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SUMMARY  

Neuronal migration disorders such as lissencephaly and subcortical band heterotopia are 

associated with epilepsy and intellectual disability. DCX, PAFAH1B1 and TUBA1A are 

mutated in these disorders, however corresponding mouse mutants do not show heterotopic 

neurons in the neocortex. On the other hand, spontaneously arisen HeCo mice display this 

phenotype and our study reveals that misplaced apical progenitors contribute to heterotopia 

formation. While HeCo neurons migrate at the same speed as wild–type, abnormally 

distributed dividing progenitors were found throughout the cortical wall from E13. We 

identified Eml1, coding for a microtubule–associated protein, as the mutant gene in HeCo 

mice. No full–length transcripts were identified due to a retrotransposon insertion in an 

intron. Eml1 knock–down mimics the HeCo progenitor phenotype, and re–expression rescues 

it. We further show that EML1 is mutated in ribbon–like heterotopia in human. Our data link 

abnormal spindle orientations, ectopic progenitors and severe heterotopia in mouse and 

human. 

 

Classical subcortical band heterotopia (SBH), part of the type I lissencephaly spectrum, is 

characterized by the presence of aberrantly localized neurons, in the form of a band in the white 

matter, below a cortex which appears relatively normal by magnetic resonance imaging (MRI)1. 

The identification of PAFAH1B1, Doublecortin (DCX) and α1–tubulin (TUBA1A) genes, coding for 

microtubule associated proteins and a tubulin isoform, highlights the involvement of microtubule 

cytoskeletal defects in these neuronal migration disorders2. The pathogenesis of subcortical 

heterotopia (SH) remains little understood, partly because this phenotype has rarely been observed 

in corresponding mouse models3-6. However, acute inactivation of Dcx by RNAi in the developing 

rat cortex7, and the tish rat model with an unknown mutation8, show SH. Also, Wnt3a 

overexpression in the mouse neocortex9 and conditional knockouts of Rapgef2 and RhoA10,11, as 
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well as spontaneous HeCo and BXD29 mouse mutants12,13, are characterized by the presence of 

subcortical heterotopic neurons. We set out to identify how heterotopia arises in HeCo brains, and 

the nature of the corresponding human malformation. 

HeCo mice present bilateral masses of heterotopic neurons in the white matter, associated with 

epilepsy and subtle learning deficits in the adult, thus constituting an interesting genetic model for 

the pathophysiological study of SH12. We show here that HeCo developing cortices exhibit a 

proportion of abnormally distributed dividing cells from early corticogenesis, present in the 

intermediate zone (IZ) and cortical plate (CP), whilst neuronal locomotion is unaffected. Using 

whole genome single nucleotide polymorphism (SNP) and transcriptome analyses, we identified a 

candidate region and the perturbed expression of Echinoderm microtubule associated protein–like 1 

(Eml1) in HeCo mice. In human, we also identified mutations in EML1 (EMAPL) in two families 

with giant bilateral, ribbon–like heterotopia14. This represents the first gene identified for this 

atypical form of heterotopia. The role of Eml1/EML1 in brain development has not previously been 

characterized. We show here that Eml1 associates with microtubules and has a cell cycle–dependent 

localization, becoming enriched in midzone regions of mitotic neuronal progenitors. We identify an 

increased proportion of oblique mitotic spindle orientations in HeCo apical progenitors, which may 

favor asymmetric inheritance of apical membrane15. Eml1/EML1 is thus a microtubule–binding 

protein whose disruption leads to ectopic neuronal progenitors, highlighting their role in the 

pathogenesis of severe forms of heterotopia. 

 

RESULTS 

Development of the heterotopia in the HeCo cortex  

Adult HeCo mice present SH in the rostro–medial part of the neocortex close to the hippocampus 

(Fig. 1a and Supplementary Fig. 1a). We examined HeCo forebrains at different stages of 

development. At embryonic day 15 (E15), there was no obvious accumulation of heterotopic 
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neurons in the HeCo IZ12. By E17, we found that both early–born Tbr1 positive (+) and late–born 

Cux1+ neurons formed the heterotopia (Fig. 1b,c). Also, Nestin+ radial glial cell (RGC) fibres, the 

guides for migrating neurons, appeared disorganized locally in heterotopic regions (Fig. 1b). At this 

stage, Tbr1+ neurons were also abundant between the heterotopia and CP, though most wild–type 

Tbr1+ neurons had finished migrating to form layer VI (Fig. 1b).  

     At P3 in HeCo, almost all Tbr1+ neurons had reached their final destination in layer VI above the 

heterotopia, whereas many Cux1+ neurons had failed to reach cortical layers II/IV and were present 

in the heterotopia (Fig. 1d). Strikingly at this stage, and to a lesser extent at P7 (Supplementary 

Fig. 1b), we observed columns of Cux1+ neurons between the heterotopia and the cortex, while the 

migration of these neurons was already complete in wild–type (Fig. 1d). We found only rare glial 

cells in the heterotopia postnatally (Supplementary Fig. 1c,d), similar to layers II/IV. The 

heterotopia is thus populated by early–, followed by late–born neurons that subsequently migrate in 

columns between the heterotopia and the CP, having a temporal delay with respect to wild–type. 

Some of the last–born neurons remained trapped in the postnatal and adult white matter.  

 

HeCo neurons can migrate as well as wild–type cells 

In order to test migration, we performed ex vivo electroporation of a pCAG–EGFP reporter plasmid 

in E15.5 dorsal ventricular zone (VZ) of HeCo (n=5) and wild–type (n=3) embryos. EGFP+ 

migrating neurons were imaged in slices after 3 days in vitro (DIV) using video microscopy (Fig. 

2a). Compared to wild–type, significantly fewer HeCo EGFP+ cells reached the CP (Fig. 2a, wild–

type 77.61 ± 24.29; HeCo, 16.11 ± 5.15 103/mm3, unpaired t–test p=0.0178, 6 degrees of freedom 

(d.f.), t=3.234) although remarkably, motility parameters in the IZ and CP were similar for wild–

type and HeCo neurons (speed µm/hr, wild–type, 33.09 ± 0.65; HeCo 33.77 ± 0.64; unpaired t–test: 

p=0.4535, 6077 d.f., t=-0.750; pause frequency, wild–type, 0.314 ± 0.020; HeCo 0.309 ± 0.027 

pauses/hr; p=0.8836, 167 d.f., t=0.147; pause duration, wild–type 30.09 ± 1.62 min; HeCo 32.25 ± 
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1.93 min, p=0.3917, 640 d.f., t=-0.857). We found no differences in trajectory orientations of wild–

type and mutant neurons (Fig. 2a, average angle relative to the VZ, wild–type 135.88° ± 0.96, 

HeCo 136.03° ± 0.97, unpaired t–test p=0.9073, 5048 d.f., t=-0.116). Furthermore, EGFP+ neurons 

analyzed in the CP at P3 showed a similar morphology in wild–type and HeCo (Fig. 2b). While the 

motility properties and morphogenesis of HeCo neurons appear normal, many mutant cells born at 

E15.5 remain blocked in the lower IZ (Fig. 2a). 

To further test the ability of HeCo neurons to migrate, we performed in utero transplantation 

experiments, injecting labeled E14.5 wild–type or HeCo cortical cells in isochronic wild–type 

mouse brains11. At E17.5 we observed no differences in cell distribution in individual zones 

between the genotypes (Fig. 2c, total χ2–test p=0.177, 4 d.f., χ2 =6.31). Thus HeCo mutant cells in a 

wild–type environment migrate as efficiently as wild–type cells.  

 

Early corticogenesis progenitor defects in HeCo brains 

To further investigate the origin of the defects, we assessed proliferating cells in HeCo brains. We 

initially performed pulsed 5–bromo 2–deoxyuridine (BrdU) injections at E15 followed by sacrifice 

1 h later. In wild–type, BrdU+ cells were largely restricted to the VZ and subventricular zone 

(SVZ), whereas in HeCo brains they appeared spread throughout the cortical wall (Fig. 3a). BrdU 

injections performed earlier, at E13, with sacrifice after 30 min, gave similar results in HeCo brains, 

with BrdU+ cells labeled with Ki–67 (a marker of proliferation) extending outside the proliferative 

zones, in the IZ and CP (Fig. 3b). Thus, early in cortical development, during Tbr1+ cell 

neurogenesis, there is an altered distribution of HeCo progenitors.  

To characterize the progression of progenitors through the cell cycle, we determined their 

labeling index at 30 min (percentage of Ki-67+ cells also labeled with BrdU)16. This was 

significantly higher in HeCo, notably in cells in the IZ and CP (Fig. 3c, left), indicating that a 

higher proportion of cells take up BrdU, either due to a longer S–phase and/or a decreased cell cycle 
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length. Analysis of embryos sacrificed 24 h after BrdU injection showed that the total number of 

BrdU+ cells was increased in HeCo, due to more labeled cells in the VZ, SVZ and IZ (Fig. 3b and 

Supplementary Fig. 2a). We found that more HeCo cells remained in the cell cycle (quantified by 

identifying after 24 h those BrdU+ cells which were Ki–67+), particularly in the SVZ, IZ and CP 

(Fig. 3c, right). Misplaced progenitors in E13 HeCo brains, present outside the ventricular zones, 

hence continue to proliferate longer than wild–type cells.  

We next investigated whether these defects were still present at late–stages of corticogenesis. At 

E19, ectopic proliferating cells were also found in HeCo IZ and CP, although in lower densities, 

and mainly positioned around the heterotopia (Fig. 3d and Supplementary Fig. 2b). Labeling 

index was also increased in the E19 HeCo cortex compared to WT, notably in the IZ and CP and 

cell cycle exit reduced in all layers (data not shown). Thus, at both early and late stages of 

corticogenesis, many actively dividing cells are abnormally positioned in HeCo brains. This is 

associated with altered cell death, as increased numbers of caspase–3+ cells were identified in E13 

HeCo versus wild–type cortices (Fig. 3e). 

Furthermore, we observed both Pax6+ RGCs and Tbr2+ basal progenitors proliferating in ectopic 

positions as shown by co–labeling with phospho(Ser10)–histone 3 (PH3, a mitotic marker), and Ki–

67 (Supplementary Fig. 2b,c). Thus, Pax6+ and Tbr2+ HeCo progenitors divide within the IZ and 

CP. 

 

The Eml1 gene is mutated in HeCo mice 

To identify the perturbed molecular mechanisms leading to ectopic progenitors, we searched for the 

mutant gene. The mode of inheritance of the HeCo phenotype is autosomal recessive12. HeCo mice 

were crossed with C57BL/6J wild–type mice. Tail DNAs from C57BL/6J and NOR–CD1 wild–

type, as well as NOR–CD1 HeCo F0 mice, 31 unaffected heterozygote F1 and 42 affected F2 mice 

were used to screen an array of 1536 SNP markers covering the mouse genome (MGI accession ). 
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Only one genomic region on chromosome 12 showed 3 adjacent homozygous NOR allele markers 

in all affected individuals (Fig. 4a). Flanking markers (5’ rs13481624 and 3’ rs3692361), found 

heterozygote for some affected F2 individuals, defined a 13.7 Mb region (Supplementary Fig. 3a).  

A list of 96 SNPs within this region, and an additional HeCo pedigree, were generated for a 

second round of genotyping. This allowed fine–mapping of the mutation to a 4.4 Mb region 

containing 30 annotated genes (Fig. 4a, MGI accession and Supplementary Table 1). Additional 

SNPs identified by sequencing coding exons and intron–exon boundaries of 15 genes 

(Supplementary Fig. 3a) allowed a further refinement of the candidate region. 

To identify the mutant gene, we also carried out transcriptome microarray experiments (GEO 

accession GSE56907), comparing wild–type and HeCo E18 brain hemisphere total RNAs. 

Strikingly, an Eml1 3’UTR probe mapping to the candidate region on mouse chromosome 12 

exhibited a 5.5–fold decrease in fluorescence intensity in mutants, whereas a coding sequence probe 

(Eml1 exon 5, Fig. 4b) showed a 1.9 fold increase (n=8 mice/genotype, 3’UTR probe, wild–type, 

mean fluorescence intensity 428.6 ± 13.1, HeCo, 77.5 ± 1.2; unpaired t–test 1 d.f., p=0.0001, 

t=708.158; exon 5 probe, wild–type, 79.8 ± 1.2, HeCo, 155.0 ± 8.6, p=0.0001, t=75.859) ). In RT–

qPCR analyses (n=7 WT; n=8 HeCo; primers in Supplementary Table 2), confirming the 

microarray data, Eml1 transcripts containing exons 3 and 4 were 2.5–fold increased in HeCo 

(unpaired t–test, 0.992 ± 0.03 HeCo, versus 0.398 ± 0.01 wild–type, relative units, p=0.0001, d.f. 1, 

t=318.374), and full length transcripts containing 3’UTR sequences were decreased more than 96–

fold (unpaired t–test, 0.00187 ± 0.0002 HeCo versus 0.18052 ± 0.003 wild–type, p=0.0001, d.f. 1, 

t=2569,691). This reduction in expression of full length transcripts, together with the localization of 

Eml1 in the 4.4 Mb genomic region defined by SNP analyses, strongly suggested that Eml1 is the 

mutated gene in HeCo mice.  

 

An early retrotransposon in HeCo intron 22 of Eml1 
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To investigate mutation mechanisms, we searched for disruptions of Eml1 in genomic DNA, and 

identified abnormalities in intron 22 (Fig. 4c and Supplementary Fig. 3b). RT–PCRs were 

performed comparing NOR–CD1 wild–type and HeCo Eml1 transcripts from E18 brains 

(Supplementary Fig. 3c,d). We amplified a 420 bp product extending from exon 19 to the 3’UTR 

from wild–type but not from HeCo. A secondary amplification using nested primers revealed two 

faint smaller HeCo bands (Fig. 4d), corresponding to skipping of exon 22, or exons 21 and 22. Both 

abnormal transcripts are predicted to induce a frameshift and premature stop codon in exon 23, 

leading to the loss of 84 or 117 C terminal amino acids, replaced by 19 or 20 junk amino acids, 

respectively (Genbank accessions KJ734705–KJ734706).  

We amplified intron 22, identifying an expected 910 bp fragment in NOR–CD1 wild–type, 

whereas a >5 kb fragment was amplified from HeCo genomic DNAs (Fig. 4e and Supplementary 

Fig. 3e). Sequencing revealed a 5.5 kb early retrotransposon (ETn) element (Genbank KJ734704), 

flanked by a 6 bp direct repeat in the intron, and highly similar to several ETn type II 

retrotransposons17. Of note, the insertion of an ETn II element giving rise to the barrelless mutant 

was previously described in the same NOR–CD1 stock18,19. We identified chimeric Eml1–ETn 

transcripts corresponding to perturbed splicing, premature termination and/or transcription initiation 

(Fig. 4f). Thus, normal full length transcripts are absent in HeCo brains, replaced by trace levels of 

shortened transcripts and by chimeric Eml1–ETn transcripts, all leading to truncated Eml1 and 

predicted perturbed protein conformation. 

 

Eml1 plays an important role in progenitors 

Eml1 expression in the brain, previously uncharacterized, was examined by in situ hybridization 

(Fig. 5a–i). Mouse Eml1 transcripts were detected from E13.5 to P1 in cortical neuronal progenitors 

of the VZ and post–mitotic neurons of the CP (Fig. 5a–f and Supplementary Fig. 4a–g,j,l). At 

E13.5, expression was predominant in progenitor zones, whereas from E14.5 onwards, expression 
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was also observed in the CP. At E17.5, no further expression was observed in the VZ. No full–

length Eml1 transcripts were detected by in situ hybridization in HeCo brains (Supplementary Fig. 

4h–i). In the adult brain, sparse Eml1 labeling persisted in the cortex, hippocampus and thalamus 

(Fig. 5g and Supplementary Fig. 4m–s). To investigate progenitor zones more similar to those 

present in primate brains, we further examined Eml1 expression in the brain of a gyrencephalic 

species, the ferret. At P0, a developmental stage similar to mouse E15, ferret Eml1 expression was 

detected both in the CP and in all proliferative layers (Fig. 5h,i), including the outer subventricular 

zone (OSVZ), which has expanded during evolution20-23. These combined data are consistent with 

the expression of Eml1 in different types of neuronal progenitors, as well as in post–mitotic neurons 

during cortical development. 

       To further confirm Eml1’s role in progenitors related to the HeCo phenotype, we performed 

rescue experiments by re–expressing this gene under the control of the RGC–specific BLBP 

promoter. HeCo mouse brains were electroporated in utero with either BLBP–IRES–EGFP or 

BLBP–Eml1–IRES–EGFP and the positions of RGCs analysed one day later (Fig. 5j). Rescue with 

Eml1 significantly reduced the number of ectopic EGFP+ RGCs in the SVZ/IZ (% cells SVZ/IZ 

mean=35.11 ± 3.789, versus Ctrl, % cells SVZ/IZ mean=59.37 ± 3.292, unpaired t–test p=0.0003, 1 

d.f., t=23.369). In a knockdown approach, we also inactivated the gene acutely. In N2a cells, a 

transfected Eml1 short hairpin (sh) construct reduced transcript levels by minimally 43 % (relative 

units, sh_control 1.02 ± 0.127, sh_Eml1 0.57 ± 0.051, unpaired t–test p=0.008 d.f.=1, t=10.906, 6 

qPCR experiments from 2 independent cell transfections per condition). Electroporation of these 

constructs in E14.5 wild–type mouse brain led at E15.5 to more proliferating RGCs in the sh–

SVZ/IZ, and this was rescued by an RGC–specific re–expression of sh–resistant Eml1 (Fig. 5k–m, 

Ctrl, % cells SVZ/IZ mean=7.09 ± 1.320, RNAi, % cells SVZ/IZ mean=16.8 ± 2.055, Rescue 

RNAi, % cells SVZ/IZ mean=6.81 ± 0.931). Thus correct expression of Eml1 in RGCs is critical for 

their normal distribution. 
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Eml1 localization and abnormal HeCo spindle orientations 

EML1 is a member of the EMAP family, containing six members in human (NCBI Unigene 

database) and originally identified in the sea urchin, in which EMAP represents an abundant 

microtubule–associated protein24. Studies of other EMAP proteins have pointed to roles in cell 

division, mechanotransduction and sensory function25-29. To question Eml1’s role in cortical cells, 

and in the absence of antibodies specifically detecting the endogeneous protein, we first assessed its 

subcellular localization by transfecting tagged Eml1 in primary cultures of E12.5 mouse cortices. 

These cultures contain Ki–67+ progenitors expressing Pax6 or Tbr2, and post–mitotic neurons 

expressing Dcx (Supplementary Fig. 5a). In neurons, punctate Eml1 appeared distributed 

throughout the cell, aligning with microtubules, and prominent in perinuclear regions and growth 

cones (Supplementary Fig. 5b,c). No morphology differences were observed in HeCo versus 

wild–type neurons in vitro (Supplementary Fig. 5d,e and data not shown). In progenitors, a cell 

cycle–dependent, punctate localization of YFP–EML1 (or Flag–Eml1) was observed (Fig. 6a and 

Supplementary Fig. 6a–e), enriched in perinuclear regions in interphase cells and the region of 

spindle microtubules during metaphase. During telophase and cytokinesis, similar to that described 

previously for EML330, YFP–EML1 labeled puncta were enriched in the midzone area, a region 

interconnecting the separating cells31.  

RGC morphology is not retained in dissociated cultures, and is crucial for the function of 

these cells. We hence looked more carefully at native progenitors in vivo using a cytoplasmic 

marker of mitotic progenitors, phospho–vimentin (P–vim) at E13 (Fig. 6b). Layer distribution of 

both Pax6+ and Tbr2+ cells, double–labeled with P–vim, were abnormal (Fig. 6c). Less RGCs in 

mitosis were apparent at the ventricular lining in HeCo brains (Fig. 6b and Supplementary Fig. 2).  

Using β–catenin, which labels adherens junctions between RGCs, we observed an 

apparently intact ventricle lining in HeCo brains at E13 (Fig. 6d). A similar result was also revealed 
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at E16 with Par3, a polarity protein present in RGC apical endfeet, atypical PKC and β–catenin 

(Supplementary Fig. 7). However, while in wild–type brains, most anaphasic cells located at the 

ventricle lining showed vertically oriented DNA (60–90° angle perpendicular to the ventricular 

surface)15 with few oblique and horizontal divisions, the distribution of cleavage orientations was 

significantly different in HeCo at E13 and E16 (Fig. 6e, and not shown). Such differences may 

explain the manner by which Pax6+ ectopic progenitors arise, since oblique cleavage orientations 

are likely to favor asymmetric inheritance of apical membrane attachments and detachment of 

progenitors15. Eml1 is thus likely to play a critical role in the finely tuned mechanisms regulating 

spindle orientation and apical RGC attachment. 

 

Mutations in human EML1 lead to cortical malformations  

Human EML1 maps to 14q32, and apart from oncogenic chromosomal rearrangements32, no other 

obvious disorders have been linked to this gene (NCBI OMIM database). However, 14q32 

telomeric deletions have been associated with intellectual disability33 and in one girl, lissencephaly 

was reported34. We therefore screened a panel of 47 non–consanguineous and 47 consanguineous 

sporadic, and 9 familial cortical malformation cases as well as 300 control individuals by PCR 

(primers in Supplementary Table 2). One cortical malformation family (P135) showed compound 

heterozygote mutations in their three affected children (Fig. 7a–c). A c.481C>T nucleotide 

mutation in exon 5 (sequence accession number NM_004434), changing an arginine residue 

(p.R138) into a stop codon, was transmitted from the mother, and a c.796A>G mutation in exon 8, 

changing a threonine into an alanine residue (p.T243A, uncharged polar residue changed to 

aliphatic non–polar, Provean prediction –4.038 ‘deleterious’, SIFT 0.01 ‘damaging’, Polyphen–2 

0.594 ‘possibly damaging’), was transmitted from the father. In a second family from a different 

cohort (3489), the proband and an aborted fetus exhibited a homozygote c.673T>C mutation (Fig. 

7a,c and Supplementary Fig. 8a) (p.W225R, hydrophobic non–polar residue changed to highly 
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basic hydrophilic residue, Provean prediction –12.889 ‘deleterious’, SIFT 0.00 ‘damaging’, 

Polyphen–2 0.183 ‘benign’). These changes were not identified in Exome Variant Server, dbSNP 

and 1000 Genomes databases. The affected children from each family demonstrated similar MRI 

patterns, combining giant bilateral periventricular and ribbon–like subcortical heterotopia with 

polymicrogyria and corpus callosum agenesis. The heterotopia was most obvious in frontal regions, 

extending from the lateral ventricles to the white matter in a convoluted form (Fig. 7c). For each 

child, exhibiting normal height and weight, a head circumference greater than or equal to the 98th 

percentile (+2.5 SD) was noted from birth (Supplementary Fig. 8b,c). Human EML1 mutations are 

thus associated with a severe, atypical form of SH, associated with epilepsy and intellectual 

disability. 

    Both human missense mutations target highly conserved residues (chordates and echinoderms) 

and fall in the Hydrophobic Echinoderm–Like Protein (HELP) domain (Fig. 7d and 

Supplementary Fig. 9a), a region characteristic of the EMAP family and potentially contributing 

to tubulin binding25,30,35. To better test their microtubule association, wild–type and T243A Eml1 

were transfected in Vero or COS7 cells. Using standard fixation protocols, Flag–tagged and non–

tagged wild–type Eml1 showed a predominantly cytoplasmic localization during interphase 

(Supplementary Fig. 9b-f). However, mild detergent extraction of soluble proteins revealed 

microtubule–associated Eml1 (Fig. 8a). Using purified proteins we also showed a direct association 

of GST–tagged EML1 with microtubules (Fig. 8b,c). Depolymerizing microtubules by cold 

treatment in both transfected and non–transfected cells, resulted in Eml1 no longer showing a 

fibrillar pattern (Supplementary Fig. 10a, 0 min). After restoring the cells to 37°C, wild–type 

Eml1 was found associated, in the form of puncta, with newly nucleated microtubules in most cells, 

while the T243A mutant protein showed less co–localisation (Fig. 8d,e). Even in cells in which 

microtubules had not been depolymerized by cold treatment, mutant Eml1 reproducibly appeared 

less well associated with microtubules (Supplementary Fig. 10b). Biochemical microtubule 
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enrichment comparing cells transfected with wild–type or T243A mutant clones also showed 

reduced co–sedimented mutant protein (Fig. 8f, co–sedimentation, T243A mean=56 ± 5 % 

compared to WT, unpaired t–test 1 d.f., p=0.0009, t=79.323). Thus, the T243A mutation affects the 

microtubule association of Eml1, confirming that cytoskeletal interactions are important for the 

function of this protein, especially during the division of progenitor cells. 

 

DISCUSSION 

 

We identified here a novel corticogenesis gene associated with severe heterotopia in mouse and 

human. Patients with compound heterozygote or homozygote mutations in EML1 exhibit a ribbon–

like SH and callosal agenesis. HeCo mice, with a retrotransposon insertion perturbing Eml1 

expression, show ectopic progenitors, abventricular mitosis and SH. Knockdown of Eml1 in utero 

in wild–type mice also mis–positions progenitors away from the VZ. This phenotype is rescued by 

Eml1 re–expression in RGCs. Our converging data suggest that Eml1/EML1 is essential for 

retaining progenitors in the proliferative zones and that ectopic progenitors represent the primary 

defect leading to severe heterotopia. This situation differs from classical forms of band heterotopia, 

likely to be primarily caused by abnormal neuronal migration, and also from periventricular 

heterotopia, caused by adherens–junction breakages in the ventricular lining, abnormal neuron 

production in the VZ and/or abnormal neuronal migration14,36,37.  

In HeCo brains, although many neurons are unable to reach the CP, we found that migration 

speed and parameters of E15–born neurons were unchanged compared to wild–type. E14 HeCo 

neurons can also migrate as wild–type cells when transplanted in wild–type brains. On the other 

hand, the accumulation of ectopic progenitors with a high labeling index within the HeCo IZ from 

as early as E13, and local neuron production, may represent the primary defect in this model. This 

dense cell mass in the IZ likely forms a physical barrier for migrating neurons produced in the VZ 
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and SVZ. This combination of abnormalities is associated with a subtle perturbation of RGC fibers, 

predicted also to further hinder migration. As the IZ increases in size during corticogenesis, 

progenitors positioned above the heterotopia may convert into neurons that will reach the CP. 

Interestingly, Tbr1 and Cux1 labelings show that probably all types of neurons, early to late born, 

sequentially populate the heterotopia and continue to migrate to the CP, with a temporal delay in 

comparison with wild–type neurons expressing the same markers. A progressive local production 

and differentiation of different layer–specific cells within or near the heterotopia may also occur 

over time. These temporal changes in the heterotopia were not predicted from analyses performed 

postnatally which suggested primarily an upper–layer neuron phenomenon12. At P3 and P7, 

columns of mutant migrating neurons are still observed and finally only upper layer neurons remain 

trapped in the heterotopia postnatally. As neurogenesis occurs in a lateral to medial gradient38, 

upper layer neurons in medial regions are the most susceptible to remain trapped in the IZ, after the 

migration period, potentially explaining the rostro–medial position of the heterotopia in HeCo mice.  

Concerning its role in progenitors, the expression pattern of Eml1 suggests similarities to Pax6, 

expressed in RGCs between E13.5 and E16.539. In Pax6 mutants, ectopic proliferating RGCs are 

present in the IZ during the same developmental period as those in HeCo mice40. Our combined 

data confirm that, already in the mouse cortex, the IZ constitutes a permissive environment for 

proliferating cells, as also shown by the identification of rare bRG progenitors in this species41,42. 

Also the environment may have an effect on cell cycle parameters, since more proliferating cells 

take up BrdU. However, although the labeling index of HeCo proliferating cells is increased at E13, 

total numbers of cells in mitosis do not differ compared to wild–type, perhaps due to compensatory 

increased cell death. Eml1, like Pax6, plays therefore an important role, limiting RGCs to the VZ 

during early cortical development. 

Human EML1 (O00423.1) shares 57% amino acid identity (397 identical residues over a 686 

amino acid region) with sea urchin EMAP (Q26613), found to localize to the mitotic spindle, as 
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well as to interphase microtubules24. In epithelial cells, we observed both cytoplasmic and 

microtubule localizations of tagged Eml1, which may suggest that it can associate with 

unpolymerized as well as polymerized tubulin. Indeed, EML1 has recently been shown to associate 

with both35. EMAP family members have been reported to influence dynamics, destabilize or 

stabilize microtubules25,43 and several are regulated by phosphorylation during the cell cycle26,27. 

Underlining Eml1’s microtubule function, we observed an enrichment of wild–type Eml1 around 

the microtubule organizing center and regrowing microtubules, and the T243A patient mutation, 

occurring in the highly conserved HELP domain, altered this localization. These data point to an 

essential role of Eml1 in association with dynamic microtubules. 

In neuronal progenitor cultures, tagged Eml1’s localization is cell cycle–dependent, enriched at 

the equatorial, interzonal region during anaphase and telophase, and at the spindle poles during 

metaphase. The endogenous protein not analysed here, may exhibit a similar profile. Indeed, 

endogenous localizations of other members of the EMAP family, were also reported to be cell–

cycle dependent26,27,30. EML3 co–localizes with midbody microtubules in HeLa cells and is 

required for correct spindle function30. The midbody, a transient equatorial structure important for 

cell separation31, is present in the apical ventricular end–foot of RGCs44,45, and apical–basal 

attachments may indeed be key to the HeCo phenotype. However, the ventricular lining shows no 

obvious gross discontinuities in HeCo brains, unlike some other models11,46. Notably though, as 

well as less mitotic cells in this region in HeCo, we also observe spindle orientation defects. The 

increased number of oblique cleavage orientations is predicted to lead to a higher proportion of 

daughter cells which do not inherit the apical membrane, and to cell detachment15. In some other 

models abnormal spindle orientations are associated with increased cell cycle exit, premature 

neurogenesis and microcephaly47. In others still, increased horizontal and oblique divisions favour 

the number of basal progenitors resulting in increased cortical thickness48. HeCo mice are 

normocephalic12  (showing a similar overall number of proliferating RGCs and basal progenitors, 
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Supplementary Fig. 2), but all patients are megalencephalic, which may suggest abnormal 

proliferation, perhaps also of OSVZ progenitors, critical during cortical expansion21. Indeed, HeCo 

mice may most resemble LGN mutant mice exhibiting changed spindle orientations and re–

distributed progenitors, with no apparent effect on cell fate15. They have the added particularity of 

forming heterotopic masses in the IZ in late embryogenesis. These data hence contribute another 

model to the growing list of spindle orientation mouse mutants which each appear to exhibit 

variations and specificities in their cortical phenotypes49. Spindle dynamics and orientation, 

midzone function and cell cycle properties are coordinated during brain development44,45 and loss of 

microtubule–binding Eml1 hence perturbs these processes, contributing to the generation of ectopic 

progenitors. Further studies are required to fully comprehend the details of this phenotype. 

Our data strongly reinforce the concept that ectopic proliferation in the IZ during corticogenesis 

can contribute to the pathogenesis of SH in the rodent9,11,50. Our study also firmly links the HeCo 

phenotype to giant ribbon–like heterotopia, megalencephaly and polymicrogyria in human, hence 

highlighting progenitor defects in the pathogenesis of these disorders. We can hence distinguish 

these malformations associated with mutations in EML1 from those due primarily to intrinsic 

neuronal migration defects, giving rise to classical SBH in human and a preserved neocortex in the 

mouse3-6. Identification of EML1, a microtubule–binding protein with a specific role in progenitors, 

provides a new element to decipher the finely regulated molecular and cellular mechanisms 

underlying normal cortical development. 

 

Database accession numbers 

GEO submission GSE56907 (microarray data), Genbank accession KJ734704 (HeCo_Etn 

sequence), KJ734705 (Exon 22 skipped_HeCo transcript sequence), KJ734706 (Exon 21&22 

skipped_HeCo transcript sequence). MGI submissions (genotyping data). 
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LEGENDS TO FIGURES 

                         

Figure 1 HeCo heterotopia and cell accumulation in the dorso–medial regions of developing HeCo 

cortex. (a) Nissl stained brain section from a HeCo mouse showing bilateral bands of subcortical 

heterotopic neurons (# right) compared to a wild–type section (left) . (b,c) At E17 in the HeCo 

cortex, early–born Tbr1+ (b) and late–born Cux1+
 (c) neurons are trapped within the heterotopia (#). 

Nestin labeling shows disorganized RGCs processes throughout the heterotopia (b, far right). (d) At 

P3, Tbr1+
 neurons (top) have reached layer VI whereas many Cux1+

 neurons (below) remain 

trapped within the heterotopia and the radial extent of the HeCo Cux1+
 cortical layer II/IV is 

reduced above the heterotopia compared to wild–type. A column of Cux1+
 cells is present between 

the heterotopia and layer II/IV (d, lower, arrow). Arrowheads indicate similar regions. Cell nuclei 

of coronal brain sections were counterstained with Hoechst. Ctx, cortex; Hip, hippocampus; LV, 

lateral ventricle. Scale bars: 2 mm (a), 400 μm (d, left and middle), 200 μm (b,c,d, right) and 25 µm 

(b, far right). Each of these observations was reproduced at least 3 times. 

 

Figure 2 No changed parameters of migrating cells in HeCo and wild–type mice. (a) Density and 

tracking of EGFP+ cells 3 DIV after E15.5 electroporation, are shown for wild–type and HeCo 

slices (migration parameters: 1 section/animal; speed and pause frequency calculated in n=3 wild–

type, n=83 cells, n=3015 tracking points, n=5 HeCo, n=86 cells, n=3064 tracking points; pause 

duration measured for n=323 wild–type, n=319 HeCo cell pauses). Similar trajectories of wild–type 

and HeCo EGFP+ neurons within the CP were confirmed by calculating the angle of migration (1 

section/animal n=3 wild–type, n=5 HeCo, measured for n=2536 wild–type, n=2514 HeCo cell 
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movements) and are illustrated by cell tracking trajectory orientations and 3 sequential images 

(arrow heads). Some stationary HeCo EGFP+ cells with horizontal orientation were observed (white 

arrow). (b) After electroporation at E15.5, less EGFP+ cells reached the cortex in P3 HeCo embryos, 

and they fail to form a distinct cortical layer II/IV although the morphology of cells within the CP is 

similar to wild–type. Many cells remain sequestered in the heterotopia (#).Coronal brain sections; 

cell nuclei counterstained with Hoechst. (c) Representative images of in vivo CMFDA–labeled 

transplanted cells reaching the CP at E17.5 (19 sections, 293 cells from n=10 wild–type, 42 

sections, 426 cells from n=18 HeCo). Similar cell distribution in the different zones was observed 

after transplantation of either wild–type or HeCo E14.5 dissociated cells. Scale bars, 200 μm (b, 

left), 100 μm (b, right, c), 90 µm (a–left) 40 μm (a–density), 30 µm (tracking and video images t:0, 

60’,120’), 25 μm (). 

 

Figure 3 Proliferation defects in HeCo cortex. (a) At E15, BrdU+ progenitors are observed in all 

HeCo zones and inter–mix with Tbr1+
 neurons, while WT BrdU+ cells are mostly restricted to the 

VZ/SVZ. (b) At E13, increased numbers of BrdU+ cycling progenitors are present in the HeCo 

forebrain. After a 30 min BrdU pulse (left) ectopic HeCo progenitors are observed in the IZ/CP as 

in (a), with an increased labeling index (c, 3 sections/animal n=4; each dot is representative of one 

section, unpaired t–test, ALL layers, p=0.016, 13.051 d.f., t=–2.774; Multiple Factor ANOVA 

(MFA) 1 d.f, VZ p=0.075, F=3.260, SVZ p=0.194, F=1.715, IZ p=6.77 x 10-21, F=164.408, CP 

p=1.49 x 10-15, F=99.241). After a 24 h BrdU pulse (b, right), cell cycle exit is reduced in the SVZ, 

IZ and CP (c, right, 3 sections/animal n=3; unpaired t–test, ALL layers, p=0.009, 15.433 d.f., 

t=2.967; MFA 1 d.f., VZ p=0.074, F=3.296, SVZ p=0.007, F=7.842, IZ p= 3.86 x 10-10, F=54.586, 

CP p= 7.31 x 10-27, F=327.536). The VZ is reduced in thickness in the mutant. (d) At E19, HeCo 

ectopic progenitors surround the heterotopia (#) and are often BrdU+ and Ki–67+. (e) E13 Caspase 3 

immunostaining reveals increased apoptotic cells in HeCo (3 sections/ animal n=6; unpaired t–test, 
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p=4.73 x 10-16, 33.847 d.f, t=-5.436). Scale bars, 200 μm (lower magnification a,d), 100 (c,e; higher 

magnification a,d) and 50 μm (d, far right). Individual data points showing dispersion and 

corresponding means are shown in dot plots.  

 

Figure 4 Genetic linkage of the HeCo mutation and identification of a retrotransposon in Eml1. (a) 

The 12q HeCo candidate region identified by first (1) and second (2) rounds of genotyping and the 

final candidate region (3) between rs29151683 and a non referenced SNP in Dlk1. , internal SNPs 

homozygous for the NOR–HeCo alleles in all affected F2 mice; , flanking boundary SNPs and 

additional informative SNPs from genes Dlk1, Dync1h1, Mark3, and Adam6, heterozygous (HZ) in 

some F2 individuals. Black bars, regions of homozygosity; grey bars, excluded regions; dotted bars, 

non–excluded regions (informative SNPs and individuals in Supplementary Table 1). (b) Eml1 

gene structure (assembly NCBI37/mm9, July 2007). The canonical isoform (NCBI 

NM_001043335.1) begins in exon 2. (c) Eml1 exon 22 could not be amplified from HeCo genomic 

DNA. (d) Aberrant transcripts detected by nested RT–PCR between exons 19 and 23, from two 

distinct HeCo (1 and 2) samples; RT, reverse transcriptase. (e) ETn element insertion identified by 

sequencing a >5 kb intron 22 PCR product. (f) Schema of the Eml1 ETn element with chimeric 

transcripts detected by RT–PCR. Some Eml1 transcripts finish in the ETn, others start in the ETn 

and finish in Eml1 exon 23. Black bars, PCR products; , Eml1 primers; , ETn primers; SD, 

splice donor, SA, splice acceptor, pA, potential polyadenylation sites; STOP, in–frame stop codons; 

ATG, potential start codons (the ETn contains additional SD, SA and pA sites, not represented 

here). Full length gels are presented in Supplementary Fig. 11. 

 

Figure 5 Eml1 brain expression and HeCo and RNAi rescue. (a–i) Eml1 expression in mouse (a–g) 

and ferret (h,i). (a–c,e) Eml1 is in the VZ at E13.5 (a, blue staining) and the VZ and CP at E14.5 (b) 

and E15.5 (c,e). At E17.5 a strong CP with no further VZ expression is observed (d,f). (e,f) 
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Labeling of the medial edge of the striatum (arrow). In adult (g) thalamus and piriform cortex are 

labeled (arrow). (h,i) Ferret Eml1 is detected strongly in the CP and in the proliferative layers (h, 

arrows). Observations reproduced 3 times, mouse, and 2 times, ferret. (j) Electroporation of BLBP–

Eml1–IRES–EGFP in HeCo reduces the number of BLBP–EGFP+ progenitors in the SVZ/IZ (n=4 

animals/condition, 2 sections/animal, total cells 777 HeCo–Ctrl, 851 HeCo–rescue). (k) Eml1 

knockdown in WT embryos by in utero electroporation of an shRNA construct increases the 

number of BLBP–EGFP+ progenitors in the SVZ/IZ (arrowheads) and this is rescued by BLBP–

Eml1–IRES–GFP (l, 9 sections from n=4 Ctrl, n=4 RNAi, n=5 Rescue, total cells 557 Ctrl, 758 

RNAi, 771 Rescue, MFA p=0.0001, 2 d.f., F=14.219;  unpaired t–test with 1 d.f: Ctrl–RNAi, 

p=0.0011, t=15.819; RNAi–rescue, p=0.0004, t=19.621; Ctrl–Rescue p=0.8651, t=0.030). (m) 

Ectopic proliferating cells (Ki67+EGFP+) were observed (two experiments). MZ, marginal zone; SP, 

subplate; IZ, intermediate zone; OSVZ, outer subventricular zone; ISVZ, inner SVZ. a–g, coronal, 

h,i, sagittal sections. Scale bars 500µm (h), 400 µm (f,g), 200 µm (b–e,i), 100 µm (a,j,k), 15 µm 

(m). Individual data points showing dispersion and corresponding means are shown in the dot–plot.  

 

Figure 6 YFP–EML1 in neuronal progenitors in vitro and features of HeCo progenitors. (a) YFP–

EML1 puncta accumulate during telophase in the region of the midzone and remnants are 

sometimes observed asymmetrically after cell separation. Far right, enlargements of boxed areas. 

Observations reproduced more than 5 times. (b,c,) In E13 HeCo brains, P–vim+
 RGCs are decreased 

in VZ while increased in IZ/CP, (c, 3 sections/animal, n=6/genotype; MFA 1 d.f., VZ p=5.94 x 10-

7, F=27.470, SVZ p=0.246, F=1.356, IZ p=0.009, F=6.975, CP p=0.124, F=2.402; unpaired t–test, 

ALL layers p=0.964, 33.661 d.f., t=-0.045. Right, P–vim+/Pax6+
 sections: 8 WT, 9 HeCo, 

n=3/genotype; MFA 1 d.f., VZ p=0.361, F=0.847, SVZ p=0.003, F=9.885, IZ p=2.57 x 10-7, F= 

33.207, CP p=6.94 x 10-6, F=23.975; unpaired t–test, ALL layers p=0.104, 14.426 d.f., t=1.738. 

Rare P–vim+/Tbr2+ 3 sections/animal, n=3/genotype, MFA, 1 d.f, VZ, p=0.027, F=5.096, SVZ 
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p=0.184, F=1.801, IZ p=1.30 x 10-4, F=16.587, CP p= 5.29 x 10-6, F=24.701; unpaired t–test, ALL 

layers p=0.550, 15.609 d.f., t=0.612). (d) Some P–vim+
 basal processes appear misoriented (b, 

arrows). P–vim+/Pax6+
 cells are shown by filled arrow heads, P–vim+ asymmetrically dividing cells 

by empty arrow heads. Normal HeCo ventricle lining with typical honeycomb β catenin labeling. 

(e) The proportion of anaphasic nuclei with an oblique cleavage plane is significantly increased in 

HeCo at E13 (5 sections/animal, n=8/genotype, total cells 302/genotype; χ2–test 2 d.f., p=5.09 x 10-

5, χ2=19.770, standardized residual (s.r.) for 0–30°=0.1 p=0.920 (wild-type 6 +/- 4.62 %, HeCo 7 +/- 

3.38 %, s.r 30–60°=2.9 p=0.004 wild-type 9  +/- 3.34 %, HeCo 22 +/- 3.51 %; s.r. 60–90°= –1.3 

p=0.194, wild-type 85  +/- 3.22 %, HeCo 71 +/- 3.36 %) and at E16 (not shown). Scale bars 100 μm 

(b, low power views), 20 μm (b higher power views, d), 8 µm (a), 5 μm (e), and 1 µm (a far right). 

Individual data points showing dispersion and corresponding means are shown in dot–plot.  

 

Figure 7 Mutations in human EML1. (a–c) EML1 mutations in two families with ribbon–like 

heterotopia. (a) Pedigrees of the non–consanguineous family with three affected boys and the 

consanguineous family with two affected sibs. (b) Sequence chromatograms showing the 2 

mutations in family P135 (black bars). (c) Patient axial T1 weighted MRI sections (middle and 

lower rows, left and centre) show huge subcortical masses (left, arrowhead) that start at the 

ventricles (centre) and expand to the subcortical white matter. The cortex close to the lesion is 

polymicrogyric in P135–5 (left, arrow). White matter is present between the heterotopia and cortex. 

Corpus callosum agenesis and mild brainstem hypoplasia are obvious when comparing patient 

(P135–5 and 3489–4, 6 and 4 years old respectively) and control (ctrl, 6 years old) T1 sagittal 

sections (arrowhead, corpus callosum; arrow, brainstem). Moderate ventricular enlargement, most 

prominent in the left lateral ventricle, is observed in patient P135–5, and patient 3489–4 suffers 

from hydrocephaly, plagiocephaly and dolichocephaly. Cerebellum and hippocampus are normal in 

patient P135–5; the hippocampus is hypoplastic, the basal ganglia are dysplastic and the cerebellum 
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is enlarged in patient 3488–4. Patient P135–5 and control images are presented at the same scale. 

(d) Region of conserved HELP domain of the EML1 protein containing W225 and T243 residues 

(O00423, human EML1; Q9HC35, human EML4; O95834, human EML2; Q26613, sea urchin 

EMAP; O45487, Caenorhabditis elegans ELP1; Q9N9X3, Euplotes octocarinatus Emapl, 

XP_002084895, Drosophila EMAP).   

 

Figure 8 Association of recombinant wild–type and mutant Eml1 with microtubules. (a) A fraction 

of wild–type tagged–Eml1 is associated with the microtubule cytoskeleton in Vero cells (far right, 

higher magnification of boxed area). (b,c) GST–EML1 interacts directly with microtubules in vitro. 

(b) In the presence of taxol–stabilized microtubules (left), a major fraction of GST–EML1 (MW 

116 kDa) cosediments with the microtubule pellet (P). With the same amount of unpolymerized 

tubulin (right), most GST–EML1 remains in the supernatant (S). (c) After incubation with 

microtubules, the GST control protein (MW 26 kDa) remains in the supernatant. These observations 

were reproduced more than 5 (a) and 3 times (b,c). (d-f) Effect of the T243A mutation. Different 

staining patterns of cells (transfected wild–type or T243A construct, cold treated and restored for 2 

min at 37°C) were assessed (d, n=13 randomly chosen cells per condition, raw data from one 

representative experiment, reproduced 3 times). (e) Wild–type Eml1–labeled puncta (left) strongly 

associate with repolymerizing microtubules while mutant Eml1 (T243A) is less well associated 

(right) although nascent microtubules are detected with antibody to α–tubulin. The extent of 

colocalization is indicated in positive PDM (product of the difference from the mean) images, 

showing intensities above the mean for both fluorescent channels (yellow, strongest colocalization). 

(f) Wild–type EGFP–Eml1 sediments with microtubules (P1 fraction) after one cycle of 

depolymerisation–repolymerisation. Compared to wild–type protein, reduced amounts of mutant 

EGFP–Eml1 (T243A) were sedimented (n=3 independent experiments). Scale bars 10 µm (e) and 5 

µm (a). Full length blots are presented in Supplementary Fig. 11. 
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ONLINE METHODS 

 

Animals. Research was conducted according to national and international guidelines (EC directive 

86/609, French MESR 00984.01) with protocols followed by local ethical committees. WT and 

HeCo mice on a NOR–CD1 genetic background (outbred stock) were used for developmental 

analyses. For primary neuronal cultures and in situ hybridization, Swiss and NOR–CD1 mice were 

used. Pigmented ferrets (Mustela putorius furo) were used. For staging of embryos, the day of 

vaginal plug was considered as E0.5. Mice were housed with a standard 12 h light/dark schedule 

(lights on at 07:00 a.m.). 

 

Immunohistochemistry and confocal microscopy Mouse embryo brains were fixed by immersion 

overnight at 4°C in 4% w/v paraformaldehyde (PFA) in 0.1M phosphate buffer, pH 7.4. Brains 

were included in a solution of 75 mg/ml agarose and 150 mg/ml sucrose in Phosphate Saline Buffer 

(PBS) 1X (Dulbecco’s PBS, Gibco Invitrogen) and cut in coronal sections (70 µm) using a 

vibrating blade microtome (Leica VT1000 S). Postnatal mice were anaesthetized with sodium 

pentobarbitone and perfused with PFA. Brains were postfixed 2 h, cryoprotected in 30 % w/v 

sucrose and cut in coronal frozen sections (30–50 µm). Immunodetection was performed using 

standard protocols. The following primary antibodies were used: mouse monoclonal anti–GFP 

(G6539 Sigma Aldrich, 1/400), anti–Ki–67 (556003 BD Pharmingen, 1/200), anti–BrdU 

(MON8003 Monosan, 1/100), anti–β–catenin (C19220 BD Transduction Lab, 1/200), anti–Nestin 

(Rat–401 DSHB, 1/200), and anti–Phospho–vimentin (AB22651 Abcam, 1/200); rabbit polyclonal 

anti–GFP (A6455 Invitrogen, 1/700–1/1000), anti–Caspase–3 (9664 Cell Signaling, 1/200), anti–

Cux1 (sc13024 Santa Cruz Biotechnology, 1/400), anti–Ki–67 (301103 Novocastra, 1/200),  anti–

Par3 (07–330 Millipore, 1/200), anti–Pax6 (PRB–278P Covance, 1/500), anti–Tbr1 (AB31940 
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Abcam, 1/500), anti–Tbr2 (AB23345 Abcam, 1/500), anti–GFAP (Z0334 Dako, 1/400), and anti–

S100β (HPA015768 Sigma–Aldrich, 1/2000); goat polyclonal anti–Dcx C–18 (sc–8066 Santa Cruz 

Biotechnology, 1/300), and anti–Sox2 (MAB2018 R&D Systems, 1/500); rat monoclonal [HTA28] 

to Histone H3 (phospho S28) (AB10543 Abcam, 1/200). We checked with other researchers in the 

field who confirmed most other antibodies prior to our use. Fluorescent–stained sections were 

imaged with confocal microscopes (Zeiss LSM 710 Quasar or Leica SP5) equipped with 10x, 20x, 

40x oil Plan–NEOFLUAR, and 63x oil Plan–Apochromat objectives. Fluorophore excitation and 

scanning were performed with an Argon laser 488 nm (blue excitation for GFP, Alexa 488), with a 

HeNe1 laser 543 nm (green excitation for Alexa 594) and a Diode laser 405 nm (for Hoechst 

staining). To obtain the whole Z–stack dataset, we used the mode ‘‘Surpass’’ and single sections of 

a Z–stack were displayed by using the ‘‘Slice’’ mode of Imaris. 

 

Ex vivo and in utero electroporation, transplantation and confocal time–lapse microscopy. 

Pregnant mice were sacrificed with pentobarbital, E15.5 embryos collected in cold dissecting 

medium (MEM, Gibco, with 15 mM glucose and 10 mM Tris, pH 7.4). The expression vector 

pCAGGS–GFP (30 µl at 0.5µg/µl in sterile PBS containing 20% w/v Fast–blue) was injected into 

the ventricular region of embryonic brains by a pneumatic picopump (Picospritzer III, Parker 

Hannifin Corporation). Embryos were placed into HBSS 1X medium (Gibco), electrodes (System 

CUY650P5 NepaGene Co) were maintained around the embryo head with a 45° angle and plasmids 

electroporated by discharging a 4000 µF capacitor charged to 45 V (5 electric pulses of 50 ms with 

500 ms intervals) with a CUY21 electroporator. After electroporation brains were embedded in 3% 

w/v low–melting point agarose (Invitrogen). For imaging migrating neurons, an in vitro model of 

organotypic slices was used (modified from ref. 51). Coronal sections (250 µm–thick) were cultured 

for 3 DIV on nucleopore Track–Etch membranes (1 µm pore size; Whatman) in slice culture 

medium (SCM: BME/HBSS, Invitrogen) supplemented with glutamine, 5% v/v horse serum, and 



26 
 

penicillin/streptomycin. Temperature was maintained at 37ºC (microscope incubator system Life 

Scientific) and slices were perfused with SCM medium containing a gas mixture of 5% CO2/ 95% 

O2. EGFP+ neurons were imaged for 10 hrs with a 20X and a 60X immersion lens at 15 min 

intervals using the fast scan function of the Leica SP5 confocal microscope resonant scanner. Image 

captures and all peripherals were controlled with Leica software. Pictures were processed and 

converted into *.AVI movies using Imaris and Metamorph 6.0. Using the tracking function of 

Metamorph software 6.0, neuron traces were analyzed. Migration parameters (basal rate of 

migration, frequency and duration of the intervening pauses, absolute angle) of IZ and CP migrating 

neurons were assessed. Overall fluorescence intensities were measured manually with Imaris 

software and EGFP+ cells in the CP were counted in WT and HeCo cortical sections of 50 µm in a 

defined volume stack using Imaris manual volume tool.  

      For in utero electroporations, E14.5 and E15.5 timed–pregnant Swiss, HeCo and NOR–CD1 

mice were anesthetized with isoflurane (3–4 % during induction and 2–2.5 % during surgery) and 

embryos were exposed within the intact uterine wall after sectioning the abdomen. Embryos were 

electroporated as above with combinations of the expression vectors pShRNA, pShRNA–control, 

pBLBP–GFP, pBLBP–Eml1–IRES–GFP and pBLBP–IRES–GFP (2 µl at 1 µg/µl with Fast Green 

0.3 mg/ml), and with the expression vector pCAG–GFP (2 µl at 2 µg/µl with Fast Green 0.3 

mg/ml), using five electrical square unipolar pulses (amplitude: 45 V; duration: 50 ms; intervals: 

950 ms) powered by a Nepa Gene (model CUY21 EDIT Square Wave Electroporator; NEPA 

GENE) or a BTX (model BTX ECM 830; Harvard Apparatus) electroporation apparatus. The 

embryos were placed back in the abdominal cavity and the development was allowed to continue 

until either E15.5 or P3. 

For transplantation experiments, cortical cells were dissociated from E14.5 WT and HeCo 

mouse brains, stained with CMFDA Cell Tracker, and injected into E14.5 WT hosts, as described in 
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ref. 11. Embryos were left to develop in utero and brains analyzed 3 days later. The distribution of 

CMFDA labeled cells was assessed.  

 

BrdU injections and assessment of proliferation. Timed–pregnant females received a single 

intraperitoneal injection of BrdU (Sigma–Aldrich, 50 μg/g body weight; 8 mg/ml in 0.15 M 

phosphate buffer, 0.9 % w/v NaCl, pH 7.4) at E13, E15 and E19. Mice were sacrificed 30 min, 1 h, 

or 24 h later52 and brains processed for imunohistochemistry. Alternate sections were chosen for 

BrdU and Ki–67 or BrdU and Tbr1 double–labeling and preincubated with 2 % methanol v/v to 

improve BrdU detection.  

 

Cell counting and quantification. After immunohistolabeling Z–stacks were acquired for each 

coronal section in a multitrack mode avoiding crosstalk artifacts of the fluorochromes. All Z–stacks 

and image processing were performed with Imaris 4.3 software (Bitplane) and ImageJ 1.48 software 

(NIH). In general, image stacks contained approximately 25–40 confocal planes each, for optimal 

z–axis. Counting was performed for each layer (VZ, SVZ, IZ, CP). Labeled cells were counted in a 

region of interest (ROI), a 100 µm wide and 10 µm deep stripe across VZ, SVZ, IZ and CP, in 

which thickness was defined by the different layers. For shRNA and rescue experiments BLBP–

GFP+ cells were counted in a ROI in sections of 70 µm distinguishing cells restricted to or outside 

of the VZ. Caspase–3+ cells were counted in cortical sections of 50 µm, in a defined volume stack 

using Imaris manual volume tool. For spindle orientations, cortical sections were analysed with 

Imaris Bitplane® software to determine and count anaphasic shaped nuclei lining the apical 

membrane (labeled with PAR3) in the VZ. Anaphase nuclei angles were measured with Image J 

free software “angle tool”. 
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Mouse crosses for genetics screen. For genotyping studies, HeCo mice on the NOR–CD–1 

background were crossed to C57BL/6J mice, giving rise to an unaffected heterozygote F1 

population. Brother–sister matings generated an F2 population with 25 % affected homozygous 

individuals. Brain sections of each F2 mouse (n= 240, male or female) were analyzed in order to 

identify mutants. 

 

Whole genome and second round chromosome 12 SNP analyses. DNA samples were prepared 

from mouse tail biopsies according to recommendations of genotyping platforms. SNP markers 

were selected based on naturally occurring polymorphisms between C57BL/6 and Sv129 strains, 

the latter showing the strongest similarity to the NOR–CD–1 background. An array of 1536 SNPs 

was created and screened using Golden Gate Illumina technology (Illumina, Gmbh). New SNP 

markers between rs13481624 and rs3692361 on mouse chromosome 12 were screened in the same 

way. 

 

Differential gene analysis. Total RNA samples were extracted from single hemispheres dissected 

from NOR–CD1 HeCo and WT E18 embryos. E18 RNAs showed a mean RNA integrity number of 

9.81 ± 0.12 and a coefficient of variation of 1.26 %. Labeled cRNAs were hybridized to 

MouseWG–6 v2 expression BeadChips (Illumina, Gmbh). Differential analysis per gene was 

performed with Student t–tests. In microarray analyses, quality controls (reference samples, 

principal component analyses before and after normalization) showed neither batch nor beadchip 

effect. Bead–averaged data was normalized using quantile normalization (BeadStudio software, 

Illumina, Gmbh). Real time qPCRs were performed using the SYBRgreen method on total, RQ1 

DNAse treated RNA samples, following MIQE guidelines53. Values were normalized to the 

geometric mean of 3 normalization factors found to be the most stable through all samples using the 

geNorm approach54. First strand cDNA was synthesized using 50 ng/µl of total RNA, oligo(dT) and 
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the Superscript III Reverse Transcriptase kit (Invitrogen). Gene–specific primers were designed 

using Primer Express Software (PE Applied Biosystems). The 3 genes used for normalization were 

histone deacetylase 3, Hdac3; Endoplasmic reticulum protein 29, Erp29; ATP synthase, H+ 

transporting, mitochondrial F0 complex, subunit c (subunit 9), isoform 3, Atp5g3. Amplicon sizes 

were between 54 and 79 bp. Standard curves were generated from assays made with serial dilutions 

of cDNA to calculate PCR efficiencies (90 % < efficiency < 105%, with r2 >=0.998). Threshold 

cycles (Ct) were transformed into quantity values using the formula (1+Efficiency)–Ct. Only means 

of triplicate with a coefficient of variation of less than 10 % were analyzed. Inter–plate variation 

was below 8 %. 

 

PCR amplification. Genomic DNA amplifications were performed for each exon and flanking 

sequences of mouse Eml1 from HeCo and NOR–CD1 WT samples using standard PCR (primers in 

Supplementary Table 4). Intron 22 was amplified using Pfu turbo DNA polymerase (Agilent 

Technologies). RT–PCRs were performed from random–hexamer primed cDNAs using standard 

protocols. PCR products were checked by agarose gel electrophoresis and sequenced using standard 

Sanger sequencing (Beckmann Coulter Genomics). 

 

Patients and analysis of human EML1. Following standard protocols, patient DNAs or blood 

samples, and informed consent (from all patients’ parents) were obtained according to the 

guidelines of local institutional review boards (IRBs APHP–Délégation Interrégionale à la 

Recherche Clinique, Paris and Erasmus Medical Center, Rotterdam). Sporadic or familial cases 

were selected with clinical and brain imaging features compatible with a diagnosis of either 

lissencephaly or heterotopia. Prior to EML1 analysis, patients were found negative for mutations in 

DCX (RefSeq NM_181807), PAFAH1B1 (RefSeq NM_000430), ARX (RefSeq NM_139058), 

TUBA1A (RefSeq NM_006009) or TUBB2B. The family with compound heterozygote mutations 
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was also negative for filamin A mutations. Genomic DNA amplifications were performed for EML1 

using standard procedures (primers in Supplementary Table 2) and PCR products were analyzed by 

direct sequencing using an ABI3700 DNA analyzer (Applied Biosystems, Foster City, CA). As well 

as mutations, additional heterozygote amino acid changes were observed in other patients (c.2315 

A>G, p.H749R, exon 22; c.292 G>A, p.V75M, exon 2) or present in intronic regions (intron 7, 130 

bp after exon 7; intron 21, 10 bp before exon 22).  

     The mutation for the second consanguineous family (Moroccan) was independently identified by 

homozygosity mapping and exome sequencing during ongoing studies to identify genetic causes of 

cortical malformations in a large Dutch cohort (GMM and RO). Parents are healthy. Whole exome 

sequencing using Agilent Sure Select V4 capturing followed by deep sequencing using Illumina 

HiSeq was performed (protocol number for genome analysis MEC–2012–387). After filtering for 

common variants and selecting changes in coding areas and intron/exon boundaries with a predicted 

effect on the protein, the only homozygote mutation in the areas of homozygosity detected in both 

affected sibs in SNP array analyses, was found in EML1 on chromosome 14 (p.W225R). This 

mutation was confirmed by Sanger sequencing in both affected sibs and cosegregation by parental 

analysis.  

     P135–3 (French family) was referred for severe developmental delay with congenital 

macrocephaly. He acquired ambulation with mild spasticity at 4 years, and developed refractory 

epilepsy with a combination of atypical absences, atonic falls and tonic seizures. At 16 years, he 

was severely delayed intellectually with severe behavioral and sleep disturbances. P135–4, referred 

at 8 years for severe intellectual disability and epilepsy had clinical features similar to his brother, 

generalized epilepsy started at 8 years. P135–5, admitted for severe hypotonia, developed 

neurological symptoms from the neonatal period. He walked independently at 3 years, but 

developed behavioral and sleep disturbances. No seizures have yet been reported (8 years). The 

affected child from the Moroccan (3489) family exhibited macrocephaly and congenital 
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hydrocephalus, with severe psychomotor delay and seizures. One child is unaffected and the third 

pregnancy was terminated in the 23rd week because of hydrocephalus shown by ultrasound. 

 

Plasmids and shRNA. Full length mouse Eml1 (canonical sequence RefSeq NM_001043335; 

IMAGE clone 6400458, MGC 62485) was cloned into the pCAGIG vector (Addgene), or the p3X 

FLAG vector (Sigma–Aldrich) or pEGFP–C3 vector (Clontech) with the tag N–terminal to Eml1. 

Site directed mutagenesis was performed using a Quik Change kit (Stratagene). The pcDNA3.1–

YFP–EML1 construct was a kind gift from A.M. Fry (University of Leicester, UK). The Eml1 

shRNA directed against the following 3’–UTR sequence: 5’–GAACTCTGTAGCACTGGTTGT–

3’, was checked for specificity in sequence databases and cloned in the mU6Pro vector, obtained 

from the D.L. Turner lab (Michigan, US). Real time qPCRs (Agilent Technologies) were performed 

from transfected Neuro–2a (N2a) cells using the SYBRgreen method on total, RQ1 DNAse treated, 

RNA samples, using Eml_RT17–18F and Eml_RT20R primers (see Supplementary Table 2). First 

strand cDNA was synthesized using oligo(dT) primers and the Superscript II Reverse Transcriptase 

kit (Invitrogen). The Cyclophilin gene was used for normalization. The BLBP–IRES–GFP construct 

was obtained from the N. Heintz lab (New York, US). 

 

Cell cultures, transfections and immunodetection. COS7 and Vero cells (ATCC) were 

transfected using Nanofectin (PAA Laboratories GmbH) and fixed after 24 h with either 4 % w/v 

PFA (5 min, 37°C) or ice cold methanol (6 min, –20 °C), or subjected to a detergent extraction in 

PHEM buffer (60 mM PIPES, 25 mM HEPES, 10 mM EGTA, and 2 mM MgCl2, pH 6.9) + 0.5 % 

v/v Triton X–100 for 1 min prior to fixation with cold methanol. N2a cells (ATCC) were 

transfected using the Neon system. For repolymerisation experiments cells were incubated on ice 

for 30 min 24 h post–transfection, thereafter restored to 37°C for various intervals before detergent 

extraction and fixation. Primary cultures from E12.5 cortices were maintained in a B27/N2 
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medium55 which is a mixture (1:4) of Neurobasal/B27 medium without vitamin A and DDM 

medium (DMEM/F12 with GlutaMAX, supplemented with N2, 0.1 mM non–essential amino–acids, 

1 mM sodium pyruvate, 500 µg/ml BSA, 0.1 mM 2–mercaptoethanol and penicillin/streptomycin 

100 U/ml). Electroporation was performed using an Amaxa mouse Nucleofector kit (Lonza). Cells 

were fixed in PFA or cold methanol 24 h after electroporation. Immunocytochemistry was 

performed according to standard procedures  and results observed and photographed using either 

epifluorescence (Leica DM6000) or confocal microscopy (Olympus FV10i). PDM images were 

generated using Image J. The following primary antibodies were used: mouse monoclonal anti–α–

tubulin (DM1A Sigma–Aldrich, 1/10000), anti–GFP, anti–γ–tubulin (GTU–88 Sigma–Aldrich, 

1/800), anti–γ–adaptin (A36120 BD Transduction Laboratories, 1/200), anti–KIF1A (612094 BD 

Transduction Laboratories, 1/75), anti–tyrosinated tubulin (TUB–1A2 Sigma–Aldrich, 1/10000), 

anti–dynein (IC) (D5167 Sigma–Aldrich, 1/50), anti–spastin (Sp 3G11/1 Santa Cruz Biotechnology, 

1/50), and anti–acetylated tubulin (6–11B–1 Sigma–Aldrich, 1/10000); rabbit polyclonal anti–

FLAG (F7425 Sigma–Aldrich, 1/500), anti–EML1 (39421 GeneTex 1/300), anti–GFP, anti–Ki–67, 

anti–Pax6, anti–Tbr2, goat polyclonal anti–Dcx, and rat monoclonal anti–neuronal class III β–

tubulin (TUJ1 Covance, 1/1200). 

 

Microtubule sedimentation experiments. Microtubules were polymerized from 10 µg of purified 

porcine brain tubulin (Cytoskeleton Inc.) in the presence of taxol and and incubated 20 min at 37°C 

with 1 µg of precleared GST–EML1 or control GST proteins (ProteoGenix). Soluble tubulin (10 

µg) was incubated with GST–EML1 under the same conditions. Microtubules were separated from 

soluble proteins by ultracentrifugation through a 60% v/v glycerol cushion (10 min at 30,000 g 

using an Airfuge, Beckman). Samples were analyzed by SDS–PAGE and Western blotting using 

antibodies to GST (G7781 Sigma–Aldrich) and α–tubulin. Transfected N2a cells were lysed by 

sonication in MEM buffer with 1 mM GTP. After cold–induced microtubule depolymerization and 
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ultracentrifugation, generating a tubulin–rich supernatant S0, microtubule repolymerization was 

performed in the presence of 20 µM taxol (Sigma–Aldrich). Microtubules were separated from 

soluble proteins through a 60% glycerol cushion. After Western blotting using antibodies to α–

tubulin and GFP, the ratio of Eml1 to tubulin in the pellet P1 (normalized to the Eml1/tubulin ratio 

in S0) was determined using ImageJ. 

 

In situ hybridization. Mouse digoxigenin–labeled riboprobes were generated by in vitro 

transcription of a fragment amplified from the Eml1 3’UTR region (chr12 nt 109,776,616 to 

109,777,469, Genome Browser, http://genome.ucsc.edu/) subcloned  in pBluescript II KS vector. To 

generate the ferret Eml1 probe, cDNA was reverse–transcribed from P0 ferret brain total RNA and a 

fragment amplified using fEml1F, CTTTTCTATGAACTCTTC, and fEml1R, 

AAGGATACATACAAACAG primers was ligated into pGEM–T–Easy vector (Promega). In situ 

hybridization on ferret brain sections was performed as described previously22. 

 

Statistical analysis. All data are shown as mean ± s.e.m. Statistical analysis was performed using 

the IBM SPSS Statistics version 19 (SPSS Inc.) or StatView. The variance was estimated for each 

set of data and the t–test for partial comparison adapted accordingly. All tests were two–sided. 

Comparisons of means in 2 groups were made using the unpaired Student t–test. For BLBP–GFP 

electroporations and cell count quantifications, data were subjected to factorial analysis of variance 

(ANOVA) with conditions, layers, and strains as between factor. Significant main effects were 

analysed further by post–hoc comparisons of means using Student Newman–Keuls t–test. The χ2 

test was used for frequency comparisons. Normality was tested using StatView. Data were collected 

and processed randomly, no data points were excluded. For transplantation, caspase–3 and spindle 

orientation experiments the data were processed in blind manner. For the other experiments data 

collection and analysis were not performed blind as the different conditions were clearly 
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recognizable by the experimenter. No statistical methods were used to pre–determine sample sizes 

but our sample sizes are similar to those generally employed in the field.  

 

A supplementary methods checklist is available. 
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Supplementary Figure 1 Characterization of the heterotopia in postnatal stages in HeCo brains. (a) 

Sagittal view of Nissl stained P7 mouse brain. Note the presence of neuronal clusters in HeCo 

cortex compared to wild-type. The clusters are wrapped in the subcortical white matter indicating a 

discontinuous shaped heterotopia along the rostro-caudal axis. (b) Cux1 immunohistochemistry at 

P7 demonstrating columns of superficial layer neurons (arrows) migrating between the heterotopia 

(#) and the cortex layer II-IV in HeCo brains. (c) GFAP labeling and (d) S100β/Ki-67 co-labeling 

at P3 showing subpopulations of glial cells around but rarely inside the heterotopia (#). Far right, 

higher power views. Cell nuclei of coronal brain sections were counterstained with Hoechst. Scale 

bars, 2 mm (a), 400μm (b-d, left and center), 200 μm (b,c, far right), 100 μm (d, far right). 
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Supplementary Figure 2 Altered distribution of dividing apical and basal progenitors in the IZ and 
CP of HeCo mice. (a) After a 24 h BrdU pulse the total number of BrdU+ progenitors is increased in 
the germinal zones as well as in the IZ (a, 3 sections/animal n=3 per genotype, MFA 1 d.f., VZ, p= 
0.001, F=11.862, SVZ, p= 1.13 x 10-17, F=138.703, IZ, p= 0.003, F=9.454, CP, p=0.441 F=0.601; 
unpaired t-test ALL layers, p=1.46 x 10-7, d.f. 14.481, t=-9.424). (b) PH3/Pax6 and PH3/Tbr2 
stainings at E19 showing proliferating apical and basal progenitors largely excluded from the 
heterotopia (#).The distribution of PH3  progenitors was altered at E13 in HeCo (decrease VZ, 
increase SVZ/IZ, 3 sections/animal n=6/genotype, MFA 1 d.f., VZ, p=8.63 x 10-8 F=32.031, SVZ, 
p=2.44 x 10-4 F=14.198, IZ, p=8.13 x 10-4 F=11.732, CP, p=0.117 F=2.495; unpaired t-test 32.878 
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d.f., ALL layers, p=0.202 t=-1.303). Overall numbers were not different. Both apical Pax6+ and 
basal Tbr2+ progenitors divide ectopically (3 sections/animal n=3/genotype). (c) At E13 the 
distribution of Ki-67+ cycling cells is altered in HeCo brains  (MFA p=0.003 VZ, p=0.002 SVZ, 
p=0.019 IZ, p=0.044 CP. t-test p=0.065 All, MFA d.f.=1, F=8.931 VZ, F=9.592 SVZ, F=5.550 IZ, 
F=4.118 CP. t-test d.f. =55.165, t=-1.880; Ki-67/Pax6, Ki-67/Tbr2, 3 sections/animal n=3/genotype, 
MFA 1 d.f., Pax6+/Ki67+: VZ, p=0.927 F=0.008, SVZ, p=0.170 F=1.926, IZ, p= 4.85 x 10-25 
F=279.554, CP, p= 3.32 x 10-21 F=196.991; unpaired t-test 11.397 d.f., ALL layers, p=0.366 t=-
0.941; Tbr2+/Ki67+: VZ, p=0.089 F=2.973, SVZ, p=0.704 F=0.145, IZ, 1.98 x 10-11 F=65.935, CP, 
p=4.73 x 10-13 F=81.795; unpaired t-test 16 d.f., ALL layers, p=0.141 t=-1.547). Scale bars 200 μm 
(E19), 100 μm (E13 and E16) and 20 μm (E13 far right).  
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Supplementary Figure 3 Schema of the 13.7 Mb HeCo candidate region and analysis of Eml1 in 

WT and HeCo transcripts and DNAs. (a) Schema of the chromosomal region identified during the 

first round of genotyping with key SNPs with Refseq genes indicated (captured image from 

Genome Browser, http://genome.ucsc.edu/; assembly NCBI37/mm9, July 2007). This region shows 

synteny with human chromosomes 14q and 7q. Eml1 is boxed in red. The 15 genes initially 

sequenced which showed no mutations are underlined. (b) Schema showing genomic region 

containing Eml1 exons 22 and 23. PCR products and sequences were identical between WT and 

HeCo except for exon 22 which could not be amplified from HeCo DNAs, using primers annealing 

to nucleotides -85 to -66 upstream and +117 to +96 downstream of exon 22 (, primers; , PCRs 

which failed to give a product). (c) RT-PCR between the exon 17-18 boundary and within exon 22 

shows identical amplification products from HeCo and WT RNAs. RT, reverse transcriptase. (d) 

RT-PCR between exons 19 and 23 shows an amplification product from WT RNAs only. (e) A 

junction fragment between Eml1 exon 22 and the ETn 5’LTR is amplified specifically from HeCo 

genomic DNA and not from WT DNA of the same genetic background.  
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Supplementary Figure 4 In situ hybridization of Eml1 in the developing mouse brain, additional 
images. (a) Expression in E13.5 dorsal cortex (upper, antisense probe; lower, sense probe). (b,c) At 
E13.5 and E14.5, expression is observed in the VZ at the dorsal-ventral telencephalon boundary but 
tapers off in ventral telencephalon VZ (left, antisense probe; right, sense probe). (d-f) Labeling of 
Eml1 at E13.5, E14.5 and E15.5 in the VZ, or both the VZ and the CP (arrows). A high lateral to 
low medial gradient is observed. The dorsal thalamic neuroepithelium is also labeled at E13.5 
(asterisk). (g) Strong two-layered expression in the CP at E17.5 with no further expression in the 
VZ. Faint expression in the hippocampus. (h,i) No Eml1 transcript is detected in the HeCo 
developing brain at E17.5 (i) compared to WT sections (h). (j) Strong rostral labeling of Eml1 at 
E15.5, particularly in more lateral regions (upper). On the right are schematized the levels of the 
sections shown on the left according to The Mouse Brain in Stereotaxic Coordinates (Paxinos and 
Franklin, 2001). r, rostral; c, caudal. (k) Thalamic nuclei (upper arrow) and the lateral olfactory 
tract nucleus (lower arrow) are labeled at E17.5. (l) At P1 the expression resembles E17.5, with a 
stronger expression in superficial layers II and III and a lower expression in deeper layers. (m) 
Expression continues in the adult in some cells of the isocortex, and in CA1 pyramidal and dentate 
gyrus cells of the hippocampus. (n-s) Antisense (n-p) and sense (q-s) probes hybridized to adjacent 
mouse adult cortex sections. Faint labeling is observed in superficial and deeper layers of the 
somatosensorial cortex (n, arrows) and in the cingulate cortex (o, arrows). Labeling in the CA1 and 
dentate gyrus (DG) regions of the hippocampus, and little labeling in the CA3 region (p). Coronal 
sections except in (j), sagittal. Scale bars, 400 µm (g,h-left,i-left,j,n-s,m), 200 µm (b-f,h-right,i-
right,k,l) and 100 µm (a). 

Nature Neuroscience: doi:10.1038/nn.3729



7 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 5 Characterization of mixed progenitor and neuronal cultures and 
recombinant Eml1 in neuronal progenitors. (a) Ki-67, Pax6, Tbr2 and Dcx immunolabelings of 
cultures derived from WT E12.5 dissociated cortex and fixed after 1 DIV. (b) YFP-EML1 partially 
colocalizes with tyrosinated tubulin in perinuclear regions. Punctate labeling aligns with MTs in a 
growth cone (b, right), where little co-localization is observed. (c) Flag-Eml1 puncta in a neuron, 
partially co-localizing with MTs traversing the nucleus and accumulating in growth cones (c-lower, 
arrow, enlargement of the boxed area). (confocal images). (d-e) Dcx and phalloidin (detecting F-
actin) double labelings. No obvious differences were observed in neuron morphologies and there 
were similar proportions of monopolar, bipolar and multipolar neurons present in WT and HeCo 
cultures. Growth cones were assessed on cells with relatively uniform morphologies, with a 
predominant neurite (length between 2 and 4 somal lengths) tipped with a main growth cone. 
Selection was performed in the Dcx channel, to avoid biased cell selection on the basis of growth 
cone size. Image J was used to draw around the phalloidin labeling and calculate the surface area 
and perimeter of growth cones (3 measures for each growth cone; at least 10 cells analyzed in 3 
cultures from each genotype, n= 43 for WT and 45 for HeCo). A representative growth cone from 
each genotype is shown. No significant differences were observed in mean surface areas (data not 
shown). Scale bars, 100 µm (a), 10 µm (b-left,c-upper,d-left,e-left) and 5 µm (b-right,c-lower,d-
right,e-right). 
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Supplementary Figure 6 Recombinant Eml1 in dissociated neuronal progenitors. (a) In neuronal 

progenitors in interphase YFP-EML1 is distributed throughout the cell in the form of puncta. Co-

labeling with Pax6 and Hoechst. (b-e) Recombinant YFP-EML1 or Flag-Eml1 in neuronal 

progenitors at other stages of the cell cycle. Co-labeling with tyrosinated tubulin (b), TubB3 (c), γ 

adaptin (d), and spastin (e). The antibody to spastin gave no specific labeling. In metaphase YFP-

EML1 is ubiquitously distributed. From anaphase, early telophase to cytokinesis, an enrichment of 

YFP-EML1 is observed at the midzone and surrounding region (c-e). a-e, far right, higher 

magnifications of boxed areas. In the absence of antibodies detecting Eml1 specifically in neuronal 

cells, we have not yet been able to compare these subcellular localizations to that of the endogenous 

protein. Scale bars, 8 µm (a-e) and 1 µm (a-e, boxed area far right). 
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Supplementary Figure 7 (a) Ventricular lining markers in WT versus HeCo E16 brains. No 

differences are observed with αPKCλ, Par3 and β-catenin markers. Apparently normal RGC endfeet 

at the ventricle lining are observed in HeCo brains. β-catenin labeling, as at E13 (Figure 6), reveals 

typical honeycomb apical membrane structure. Scale bar, 20 µm.  
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Supplementary Figure 8 Sequence of W225R mutation and anthropometric measurements in 

patients. (a) Sanger sequence confirmation of W225R mutation in family 3489. A heterozygous 

mutation is observed in the father (3489-1) and homozygote mutations in the two affected sibs. (b) 

As shown in the curves for P135-4, a head circumference greater than (or equal to) the 98th 

percentile (+2.5 SD) was noted from birth. Height and weight (normal range) are also shown for 

comparison. (c) Anthropometric measurements for children from the P135 and 3489 families. The 

three P135 children exhibited almost identical macrocephaly from birth, with normal height and 

weight. Patient 3489-4 suffered from hydrocephaly at birth and was treated by a 

ventriculoperitoneal drain in the first week. Case 3489-5 presented with hydrocephalus at prenatal 

ultrasound. 
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Supplementary Figure 9 Functional domains of EML1, sequence of the HELP domain and 
expression of recombinant Eml1. (a) Predicted domains of the Eml1 protein. Eml1 (814 aa, Uniprot 
Q05BC3-1) contains a conserved HELP domain in its N terminus (aa 183-259). Other domains, CC, 
coiled-coil; beta propeller regions containing WD40 motifs. The HELP domain is shown from 
human proteins EML1, 4, 2, the purple sea urchin Strongylocentrotus purpuratus (EMAP Sp), the 
ELP protein from Caenorhabditis elegans (ELP Ce), ciliary WD repeat-containing protein Ctxp80 
from the protist Euplotes octocarinatus (Ctpx Eo) and Drosophila melanogaster DCX-EMAP 
(Droso). The mutated threonine residue (T243) is conserved in mammalian EML1, 2 and 4, as well 
as in ELP Ce and EMAP Sp, other family members contain a serine (Droso and EML3) or an 
asparagine (Ctxp80), suggesting that a polar aa is important at this position 
(http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml). The mutated tryptophan residue (W225) is 
conserved in mammalian EML1, 2 and 4, as well as in EMAP Sp, and Drosophila EMAP. (b-e) 
Western blot expression of transfected recombinant proteins in non-neuronal cells. (b) Untagged 
Eml1 expressed from pCAGIG vector, detected with an antibody to Eml1. (c) WT Eml1 protein 
compared to mutated T243A Eml1 (extracts from two different transfection experiments for each 
plasmid, control with an antibody to α-tubulin). (d) Flag-Eml1 expressed from pNter3xFLAG-
CMV vector, detected with an antibody to Flag. (e) Same construct detected with an antibody to 
Eml1. Western blots also confirmed soluble and non-soluble fractions of the recombinant protein 
(not shown). Western blot analyses to characterize endogenous normal and mutant proteins in 
mouse brain and human fibroblasts were unsuccessful due to the lack of specificity of different 
antibodies to Eml1 tested in these cells. (f) Vero cells transfected with Flag-Eml1 constructs and 
fixed with PFA, without detergent extraction. Flag-Eml1 shows a largely cytoplasmic labeling not 
resembling the MT network. Right, higher magnification of the boxed region. Scale bar, 5 µm (f-
left and right). 
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Supplementary Figure 10 Eml1 association with MTs in re-polymerization experiment, effect of 

T243A mutation. (a) Cold-treated Vero cells (0 min, after 30 min depolymerization at 4°C) were 

restored to 37°C for 2, 4, 7 or 15 min as indicated, before detergent extraction and fixation. At 2 

min, a strong localization of untagged WT Eml1 is observed at the region of nascent MTs (arrows) 

and then progressively extends to the overall array of MTs (confocal images). (b) Untagged 

recombinant Eml1 is detected in untreated Vero cells with the antibody to Eml1 after detergent 

extraction. An MT-association is observed for the WT version (upper row) whereas localization of 

the T243A mutant protein (lower row) is altered, showing less association with MTs and a more 

predominant punctate appearance. This result was consistently obtained in multiple experiments. 

Scale bars, 20 µm (a, for all images) and 5 µm (b, left and right).   
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Supplementary Figure 11 Full-length pictures of the gels (Fig. 4c, 4d, 4e) and blots (Fig. 7f, 7g, 7i) 

presented in the main figures. For Fig.7 blots, to detect αTubulin (Tub) and the protein of interest in the 

same samples, blots were first cut and then incubated with indicated antibodies (ab).  
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Supplementary Table 1 Key SNPs and informative individuals in the fine mapping of the HeCo mouse candidate region. Heterozygote genotypes 

are highlighted in grey. SNPs rs4229612, rs6376011, rs3670898 for the first round and SNPs rs29180599, rs6240517 for the second round were 

found homozygous for the NOR alleles in all F2 affected individuals. After the second round of screening rs29151683 and rs29219055 were 

identified as flanking markers (underlined). The region was slightly further reduced by the identification of a non-referenced SNP in the Dlk1 gene. 

Non informative genotypes are noted ‘-‘. 

 
 

SNP 
 

nucleotide 
F0 C57 WT 

Tree 1 
F0 C57 WT 

Tree 2 
F0 NOR 
HeCo 

F2 tree 1 
71  124  160  224  164  250  186  194 

F2 tree 2 
368  395  552 

 

rs13481624 105,246,728 CC - GG CG   CG    CG   CG    CG    CG    GG   GG            - 5’ boundary (1st round) 

rs29180599 
rs29151683 106,303,360 

108,884,307 
AA 
CC 

- 
- 

GG 
AA 

GG  GG    GG   GG   AG    AG    GG   GG 
AA   AA    AA    AA   AA    AA    AA    AA 

           - 
           - 

Final 5’ boundary (2nd round) 
Internal homozygous (2nd round) 

rs6240517 109,744,829 AA - GG GG  GG    GG   GG   GG    GG    GG  GG            - Internal homozygous (2nd round) 
non ref 110,693,217 - CC TT -      -        -       -        -        -        -      - CT     CT      CT Final 3’ boundary (Dlk1) 

110,727,094 rs29219055 - CC GG -      -        -       -        -        -        -      - CG    CG     CG 3’ boundary (2nd round) 
rs4229612 114,496,842 GG - AA AA   AA    AA    AA   AA    AA    AA    AA            - Internal homozygous (1st round) 
rs6376011 116,788,762 GG - TT TT   TT     TT     TT    TT     TT     TT    TT            - Internal homozygous (1st round) 
rs3670898 117,956,773 CC - GG GG  GG   GG    GG   GG    GG   GG   GG            - Internal homozygous (1st round) 
rs3692361 118,957,587 TT - CC CC  CC    CC     CC    CC    CC     CT    CT            - 3’ boundary (1st round) 
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Supplementary Table 2 : Primers 
qPCR
mE1utr For1 CACAGACAGCATGCAGCATACA

mE1utr Rev1 CTTCTCGACACCTTCAGACCCTAC

mE1_34 For1 CTCAACAGGAAAGGACCTACCAA

mE1_34 Rev1 GTTGACGGTGGTTCTCAATGG

mHdac3 For1 CGCATCGAGAATCAGAACTCAC

mHdac3 Rev1 TCAAAGATTGTCTGGCGGATC

mAt5g3 For2 GCAGTCTTATCATTGGTTATGCCA

mAt5g3 Rev2 AGAACAGCTGCTGCTTCAGTGA

mErp29 For1 CCTTCCCTTGGACACAGTCACT

mErp29 Rev2 GTCGAACTTCACCAAGACGAACTT

Mouse Eml1 genomic 
Eml_1F_336 cccatctgccctacatacca

Eml_1R_336 ccgtcagtaaagccatccat

Eml_2AFbis GCGCAGTGTGTGGGTGA 

Eml_cDNA3R CGCTGACTTGAGCAGTTGAA 

Eml_3F TCATGGGCTGTACGTCACTC

Eml_3R GAGATTGGTTCAGTGGGTGG

Eml_4F GGATCGTTCCTGCTGCTATG

Eml_4R GCTGCTTTGAGAAGTCAGGTG

Eml_5F CTCAGTACACTGGGCAATGAAG

Eml_5R GGCTTGACTCATCAAGAGGG

Eml_6F CACACATGCAAGCACACATC

Eml_6R TTCCCCACTCAGTCAAGGTC

Eml_6aF(alternative) CCCTTGTTCCCTTGTCCC

Eml_6aR TATGAGAACAGCCTCAGGGG

Eml_7F GTGTTTGCTTTCGGAGCG

Eml_7R TGGCCACATCTGAAATTTTG

Eml_8F ATCTTTGGGCCTGTTGAATG

Eml_8R TGATGCTGAATTCTTTTGGC

Eml_9F GAAGCTAGGCAGTGTGGATTTC

Eml_9R ATGTCGCCAGGAGGTTGTC

Eml_10F TTTATGGTTCCAAGGTAAAGAGAAG

Eml_10R ATGCCTTGAGAAAGGCTGG

Eml_11F TCGTGTTGGTCCCACTTG

Eml_11R GCAGGTCTTAGGCAGGGTC

Eml_12F CTTGAGAGACTCAGTGCCCC

Eml_12R CTCAGCGCTCCCTTATAACC

Eml_13F CAAATAAAAGGCTGTCTTCGG

Eml_13R GGTTGTCCTGTTCGTAACTCC

Eml_14F CAAACTGAAGTGGGTTTCGG

Eml_14R GAATCCAAACGGCCAGC

Eml_15-16F GCCTCGCTTGCACAGTAAGT

Eml_15-16R TGTTAATTCATACAAAGATATATCCCA

Eml_17F GAGTCTGAGAAGAGCAGGGC

Eml_17R CTCAGCCGTCTAACTGCTCC

Eml_18F TCTGTAGAGAAAGCTGTGGGG

Eml_18R GTTCGCTGTCTAGTGAGCCC

Eml_19-20F CCAGCCTTTCCTCTTACGAC

Eml_19-20R CCCATGGGAATGTCAGAGTG

Eml_21F AGGACTCTGCCTGACTCCAG

Eml_21R TGGAGAAGGTATGGTCTCGG

Eml_22F TGAAGGTGGATTTCTGTCCC

Eml_22R TTAACAGGGTCATATGCAGGC

Eml_23F GACTGATTTAGTGCTCGGGG

Eml_23R GAAATCACAGTGACCAAGCG

Eml_3utr 1F TGCAGTGGCGAGTCATTTAG

Eml_3utr 1R TTAACCAGGGAGAGCACAGC

Eml_3utr 2F GCTTTCCTTGGCCATGTATC

Eml_3utr 2R TGTATGCTGCATGCTGTCTG

Eml_3utr 3F CCTTTGAGGCTCTGGGTGTA

Eml_3utr 3R GGGAACAGGATGTAGTGTGGA
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PCR and RT-PCR region of mouse Eml1 exons 17-23
Eml_22Fbis1 AGAGATGCAGGGCTTCTCAG

Eml_22Rbis GGAACTGTGAGCACGGGTAT 

Eml_22Fter CCGATGGGACAGACATCAAC

Eml_RT17-18F ACTGACTGGGAGGTGGTTTG 

Eml_19F TGGAGTTACCGACAATGGAAG 

RTEml_23R AGGAAGTCCACGTTGGTGAC

Eml_Nested 19F ACACGAGTTGGCAAGTGCTC

Eml_Nested 23R CCACTGTAGATGTGGCTTGG

Eml_RT19-20F CAAGTGCTCCGGCCATTC       
qPCR N2a
Em1_RT17-18F      ACTGACTGGGAGGTGGTTTG
Em1_RT20R         GTCCAAGTGGGTGATGAAGC

Etn
ETnR CCGCTCGAGCTGTAAGAG

ETnSD-7R  GAGACTACATCTCCTCCTTG   

ETnF2 CTCGAGCGGCCTTCTCAGTC   

ETnSD261R TGAGAAGGCCGCTCGAGTTG

Human EML1 primers (according to NCBI RefSeq NM_004434.2)
Exon Forward 5'-3' Reverse 5'-3' Amplicon(bp)

1 AGCTCAGTGTGTGGTGAGCG CCCCGCGGCTCCAACACAAT 320

2 GCTTAAGAGCAGTATCTGTAGTCCG TTAAAGAGCACAATGTGTTTGC 406

3 GGTAACATGAGTGATGGGTA CACACTGTGGTTTTAGCCAG 543

4* GTGCGTCCTGCAATTTACTG CACTGGACAAGACCTTGAAGC 254

5 GACGTTCTATGTATATATTT TGTTTGATTAGTCCTATAAA 380

6 GGCTTTGGGGTCTGAAGTG AAGCTCCTGTGTGTCCAAGG 216

7 CAAAAGCAAACAAGATGCAAAC GGAATGATAAGTTGGTTCTCCTG 564

8 CTGCATGCCTTTTGGGG TGACCGTGTTCTGCTAATGC 505

9 TTGAAATGGTATTTTCCCAGC CACCCTGCCACACAATAAGTC 505

10 GTCCGAGTTACTGCCCAAG CCCCTCTTCAACCCTGAG 281

11 GTCTCAAAAGCAATGGATGAG ACCACTATGCCAGGGCG 306

12 TTTGTGGCTCACATTTTACTTG GATCCCAAGGGATTGTGTTG 326

13 CAGAAATGCAAGGTGTGCAG TCTCCGCTTTTCCTCTGTTC 450

14 ATTGCAATGATGTGCTCACG TGTGATTTCACCTAAACAATTTT 389

15-16 AAGTGTTTTGAATGACTGAGCTAAC AACATTTGCTTTGGGACAAC 706

17 GCCCTAAGGAATTAGAAGTGTG GCCTGTTCCTGGGGAAATAG 262

18 TAAGCAAATTCTGAGTATTT CATGGGCTCACTTATAAGTG 500

19-20 GGTGGCAGCTACCGTTATCC GGAGGTGGGTTCTCACAGAG 475

21 CCAGGAAGGGCTCTGTACC TGGTGACCATGAGACTCCG 294

22 TCATGTTCAGGACCGTTCAG TAGTCTCCAAACAGGTCGGG 297

23 ATTCAAGCACTTTCCCATCC CTGAAGTGATCTGTCCTTTTAGG 657

* exon 4 is present in the mRNA NM_001008707  not in the mRNA NM_004434. 
Human and mouse genes have the same structure overall with some distinct alternative exons.

Nature Neuroscience: doi:10.1038/nn.3729


	5_24859200_Postprint
	nn.3729-S1
	SUPPLEMENTARY INFORMATION
	Supplementary Figure 3 Schema of the 13.7 Mb HeCo candidate region and analysis of Eml1 in WT and HeCo transcripts and DNAs. (a) Schema of the chromosomal region identified during the first round of genotyping with key SNPs with Refseq genes indicated...
	Supplementary Figure 4 In situ hybridization of Eml1 in the developing mouse brain, additional images. (a) Expression in E13.5 dorsal cortex (upper, antisense probe; lower, sense probe). (b,c) At E13.5 and E14.5, expression is observed in the VZ at th...
	Supplementary Figure 6 Recombinant Eml1 in dissociated neuronal progenitors. (a) In neuronal progenitors in interphase YFP-EML1 is distributed throughout the cell in the form of puncta. Co-labeling with Pax6 and Hoechst. (b-e) Recombinant YFP-EML1 o...
	Supplementary Figure 8 Sequence of W225R mutation and anthropometric measurements in patients. (a) Sanger sequence confirmation of W225R mutation in family 3489. A heterozygous mutation is observed in the father (3489-1) and homozygote mutations in th...
	Kielar_et_al_Suppl information_table1.pdf
	Supplementary Table 1 Key SNPs and informative individuals in the fine mapping of the HeCo mouse candidate region. Heterozygote genotypes are highlighted in grey. SNPs rs4229612, rs6376011, rs3670898 for the first round and SNPs rs29180599, rs6240517 ...

	Copie de Suppl Table 2_Primers-2.pdf
	Primers



