
(b)
n = π∆h

∑n−L
i=0 bi) satisfy:

θ
(a)
h,n =[θhv,n + ∆θ(a)

n ]2π

θ
(b)
h,n =[θhv,n + ∆θ(b)

n ]2π (16)

Since parallel paths correspond to the same transmitted sym-
bols but may have different metrics, the suppression of parallel
paths has more impact on the symbol-by-symbol decoder than
on the sequence decoder.

We can also conclude that hv shall not always be chosen
to minimize the trellis state number. Depending on h, some
hv values may be discarded. Values of hv discarded for the
uncoded CPM receiver should also be discarded for the BIC-
CPM reduced-state receiver. However, as observed hereinbe-
fore, some values of hv suitable for the uncoded CPM reduced-
state receiver should be discarded for the BIC-CPM reduced-
state receiver. In Section IV, rules to help discarding bad hv
values are derived.

IV. CHOICE OF THE VIRTUAL RECEIVER MODULATION
INDEX

We have seen in the previous section, that the error rate
performance of the receiver based on the trellis with reduced
state number may be more or less affected by the chosen
virtual receiver modulation index hv . If two different receiver
modulation indices yield the same performance of the reduced-
state receiver for the uncoded CPM scheme, this is not
necessary the case for the BIC-CPM. Hence, the objective
of this section is to study the choice of the virtual receiver
modulation index in the cases of both uncoded and coded
CPM, and to derive rules to skip some hv values that would
lower the error rate performance. All the reasoning presented
in this section is performed without loss of generality on the
classical phase definition of CPM, and thus could also be
straightforwardly applied using the tilted phase of the Rimoldi
decomposition.

A. Uncoded CPM Case: Minimum Distance Analysis

In this section, we focus on the choice of hv to build the
trellis with reduced state number in the case of uncoded CPM.
More precisely, we derive a rule to discard hv values that
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will surely yield degradations of the error rate performance
compared to the optimum performance. Since an analytical
expression of the error probability achieved by the MLSE
demodulation cannot be obtained, a criterion based on the
minimum Euclidean distance is usually used to evaluate the
performance of trellis-based CPM demodulation [1]. In the
following our reasoning to discard any values of hv is based
on an approximation of an upper bound of the minimum
Euclidean distance. This section is organized as follows: we
first recall some materials of performance analysis based on
the minimum Euclidean distance [1] and we underline how to
adapt the analysis to the proposed reduced-state receiver. Then
we apply this analysis to define rules for discarding values of
hv and illustrate the method through simulations.

1) Minimum Euclidean Distance Analysis [1]: The MLSE
detection consists in finding the CPM sequence located at the
minimum Euclidean distance denoted dmin from the received
sequence. When an error occurs at high signal to noise ratio, it
corresponds to a decided CPM sequence located at minimum
Euclidean distance from the true CPM sequence. For high
Eb/N0, the bit error probability Pe under MLSE detection
is well approximated by

Pe ≈ Q
(√Eb

N0
d2

min

)
. (17)

where Q(∗) is the error function defined by

Q(x) =

∫ +∞

x

1√
2π
e−u

2/2du (18)

Thus the error rate will be all the lower as the minimum
Euclidean distance is high. The minimum normalized squared
Euclidean distance d2

min is defined as:

d2
min = min

a,b
a0 6=b0

(
d2(a, b)

)
(19)

where d2(a, b) is the Euclidean distance between the CPM
signals corresponding to the information symbol sequences a
and b. This Euclidean distance is calculated as:

d2(a, b) =
1

2Eb

∫ NT

0

|s(t, h,a)− s(t, h, b)|2dt, (20)

where N is the number of information symbols. In fact,
d2(a, b) depends on the difference sequence defined as γ =
a−b rather than on the individual data sequences themselves,
and so Eq. (20) can also be rewritten as [1]:

d2(a, b) = d2(γ) = log2(M)
1

T

∫ NT

0

[1− cos(φ(t, h,γ))]dt,

(21)
where φ(t, h,γ) is the phase trajectory of the difference
sequence γ, and where a notation facility has been introduced
by defining d2(γ) as d2(a, b). Using the decomposition of the
modulation index h = hv + ∆h, Eq. (21) can be rewritten as:

d2(γ) =
log2(M)

T

∫ NT

0

(
1− cos

(
φ(t,∆h,γ)︸ ︷︷ ︸

(T1):PSP process

+ φ(t, hv,γ)︸ ︷︷ ︸
(T2):reduced trellis

))
dt (22)

where the first term (T1) is computed using the PSP technique
and where the second term (T2) is tracked by the reduced-state
trellis.

The minimization in Eq. (19) is infeasible since the number
of difference sequences γ satisfying γ0 6= 0 grows exponen-
tially with N and M : card({γ|γ0 6= 0}) = (M −1)×MN−1.
The term inside the integral in Eq. (21) is positive, so d2(γ)
increases with N . This suggests that the difference sequence
γ corresponding to the minimum distance should have a short
duration, that is to say the time interval over which γ differs
from the all-zero sequence should be limited, thus reducing
the integration interval in Eq. (21). Hence, an upper bound
denoted by dB on the minimum distance dmin can be found
by using only the difference sequences of short duration: the
upper bound is then defined on a particular subset of difference
sequences denoted by Γf . This can be summarized as:

min
γ,γ0 6=0

{
d2(γ)

}
︸ ︷︷ ︸

d2
min

≤ min
γ∈Γf

{
d2(γ)

}
︸ ︷︷ ︸

d2
B

(23)

The set of the difference sequences having a short duration
Γf is evaluated thanks to the so-called phase tree built upon
hv . This tree is formed by the set of phase trajectories having
a common start phase, say zero, at time t = 0. We assume
that the data symbols for all the phase trajectories in the
tree before this time are equal. The phase trajectories do not
coincide over the first symbol interval (γ0 6= 0). However,
when going further into the tree, it is always possible to find
a pair of phase trajectories which coincide (modulo 2π) at
a specific time. This instant is referred to as a merger. Let
τ denote the instant where the two phase trajectories merge.
The calculation of the Euclidean distance between both signals
can be reduced to the interval [0, τ ]. The mergers are easily
identified in the phase difference tree, since they correspond
to a phase difference trajectory which is identically equal to
zero for all t ≥ τ . The mergers can be classified by sorting
the values of τ in ascending order. The first order mergers
correspond to the smallest values of τ , and the upper bound d2

B

defined in Eq. (23) can be found by using only the difference
sequences corresponding to the first order mergers. The more
orders, the tighter the bound.

We denote by tk a k-th merger and we assume tk = mT .
Let a and b be one pair of sequences with phase trajectories
merging at time tk. Then γi = ai − bi takes on values in
A = {0,±2,±4, ...,±2(M − 1)}. The difference phase reads

φ(t, hv,γ) = 2πhv

m−1∑
i=−∞

γiq(t− iT ), (24)

with γi ∈ A for i = 0, 1, ...,m− 1 and γi = 0 for i < 0.
According to Eq. (22), d(a, b)2 is a function of

cos(φ(t, hv,γ)), which is an even function. From Eq. (24),
we observe that each sequence γ has its opposite in the set
of phase difference sequences. Thus, for the calculation of
the upper bound of the minimum distance, it is sufficient
to consider the phase difference tree, using the difference
sequences γ = (γ0, ..., γN−1) taken in Γm defined as:

Γm = {γ| γi ∈ A
0≤i≤m−1

, γi = 0
i≥m

, γ0 > 0, γm−L 6= 0} (25)
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Assuming γ ∈ Γm, the two phase trajectories merge at tk and
coincide beyond if the following condition is satisfied:

∃` ∈ Z, φ(t, hv,γ) = 2`π, t ≥ tk

⇔ ∃` ∈ Z, 2πhv

m∑
i=0

γiq(t− iT ) = 2`π, t ≥ tk

⇔ ∃` ∈ Z, πhv
m−L∑
i=0

γi + 2πhv

m∑
i=m−L+1

γiq(t− iT ) = 2`π,

(26)

Let b and b̂ be the pair of sequences yielding a
phase difference trajectory corresponding to a k-th
merger. The paths merge at tk = mT at a state
xjm = (θjhv,m

(∆θjm+1), ajm, a
j
m−1, ..., a

j
m−L+1). It means that

(bm, bm−1, ..., bm−L+1) = (ajm, a
j
m−1, ..., a

j
m−L+1) and that

(b̂m, b̂m−1, ..., b̂m−L+1) = (ajm, a
j
m−1, ..., a

j
m−L+1), and thus

(bm, bm−1, ..., bm−L+1) = (b̂m, b̂m−1, ..., b̂m−L+1), that is to
say γi = 0, i = {m − L + 1, ...,m}: so the time dependent
part of Eq. (26) is set to zero, yielding:

Eq. (26)⇔ ∃` ∈ N, πhv
m−L∑
i=0

γi = 2`π. (27)

Thus, the difference sequence of a pair of sequences whose
phase trajectories separate at t = 0 (γ0 > 0) and merge at tk,
always verifies{

∃` ∈ N, hv
∑m−L
i=0 γi = 2`

γ0 > 0
(28)

From [1] (Chapter 3), in the case of the MLSE (full-state trellis
corresponding to hv = h), the upper bound on the minimal
distance dB is obtained using the difference sequences that are
common to all the values of the modulation index i.e when
` = 0. The upper bound dB is thus computed for the MLSE
considering all sequences satisfying

m−L∑
i=0

γi = 0, γ ∈ Γm. (29)

The proposed algorithm working on the reduced state-number
trellis suppresses more candidate paths (due to a higher
merging path number per state) compared to the Viterbi
algorithm working on the original trellis, yielding a possible
smaller minimum Euclidean distance, and thus performance
degradation. The virtual modulation index hv will be chosen
so that the k-th mergers in the trellis with reduced state number
are higher than the k-th mergers in the original trellis (with full
state number). An upper bound dB of the minimum distance
in the case of the trellis designed with hv , is computed by
considering all the cases described in Eq. (28) i.e, using the
difference sequences γ in Γm satisfying:

m−L∑
i=0

γi =
2`

hv
, ` ≥ 0 (30)

As hv = lv
pv

with lv and pv being relatively prime integers
and, as

∑m−L
i=0 γi takes on integer values, Eq. (30) becomes

m−L∑
i=0

γi = 2`pv, ` ≥ 0. (31)

2) Application to the Design of the Virtual Modulation
Index: For a reduced-state receiver based upon hv , the com-
putation of the upper bound dB is as follows:
• First, we determine the set of difference sequences Γf

corresponding to the mergers of the first orders: they are
identified from the reduced state trellis built upon hv
(term (T2) in Eq. (22)). For a fixed pv , we determine
exhaustively the possible values of m and their corre-
sponding γ.

• We compute the normalized Euclidean distance d(γ)
given by Eq. (22) for every difference sequence found,
since φ(t,∆h,γ) + φ(t, hv,γ) = φ(t, h,γ).

• The upper bound on the minimum distance dB is the
lower bound of all of these computed normalized Eu-
clidean distances (dB = minγ∈Γf

d(γ)).
We observe that the minimum value of m for which Eq. (31)

has solutions for ` 6= 0 increases with pv . Given h, hv will
thus be chosen so that the value of m yielding to the minimum
distance in the MLSE trellis be inferior to the value of m from
which Eq. (31) has solution for ` 6= 0. Among the set of hv
satisfying this condition, we will choose the one which results
in the best state number reduction.

Let us illustrate this principle with the CPM parameters used
in Section III. The first two mergers are reported in Table II
and an upper bound d2

B for the reduced state number trellis
is plotted in Fig. 5 for several values of hv . We observe that
d2
B is the same for the reduced state number trellis and for the

full state number trellis when hv = k
5 with k ∧ 5 = 1. k ∧ p

denotes the greatest common divisor of k and p. Whereas
if hv = k

4 , with k ∧ 4 = 1 there is a slight degradation
when the transmission modulation index is different from
hv and belongs to the interval [0.51, 0.56]. For a detection
with hv = k

3 where k ∧ 3 = 1 there is also a degradation
when h 6= hv belongs to the modulation index intervals
[0.34, 0.44], [0.59, 0.81], [0.9, 1.13] or [1.28, 1.43]. Finally, by
using hv = k

2 with (k ∧ 2 = 1) we observe a degradation
when h 6= hv is in the modulation index intervals [0.39, 0.67],
[0.87, 1.191] or [1.41, 1.5]. This is in accordance with the
conclusions drawn from Fig. 3 and Fig. 4. We observed no
error rate degradation in the case of h = 1

4 and hv ∈ { 2
3 ,

2
5},

whereas hv = 2
3 yielded a significant degradation in the case

of h = 2
5 .

In order to check the validity of our approach, we added in
Fig. 5 the values of the minimum distance in the reduced-state
trellis, estimated through simulations based on the fact that
the bit error probability Pe for large Eb/N0 is approximated
by Eq. (17). For each value of h and given a large Eb/N0,
we simulated the detection of the CPM with the proposed
reduced-state trellis-based receiver to estimate the BER and
to deduce an estimate of d2

min(h) from the inverse function
of Q(x) (the solution is unique since the function Q(x) is
bijective). Note that we chose the value of Eb/N0 to ensure a
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TABLE II: First two mergers in the reduced state number trellis for Quaternary 2RC

MLSE
hv = h

hv = k
5

(k ∧ 5 = 1)
hv = k

4
(k ∧ 4 = 1)

hv = k
3

(k ∧ 3 = 1)
hv = k

2
(k ∧ 2 = 1)

First
mergers

m = 3∑1
i=0 γi = 0,

γi ∈ Γ3

m = 3∑1
i=0 γi = 10,

γi ∈ Γ3

m = 3∑1
i=0 γi = 8,

γi ∈ Γ3

m = 2
γ = (6, 0)

m = 2
γ = (4, 0)

Second
mergers

m = 4∑2
i=0 γi = 0,

γi ∈ Γ5

m = 4∑2
i=0 γi = 10,

γi ∈ Γ4

m = 4∑2
i=0 γi = 8,

γi ∈ Γ4

m = 3∑2
i=0 γi = 6,

γi ∈ Γ3

m = 3∑2
i=0 γi = 4,

γi ∈ Γ3
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Full-state trellis
Reduced state trellis, hv =

k
3
, k ∧ 3 = 1

Reduced state trellis, hv =
k
4
, k ∧ 4 = 1

Reduced state trellis, hv =
k
5
, k ∧ 5 = 1

Reduced state trellis, hv =
k
2
, k ∧ 2 = 1

Reduced state trellis, d2min, hv = 2/3
Reduced state trellis, d2min, hv = 2/5

Fig. 5: Upper bound on the minimum distance as a function
of h in the reduced state number trellis for Quaternary 2RC
CPM and different values of hv

low BER, depending on the value of h as follows: Eb/N0 = 16
dB for h ∈ {0.1, 0.2}, Eb/N0 = 12 dB for h ∈ {0.3, 0.4} and
Eb/N0 = 10 dB for h ∈ {0.5, 0.6, 0.7, 0.8, 0.9}.

B. Coded CPM: EXIT Charts Analysis

In the case of uncoded CPM, the minimum distance is a
good criterion to discard some values of the virtual reception
modulation index. However, we have observed in Section III
that given two different values of hv , the performance of the
two corresponding reduced-state receivers may coincide in the
case of uncoded CPM and may differ in the case of BIC-CPM.
Indeed, given a high enough signal to noise ratio, after the
first iteration, the soft BCJR-based CPM detector of the BIC-
CPM receiver yields the same decision as the hard Viterbi-
based CPM detector. The hard decision is given by applying a
theshold on the log-likelihood ratio. Given two different values
of hv , the corresponding soft BCJR-based CPM detectors may
deliver the same hard decisions but extrinsic information with
highly different reliabilities.

The extrinsic information transfer (EXIT) chart is a power-
ful technique to analyze the behavior of iterative receivers [31].
In the case of BIC-CPM, the inner and the outer components
of the receiver, namely the proposed CPM demodulator and
the FEC decoder, exchange soft information on the encoded
bits. The convergence behavior between these two modules

can be studied by using EXIT chart analysis. The transfer
characteristic curves can be obtained by considering the a
priori information delivered by the proposed CPM demod-
ulator to the decoder [31]. In the following, we intend to
analyze the influence of the choice of hv on the convergence
of the reduced-state receiver from EXIT charts. Simulations
are carried out with the Quaternary 2RC CPM as in previous
sections.

In Fig. 6, we have considered h = 1
4 and Eb/N0 = 1.5

dB. We have plotted the EXIT chart for the full-state receiver
(hv = 1

4 ) and for two reduced-state receivers (hv = 2
5 and

hv = 2
3 ). From Fig. 3, we have observed that the three re-

ceivers perform roughly the same for high codeword lengthes
with a higher degradation for medium lengthes with hv = 2

3 .
From Fig. 6, we can also observe that for low-to-medium
information values (beginning of the iterative process), the
curves of the BCJR-based detectors seem parallel but shifted.
The convergence threshold is thus better for hv = 2

5 than hv =
2
3 . The EXIT chart enables also to complete the complexity
comparison by predicting the iteration number required to
converge. Table III reports the complexity comparison in terms
of trellis state number and minimum iteration number required
to converge. We deduce that using hv = 2

5 at the reception
allows to perform a good compromise between performance
and complexity.

In Fig. 7 we have considered h = 2
5 (same simulation

conditions as for Fig. 4). The EXIT chart is plotted for the
full-state receiver (hv = 2

5 ) on the right and for the reduced-
state receiver (hv = 2

3 ) on the left. Different values of Eb/N0

are simulated to compare the convergence thresholds. For
Eb/N0 = 1.5 dB, none of the receivers will be able to
converge. For Eb/N0 = 2 dB, only the full-state receiver
will converge. For Eb/N0 = 2.5 dB, both of them will
converge. The difference between the respective thresholds of
convergence is quite significative. The EXIT chart analysis is
thus in accordance with the conclusions drawn from Fig. 4.

TABLE III: Trellis state number and predicted minimum
iteration number for the reduced-state BIC-CPM receiver.
Quaternary 2RC with h = 1

4 for Eb

N0
= 1.5 dB

Trellis state Predicted minimum
number iteration number

hv = 1
4

32 4
hv = 2

5
20 5

hv = 2
3

12 9
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V. CONCLUSION

This paper is focused on low complexity algorithms for
CPM demodulation. The principle is to choose a modulation
index to build the trellis at the receiver side which can be
different from the modulation index of transmitted CPM wave-
form, hence enabling the detection of CPM waveforms with
irrational modulation indices. Depending on the modulation
index chosen to build the trellis for detection, the number of
states can be reduced. Using modified branch metrics, both
Viterbi algorithm for sequence detection and BCJR algorithm
for soft-input soft-output CPM demodulation are derived. Even
if a large range of modulation indices can be used at the
receiver side, the complexity reduction (number of states
in the trellis) is a first criterion to select a particular one.
However, some modulation indices may degrade the error
rate performance. We proposed in this paper two ways to
discard such modulation indices. The first one is related to
the uncoded CPM case (Viterbi detection) and is based on the
minimal distance upper bound derivation, as a function of both
the transmission modulation index and the modulation index
used at the receiver side to design the trellis. The second one
is related to the BIC-CPM case, where an iterative receiver
based on soft information exchange between the FEC decoder
and the CPM detector is performed. In this case, avoiding
values discarded from the minimal distance study, an EXIT
chart analysis enables to discard the modulation indices which
degrade the convergence of the iterative decoding algorithm. A
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Fig. 7: EXIT chart for the BIC-CPM receiver. Quaternary
raised cosine CPM with L = 2 and h = 2

5 , CC(7,5), pseudo-
random interleaver. Left side: reduced-state receiver, hv = 2

3 ,
Eb

N0
∈ {2, 2.5}dB. Right side: full-state receiver, hv = 2

5 ,
Eb

N0
∈ {1.5, 2}dB.

trade-off between the remaining possible modulation indices is
finally possible by striking a balance between the convergence
speed and the number of states in the trellis.
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