Thibaut A Castan 
email: thibaut.castan@obspm.fr
  
Kam Theorem Quantitative 
  
A quantitative KAM theorem

Keywords: KAM Theorem, Hamiltonian Systems, Stability, Quasi-periodic Motions, Perturbation Theory MSC 2010: 37C55, 37J25, 37J40, 70H08, 70H09, 70H14, 70H15, 70H20, 70K43

teaching and research institutions in France or abroad, or from public or private research centers.  

In 1963, Arnold [START_REF] Arnold | Small denominators and problems of stability of motion in classical and celestial mechanics[END_REF] proved that Kolmogorov's theorem [START_REF] Kolmogorov | On conservation of conditionally periodic motions for a small change in Hamilton's function[END_REF] could be applied to the plane planetary three-body problem, thus showing the existence of quasi-periodic solutions over an infinite time interval. This theorem relies on a smallness condition on the ratio of masses between the planets and the star. Hénon, in a letter to Arnold (see [START_REF] Laskar | Michel Hénon and the Stability of the Solar System[END_REF] pages [START_REF] Narasimhan | Several complex variables[END_REF][START_REF] Niederman | Stability over exponentially long times in the planetary problem[END_REF], derived an explicit, necessary condition on this ratio for Arnold's scheme to apply: Hénon picked three of the necessary inequalities in Arnold's proof, namely those which depend only on the dimension of the phase space (and not specifically on the perturbing function), and evaluated them numerically in the case of the circular restricted three-body problem in the plane. Hénon thus showed that the ratio had to be less than 10 -320 . The analogous computation in the plane (full) planetary three-body problem leads to the condition that the mass ratio should be less than 10 -1130 . Since then, proofs of the invariant torus theorem have become simpler and their hypotheses are now somewhat less restrictive. Quantitative conditions for the KAM stability have been established using computer-assisted proofs, for similar systems (obtained by truncating the plane circular restricted three-body problem) notably in the works of Celletti-Chierchia [START_REF] Celletti | On the stability of realistic three-body problems[END_REF][START_REF] Celletti | Kam stability for a three-body problem of the solar system[END_REF][START_REF] Celletti | KAM stability and celestial mechanics[END_REF], Giorgilli-Locatelli [START_REF] Locatelli | Invariant tori in the Sun-Jupiter-Saturn system[END_REF] and Robutel [START_REF] Robutel | Stability of the planetary three-body problem. II. KAM theory and existence of quasiperiodic motions[END_REF]. In another line of thought, quantitative results on the stability of the three-body problems over exponentially long time were also computed by Niederman [START_REF] Niederman | Stability over exponentially long times in the planetary problem[END_REF] and later improved by the author [START_REF] Castan | Estimates on stability over exponentially long times in the plane planetary problem[END_REF]. This paper is the part of a study aiming at determining a sufficient condition for quasiperiodic solutions to exist in the plane planetary three-body problem. This study was split into three independent articles. A first one is dedicated to the complex singularities and the analyticity width of the perturbation, yielding an essential estimate of the disturbing function on complex domains of analyticity. The second one is the present paper, a technical part dedicated to the statement of a quantitative KAM theorem, where all the constants are explicit. Finally, a last one is dedicated to the application of this paper's theorem to the plane planetary three-body problem, and the different issues that arise in such an application, such as the presence of degeneracies.

The aim of this paper is thus to state a quantitative KAM theorem, in which every involved constant is explicit. Such KAM theorems were stated before as they were a necessary step to obtain KAM stability for different systems. Notably, the work of Celletti and Chierchia [START_REF] Celletti | On the stability of realistic three-body problems[END_REF][START_REF] Celletti | Kam stability for a three-body problem of the solar system[END_REF] and of Celletti, Giorgilli and Locatelli [START_REF] Celletti | Improved estimates on the existence of invariant tori for Hamiltonian systems[END_REF] are prominent examples of such statements. Here we prove a version of the KAM theorem of our own in order to fit our specific goal as close as possible (which, given the intricacies of the computations, is not useless). In this purpose, we have chosen to revisit the KAM theorem of Pöschel in [START_REF] Pöschel | A lecture on the classical KAM theorem[END_REF] so as to derive explicit hypotheses depending on the parameters of the system, such as the analyticity widths in the actions and in the angles. Pöschel's theorem is a version of the KAM theorem with parameters, using the framework of Moser [START_REF] Moser | Convergent series expansions for quasi-periodic motions[END_REF]. As often in KAM theory, a given statement is well suited to some purposes, and less to some others. For example, Pöschel's theorem deals directly with the Hamiltonian, whereas Celletti and Chierchia use a Lagrangian approach developed by Moser, Salamon and Zehnder [START_REF] Salamon | Kam theory in configuration space[END_REF], probably leading to better constants since they avoid using Cauchy's inequality at least once at each step of the induction. So we clearly do not aim at getting optimal estimates, but to get through the whole argument. Also, the relatively small number of hypotheses in Pöschel's theorem make it possible to emphasize the competition between the different parameters, a pleasant feature for the application we have in mind.

1 Hamiltonian with parameter

Parameterizing the Hamiltonian

Consider, for n ≥ 2 the following analytic Hamiltonian:

H(p, q) = h(p) + f (p, q, ), (p, q) ∈ D × T n , 1, (1) 
where D ⊂ R n . The Hamilton equations of h leads to a quasi-periodic motion of frequency

ω(p) = h (p) ∈ R n for p ∈ D.
By assumption, the perturbation f (p, q, ) has small norm compared to the Hamiltonian. Assume that the unperturbed Hamiltonian is non-degenerate on the set D, that is det(h (p)) = det ∂ω ∂p (p) = 0. Calling Ω = h (D), the frequency map h : D → Ω is a local diffeomorphism between D and the frequency set Ω ⊂ R n . The approach of Möser [START_REF] Moser | Convergent series expansions for quasi-periodic motions[END_REF] consists in expanding the Hamiltonian h around one particular frequency ω, and work with a linear Hamiltonian parameterized by that frequency. Let p = p 0 + I, with I ∈ B = D -p 0 , the Hamiltonian h can be written:

h(p) = h(p 0 ) + h (p 0 ), I + 1 0 (1 -t) h (p 0 + tI)I, I dt (2) 
Since the frequency map is a local diffeomorphism, it is equivalent to work not only with the action p, but with the two variables (ω, I). Fixing the action p 0 (and therefore ω), for I sufficiently small, one can write equation ( 2) as follows:

h(p) = e(ω) + ω, I + P h (I; ω), where P h (I; ω) = 1 0

(1 -t) h ((h ) -1 (ω) + tI)I, I dt.

From the action-angle coordinates, we defined new coordinates (ω, I, θ) ∈ Ω × B × T n , where we wrote θ instead of q not to be mistaken. The term P h is of order 2 in the action I, and we now consider it as a new part of the perturbation, being as small as wanted when considering a sufficiently small ball in the action around the origin. Hence, one can write H = N + P , where N is called the normal form and is defined by N = e(ω) + ω, I , and P = P h (I; ω) + P (I, θ; ω),

with

P (I, θ; ω) = f ((h ) -1 (ω) + I, θ, ).
The equations of motion of the family of Hamiltonian under normal form N are straightforward to compute. Indeed, their associated vector fields are of the form

X N = n j=1 ω j ∂ θj , ω ∈ Ω.
The motion is quasi-periodic, and takes place on a specific torus {0} × T n for every ω ∈ Ω. These tori can be seen as a trivial embedding of T n over the set Ω on the phase space given by the function

Φ 0 : T n × Ω → B × T n , (θ, ω) → (0, θ) (4) 
For a generic Hamiltonian, the perturbation P will limit the existence of these tori. However, under hypotheses made clear further in the paper, one can show that almost all of these tori (in the sense of the Lebesgue measure) survive a perturbation, this is the main result of the KAM theorem.

Sets of analyticity and other definitions

Let Ω be the set of initial frequencies we are considering. Let τ > n -1, γ > 0 and consider the set of Diophantine vectors:

D(γ, τ ) = ω ∈ R n : ∀k ∈ Z n , |k • ω| ≥ γ |k| τ 1 , (5) 
where

|.| 1 is the l 1 -norm |k| 1 = |k 1 | + ... + |k n | for k ∈ Z n . Let Ω γ,τ = Ω ∩ D(γ, τ ), it is as well a Cantor set. Finally, for β > 0, let Ω β γ = Ω γ,τ \ {ω ∈ Ω γ,τ : ∃ ω ∈ R n \ Ω, |ω -ω | < β} .
The last set is the set of vectors in Ω γ,τ that are at least at a distance β to the boundary of Ω. We will fix later the needed value for the constant β. Now let us define the various domains we use in the theorem: the sets we consider for the analytic version of the KAM thorem are complex polydiscs around some real set. For the frequencies, define

O h = {ω ∈ C n , |ω -Ω β γ | < h}. (6) 
Call T n C = (T × R) n the complex extension of the n-torus. The action-angle variable will take values in

D r,s = {(I, θ) ∈ C n × T n C , ∀i ∈ 1, n : |I i | < r, | (θ i )| < s} . (7) 
Finally, we define the set

D r,s,h = D r,s × O h . (8) 
The norms on the vectors and matrices of C n are the sup norm:

||I|| = sup 1≤i≤n |I i |, ||M || = sup 1≤i,j≤n |M i,j |.
Define the norms with indices as follows: for a function f defined respectively on D r,s , O h , D r,s,h , we have

||f || r,s = sup Dr,s |f | , ||f || h = sup O h |f |, ||f || r,s,h = sup D r,s,h |f |.
In the same spirit, for vector valued functions, we have:

||f || r,s = sup Dr,s ||f ||, ||f || h = sup O h ||f ||, ||f || r,s,h = sup D r,s,h ||f ||,
where || • || is the sup norm. Finally, to state the theorem we will need the following Lipschitz norm on the frequencies:

|f | L = sup ω =ω |f (ω) -f (ω )| |ω -ω | ,
where | • | represent the supremum norm.

2 Quantitative KAM theorem

Statement of the theorem

In this section, we give the explicit statement of the KAM theorem. We chose τ = n in the following, guaranteeing the set of Diophantine vectors to be of positive measure for γ small enough, as well as leading to simpler hypotheses. However it is not hard to adapt the proof without this choice if required. We introduce first some definitions to be able to state the theorem.

Let r, s, h > 0, ν = n + 1, δ ≥ 8(3n + 2), σ = s/20, and K = min(A ∩ B + ), where

A = {K ∈ N : Kσ ≥ (2n + ν)log 2} , B = K ∈ N : 2K n+ν σ ν e -Kσ ≤ 1 δ , (9) 
B + = {K ∈ B : ∀m ∈ N, K + m ∈ B} . Call C 1 = 4 ν (8n(3n + 2) 2 C 0 + n(n + 1)/2 + 8 ν n!) 2 with C 0 = 3π6 n 2 n(2n)! 2 n
. Define the important value:

= min γrσ ν 4 ν C 1 , hr δ , γr 2K ν δ . ( 10 
)
Define the following (exponentially convergent) series for ν ≥ 2:

S ν = ∞ i=0 n i 2 ν i+2-2( 3 2 ) i , T ν = +∞ i=0 n i 4 ν i+1-( 3 
2 ) i , (11) 
and finally

µ = exp 9n + 6 2δ , ξ = exp 12(3n + 2)C 0 γrσ ν . ( 12 
)
The quantitative statement of the KAM theorem of Pöschel is the following:

Theorem 1. Let H = N + P be a Hamiltonian, such that P is real analytic on the set D r,s × O h and P r,s,h = 0 ≤ . Then there exists a Lipschitz continuous map ϕ : Ω γ,τ → Ω h0 γ , with h 0 = δ 0 r , and a Lipschitz continuous family of real analytic torus embeddings Φ : T n × Ω γ,τ → B × T n close to the trivial embedding Φ 0 such that for each ω ∈ Ω γ,τ , the embedded tori are Lagrangian and

X H | ϕ(ω) • Φ = Φ • X N .
Φ is real analytic on the set {θ ∈ C n : | θ i | < s/2} for each ω, and the following inequalities on Φ and ϕ hold:

W (Φ -Φ 0 ) ≤ 1 2 ξ log ξ (13) 
ϕ -Id ≤ 2h 0 µ log µ, (14) (15) 
where W = diag(r -1 Id, s -1 Id). As for their Lipschitz constant, we have:

W (Φ -Φ 0 ) L ≤ 2 3 T ν ξ log ξ (16) ϕ -Id L ≤ 4 3 S ν µ log µ. (17) 
It is important to notice that the Lipschitz estimates allow us to control the size of the the set ϕ(Ω γ,τ ). Indeed, with these estimates, one can prove that its complement is of size O(α) (see [START_REF] Pöschel | A lecture on the classical KAM theorem[END_REF]). Besides, every embedded torus is Lagrangian and is close to its associated unperturbed torus.

Sketch of the proof

Let us describe succinctly the general scheme of the proof, that will consist in an iteration of a KAM step. At each step, we consider an analytic Hamiltonian H = N + P with N under normal form: N = e(ω) + ω, I . We want to find an analytic transformation F on the variables (I, θ, ω), close to the identity, such that H • F = N + + P + , where N + is again under normal form and P + verifies ||P + || ≤ C||P || κ , for some constants κ > 1 and C. The composition of H with the function F implies some loss of analyticity, related to the norm of P . However, if the initial perturbation is small enough, the presence of the power κ will ensure that the norm of the perturbation will rapidly converge to zero after an infinite amount of steps, while the Hamiltonian stays analytic.

We are looking at a transformation F of the form

F = (Φ; ϕ) : (I, θ, ω) → (Φ(I, θ; ω), ϕ(ω)) (18) 
The transformation Φ acts on the action-angle variables, and depends on the parameter ω, while ϕ only changes the frequencies ω. In the following, the derivatives of these two functions are defined in the following way: Φ = (∂ I Φ, ∂ θ Φ), and ϕ = ∂ ω ϕ.

To build the transformation F, instead of considering the whole perturbation P , we first consider its linear part in the action by truncating its Taylor expansion:

Q(I, θ; ω) = P (0, θ; ω) + ∂ I P (0, θ; ω) • I. (19) 
The difference P -Q is then of order two in the actions, and will be part of the new perturbation at the end of our step. Next, we truncate the Fourier series of Q in the angle at some order K:

R(I, θ; ω) = k∈Z n ,|k|1≤K Q k (I; ω) exp(ı2πθ). (20) 
The remainder Q -R is the remainder of the Fourier series, and can be considered as small as wanted by taking K large enough, the function Q being analytic (see appendix A). Assume now that ω is fixed. Let F be a Hamiltonian affine in the actions, and X F = X its associated Hamiltonian vector field. Call Φ t = Φ t X the flow associated to the previous vector field, and Φ = Φ t t=1 its time-1 map. Call H = N + R, we have:

H • Φ = N + {N, F } + 1 0 (1 -t) {{N, F } , F } • Φ t dt + R + 1 0 {R, F } • Φ t dt = N + {N, F } + R + 1 0 {(1 -t) {N, F } + R, F } • Φ t dt.
We want F such that

N + {N, F } + R = N + . (21) 
The term under the integral is small and therefore added to the perturbation P -R. The average of R not being necessarily zero, we divide R into two parts: R = R + R where

R = 1 (2π) n T n Rdθ.
Formally, F is defined by

F = k∈Z n \{0},|k|1<K R k ı k, ω exp(ık • θ),
where the R k are the Fourier coefficients of the Hamiltonian R. As for the term R, we simply add it to the unperturbed Hamiltonian. Observe that since R was affine in the actions, N + = N + R remains affine in the actions. Define

N + = e + (ω) + ω + v(ω), I .
The new frequency vector is given by ω + = ω + v(ω), and if v is small enough and analytic, then there exists a diffeomorphism ϕ close to the identity such that ϕ(ω + ) = ω. The map N + can then be written

N + = (N + R) • ϕ.
The total transformation F = (Φ, ϕ) is now completely defined. As for the perturbation, computing the remainders of the transformation gives:

P + = 1 0 (1 -t) R + tR, F • Φ t dt + (P -R) • Φ.
If the perturbation is small enough, then P + will be even smaller, and we can iterate the scheme an infinite time, letting P + goes to zero.

Quantitative KAM step and its proof

Before proving the quantitative KAM theorem, we prove a quantitative KAM step, that will be iterated an infinite amount of times so as to obtain the complete theorem. Again, we follow almost completely the work of Pöschel in his proof. Recall as well that we chose τ = n as Diophantine constant for the sake of simplicity.

Statement of the KAM step

Proposition 1. Assume that P r,s,h ≤ where is defined in [START_REF] Moser | Convergent series expansions for quasi-periodic motions[END_REF]. Then there exists a real analytic transformation

F = (Φ, ϕ) : D ηr,s-5σ × O h/4 → D r,s × O h with η = γrσ ν such that H • F = N + + P + with P + ηr,s-5σ,h/4 ≤ 8(3n + 2) 2 nC 0 2 γrσ ν + n(n + 1) 2 η 2 + 4 ν n!K n e -Kσ . (22) 
Moreover,

2 W (Φ -Id) , W (Φ -Id)W -1 ≤ 8(3n + 2)C 0 γrσ ν (23) ϕ -Id , 4h ϕ -Id ≤ (6n + 4) r (24) 
uniformly on D ηr,s-5σ × O h and O h/4 respectively, with the weight matrix

W = diag(r -1 Id, σ -1 Id).
Observations on the statement The different conditions [START_REF] Moser | Convergent series expansions for quasi-periodic motions[END_REF] on arise from different parts of the proof. The first condition in the minimum is a limit due to the analyticity widths in the actions and on the angles. This limit is necessary to obtain an exponential decrease of the bound on the norm of the perturbation at each step. The second condition is related to the transformation on the frequency vector. To be able to invert the map giving the new frequency ω + v(ω), it is essential to have enough analyticity width in the frequencies compared to the size of v. The third condition is a condition on K , the order of truncature of the Fourier series of the affine perturbation. K needs to be large enough to allow the remainder of the Fourier series of Q to be small enough, and then for this remainder to decrease exponentially while iterating our scheme. However, we want as well K to be small enough so that all the frequencies in O h satisfy a non-resonance condition of order K .

Proof of the proposition

Implications of the hypotheses:

Let 0 ≤ . Define h 0 = δ 0 r and K 0 = ν γ 2h 0
. Using the definitions of and K in given by ( 9) and ( 10),these two constants satisfy h 0 < h and K 0 > K . Indeed, the first inequality is clear, and for the second one, using the fact that both K 0 and K are integers, and the definition of :

K ν ≤ γr 2δ ≤ γr 2δ 0 ≤ γ 2h 0 .
The definition of h 0 means that if we consider a smaller perturbation, we will not use all the available analyticity width h corresponding to the frequencies. These definitions allow us to compute a crucial inequality using the definitions of section 2.1, and that will be useful later in the proof:

1 2 ν K n 0 σ ν exp(-K 0 σ) ≤ 0 γr ≤ h 0 γδ ≤ 1 2δK ν 0 . ( 25 
)
The last two inequalities are straightforward given the definition of h 0 and K 0 . Regarding the first one, using the definition of B + :

0 γrσ ν = h 0 γσ ν δ ≥ 2K n+ν 0 e -Kσ γ h 0 ≥ K n 0 e -K0σ ν 2h 0 γ × ν γ 2h 0 ν ≥ K n 0 e -K0σ ν γ 2h 0 -1 × ν γ 2h 0 ν ≥ 1 2 ν K n 0 e -K0σ .
We now use the definition of K 0 to show the non-resonance condition that the frequency vectors of O h0 must satisfy. Indeed, let k such that 0 < |k| ≤ K 0 , and let ω ∈ O h0 , there exists ω ∈ Ω β γ such that |ω -ω | < h 0 , and therefore, the following inequalities hold:

| k, ω -ω | ≤ |k||ω -ω | ≤ K 0 h 0 ≤ γ 2K τ 0 ≤ γ 2|k| τ .
Since ω satisfies a Diophantine condition for the constant γ and τ = n, we get:

| k, ω | ≥ γ 2|k| n , ∀0 < |k| ≤ K 0
The goal at each step of the KAM theorem is to make a change of variables that decreases the norm of the perturbation. Yet, instead of making the value of 0 decrease directly, we want the ratio E 0 = 0 γrσ ν to decrease. Letting r, and σ decrease in a polynomial way, but with the value of E decreasing exponentially, we will as well obtain an exponential decrease for 0 .

First estimates: As introduced in the outline of the proof in section 2.2, we switch from the analytic perturbation P to another analytic perturbation R in two steps. First, consider the linearization Q of P in the actions around the origin, secondly, truncate the Fourier series of Q at order K 0 . R is a trigonometric polynomial on the angles and affine in the action. The size of the perturbation, by assumption, is smaller than 0 on the set D r,s ×O h0 . Let us start by bounding the linearized function Q: 

Q 3r 4 ,
Now let η = 0 γrσ ν . Using the definition of and the fact that 0 ≤ , we obtain 8η ≤ 1. From the Taylor expansion formula and Cauchy's inequality (see appendix D), after integration, we get:

P -Q 2ηr,s,h0 ≤ (2ηr) 2 n(n + 1) 2 P r,s,h0 (1 -2η) 2 r 2 ≤ n(n + 1) 2 η 2 0 . (27) 
With lemma 1 of appendix A, we obtain the following estimates on the difference between Q and its truncation at the order K 0 :

R -Q 3r 4 ,s-σ,h0 ≤ 4 n n!K n 0 exp(-K 0 σ) Q 3r 4 ,s,h0 ≤ 4 ν n!K n 0 exp(-K 0 σ) 0 . (28) 
Hence:

R 3r 4 ,s-σ,h0 ≤ R -Q 3r 4 ,s-σ,h0 + Q 3r 4 ,s,h0 ≤ (3n + 1 + 4 ν n!K n 0 e -K0σ ) 0 .
Since K 0 ∈ A ∩ B + , we have the following inequality:

4 ν n!K n 0 e -K0σ = 4 ν n! 2K n+ν 0 σ ν e -K0σ 2K ν 0 σ ν ≤ 1 δ 4 ν n! 2((2n + ν) log 2) ν ≤ 1.
Indeed, the right term depends only on n, and is decreasing with this variable. Since it takes a value less than 1 for n = 1, the result follows directly. Hence, we have

R 3r 4 ,s-σ,h0 ≤ (3n + 2) 0 . ( 29 
)
Solving the cohomological equation: We would now like to solve the equation (21) in F . Letting N = N + -N , we can write:

{F, N } + N = R.
Recall that in the outline, we wanted

N = R = 1 (2π) n T n Rdθ.
With the work done previously, we get the following bound on N : N 3r 4 ,h0 ≤ R 3r 4 ,s-σ,h0 ≤ (3n + 2) 0 . Since the Fourier series of R only contains terms of indices k such that |k| 1 ≤ K 0 , we can apply the theorem of Rüssmann 2 of appendix B, and solve the remainder of the cohomological equation ( 21). The norm of the Hamiltonian F solving this equation therefore verifies:

F 3r 4 ,s-2σ,h0 ≤ C 0 R 3r 4 ,s-σ,h0 γσ n ≤ (3n + 2)C 0 0 γσ n .
We multiplied C 0 by a factor 2, in order to get rid of this same factor in the Diophantine condition (5) satisfied on O h0 . With Cauchy's inequality, we get:

F θ r 2 ,s-3σ,h0 ≤ (3n + 2)C 0 0 γσ ν , F I r 2 ,s-3σ,h0 ≤ 4(3n + 2)C 0 0 γrσ n .
Estimates on the transformation Φ: After obtaining the estimates on the derivatives of F , we can deduce some estimates on the vector field associated to F , and then on the time-1 map Φ. On the domain D r 2 ,s-3σ,h0 , we get:

F θ r 2 ,s-3σ,h0 ≤ 0 γrσ ν 0 γrσ ν (3n + 2)C 0 r ≤ (3n + 2)C 0 2 ν (8n(3n + 2) 2 C 0 + n(n + 1)/2 + 8 ν n!) ηr ≤ ηr ≤ r 8 , F I r 2 ,s-3σ,h0 ≤ 4(3n + 2)C 0 4 ν (8n(3n + 2) 2 C 0 + n(n + 1)/2 + 8 ν n!) 2 σ ≤ σ.
With these two inequalities, the time-1 map Φ is well-defined on the domains:

Φ = Φ t t=1 : D r 4 ,s-4σ,h0 -→ D r 2 ,s-3σ,h0 , Φ = Φ t t=1 : D ηr,s-5σ,h0 -→ D 2ηr,s-4σ,h0 .
Only considering the first domain is not enough to prove the KAM step. Indeed, the estimates of the difference P -Q requires to lose a lot of analyticity on the actions to keep this term small. Writing Φ = (U, V ), F being linear in the actions implies that V is independent of I. The Jacobian of F is

Φ = U I U θ 0 V θ .
On the set D r 8 ,s-5σ,h0 , and hence on the set D ηr,s-5σ,h0 , the following inequalities are satisfied

U -Id ≤ F θ ≤ (3n + 2)C 0 0 γσ ν , V -Id ≤ F I ≤ 4(3n + 2)C 0 0 γrσ n , U I -Id ≤ 8(3n + 2)C 0 0 γrσ ν , U θ ≤ (3n + 2)C 0 0 γσ ν+1 , V θ -Id ≤ 4(3n + 2)C 0 0 γrσ ν ,
whence the estimates (23) on Φ in proposition 1.

Estimates on the new perturbation: After the transformation, the Hamiltonian takes the form H = N + + P + . We want to obtain the bound (22) on the norm of P + . First, consider {R, F }:

{R, F } r 2 ,s-3σ,h0 ≤ n( R I r 2 ,s-3σ,h0 F θ r 2 ,s-3σ,h0 + F I r 2 ,s-3σ,h0 R θ r 2 ,s-3σ,h0 ) ≤ n 4(3n + 2) 0 r (3n + 2)C 0 0 γσ ν + (3n + 2) 0 σ 4(3n + 2)C 0 0 γrσ n ≤ 8(3n + 2) 2 nC 0 2 0 γrσ ν (30) 
The same inequality stays true for { N , F }. Hence:

1 0 {(1 -t) N + tR, F } • X t F dt ηr,s-5σ,h0 ≤ {(1 -t) N + tR, F } r 2 ,s-4σ,h0 ≤ 8(3n + 2) 2 nC 0 2 0 γrσ ν . ( 31 
)
It remains to find the bound of the term induced by P -R:

(P -R) • Φ ηr,s-5σ,h0 ≤ P -R 2ηr,s-4σ,h0 ≤ P -Q 2ηr,s-4σ,h0 + Q -R 2ηr,s-4σ,h0 ≤ (n(n + 1)/2η 2 + 4 ν n!K n e -Kσ ) 0 . (32) 
In the end, the estimate on the norm of P + is the following:

P + ηr,s-5σ,h0 ≤ 8(3n + 2) 2 nC 0 2 0 γrσ ν + (n(n + 1)/2η 2 + 4 ν n!K n e -Kσ ) 0 = + 0 . ( 33 
)
Exponential decrease: As explained before, we are interested in the exponential decrease of the ratio E = 0 γrσ ν . Let us already think about the iterative step, and choose the variables we will use at the next step. First, let σ + = σ/2, h + = h 0 /4 ν and K + = 4K 0 ; regarding the actions, since we have to lose much more analyticity width and we let r + = ηr. With these definitions, let us compute E + :

E + = + 0 γr + σ +ν = 2 ν + 0 γηrσ ν ≤ 8(3n + 2) 2 nC 0 2 ν η 2 0 (γrσ ν ) 2 + 2 ν (n(n + 1)/2η 2 + 4 ν n!K n 0 e -K0σ ) 0 γηrσ ν ≤ 2 ν 8(3n + 2) 2 nC 0 E 2 η + (n(n + 1)/2η 2 + 8 ν n!K n 0 e -K0σ ) E η .
Using the fundamental inequality (25), we have 2 ν E 0 ≥ K n 0 e -K0σ . Observe as well that E = η 2 , hence:

E + ≤ 2 ν (8(3n + 2) 2 nC 0 + n(n + 1)/2 + 8 ν n!)E 3 2 = C 1 E 3 2 , (34) 
i.e.

C 1 E + ≤ (C 1 E) 3 2
. The scheme converges exponentially fast if E < C -1 1 , therefore if 0 ≤ γrσ ν C1 . The initial condition on , and on 0 ≤ shows that we have even better: C 1 E ≤ 4 -ν , hence the exponential decrease of E.

Change in the frequencies: It remains to deal with the function ϕ, which controls the frequency shift when adding the mean of the linearized perturbation over the angles. We use lemma 2 of appendix C, so as to make explicit the domain on which this map is well-defined. Let v = NI = [R I ], the new frequency vector is defined by ω + = ω + v(ω). Computing the norm of v gives:

v h0 = N I h0 ≤ 3n + 2 3r 4 -η 0 ≤ (6n + 4) 0 r ≤ (6n + 4)h 0 δ ≤ h 0 4 ,
because of the hypothesis δ ≥ 8(3n + 2). Applying lemma 2 of appendix C, we obtain the inverse map ϕ :

O h 0 4 → O h0 , ω + → ω, satisfying: ϕ -Id h 0 4 ≤ (6n + 4) 0 r , (35) 
Dϕ -Id h 0 4 ≤ (3n + 2) 0 2h 0 r . ( 36 
)
In this configuration, we let N + = (N + N ) • ϕ, and we obtained the new Hamiltonian H + = N + + P + .

4 End of the proof of theorem 1

Soundness of the iteration:

To iterate the KAM step, the hypotheses at a step j + 1 need to be fulfilled knowing that they are at a step j.

We therefore use the new value of each variables obtained after one KAM step, and check if they satisfy the hypotheses of the KAM step. Recall that after a step j, we have:

K j+1 = 4K j , σ j+1 = σ j /2, η j = j γrj σ ν j , r j+1 = η j r j , h j+1 = h j /4 ν .
Regarding the equalities that need to be fulfilled, we first check that K j+1 still belongs to the set A ∩ B + defined in (9) using σ j+1 (we call the sets A j+1 and B +,j+1 referring to the value of σ at step j + 1):

• The equality K j+1 σ j+1 = 2K j σ j shows that K j+1 belongs again to the set A j+1 .

• Let us check that K j+1 belongs to B +,j+1 as well:

2K n+ν j+1 σ ν j+1 exp(-K j+1 σ j+1 ) = 2(4 n+ν K n+ν j ) σ ν j 2 ν exp(-2K j σ j ) ≤ 4 n+ν 2 ν exp(-K j σ j ) δ = 2 2n+ν exp(-K j σ j ) δ .
The condition to have K j+1 ∈ B +,j+1 is therefore the following:

2 2n+ν exp(-K j σ j ) ≤ 1.
Since K j ∈ A j , it is satisfied.

We need now to check that the new size of the perturbation is less than the new value of as defined in [START_REF] Moser | Convergent series expansions for quasi-periodic motions[END_REF], using the analyticity widths at step j + 1:

• In the KAM step, we defined the limit value = -. Define now

+ = min γr j+1 σ ν j+1 4 ν C 1 , h j+1 r j+1 δ , γ 2K ν j+1 δ .
With the hypotheses, we have in fact

+ = min η j 2 ν , η j 4 ν , 1 4 ν -= η j - 4 ν .
+ is therefore the new limit of the application of the KAM step. We have to check the condition j+1 ≤ + .

j+1 = γr j+1 σ ν j+1 E j+1 ≤ η j 2 ν γr j σ ν j C 1 E 3 2 j ≤ η j 2 ν γr j σ ν j C 1 3 2 j (γr j σ ν j ) 3 2 ≤ η j j √ C 1 2 ν j γr j σ ν j .
By assumption, j ≤ -≤ γrj σ ν j 4 ν C1 . Hence j+1 ≤ η j -/4 ν = + . The condition ≤ γrσ ν 4 ν C1 that we imposed in the definition of , corresponding to the control of the transformation among the actions and the angles, allows us to iterate the KAM step here. It remains to check that the fundamental inequality (25) holds at step j + 1.

• We have:

K n j+1 exp(-K j+1 σ j+1 ) = 4 n (K n j exp(-K j σ j )) exp(-K j σ j ) ≤ 2 ν - γr j σ ν j 4 n exp(-K j σ j ) ≤ 2 ν 4 ν + η j η j 2 ν γr j+1 σ ν j+1 4 n exp(-K j σ j ) ≤ 2 ν E j+1 2 2n+ν exp(-K j σ j ). Since K j ∈ A j , we have: K n j+1 exp(-K j+1 σ j+1 ) ≤ 2 ν E j+1 .
The first inequality of ( 25) is verified.

• We have to verify that the quantity j h j r j is decreasing:

j+1 h j+1 r j+1 = γσ ν j+1 E j+1 h j+1 = 2 ν γσ ν j E j+1 h j = 2 ν E j+1 E j j h j r j ≤ 2 ν C 1 E j j h j r j ≤ j h j r j .
The last inequality of (25) holding straightforwardly, we can now iterate the KAM step an infinite amount of time. The scheme is well-defined, and we can now compute the size of the transformations.

Transformations involved and their estimates:

The initial Hamiltonian is H = N + P . At each KAM step, we define two transformations: Φ j which modifies the action-angle coordinates, and ϕ j which modifies the frequencies. We let s j+1 = s j -5σ j , with s 0 = s, r 0 = r, η 0 = η and η j = j γrj σ ν j = E j . Define F 0 = Id, and for j > 0:

F j+1 : D j+1 × O j+1 → D j × O j (I, θ, ω) → (Φ j+1 (I, θ; ω), ϕ j+1 (ω)),
with

D j = {I ∈ C n : I < r j } × {θ ∈ T n : | (θ i )| ≤ s j } , O j = ω ∈ R n : |ω -Ω β γ | < h j . Call F j = F 0 • ... • F j-1 .
We then have:

F j = (Φ j , ϕ j ) : D j × O j → D 0 × O 0
Thereafter, we give some estimates on the transformation F j , and show its convergence.

Preliminaries:

The map F = lim j→+∞ F j transforms a torus associated to a frequency vector belonging to the set Ω γ,τ to a deformed torus where the motion has frequencies belonging to the set Ω β γ . The action p 0 on the first torus are entirely and uniquely determined by the frequency vector. The uniqueness comes from the hypothesis of non-degeneracy of the unperturbed Hamiltonian. In order to be precise, we define the following mapping:

Ψ : T n × Ω γ,τ → D × T n .
Define as well the map:

Ξ : B × T n × Ω γ,τ → D × T n (37) (I, θ, ω) → ((h ) -1 (ω) + I, θ). ( 38 
)
Assume Φ : {0} × T n → B × T n and ϕ : Ω β γ → Ω γ,τ exists as a limit of Φ j and ϕ j . Then, one can define Ψ as follows:

Ψ : T n × Ω γ,τ → D × T n (θ, ω) → Ξ(Φ(0, θ), ϕ(ω))
The KAM theorem shows that, on T × Ω γ,τ , H • Ψ = N , where N = lim j→∞ N j .

Estimates on the transformations: In order to simplify the formulas, we introduce the weight matrix W j = diag(r -1 j Id, σ -1 j Id). Recall the size of the transformation obtained previously in proposition 1 on the set D j × O j :

W j (Φ j -Id) ≤ 4(3n + 2)C 0 j γr j σ ν j , ϕ j -Id ≤ (6n + 4) j r j , W j (Φ j -Id)W -1 j ≤ 8(3n + 2)C 0 j γr j σ ν j , ϕ j -Id ≤ (3n + 2) j 2h j r j .
We can estimate the norm of the difference between to consecutive transformations F j .

W 0 (Φ j+1 -Φ j ) = W 0 (Φ j • Φ j -Φ j ) ≤ 2n W 0 (Φ j ) W -1 j W j (Φ j -Id) ≤ 2nξ j W j (Φ j -Id) W 0 (Φ j+1 -Φ j ) ≤ ξ j 8(3n + 2)nC 0 j γr j σ ν j , (39) 
it is well-defined when j goes to infinity if the variable ξ j = W 0 DΦ j W -1 j does not increase too fast on D j . In the same way, we compute:

ϕ j+1 -ϕ j = ϕ j • ϕ j -ϕ j ≤ n (ϕ j ) ϕ j -Id ≤ nµ j ϕ j -Id ϕ j+1 -ϕ j ≤ µ j n(6n + 4) j r j , (40) 
where again it is necessary to check the increase of µ j = (ϕ j ) on O j .

On D j × O j , we have in fact

(Φ j ) = (Φ 0 ) • ... • (Φ j-1 )
, where the differentials are estimated on different points, that are not important to explicit in our case, as we have a bound on their whole set of definition.

With the decrease of the variables r and σ, we get W j W -1 j+1 ≤ 1/2. Using the relation between the sup norm of the product between two matrices, as well as the fact that the matrices W j are diagonal, we have

ξ j = W 0 (Φ j ) W -1 j = W 0 (Φ 0 ) • ... • (Φ j-1 ) W -1 j ≤ W 0 (Φ 0 ) W -1 0 W 0 W -1 1 2n × ... × 2n W j-1 (Φ j-1 ) W -1 j-1 W j-1 W -1 j ≤ 1 2 j (2n) j-1 j-1 i=0 1 + 8(3n + 2)C 0 i γr i σ ν i ≤ n j-1 2 j-1 i=0 1 + 8(3n + 2)C 0 i γr i σ ν i . (41) 
Likewise, for µ j :

n 1-j µ j ≤ j-1 i=0 1 + 5 i 2h i r i ≤ j-1 i=0 1 + (3n + 2) i 2h i r i . (42) 
Since the variables i decreases exponentially fast towards 0, and that the terms h i and r i do not decrease as fast, the products in the formulas will converge when j goes to infinity. We can bound them using the estimates we obtained in the KAM step. First, recall that 8(3n+2)C 0 i < γr i σ ν i , whence, using the logarithm for i ≥ 0:

log 2n 1-j ξ j ≤ j-1 i=0 log 1 + 8(3n + 2)C 0 i γr i σ ν i ≤ j-1 i=0 8(3n + 2)C 0 i γr i σ ν i ≤ j-1 i=0 8(3n + 2)C 0 E i .
Using the exponential decrease of E j :

E j ≤ C 1 E 3 2 j-1 ≤ ... ≤ C 1 2 j-1 i=0 ( 3 2 ) i 1 E ( 3 2 ) 
j 0 ≤ (C 1 E 0 ) ( 3 2 ) j -1 E 0 ≤ 4 -ν( 3 2 ) j +ν E 0 .
Finally:

2n 1-j ξ j ≤ exp ∞ i=0 8(3n + 2)C 0 E 0 4 ν-ν( 3 2 ) i ≤ exp 8(3n + 2)C 0 E 0 ∞ i=0 4 ν-ν( 3 2 ) i ≤ exp (12(3n + 2)C 0 E 0 ) = exp 12(3n + 2)C 0 0 γr 0 σ ν 0 ≡ ξ. (43) 
In the same way, we get for µ j :

n 1-j µ j ≤ exp 3n + 2 2 ∞ i=0 i r i h i = exp 3n + 2 2 ∞ i=0 γE i σ ν i h i ≤ exp 3n + 2 2 ∞ i=0 γE i σ ν 0 2 νi h 0 ≤ exp 3n + 2) 2 γσ ν 0 h 0 ∞ i=1 E 0 2 ν(i+2-2( 3 2 ) i ≤ exp 3(3n + 2) 2 0 r 0 h 0 ≤ exp 3(3n + 2) 2δ ≡ µ. (44) 
With these computations, we can continue towards our aim of estimating F j for all j ≥ 0, using (39) and (43).

W 0 (Φ j -Φ 0 ) ≤ j-1 i=0 W 0 (Φ i+1 -Φ i ) ≤ j-1 i=0 ξ i 8(3n + 2)nC 0 i γr i σ ν i ≤ 4(3n + 2)C 0 ξ ∞ i=0 n i E i ≤ 4(3n + 2)C 0 E 0 ξ ∞ i=0 n i 4 -ν( 3 2 ) i +ν ≤ 6(3n + 2)C 0 E 0 ξ = 1 2 ξ log ξ (45) 
As well, using (40) and ( 44), for all j ≥ 0,

h -1 0 (ϕ j -Id) ≤ j-1 i=0 h -1 0 (ϕ i+1 -ϕ i ) ≤ j-1 i=0 µ (6n + 4)n j i h 0 r i ≤ 2µ log µ. (46) 
Therefore, with these uniform bounds, we can let j go to infinity. The transformation F is well-defined on T × Ω γ,τ . The set Ω β γ , defined while constructing ϕ j , depends on Ω γ,τ and on h 0 . More precisely, recall that for all ω ∈ Ω β γ , there exists ω ∈ Ω γ,τ such that |ω -Ω β γ | < h 0 . Therefore, we can let β = h 0 so that the set O h ⊂ Ω.

First conclusion on the transformation: Before computing the Lipschitz norm of the transformation, we are going to give some conclusion on the transformation we built. First, we have the relation H •Ξ•F j -N j = P j on the set D j × O j for all j ≥ 1. With this equality, we can describe the difference between the vector field associated to H and the one associated to N j . Formally, by derivation on the action-angle coordinates, we have

t (H • Ξ • F j -N j ) = t (Ξ • Φ j ) • ∇H • Ξ • F j -∇N j .
For a fixed ω, the map Ξ is constant and linear in the actions and the angles, which simplifies the computation. Therefore, using Cauchy's inequality on the action coordinates, we can bound the previous derivative.

t (Φ j ) • ∇H • Ξ • F j -∇N j 0,sj -σj ≤ max j r j , j σ j .
Using the weighted matrix W j which was useful to give the estimates on (Φ j ) , and the symplectic matrix J,

J = 0 Id -Id 0 , W j × J = 0 σ -1 j -r -1 j 0 ,
and multiplying on the left our relation by the latter matrix, we obtain:

W j × J × t (Φ j ) • ∇H • Ξ • F j -W j × J × ∇N j 0,sj -σj ≤ j r j σ j .
The map Φ j being symplectic, it satisfies J t Φ = (Φ ) -1 J. Hence, multiplying the last inequality by W 0 Φ W -1 j , we get:

W 0 J∇H • Ξ • F j -Φ J∇N j 0,sj -σj ≤ W 0 Φ W -1 j 0,sj -σj j r j σ j ≤ n j-1 2 ξ j r j σ j
Looking at the vector field, this inequality becomes:

W 0 × X H • Ξ • F j -(Φ j ) • X N 0,sj -σj ≤ n j-1 2 ξ j r j σ j
Letting j go to infinity, we get the equality of these two vector fields on the set T × Ω γ,τ , i.e., for some ω ∈ Ω γ,τ , with N = (e(ω) + ω, I ,

X H • Ψ = Φ • X N (47) 
Observe that we wrote Ψ instead of Φ, it expresses the fact that we consider the "origin" of the action I at the point ϕ(ω).

Lipschitz norm of the transformation: On the Cantor set Ω h0 γ ⊂ Ω, the formulas of the derivatives of (ϕ j -Id) converge. Indeed, the existence of a uniform constant for ξ j /(2n 2 ) j and µ j , and the exponentially fast convergence of the terms j rj h m j for all m implies that the norm of every derivative of the mapping F j (more precisely its difference to (Φ 0 , Id)) converges, whatever the order of the derivative. We compute the Lipschitz norm of the transformation F to finish proving the theorem. First we evaluate the derivative of the map ϕ -Id with respect to ω. Although the map ϕ is defined on a Cantor set, it is possible to extend it in a Lipschitz way, and even in a C 1 map, using Whitney's extension theorem (see article [START_REF] Whitney | Analytic extensions of differentiable functions defined in closed sets[END_REF] or the statement of the theorem 4 in appendix D.3). We will not extend further on these notions, and will just compute an estimate on its norm.

(ϕ j -Id) h j 2 ≤ j-1 i=0 (ϕ i+1 ) -(ϕ i ) h i 2 ≤ j-1 i=0 (ϕ i+1 -ϕ i ) h i 2 ≤ j-1 i=0 2 ϕ i+1 -ϕ i hi h i ≤ 4(3n + 2)µ j-1 i=0 n i i r i h i .
As done before, we can sum these terms:

(ϕ j ) -I n h j 2 ≤ 4(3n + 2) 0 r 0 h 0 µ j-1 i=0 n i 2 ν i+2-2( 3 2 ) i ≤ 4 3 µ log µ ∞ i=0 n i 2 ν i+2-2( 3 2 ) i ≡ 4 3 µ log µ × S ν .
Hence, letting j goes to infinity, we obtain the Lipschitz norm:

ϕ -Id L ≤ 4 3 S ν µ log µ. (48) 
As for Φ -Φ 0 , computing the Lipschitz estimate in the exact same way, we get:

W 0 (Φ -Φ 0 ) L ≤ 2 3 T ν ξ log ξ, (49) 
where we recover the expression of T ν given in [START_REF] Narasimhan | Several complex variables[END_REF]:

T ν ≡ +∞ i=0 n i 4 ν i+1-( 3 2 ) 
i .

Estimates in the initial actions

After giving the estimates on the map F = (Φ, ϕ), we determine some estimates on the map Ψ = Ξ • F where Ξ was defined in (38). Indeed, using this transformation we shift the torus back to its original place around the action p 0 . For the sake of simplicity, call g the Legendre transform of the unperturbed Hamiltonian h: g(ω) = sup p (ω • ph(p)); we then have g = (h ) -1 . Call Ψ 0 (I, θ, ω) = Ξ(Φ 0 (θ, ω), ω), we are interested in the difference Ψ -Ψ 0 :

(Ψ -Ψ 0 )(0, θ, ω) = (g (ϕ(ω)) -g (ω) + (Φ 1 (0, θ, ϕ(ω)) -Φ 0,1 (0, θ, ω)), Φ 2 (0, θ, ϕ(ω)) -Φ 0,2 (0, θ, ω)),
where Φ(I, θ) = (Φ 1 (I, θ), Φ 2 (I, θ)). Hence, the norm of Ψ -Ψ 0 on the set T × Ω γ,τ satisfies:

W 0 (Ψ -Ψ 0 ) ≤ 1 r g • ϕ -g + W 0 (Φ -Φ 0 ) ≤ n sup Ωγ,τ g ϕ -Id r + W 0 (Φ -Φ 0 ) , W 0 (Ψ -Ψ 0 ) ≤ sup Ωγ,τ g × 2h 0 µ log µ + 1 2 ξ log ξ. (50) 
We can also compute an estimate on the Lipschitz norm of Ψ with respect to ω. The estimate on the Lipschitz norm of Φ -Φ 0 being known, we are interested in the map Υ(ω) = g (ϕ(ω)) -g (ω). Let ω, ω ∈ Ω γ,τ , we have:

|Υ(ω) -Υ(ω )| = 1 0 [g (ω + t(ϕ -Id)(ω)) • (ϕ -Id)(ω)] dt - 1 0 [g (ω + t(ϕ -Id)(ω )) • (ϕ -Id)(ω )] dt . (51) 
In order to compute this norm, we need to add some intermediate terms under the integral. For the sake of simplicity, we use v = ϕ -Id, we have

g (ω + tv(ω)) • v(ω) -g (ω + tv(ω)) • v(ω) = g (ω + tv(ω)) • [v(ω) -v(ω )] + [g (ω + tv(ω)) -g (ω + tv(ω ))] • v(ω ).
The first term of this sum is bounded by

|g (ω + tv(ω)) • [v(ω) -v(ω )] | ≤ n sup Ωγ,τ |g | × |ϕ -Id| L × |ω -ω |.
As for the second term, we write:

|g (ω + tv(ω)) -g (ω + tv(ω ))| = 1 0 g (3) ((1 -s)(ω + tv(ω)) -s(ω + tv(ω ))ds • |(ω + tv(ω)) -(ω + tv)| ≤ n sup Ωγ,τ g (3) × (|ω -ω | + t|v(ω) -v(ω )|) ≤ n sup Ωγ,τ g (3) × (1 + t|ϕ -Id| L ) |ω -ω |.
Injecting these bounds in inequality (51), we obtain

|Υ| L ≤ n sup Ωγ,τ |g | × |ϕ -Id| L + n 2 sup Ωγ,τ g (3) × |ϕ -Id| L × 1 + |ϕ -Id| L 2 . (52) 
Finally,

|Ψ -Ψ 0 | L ≤ |Υ| L + |Φ -Φ 0 | L . (53) 
I would like to thank the reviewer for his critical remarks and his precious advices that were very helpful to me.

A Remainder of the truncated Fourier series

Let A s be the set of functions defined on T n that are bounded and analytic on the set

T n s = {θ ∈ T n C , | θ| < s}. Let f ∈ A s , for θ ∈ T n s , we can write f (θ) = k∈Z n f k e ık • θ .
For all k ∈ Z n , we have |f k | ≤ |f | s e -|k|s . Indeed, this result is straightforward using the fact that f is 2π-periodic in each variable, and analytic and bounded on its set of definition.

Let us consider the truncation of order K ∈ N of f :

T K f = k≤K f k e ık • θ . Lemma 1. Let s > 0 and σ < s. If f ∈ A s , and Kσ ≥ n -1 then |f -T K f | s-σ ≤ 4 n n!K n e -Kσ |f | s , 0 ≤ σ ≤ s
Proof. We have:

|f -T K f | s-σ ≤ k∈Z n ,|k|1>K |f k | exp(|k| 1 (s -σ)) ≤ |f | s k∈Z n ,|k|1>K exp(-|k|σ) ≤ 4 n |f | s l∈N,l>K l n-1 exp(-lσ),
where we used the fact that the number of k ∈ Z n such that |k| 1 = l is less than 4 n l n-1 . As for the last sum, since the general term is strictly decreasing, it can be bounded by the incomplete gamma function:

l∈N,l>K l n-1 exp(-lσ) ≤ ∞ K x n-1 exp(-xσ)dx ≤ 1 σ n ∞ Kσ x n-1 exp(-x)dx ≤ (n -1)! σ n exp(-Kσ) n-1 k=0 (Kσ) k k! ≤ (n -1)! σ n exp(-Kσ)n × (Kσ) n-1 ≤ n! K n-1 σ exp(-Kσ) ≤ n!K n exp(-Kσ).
Injecting this result in the previous inequation, the lemma is proved.

B Rüssman optimal estimate on the cohomological equation

We recall here the result obtained by Rüssmann in [START_REF] Rüssmann | On optimal estimates for the solutions of linear partial differential equations of first order with constant coefficients on the torus[END_REF], which gives an optimal estimate on the norm of the solution for generic analytic functions. Let n ≥ 1 and s > 0, define: See the appendix of Pöschel's paper [START_REF] Pöschel | A lecture on the classical KAM theorem[END_REF] for the proof.

T n s = {θ ∈ T n C , ∀i ∈ 1, n : | θ i | < s} A s = {f : T n s → C, f C -analytic} A s 0 = {f ∈ A s , s.t.

D Classical formulas for analytic multivariate functions

In this section, we recall Taylor's theorem and Cauchy's formula for multivariate functions (see [START_REF] Narasimhan | Several complex variables[END_REF] for more details on the latter). As well, we state the Whitney extension theorem (for the demonstration, see [START_REF] Whitney | Analytic extensions of differentiable functions defined in closed sets[END_REF]). Define the following notations for α ∈ N n and x ∈ R n with n > 0: 

D.2 Cauchy Formula

Let a ∈ C n and ρ = (ρ 1 , ..., ρ n ) with ρ i > 0. Define the polydisc with center a and radius ρ: 

D.3 Whitney theorem

Define, for some function f defined on R n , some m ∈ N, and some α ∈ N n such that |α| ≤ n, the following functions:

f α (x) = |k|≤m-|alpha| f k+α (x ) k! (x -x ) k + R α (x, x ).
Now let A be a closed subset of R n . We will need some condition of smoothness in this set. In particular, f = F A .

6 n 2 √CLemma 2 .

 622 Writing |f | s = sup T n s |f |, we have the following theorem: Theorem 2 (Rüssmann). Let ω ∈ D γ,τ a Diophantine vector, and g ∈ A s 0 . Then the equation∂ ω f = g (54)has a unique solution f in 0<σ<s A s-σ 0 , and we have the following bound on the norm of f for 0 < σ < s:|f | s-σ ≤ C 0 γσ τ |g| s ,where C 0 = 3π 2 Inversion of analytic map close to the identityRecall that we defined the set O h as the open complex neighborhood of radius h of the subset of frequencies Ω γ,τ for some γ > 0. Using as usual the sup-norm for maps and vectors, Pöschel proves the following lemma on the inversion of the frequency vector:Let f : O h ⊂ C n → C n be analytic, such that |f -Id| ≤ δ ≤ h/4 on the set O h . Then f has an analytic inverse g on O h/4 , and it satisfies: |g -Id| h/4 , h 4 |g -Id| ≤ δ

|α| = α 1 +Theorem 3 .

 13 ... + α n , α! = α 1 !...α n !,x α = x α1 1 ...x αn n .Introduce as well for an analytic function f :f (α) = ∂ |α| f ∂ α1 x1 ...∂ αn xn D.1 Taylor expansion of analytic function Let f : R n → R be a function analytic at the point a ∈ R n . Then, for k ≥ 0, there exists a function R k : R n → R such that:f (x) -|α|≤k f (α) α! (x -a) α = R k (x) = o((x -a) k ).Moreover, on a closed ball B around a, we have for x ∈ B:R k (x) = |β|=k+1 R k,β (x)(x -a) β ,with the boundmax x∈B |R k,β (x)| ≤ 1 β! max |α|=|β| max x ∈B f (α) (x ) .

P

  (a, ρ) = {z ∈ C n , s.t. |z i -a i | < ρ i for i ∈ 1, n } Proposition 2 (Cauchy's formula).Let Ω be an open set in C n , f a function holomorphic on Ω, a ∈ Ω and let ρ = (ρ 1 , ..., ρ n ) with ρ i > 0 be such that P (a, ρ) ⊂ Ω. Then, for z ∈ P (a, ρ), we have f (

  |ζn-an|=ρnf (ζ 1 , ..., ζ n ) (ζ 1 -z 1 )...(ζ n -z n ) dζ 1 ...dζ n .Corollary 1 (Cauchy's inequality). If f is holomorphic on Ω and P (a, ρ) ⊂ Ω, we have|f (α) (a)| ≤ sup |ζi-ai|=ρj |f (ζ)| α!ρ -α .

Definition 1 (

 1 C m in the Whitney sense). Let f be a function defined in the set A and let m be a positive integer. f is said to be of class C m in A in the Whitney sense if the functions f α (|α| ≤ m) are defined in A and the remainders R α are such that for any point x of A, any > 0, there exists δ > 0 such that if x and x are any two points of A ∩ B(x, δ) then|R α (x , x )| ≤ |x -x | m-|α| .With this definition, we have the following statement: Theorem 4 (Whitney). Let A be a closed subset of R n and let f be of class C m (m finite or infinite) in the Whitney sense. Then there is a function F of class C m (in the ordinary sense) in R n such that (1) F (α) (x) = f α (x) in A for |α| ≤ m, (2) F (x) is analytic in R n .