
HAL Id: hal-01514611
https://hal.science/hal-01514611v1

Submitted on 26 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modulo Based Data Placement Algorithm for Energy
Consumption Optimization of MapReduce System

Jie Song, Hongyan He, Zhi Wang, Ge Yu, Jean-Marc Pierson

To cite this version:
Jie Song, Hongyan He, Zhi Wang, Ge Yu, Jean-Marc Pierson. Modulo Based Data Placement Al-
gorithm for Energy Consumption Optimization of MapReduce System. Journal of Grid Computing,
2016, 1, pp.1-16. �10.1007/s10723-016-9370-2�. �hal-01514611�

https://hal.science/hal-01514611v1
https://hal.archives-ouvertes.fr

To cite this version : Song, Jie and He, HongYan and Wang, Zhi and Yu,
Ge and Pierson, Jean-Marc Modulo Based Data Placement Algorithm for
Energy Consumption Optimization of MapReduce System. (2016) Journal
of Grid Computing, vol. 1. pp. 1-16. ISSN 1570-7873

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 17062

To link to this article : DOI : 10.1007/s10723-016-9370-2
URL : http://dx.doi.org/10.1007/s10723-016-9370-2

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Modulo Based Data Placement Algorithm for Energy
Consumption Optimization of MapReduce System

Jie Song · HongYan He · Zhi Wang · Ge Yu ·

Jean-Marc Pierson

Abstract With the explosion of data production, the

efficiency of data management and analysis has been

concerned by both industry and academia. Mean-

while, more and more energy is consumed by the IT

infrastructure especially the larger scale distributed

systems. In this paper, a novel idea for optimizing

the Energy Consumption (EC for short) of MapRe-

duce system is proposed. We argue that a fair data

placement is helpful to save energy, and then we

propose three goals of data placement, and a mod-

ulo based Data Placement Algorithm (DPA for short)

which achieves these goals. Afterwards, the correct-

ness of the proposed DPA is proved from both theo-

retical and experimental perspectives. Three different

systems which implement MapReduce model with

different DPAs are compared in our experiments.

Our algorithm is proved to optimize EC effectively,

without introducing the additional costs and delaying

data loading. With the help of our DPA, the EC for

the WordCount (https://src/examples/org/apache/hado

Jie Song (�) · HongYan He · Zhi Wang

Software College, Northeastern University, Shenyang,

China

e-mail: songjie@mail.neu.edu.cn

Ge Yu

School of Information Science & Engineering,

Northeastern University, Shenyang, China

Jean-Marc Pierson

IRIT, Paul Sabatier University, Toulouse 31062, France

op/examples/), Sort (https://src/examples/org/apache/

hadoop/examples/sort) and MRBench (https://src/ex

amples/org/apache/hadoop/mapred/) can be reduced

by 10.9 %, 8.3 % and 17 % respectively, and time con-

sumption is reduced by 7 %, 6.3 % and 7 % respectively.

Keywords Big data · Data placement · Energy

consumption optimization · MapReduce

1 Introduction

In recent years, huge amount of data have been accu-

mulative along with the development of digital society

[1]. Both the industry and academia are in pursuit of

efficient data management and analysis. As we know,

MapReduce [2], which is widely applied in many

areas, is one of the most efficient way to deal with

Big Data. Meanwhile, with the increase of IT instru-

ments and the expansion of clustering system, the high

Energy Consumption (EC for short) becomes one of

the tough problems, so the EC optimization is a hot

topic in both academia and industry [3–11]. In this

paper, we treated a MapReduce system as an inte-

gration of both hardware and software, and study EC

optimization of it from a software perspective.

In the MapReduce programing model, a job

is divided into two continuous phases which are

named as the map phase and reduce phase, then

the latter does not start until the former is com-

plete. In the map/reduce phase, map/reduce tasks

(mappers/reducers for short) are distributed to nodes

and executed in parallel. Thus we can infer that the

map/reduce phase is complete when the slowest map-

per/reducer finishes, while the other nodes are idle

and waste energy. Such idleness is passive, tempo-

ral and fragmental. To reduce the passive idleness,

our previous study proved a load balance is an intu-

itive solution which ensures the parallelism of map-

pers/reducers [3]. Based on this, we argue that a static

and predefined “modulo based data placement algo-

rithm” optimizes the EC of a MapReduce system.

Our approach balances the load by static data-oriented

distributing without needing data access pattern or

re-configuration, and the basic idea is reducing the

passive idleness and the wasted energy consumed

during the idleness by improving parallelism of map-

pers/reducers, then improving parallelism by ensuring

that mappers/reducers are completed simultaneously,

then adjusting the execution time by a fair data place-

ment, then achieving the fair data placement by a

modulo based data placement algorithm. In fact, mod-

ulo operator is a simple and effective hush function.

With the modulo operation in our algorithm, the data

blocks can be distributed to each node fairly according

to the nodes capability and data features. In a MapRe-

duce system, data placement is the distribution state of

data among nodes. The data placement is fair if it sat-

isfies “fairness of size”, “fairness of range”, and “best

adaptability” (see Section 3.3). We name these char-

acteristics of fair data placement as data placement

goals, and the algorithm to implement these goals as

Data Placement Algorithm (DPA for short).

Taken mapper as an example, we explain why its

execution time, which is the key to improving par-

allelism, is dominated by the data placement. In a

MapReduce system, mappers are distributed to nodes

for processing their local data, respectively, thus each

node will perform the same mapper. The complexities

of mappers on each node are exactly the same, so the

execution time of a mapper is dominated by features of

its input data, such as the data amount and value distri-

bution. These characteristics of data are also features

of data placement.

Hadoop, which implemented the MapReduce pro-

graming model, ensures the parallelism by allowing a

faster node to fetch data from slower nodes remotely.

In this case, the parallelism could not be worse than

the situation where the slowest node processes a data

block from the farthest node remotely while other

nodes are idle. The cost of such strategy is remote I/O,

the parallelism is improved but processors are also not

fully utilized because they are waiting for the remote

data access. We argue that the data size a task pro-

cesses dominates its execution time in a MapReduce

system, and in a Hadoop system the node does not

only run tasks but also stores data. So the best sit-

uation, where all the tasks only process their local

data and are completed simultaneously, could happen

if the data are fairly placed among these nodes. The

fair data placement, which is defined definition 6 to 8,

means data placement is fair in terms of data amount,

of access patterns, and of response time when data are

processed.

Above all, it is possible to define a proper data

placement that can improve the parallelism of nodes,

reduce their idleness, and optimize their EC. Our con-

tributions in this paper are studying the characteristics

of data placement which optimizes EC of MapRe-

duce systems, defining the data placement goals, and

proposing a modulo based DPA. We prove that the

MapReduce system with the proposed data placement

consumes less energy than those with random data

placement. Theoretical proof and experiments show

that the DPA implements the data placement goals

well in a heterogeneous system. The data placement is

a classical topic. There are some relevant works which

use data placement to achieve optimize energy though

[9–13], all of them are dynamic optimization, such as

turn off cluster nodes or right the size of resource allo-

cations, and the cost of rebalancing or the overhead

on the network cannot be ignored. However, in our

work, it is a static way which balances the load not

by dynamic tasks-oriented scheduling, but by static

data-oriented distributing with the good adaptability,

because the execution time of tasks is dominated by

the data characteristics of the nodes.

The rest of this paper is organized as follows.

Following the introduction, Section 2 introduces the

related work. Section 3 analyzes the EC of MapRe-

duce system and proposes the idea of EC optimization.

Section 4 introduces the data placement model, and

defines the goals of data placement on EC optimiza-

tion. Section 5 proposes a modulo based DPA which

is designed for heterogeneous systems. Section 6

proves that the modulo based DPA satisfies the desired

goals. Section 7 explains the experiments and results.

Section 8 summarizes this paper and presents the

further works.

2 Related Work

There are some productive approaches, which are clas-

sified into three categories, have been proposed in the

area of energy consumption (EC for short) optimiza-

tion. First, energy can be saved by adjusting the CPU

state [4, 5]. Second, energy is saved through schedul-

ing jobs or tasks dynamically, then the idle node is

shut down temporarily. It is also known as workload

concentration [6]. Third, EC is reduced by improving

the utilization of computer resources, then less energy

is wasted. The former two are not suitable for MapRe-

duce system [7]. The reasons are as follows. Firstly,

in a highly utilized system, the energy gains through

CPU scaling is low (less than 5 %) and also has

a negative impact on performance. Secondly, nodes

in MapReduce system are not only for computation

but also for storing data. Shutting down or hibernat-

ing nodes makes the part of data unavailable. What’s

more, it is costly to migrate the virtual machines with

their data. The latter one is suitable to the MapReduce

system. Our approach reduces the idleness of nodes

by a balanced data placement, and further reduces

EC.

There are some relevant works which optimize

energy through data placement. Maheshwari et al.

proposed an algorithm that dynamically reconfigures

the cluster based on the current workload and turns

cluster nodes on or off when the average cluster

utilization rises above or falls below administrator

specified thresholds, respectively [8]. It is a dynamic

data re-placement strategy. The energy is saved though

shutting down nodes, and the cost of data transfer

is remarkable. Xiong et al. dynamically righted the

size of resource allocations to the parallelized tasks

such that the effective hardware configuration matches

the requirements of each task [9]. It is the dynamic

optimization. But our approach statically allocates

data into each node, and reduces the complexity of

cluster operation, such as switching-off cluster and

re-configuration. Moreover, the overhead on the net-

work while rebalancing is high in Xiong’s approach.

Palanisamy et al. provided MapReduce clusters the

locality-aware manner in order to reduce the data

transfer overhead among nodes [10]. However, it did

not consider the heterogeneity of MapReduce system.

Our approach is at software-level which uses algo-

rithm to allocate data into each node. Moreover, the

overhead on the network while rebalancing is high

in those approaches. In our paper, the adaptability is

good. When a node crashes and data are re-allocated,

the overhead on the network is only the amount of

data in that node. Our work is inspired from ear-

lier works of Pinheiro et al. where they present the

problem of load balancing and unbalancing for power

and capability in cluster-based systems [11]. The sys-

tem configuration for a MapReduce cluster has a high

impact on its energy efficiency [12, 13], and we argue

that the data placement, even if static, also leverages

energy efficiency.

There are some relevant works which optimize

energy through task scheduling. Chen et al. classified

cluster into interactive zone which services interac-

tive jobs and batch zone which services batchable

and interruptible jobs [14]. Then the energy can be

saved when the batch region transforms into a low-

power state. However, there is a challenge when most

jobs are large and batch jobs, which can stop the

batch region transforming into low-power state. In

MapReduce system, the data is processed in paral-

lel. No matter what the types of jobs are, we par-

tition them into the datasets with balance size in

our algorithm. Therefore, our algorithm isn’t influ-

enced by the types of jobs. Yigitbasi et al. proposed

an energy-aware scheduling strategy based on het-

erogeneity in MapReduce cluster, which schedules

the task to the most efficient node [15]. This is a

cluster-level optimization, and it negatively affects the

performance, availability and fault-tolerance of the

cluster. However, our approach is a software-level

optimization whose cost is not the run-time perfor-

mance but the additional computation when data is

loaded.

There are some relevant works which optimize

energy through migrating data dynamically. The Pop-

ular Data Concentration (PDC) migrates data across

disks according to their access frequency or popularity

[16]. GreenHDFS, which was developed by Yahoo!,

saves energy by migrating files from active nodes to

hibernated nodes [17]. Besides, the Massive Array of

Idle Disks (MAID) technique uses extra cache disks to

cache recently accessed data [18]. All these algorithms

or strategies are dynamical approaches which rely

on data access patterns. The systems, when applying

these algorithms or strategies, migrate data frequently

because applications have various data requirements

and data access patterns. On the contrary, our idea is

to build a pre-defined and balanced data placement

which improves the parallelism and reduces the I/O

cost for any applications in a MapReduce system. Our

approach is static, and the data placement is a pre-

defined strategy which is independent from the data

access patterns. The benefit is permanent once the

goals of data placement are satisfied.

As far as data placement algorithm is concerned,

the most popular goals of the traditional DPAs are

promoting the parallelism, fault-tolerance and relia-

bility of large-scale distribute storage systems. The

most typical DPA is consistent hashing [19]. In this

algorithm, every physical device is virtualized to

klog|N |virtual devices. k is a constant and N is the

number of physical devices. The homogeneous sys-

tem, whose DPA is implemented by the consistent

hashing, has a good adaptability and load-balance.

But in a heterogeneous system, the consistent hashing

algorithm is inefficient. Brinkmann et al. introduced

levels to improve the efficiency of consistent hashing

algorithm in the heterogeneous storage area networks,

to treat the data placement in non-uniform disks as that

in uniform ones [20]. Chen Tao et al. proposed a DPA

for the large scale network storage systems named

CCHDP, which adapts the changes of storage scale

and balances the load of each device [21]. In their

algorithm, fewer virtual devices are introduced than

consistent hashing in a heterogeneous environment,

but the longer the system runs, the more complex it is

to locate the specific data. Specially. in Hadoop, the

data placement assumes that each node in this clus-

ter has the same capacity, and distributes the blocks

to each node averagely, which reduces data transfer

and enhances the effectiveness. By default, each data

block has three replicas in HDFS, and the one replica

is placed on a node in the local rack, another on a node

in a remote rack and the last on a different node in the

same remote rack. But this strategy doesn’t work well

in the heterogeneous environment.

Some other goals of DPAs are reducing remote data

access and then improving the performance of net-

work, especially for the data intensive applications.

For example, a data placement algorithm based on

BEA and Kmeans was proposed by Yuan et al. [22].

Matrix is used to show the relationship between each

data block and task, which stores the dependencies

between data blocks. When distributing data, it will

put the data which have strong dependence together,

in order to reduce the data immigration. However,

this algorithm doesn’t consider the problem of load

balance.

In comparison with the existing works about EC

optimization and DPA. Our solution, which optimizes

EC by a static DPA, is a novel one. What’s more,

some goals of the traditional DPA are not suitable

for a MapReduce system. Consequently, according to

the characteristics of MapReduce system, we propose

three data placement goals and design a modulo based

DPA for the EC optimization. Experimental results in

Section 7 will prove the advantages of our solutions.

3 Energy Consumption Analysis

The first object we studied is MapReduce system. A

MapReduce system is the integration of both hardware

and software layer. The hardware layer of MapReduce

system consists of a larger number of computers. The

nodes store massive data and perform data analysis.

The software layer of MapReduce system consists of

a MapReduce framework (e.g. Hadoop MapReduce)

and a distributed file system (e.g. HDFS). In the dis-

tributed file system, data are distributively stored in

the nodes. In each node, the local data are processed

before the remote data.

The second object we studied is energy consump-

tion (EC). The EC of computers includes energy

consumed by CPU, disk, memory, network card, video

card, mainboard and other accessories. According to

data provided by msdn.microsoft.com [23], the power

consumed by CPU and I/O to disk and network are

not ignored. They are 47.2 % and 23.5 % in the

idle power usage, respectively. We exclude the EC of

the monitor, keyboard, mouse and other devices for

human-computer interaction. Generally, part of energy

consumed by the hardware during the execution of the

job in a MapReduce system, could be optimized by

the software techniques. In this section, we analyze

this part of energy consumption and propose an idea

to optimize it.

Definition 1 Waiting Energy Consumption. In a

MapReduce system, the energy is wasted when some

nodes are in “passive idle” or “busy idle” state because

they are waiting for other resources, such energy

consumption is named as the Waiting Energy Con-

sumption (waiting EC for short).

For example, a node is switched off when it is idle,

otherwise it wastes energy. In another situation, a node

also wastes energy when it is waiting for the compu-

tation results of other nodes; however, it is not exactly

idle so we can not shut it down. Similarly, for the com-

ponents of a computer (node), the CPU also brings

waiting EC when it is waiting for local or remote

data access. Therefore, when we reduce these waiting

situations, waiting EC is minimized.

The definition of waiting EC matches the charac-

teristics of MapReduce system well. In a MapReduce

system, on the one hand, a job is divided into tasks

(mappers and reducers) which are deployed on nodes,

so it is possible that some nodes wait others because of

weak parallelism among tasks. On the other hand, the

most jobs in MapReduce are I/O intensive. Therefore,

CPU idle is the main cause of waiting EC because

the capability of CPU is much better than that of

local and remote I/O. Our previous study has proved

that increase parallelism and decrease remote I/O can

reduce waiting EC efficiently.

Hadoop MapReduce ensures the parallelism by

allowing a faster node fetch data from slower nodes

remotely. For example, the parallelism could be no

worse than the situation that the slowest node pro-

cesses a data block from the farthest node remotely

while the others are idle. The cost of such strategy is

remote I/O, the parallelism is improved but waiting

EC may not decrease because processors are waiting

for the remote data access. The execute time consump-

tion of a task is mainly dependent on its complexity

and input scale. The complexities of all mappers are

the same while the scale and location of inputs are

dominated by the data placement. If the data are dis-

tributed to each node fairly according to the nodes

capability and data features, then there is only local

data access of each task and tasks will be completed

simultaneously. The parallelism is ensured and remote

I/O is minimized. The data placement goals, which

are “fairness of size”, “fairness of range” and “best

adaptability”, are explained in the next section.

4 Data Placement Model and Goals

In this section, we will define a data placement

model which includes data set , data block, node and

node Capability, then based on the mode, the goals

to explain the “fair data placement” are given. In

our paper, a MapReduce system C is the set of

nodes {c1, c2,. . . ,cn}which have different capabilities,

namely it is a heterogeneous system, and n is the

number of nodes.

Definition 2 Data Set and Data Block. The data set

B, which contains many data blocks, is all the involved

data for a specific job running in the MapReduce sys-

tem. Let B ={b0, b1,. . . ,bm−1
}and each data block

have the same size. m is the number of data blocks and

the subscript is the fixed and the increasing index of

data blocks which is encoded in an arbitrary order.

Under the definition 2, data placement is just a

mathematical function. Let data blocks and nodes be

two sets, and the DPA is a function of two sets because

every block should be stored in a certain node, as is

formally defined in Definition 5.

Definition 3 Node Capability. The node capabil-

ity represents how efficient the node processes the

data. Generally, it depends on the CPU and I/O per-

formance. The devices, such as CPU, memory, disk

and network are comprehensively considered. The

capability of node cj is represented by wj . It is a

normalized value. wj ∈(0,1).

In this paper, we evaluate the node capability by

benchmark tool unixbench which is a general-purpose

benchmarking suit that has been designed to pro-

vide the basic performance evaluation for a unix-like

system, and provide a single value to indicate the

node capability [24]. We introduce a terms which are

frequently used in the post sections.

Definition 4 Cumulative capability. In a hetero-

geneous system, the nodes are encoded from 1

to n(decimal code) in a certain (arbitrary) order.

∀ cj ∈{c1, c2,. . . ,cn}, the cumulative capability of

node cj , denoted as
∑

wj is the sum of the capa-

bilities of nodes from c1 to cj .
∑

wj = w0 +

w1+. . . +wj .

Definition 5 Data Placement Algorithm (DPA). A

data placement algorithm maps blocks to nodes. ∀bj ∈

B, data placement algorithm is a function f0:B →

C. That maps bi to a specific cj , ∃!cj ∈ C, cj =

f0(bi). The number of blocks that are distributed to

cj is |f −1
0 (cj)|.

In this paper, a DPA is a mapping function which

maps B to C. Definition 5 is a general definition of

DPA. For example, the DPA of Hadoop Distributed

File System which divides files into blocks with an

arbitrary size (64MB as default) and stores every block

in one of the nodes randomly, is also satisfies the

Definition 5. In Section 4, we describe the modulo

based DPA, and denoted it as f0, by which the data

placement satisfied the “fairness of size”, “fairness of

range”, and “best adaptability”, are realized.

First, we distribute more data to the nodes with

higher capability, and less data to the nodes with lower

capability. We name this goal as ”fairness of size ”.

Definition 6 Fairness of Size (f-size). The data place-

ment algorithm in a MapReduce system achieves

fairness of size (f-size for short) if ∀cj ∈ C:

|f −1
0 (cj)|/m = wj/

∑

wn (1)

In (1), m and n are the number of blocks and

nodes, respectively. wj is the node capability of cj ,
∑

wn is cumulative capability of cn, and |f −1
0 (cj)|is

the number of blocks that are distributed to cj .

Generally, a MapReduce job includes two pro-

cesses: querying data and analyzing the query results.

Therefore, ”fairness of size” can only ensure the equi-

table size of input data but not that of query results

which will be analyzed later. Given a query with a ran-

dom condition, we need another goal which is named

as ”fairness of range” to guarantee the equitable size

of query results in each node.

Definition 7 Fairness of Range (f-range). The data

placement algorithm in a MapReduce system achieves

fairness of range (f-range for short) if ∀cj ∈C:

h(cj)/m = wj/
∑

wn (2)

In (2), m and n are the number of blocks and

nodes, respectively. wj is the node capability of cj ,
∑

wn is cumulative capability of cn. Given a ran-

dom query, h(cj) is the number of blocks in the query

results of cj . The DPA which achieves f-size and f-

range ensures that the data been queried by mapper

and analyzed by reducer are distributed among the

nodes equitably.

We also consider the adaptability of DPA because

adding and removing nodes are normal in a MapRe-

duce system. For one reason, the hardware failure of a

MapReduce system is common if the hardware layer

adopts commodity cluster whose reliability can be

low. For another reason, the number of nodes is shift-

ing frequently for scale-out capability. Consequently,

to maintain the f-size and f-range when a node is

added or removed, the DPA moves the existing data

to the new node, or moves the data from the removed

node to the others. The data transferring through net-

work is costly, so that minimizing data transferring is

a must for achieving adaptability.

Definition 8 Best Adaptability (b-adapt). The best

adaptability of data placement algorithm (b-adapt for

short) ensures that the size of transferred data over net-

work is equal to the size of data in the node which is

newly added or removed in order to maintain the f-size

and f-range. It satisfies the following two conditions:

1. When a new node cn+1
is added to the MapReduce

system, thenf0 changes to f +
0 . They satisfy:

∀bi ∈ B, if f +
0 (bi) �= cn+1

, thenf +
0 (bi) =

f0(bi).

2. When a node cj is removed from the MapReduce

system, thenf0 changes to f −
0 . They satisfy:

∀bi ∈ B, if f0(bi) �= cj , thenf −
0 (bi) = f0(bi).

In summary, if the fairness of size is satisfied,

each node can spend same time on data query; if the

fairness of range is satisfied, each node can spend

same time on data computation; if the Best Adapt-

ability is satisfied, data transferring can be minimized.

Therefore, DPA should be designed to satisfy goals

of ”fairness of size (f-size)”, ”fairness of data range

(f-range)”, and ”best adaptability (b-adapt).

5 Modulo Based DPA

In this section, the modulo based DPA (f0), which is

designed for a heterogeneous system, is introduced. In

a heterogeneous system, capability of nodes is various,

and some nodes may be unavailable in a certain time.

Definition 9 Unavailable Factor. To indicate the

timestamp of a node cj being unavailable, unavailable

factor ηj of node cj is the latest index of block which

is distributed to cj . ηj is initialized as +∞, main-

tained by the master node, and updated when cj is

unavailable.

On condition that there are many more blocks than

the nodes (n〈〈m), the modulo based DPA is defi-

ned as the function f0:B → C: ∀i ∈ [0,m-1],

∀j ∈[1,n], given biandcj , the bi is mapped to cj

(f0(bi) = cj) if they are satisfy (3).

(1) i%
∑

wj − oj ∈ [0, wj)

(2) and ∀k ∈ (j, n] i%
∑

wk − ok /∈ [0, wj)

(3) and ηj ≥ i

(3)

We also define the computation for %:

x%y = x − ⌊x/y⌋ (4)

In (3), wj and
∑

wj is the capability and cumula-

tive capability ofcj , respectively. wj ∈ (0, 1). As we

know, the result of i%x is always i if x >i, so that wj

is a normalized value for the effectiveness of modulo

operation (see Definition 3).

In (3), oj is a pre-defined, random and static off-

set of the node cj . The random offset oj ensures

that blocks are selected randomly which contributes

to both f-size and f-range (proved in Section 5). oj is

calculated as (5).

oj =

pj ×
j−1
∑

k=1

wk (j > 1)

0 (j = 1)

(5)

The pseudo-code of the f0 is shown as Algorithm 1.

In Algorithm 1, the nodes are traversed backwardly

(line 4), and only condition (1) is verified in line 5.

Because in (1), condition (2) is similar with condition

(1). It makes sure that cj is the last node from c1 to cn

which satisfies condition (1). If a forward traversal is

adopted, both condition (1) and condition (2) should

be verified. Figure 1 shows an example of distributing

15 data blocks to 5 heterogeneous nodes. In the exam-

ple, the nodes’ weights are 0.1, 0.3, 0.5, 0.6 and 0.4

respectively; the nodes’ pj are 0, 0.7, 0.5, 0.3 and 0.2

respectively. The 3rd node crashes when block No. 12

has just been distributed, and then block No. 13 and

14 are imported to the system.

Algorithm 1 f0: The modulo based DPA

Input: B,C

Output: distribute all the bi in B to all the cj in C

Function f0

1. Encoding data blocks from 0 to m-1 (decimal code)

in a certain (arbitrary) order, B ={b0, b1,. . . ,bm−1
};

1. Encoding nodes from 1 to n(decimal code). in a

certain (arbitrary) order, C ={c1, c2,. . . ,cn};

2. For i = 0 To m−1

3. For j = n To 1

4. If i%
∑

wj – oj ∈[0,wj) and ηj ≥ i

5. distribute bi to cj

6. Continue

7. End If

8. End For

9. End For

For the 5th node, the blocks which satisfy equa-

tion (i%1.9-0.2×1.5)∈[0, 0.4) are No. 6, 8, 10 and 12.

Therefore, block 6, 8, 10 and 12 are distributed to the

5th node.

For the 4th node, the blocks which satisfy equa-

tion (i%1.5-0.3×0.9)∈[0, 0.6) are No. 2, 5, 8, 11 and

14, but No. 8 has been already distributed. Therefore,

block 2, 5, 11 and 14 are distributed to the 4th node.

For the3rd node, the blocks which satisfy equa-

tion (i%0.9-0.5×0.4)∈[0, 0.5) are No. 3, 4, 5, 12, 13

and 14, but 5 and 12 have been distributed, besides,

the 3rd node is unavailable when block 13 and 14 are

imported to the system. Therefore, block 3 and 4 are

distributed to the 3rd node.

For the 2nd node, the blocks which satisfy equa-

tion (i%0.4-0.7×0.1)∈[0, 0.3) are No.1, 2, 3, 5, 6, 7, 8,

9, 10, 11, 13 and 14, but No. 2, 3, 5, 6, 8, 10, 11 and

14 have been distributed. Therefore, block 1, 7, 9 and

13 are distributed to the 2nd node.

Node 1

p1=0
w1=0.1

η1=∞

Node 2

p2=0.7
w2=0.3

η2=∞

Node 3

p3=0.5
w3=0.5

η3=12

Node 4

p4=0.3
w4=0.6

η4=∞

Node 5

p5=0.2
w5=0.4

η5=∞

0 1 2 3 4 5 6 7 8 9 10 11 12 13 147 85 14116 12

Fig. 1 An example of the modulo based DPA

For the 1st node, all the blocks satisfy the equa-

tion (i%0.1-0)∈[0, 0.1), but all the blocks except the

No.0 have been distributed. Therefore, only block 0 is

distributed to the 1st node;

According to f0, blocks 3 and 4 are unreachable if

the 3rd node crashes. To avoid this situation, a fault-

tolerant mechanism is introduced in Section 6. This

example doesn’t achieve f-size and f-range because it

doesn’t satisfy n〈〈m. We prove that f0 achieves f-size

and f-range for n〈〈m in Section 6.

6 Proof of Fairness and Adaptability

In this section, we prove that the modulo based DPA

(f0) achieves the f-size, f-range and b-adapt. For prov-

ing easily, another DPA, which is an equivalent of f0,

is proposed and named as f0’. The pseudo-code of the

f0’ is shown as Algorithm 2.

f0’ is explained as procedures of adding node one by

one. According to this algorithm, there is only one

node c1 in the system in the beginning and all the data

blocks are distributed to c1. When a node is added,

some data blocks are selected and redistributed to the

new node. Such procedure is repeated until there are n

nodes in the system. In conclusion, f0 is a blocks ori-

ented algorithm which traverses nodes descendingly,

andf0’ is a node oriented algorithm which traverses

blocks ascendingly. f0 is more efficient than f0’, but

they are equivalence. We plan to f0’ achieves f-size,

f-range and b-adapt , so as f0.

Proof f 0’ satisfies f-size.

1) When j =1, there is only one node in the sys-

tem. All the blocks are distributed to c1. Thus, f0’

achieves the f-size.

2) Assuming that f0’ achieves f-size when there are

j -1 nodes in the system, we can prove that f-size

Algorithm 2 f0’: Equivalent algorithm of the modulo

based DPA

Input:B, C

Output: distribute all the bi in B to all the cj in C

Function f0’

1. Encoding data blocks from 0 to m-1 (decimal code)

in a certain (arbitrary) order, B ={b0, b1,. . . ,bm−1
};

2. Encoding nodes from 1 to n(decimal code). in a

certain (arbitrary) order, C ={c1, c2,. . . ,cn};

3. For i = 0 To m−1

4. For j = 1 To n

5. If i%
∑

wj – oj ∈[0,wj) and ηj ≥ i

6. If bi has been distributed to {c1, c2,. . . ,cj−1
}

7. remove the distribution of bi

8. End If

9. distribute bi to cj

10. Continue

11. End If

12. End For

13. End For

is achieved when a new node cj is added. The

proof is given as below.

Figure 2 shows the data placement of f0’ when

node cj is added. Based on the modulo operator (%),

the range of results of i%
∑

wj is 0 to i%
∑

wj -1

(i is block index). Therefore, all blocks are encoded

and divided intom/
∑

wj parts, and each part con-

tains
∑

wj data blocks except the last part. Moreover,

wj blocks will be selected in each part based on the

conditioni%
∑

wj – oj ∈[0,wj).

∵ There are m · wj /
∑

wj data blocks which are

distributed to cj .

∴ The number of data blocks distributed to cj satis-

fies the (1).

∵ For each part, the probability of each data block

being selected and re-distributed to cj is equal.

Fig. 2 The data placement of f0’ when the node cj is added

∴ Each data block has the same probability of

being re-distributed to cj , so after adding cj to

{c1, c2,. . . ,cj−1
}, the re-distributed data blocks sat-

isfy the (1).

∴ Hence the assertion 2) is satisfied.

In conclusion, ∀j ∈[1,n], the data placement satis-

fies (1) according to the mathematical deduction, and

f0’ satisfies f-size.

Proof f 0’ satisfies f-range

∵ In f0’, a data block, which is distributed to a node,

is randomly selected because of the pre-defined

and randomoj in (3).

∵ If a block is randomly distributed to a node, then

for any queries, the query results are randomly

distributed in nodes. That is, because of the ran-

domness of data placement, the possibilities of a

block being selected are definitely not same for

different queries, but the possibilities of each node

being selected are same for any query

∴ Equation 6 is satisfied.

|f ′−1
0 (cj)|/m = h(cj)/m (6)

In (6), |f 0’−1(cj)|is the number of blocks that

are distributed to cj , and h(cj) is the number of

blocks that are selected in cj .

∵ The f0’ achieves f-size, then (7) is satisfied.

|f ′−1
0 (cj)|/m = wj/

∑

wn (7)

∴ Equation 8 is satisfied.

h(cj)/m = wj/
∑

wn (8)

In conclusion, f0’ achieves f-range.

Proof f 0’ satisfies b-adapt.

To prove that the f0’ has the best adaptability (b-

adapt), we consider the following three situations: 1)

scale-out: adding a node to the system, 2) scale-in:

removing a node from the system, 3) Fault-tolerance:

a node crashes unpredictably.

For scale-out: when a node cj is added, some data

blocks are selected and re-distributed to cj . The pro-

cess of scale-out is same with one iteration of f0’ (line

4 to 12 in Algorithm 2), so that f-size and f-range

are not broken. Meanwhile, the transferred data blocks

over network, which are selected and re-distributed to

cj ,are minimum. In conclusion, f0’ satisfies b-adapt.

For scale-in: Nodes are ordered by their indexes.

The process of removing the last node can be treated

as the inverse-process of adding a new node in f0’, so

both f-size, f-range are still satisfied. The transferred

data blocks over network are equal to the data blocks

which are selected and re-distributed to cmwhen cmis

added, thus they are minimum. In conclusion, if we

only remove the last node (node with the largest

index), f0’ satisfies b-adapt. The “removing the last”

is a constriction of scale-in, but it is not a strict one

because scale-in is an active adjustment on clusters;

administrator can decide which server is removed.

For fault-tolerance: we analyze the following

three situations when node cj (j<n) crashes and

data blocks in cj (e.g. bi) are lost. According to the

definition of f0’:

1) If both cj and bi can be recovered, or we can find

a cj ’ (wj ’= wj) to replace cj , then it simply dis-

tributes bi to cj ’, and adds cj ’ to cluster, then the

data placement is recovered to the one before cj

crashed. Both f-size and f-range are not broken.

The transferred data blocks over network, which

are blocks on cj ,are minimum.

2) If cj and bi are lost permanently, then the data

placement of the other nodes is still satisfies

f-size, f-range and b-adapt. There are not data

blocks transferred over network. As it is defined

in definition 9, ηj is maintained by the master

node, so it is accessible since cj is lost. ηj is not

+∞ anymore, and has been updated to the last

index of block oncj . The index j of cj is also

reserved. Based on it, client is notified that cj is

unavailable when bi is queried, and for the new

data blocks imported after cj crashes, they are

distributed to the remaining nodes according to

the condition (3) of (3).

3) If bi is recovered but cj is crashed permanently,

bi is imported to the remaining system again as

a newly-encoded data block. For the remained

system, bi is a new data block. Thus, the data

placement still achieves f-size, f-range after cj

crashed and bi is re-distribute. The transferred

data blocks over network, which are blocks on cj ,

are minimum

For both of three situations above, it is easy to

deduce that when a node is added or removed, to

maintain the f-size and f-range, the data blocks

transferred over network are equal to the data

blocks in the node which is newly added or

removed. In conclusion, f0’ satisfies b-adapt.

All in all, according to the Proof 1 to 3, it

is proved that f0 achieves f-size, f-range and

b-adapt.

7 Algorithms Comparisons

Section 6 proves that f0 is satisfied with data place-

ment goals, but it can not prove that f0 is better than

classic DPAs. In order to verify the effectiveness of

f0, the comparisons are performed in the simulation

environment where the results can be drawn without

truly distributing data blocks. The four algorithms as

competitors are briefly described below:

1) Consisitent hash(f1) [19]: every node is virtual-

ized to klog|N |virtual devices. k is a constant and

N is the number of node. Then mapping these

virtual devices into the unit ring.

2) Dynamic interval mapping(f2) [25]: it divides

unit interval into some sub-intervals based on

the weights of devices, and there is a mapping

between devices and sub-intervals. When load-

ing data, the data which fall into an interval are

distributed to the corresponding devices. When

adding devices, the sub-intervals are divided

into smaller intervals based on the weights,

then distribute these smaller intervals to added

devices(named cluster) and transfer the data

which fall into these intervals into added devices.

We increase the number of clusters in order to

decrease the impact of heterogeneity.

3) An algorithm based on BEA and K-Means(f3)

[22]: each data set is interdependent based on task

requirements. When distributing, it will put the

data which have the strong independence into the

same node; in this way, it reduces the time of

moving data between nodes. However, it doesn’t

take load balance into account.

4) Greedy algorithm(f4) [26]: it is a common DPA.

The DPA firstly satisfies the requirement of node

with the largest weight, then that of the second

node until all the data are distributed. It is simple

and fast. However, it is unfair to the nodes which

have the small weights if the amount of data is not

huge enough.

We simulate 100 nodes whose performance values

are random integer ranging from 5 to 150. We adopt

the well-known Grep cases [31] in the simulation. The

artificial data set consists of 300000 data blocks and

0.3 billion of words (1000 words per block). When

generating the data, both query condition (2 charac-

ters like “AB”) and words (50 characters) are strictly

selected from 26 English letters. A 50-length string

contains 49 different 2-characters-substrings, and the

probability that a 2-characters-substring matches the

query condition is about 1/262, so the hit rate is about

49/262 ≈0.072.

We compare the f-size and f-range between these

algorithms because adaptability of f0 has been proved

to be the best in Section 6. In the experiment of f-

size, if the number of data blocks on each node has

the linear correlation with node’s capabilities, then f-

size is satisfied. In the experiment of f-range, a random

query simulator is designed to get the selected data

blocks of each block. If the amount of selected data

on each node has the linear correlation with node’s

capabilities, then f-range is satisfied. Pearson correla-

tion coefficient is a measure of the linear correlation

(dependence) between two variables, giving a value

between +1 and −1 inclusive, where 1 is total positive

0

1000

2000

3000

4000

5000

6000

7000

0 40 80 120 160

D
a

ta
 A

m
o

u
n

t(
B

lo
ck

)

(a0) f0 Pearson=0.996

0 40 80 120 160

(a1) f1 Pearson=0.990

0 40 80 120 160

Node Capability

(a2) f2 Pearson=0.914

0 40 80 120 160

(a3) f3 Pearson=0.913

0 40 80 120 160

(a4) f4 Pearson=0.977

Fig. 3 The comparison of f-size among five DPAs

0

100

200

300

400

500

600

0 40 80 120 160

D
a
ta

A

m
o
u

n
t(

B
lo

c
k

)

(a0) f0 Pearson=0.965

0 40 80 120 160

(a1) f1 Pearson=0.981

0 40 80 120 160

Node Capability

(a2) f2 Pearson=0.902

0 40 80 120 160

(a3) f3 Pearson=0.251

0 40 80 120 160

(a4) f4 Pearson=0.828

x10

Fig. 4 The comparison of f-range among five DPAs

correlation, 0 is no correlation, and −1 is total negative

correlation. In experiments, pearson correlation coef-

ficient is adopted to compare the f-size and f-range of

DPAs.

7.1 Fairness of Size

In this experiment, we compare the f-size among

five algorithms. The comparison results are shown

in Fig. 3. The axis y represents the number of data

blocks; axis x represents the capability of each node.

The stronger of linear relation between node capabil-

ity and the number of data block is, the better f-size

is. The f-size of f0 is much better than f2, f3, f4 and

slightly better than f1. After calculating, the coeffi-

cients of f0, f1, f2, f3 and f4 are 0.996, 0.990, 0.914,

0.913 and 0.977 respectively. Therefore, the proposed

f0 has the best f-size.

The f-size of f0 is slightly better than that of f1,

and the former is more independent to the number of

nodes. The fairness of f1 is dominated by the num-

ber of nodes, and when more nodes are introduced,

time consumption of f1 increases. On the contrary,

the time consumption and f-size of f0 are indepen-

dent from the number of nodes. Moreover, f-size of f2

is weak, and it requires additional space to store the

mapping interval. The f-size of f3 is worse because it

only considers the dependency of data. f3 ensures the

dependent data are in the same node, and after clus-

tering the data block into groups according to their

similarities, it is traditional bin packing problem. f4

does not take the overall conditions into consideration,

so there is no data distributed to nodes which have

smaller weights since the data blocks are not huge

enough.

7.2 Fairness of Range

In this experiment, we compare the f-range among five

algorithms under the same data, query and node capa-

bility. The comparison results are shown in Fig. 4. The

axis y represents the number of selected data blocks;

axis x represents the capability of each node. Notice

that the scale of y- axis in Fig. 4-a3 is from 0 to 6000,

and which in Fig. 4-a0, a1, a2 and a4 are all from 0 to

600. It is obvious that the f-range of f0 and f1 are far

better than that of other three. The Pearson correlation

coefficients off0, f1, f2, f3 and f4 are 0.965, 0.981,

0.902, 0.251 and 0.828 respectively. Therefore, the f-

range of f0 is slightly worse than f1 and far better than

the other three.

Although the f-range of f1 is slightly better than

f0, the time consumption of f1 is three time larger

than that of f0. For proposed f0, the slight weak-

ness of f-range is offset by performance advantage.

Forf2, f-range is dominated by f-size because Fig. 4-

a2 accords with Fig. 3- a2. f3 ensures the queried data

are centralized in several nodes, so only a few nodes

are involved in query results, and f4 does not take

f-range into consideration.

Table 1 The testbed of experiments

Brand CPU Memory Disk Net work Job Task

Tracker kTracker

TongFang Z900 Inter Core i5 2.80GHz 8GB 1TB 1000M 1 5

TongFang C3001 Inter Core Pentium(R) 4 3.00GHz 1GB 80GB 100M 0 4

Table 2 The differences of three MapReduce system

MapReduce MapReduce Module DFS Module DPA Data Location

System

Hadoop Hadoop MapReduce Hadoop DFS Random Local & Remote

LocalHadoop Modified Hadoop MapReduce Local File System Random Local

NeoHadoop Modified Hadoop MapReduce Local File System Modulo based Local

Moreover, from Fig. 3-a0, we can see that, f-size

will not be worse with the increase of data blocks;

based on Fig. 4-a0, f-range is hardly influenced by the

node capacity, because of the linear relation between

node capability and the number of data block proved

by Fig. 3-a0, so f-range is also hardly influenced by

data blocks. Namely, our algorithm cannot be affected

by the number of data blocks.

8 System Evaluation

In this section, we plan several experiments to evalu-

ate the effect of energy optimization and cost of the

modulo based DPA. The experiments are performed

in a Hadoop MapReduce system and distributed

environment.

8.1 Setup

The MapReduce system consists of 6 nodes, includ-

ing a JobTracker (master node) and 10 TaskTrackers

(slave nodes). Because the optimization is mainly for

the slave nodes, TaskTrackers consist of two types of

computers whose capabilities are quite different. The

testbed is shown as Table 1.

To estimate the EC optimization, three different

kinds of MapReduce systems, which are explained in

Table 2, are compared in the experiments. Base on

the Hadoop MapReduce, we built LocalHadoop and

NeoHadoop as new implementations of MapReduce.

Hadoop adopts the random DPA, by which data block

is placed to the nodes randomly, and a node will pro-

cess the data blocks of other nodes remotely after it

finishes processing its local data blocks. LocalHadoop

adopts the random DPA too. It is built on the local

file system, thus there is no remote data access, and

tasks only process their local data. NeoHadoop, which

is built on the local file system with the modulo based

DPA, is an extension of LocalHadoop. With the same

inputs, logic and the outputs of a job, the differences

of three systems are data placement and data location.

We compare the EC and time consumption of nodes

in Hadoop, LocalHadoop and NeoHadoop during the

execution of test case, and study the EC optimization

effect of the proposed DPA.

Table 3 Measurement

approaches of experimental

results

Name Unit Measuring approach

Energy consumption Kilo Joule The PowerBay power-meter,

whose power precision is

±0.01˜0.1W, maximum is

2200W, measuring frequency is

1.5-3 second, is used to measure

EC [30].

Disk I/O MB Accumulative value of disk I/O

per second of each node

Remote I/O MB Accumulative value of network

I/O per second of each node, then

divided by 2 because data been

sent and received are equal.

CPU workload GHz Accumulative value of multiply-

ing CPU frequency and CPU

usage per node.

Three typical and well-known jobs, WordCount

[27], Sort [28] and MRBench [29] are chosen as test

cases. MRBench is treated as an interactive job. Word-

Count andSort are treated as an I/O intensive and CPU

intensive job respectively. Since our algorithm has no

relationship with the amount of data, for simplicity,

the data size of WordCount and Sort are 2GB per node,

the number of concurrent job is 100 forMRBench. We

compare and analyze both the energy consumption,

time consumption and resource consumption of three

different MapReduce systems. The measured value is

accumulated by values of 10 TaskTrackers. The unit

and measuring approaches are list in Table 3.

Let disk I/O, remote I/O and CPU workload of

Hadoop system be one unit, respectively. Each cor-

responding value of LocalHadoop and NeoHadoop is

normalized to dimensionless ratio.

Fig. 5 The comparison of energy consumption and time con-

sumption of WordCount, Sort and MRBench on three systems

8.2 Energy Analysis

In this section we evaluate the effect of EC optimiza-

tion. The results are shown in Fig. 5. We conclude

that NeoHadoop is more efficient than Hadoop for the

WordCount [27], Sort [28] and MRBench [29]. EC is

reduced by 10.9 %, 8.3 % and 17 % respectively, and

time consumption is reduced by 7 %, 6.3 % and 7 %

respectively. Optimization on EC is better than that on

time consumption. What’s more, LocalHadoop, even

there is no remote data access, is less efficient than

Hadoop in both EC and time consumption.

LocalHadoop only processes local data, and the

data are placed randomly, as a consequence the higher-

capability nodes wait the lower-capability nodes in a

heterogeneous system. In our testbed, the difference of

capability is huge, so that both waiting time and wait-

ing EC are also huge. Hadoop avoids the waiting time

between nodes by processing data remotely, but CPU

also brings waiting EC when it is waiting for remote

data access. The cost of remote data access is the main

reason of waiting EC in Hadoop. The parallelism of

NeoHadoop is ensured through a fair data placement,

so that the NeoHadoop is better than LocalHadoop

in avoiding waiting time between nodes, and is also

better than Hadoop in avoiding remote data access.

As we know, the idle power of computer is a

constant, and EC is calculated by multiplying the

power and time, therefore if waiting EC is reduced,

time consumption is also reduced. The optimization

effect of EC is better than that of time consumption

because we reduce both the waiting EC and remote

data access, meanwhile the network I/O equipment

(net card) works with a lower power within a shorter

period, then the power of the node in NeoHadoop is

less than that in Hadoop.

Besides, the effect of EC optimization on

MRBench is better than that on other two cases.

MRBench consists of many small jobs but the other

two cases consist of one big job. Each job causes wait-

ing EC in Hadoop and LocalHadoop. On the contrary,

NeoHadoop avoids waiting EC greatly. So that our

approach has better optimization effect on MRBench.

8.3 Resources Analysis

In this section, we compare the accumulative resource

consumption of Hadoop, LocalHadoop and Neo-

Hadoop under the different test cases. In order to

compare results easily, the resource consumption of

Hadoop is set to one unit, and the corresponding

resource consumptions of LocalHadoop and Neo-

Hadoop are normalized proportionally. Figure 6 shows

the experimental results. The axis y represents the

accumulative resource consumption (ration), axis x

represents different systems. Because of the relevance

between algorithm and resource consumption, we can

only compare resource consumption of three systems

with the same task, but not those with different tasks.

Firstly, the CPU consumption is analyzed. The

CPU consumption presents the amount of waiting EC,

that is, for the same algorithm and data size, the more

CPU consumption is, the longer CPU waiting is (CPU

usage is not zero when it is idle), and the more wait-

ing EC is. As shown in Fig. 6, no matter which task

is performed, the CPU consumption of NeoHadoop is

the least, and that of LocalHadoop is the most. We

can conclude that: the huge network I/O, but not the

poor parallelism, is the dominating reason of CPU’s

idleness in Hadoop; and the situation is opposite in

LocalHadoop; but both parallelism and I/O cost are

optimized in NeoHadoop.

Secondly, we analyze the local I/O consumption.

For each node, no matter it processes data locally or

remotely, it causes local I/O consumption in one node,

and if remote data is processed, additional remote I/O

is consumed. Thus, local I/O consumption represents

how many data have been processed (also some I/O

consumed by virtual memory and intermediate result).

So that local I/O consumption of three systems are

almost same no matter what kind of jobs are executed.

The local I/O consumption of LocalHadoop is slightly

larger than that of two systems because job on Local

Hadoop runs longer and extra logs consumed some

local I/O operations.

Thirdly, we analyze the remote I/O consumption.

Both NeoHadoop and LocalHadoop confirm that task

only processes local data, so that the tiny I/O is con-

sumed by shuffle operation in MapReduce and com-

munications between JobTracker and TaskTracker. It

proves that NeoHadoop with proposed data place-

ment reduces the remote I/O cost greatly. As shown in

Fig. 6, the I/O consumption of both NeoHadoop and

LocalHadoop is equal with all test cases, and it is half

of I/O consumption of Hadoop.

8.4 Cost Analysis

The modulo based DPA brings extra operations in

the data loading process. In this experiment, we eval-

uate the data loading performance of three systems

(Hadoop, LocalHadoop and NeoHadoop). Firstly, data

loading is executed only once, thus DPA is not exe-

cuted repeatedly. The data query and process benefit

from the fairness of data placement. The proportional

cost is very low. Secondly, during the data loading of

NeoHadoop and LocalHadoop, it treats data block as

Fig. 6 The comparison of accumulative resource consumption (normalized by Hadoop) of three systems with WordCount, Sort and

MRBench

Fig. 7 The loading time and EC of three different MapReduce

systems

the smallest unit. Calculating the destination of a data

block is much faster than transferring the data block

through network. If the data loading is performed by

two threads, one of which takes the responsibility of

placing data and the other takes the responsibility of

loading data, then the former thread never blocks the

latter one. Therefore, the data loading performance is

mainly dominated by I/O performance. The cost of

modulo based DPA is ignorable. We compare both EC

and time consumption of loading same data set in three

systems, and show the results in Fig. 7.

The loading performance of the three systems are

close. Thus, the modulo based DPA does not bring

much cost to data loading. What’s more, loading capa-

bility of NeoHadoop is slightly better than that of

Hadoop because nodes with higher I/O capabilities

get more data blocks, and the more data blocks these

nodes receive, the faster the data load.

9 Conclusions and Future Works

In this paper, we propose a modulo based Data

Placement Algorithm (DPA) for optimizing Energy

Consumption (EC for short) of MapReduce system.

Firstly, we propose a novel idea for optimizing EC

of a MapReduce system, based on which we define

the objectives of EC optimization. We also demon-

strate the waiting EC of MapReduce system and its

optimization approach. Then, we propose the data

placement goals for optimizing EC and the modulo

based DPA to implement these goals. Finally, the

correctness of proposed DPA is proved from both

theoretical and experimental perspectives. It satisfies

the goals of ”Fairness of size (f-size)”, ”Fairness of

Range (f-range)” and ”Best Adaptability (b-adapt)”;

It optimizes EC of MapReduce system efficiently;

eventually; It does not bring the additional cost to the

data loading.

The EC optimization approach we proposed in this

paper can be well applied to the most of MapRe-

duce based Big Data analysis systems. In short, with

the modulo of DPA, the EC for the WordCount, Sort

and MRBench can be reduced by 10.9 %, 8.3 % and

17 % respectively, and time consumption is reduced

by 7 %, 6.3 % and 7 % respectively. In MapReduce,

the node failure happens in some cases. Then the

cost for data transmission is unimaginable. If the data

on failed node have the replica on the normal node,

then data transmission can be reduced a lot. However,

the current DPA just thinks of the data in a speci-

fied job without replica. The future works also need

to take data replication mechanisms into considera-

tion. For example, the replica should be distributed to

the node in another rack where adopts different DPA.

Data replication mechanisms also needs the support of

adaptability, however, in our algorithm, adaptability is

not enough which cannot remove an arbitrary node. So

we will also make some improvements on DPA which

will make DPA be more adaptive.

Acknowledgments Supported by the National Natural Sci-

ence Foundation of China under Grant No. 61202088 and

61433008; the Fundamental Research Funds for the Central

Universities under Grant No. N120817001 and N130417001;

the Science Foundation of China Postdoctor under Grant No.

2013M540232; the National Research Foundation for the Doc-

toral Program of Higher Education of China under Grant No.

20120042110028.

References

1. Labrinidis, A., Jagadish, H.V.: Challenges and opportuni-

ties with big data. PVLDB 5(12), 2032–2033 (2012)

2. Dean, J., Ghemawat, S.: Mapreduce: a flexible data pro-

cessing tool. Commun. ACM (CACM) 53(1), 72–77 (2010)

3. Song, J., Liu, X., Zhu, Z., Zhao, D., Yu, G.: A Novel

Task Scheduling Approach for Reducing Energy Consump-

tion of MapReduce Cluster. IETE Tech. Rev. 31(1), 65–74

(2014)

4. Elnozahy, E.N., Kistler, M., Rajamony, R.: Energy-efficient

server clusters. PACS 2002, 179–196

5. Lee, K.G., Bharadwaj, V., Sivakumar, V.: Design of fast and

efficient Energy-Aware Gradient-Based scheduling algo-

rithms heterogeneous embedded multiprocessor systems.

IEEE Trans. Parallel Distrib. Syst. (TPDS) 20(1), 1–12

(2009)

6. Da Costa, G., Dias de Assunção, M., Gelas, J.-P., Georgiou,

Y., Lefèvre, L., Orgerie, A., Pierson, J.-M., Olivier, R.,

Sayah, A.: Multi-facet approach to reduce energy consump-

tion in clouds and grids: the GREEN-NET framework.

e-Energy 2010, 95–104

7. Lang, W., Patel, J.M.: Energy management for MapReduce

clusters. PVLDB 3(1), 129–139 (2010)

8. Maheshwari, N., Nanduri, R., Varma, V.: Dynamic

energy efficient data placement and cluster reconfig-

uration algorithm for MapReduce framework. Future

Generation Comp. Syst. (FGCS) 28(1), 119–127

(2012)

9. Xiong, W., Kansal, A.: Energy efficient data intensive dis-

tributed computing. IEEE Data Eng. Bull. (DEBU) 34(1),

24–33 (2011)

10. Palanisamy, B., Singh, A., Liu, L., Jain, B.: Purlieus:

locality-aware resource allocation for MapReduce in a

cloud. In: SC, pp. 58:1–58:11 (2011)

11. Pinheiro, E., Bianchini, R., Enrique, V.C., Heath, T.:

Load balancing and unbalancing for power and perfor-

mance in cluster-based systems. In: Workshop on com-

pilers and operating systems for low power, pp. 182–

195 (2001)

12. Chen, Y., Keys, L., Katz, R.H.: Towards Energy

Efficient MapReduce. Technical Report of EECS Depart-

ment University of California, Berkeley. Available via

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-

2009-109.pdf (2008)

13. Pinheiro, E., Bianchini, R., Carrera, E.V., Heath, T.:

Dynamic cluster reconfiguration for power and perfor-

mance: Compilers and operating systems for low power

(book), Kluwer Academic Publishers Norwell, ISBN:1-

4020-7573-1, 75–93 (2003)

14. Chen, Y., Alspaugh, S., Borthakur, D., Katz, R.:

Energy Efficiency for Large-Scale MapReduce Work-

loads with Significant Interactive Analysis. In: 7th ACM

Europan Conference on Computer System, pp. 43–

56 (2012)

15. Yigitbasi, N., Datta, K., Jain, N., Willke, T.: Energy effi-

cient scheduling of MapReduce workloads on heteroge-

neous clusters. In: Green Computing Middleware (ACM),

pp. 1–6 (2011)

16. Pinheiro, E., Bianchini, R.: Energy conservation techniques

for disk array-based servers. ICS 2004, 68–78

17. Kaushik, R.T., Abdelzaher, T.F., Egashira, R., Nahrstedt,

K.: Predictive data and energy management in GreenHDFS.

IGCC 2011, 1–9

18. Colarelli, D., Grunwald, D.: Massive arrays of idle disks for

storage archives. SC 2002, 1–11

19. Karger, D.R., Lehman, E., Leighton, F.T., Panigrahy, R.,

Levine, M.S., Lewin, D.: Consistent Hashing and Random

Trees: Distributed Caching Protocols for Relieving Hot

Spots on the World Wide Web. STOC 1997, 654–663

20. Brinkmann, A., Salzwedel, K., Scheideler, C.: Efficient,

distributed data placement strategies for storage area net-

works (extended abstract). SPAA 2000, 119–128

21. Tao, C., Nong, X., Fang, L., et al.: Clustering-Based And

consistent Hashing-Aware data placement algorithm. J.

Softw. 21(12), 3175–3185 (2010). (in Chinese)

22. Yuan, D., Yang, Y., Liu, X., Chen, J.: A data placement

strategy in scientific cloud workflows. Future Generation

Comp. Syst. (FGCS) 26(8), 1200–1214 (2010)

23. Profiling Energy Usage for Efficient Consumption.

https://msdn.microsoft.com/en-us/library/dd393312.aspx.

2016/6/1

24. Unixbench https://code.google.com/p/byte-unixbench/

25. Liu, Z.: Efficient, balanced data placement algorithm in

scalable storage clusters. Journal of Communication and

Computer, 2007, (7):8-17

26. Ronald, L.: Graham: Bounds on Multiprocessing Timing

anoMalies. SIAM J. Appl. Math. (SIAMAM) 17(2), 416–

429 (1969)

27. WordCount program: Available in Hadoop source distri-

bution: https://src/examples/org/apache/hadoop/examples/

WordCount

28. Sort program: Available in Hadoop source distribution:

https://src/examples/org/apache/hadoop/examples/sort

29. MRBench program: Available in Hadoop source dis-

tribution: https://src/examples/org/apache/hadoop/mapred/

MRBench

30. Jie, S., Li, T., Zhi, W., Zhiliang, Z.: Study on energy-

consumption regularities of cloud computing systems by a

novel evaluation model. Computing, 1–19 (2013)

31. Dean, J., Ghemawat, S.: MapReduce: simplified data pro-

cessing on large clusters. Commun. ACM (CACM) 51(1),

107–113 (2008)

