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Résumé

L’optimisation des tournées de livraison est souvent modélisée par un problème
de voyageur de commerce (Traveling Salesman Problem / TSP). Pour ce
problème, il est fréquent d’avoir des contraintes additionnelles telles que, par
exemple, des fenêtres horaires limitant les heures de livraison chez le client ou
des pauses obligatoires pour les conducteurs des camions. Le temps est une
dimension importante à prendre en compte pour respecter ces contraintes.
Cependant, les durées des trajets ne sont généralement pas constantes mais
varient en fonction des congestions, et cette variabilité doit être intégrée au
moment de l’optimisation des tournées. Ainsi, le problème du voyageur de
commerce dépendant du temps (Time Dependent TSP / TD-TSP) est la
version étendue du TSP où le coût d’un arc dépend de l’heure à laquelle cet
arc est emprunté.

Dans cette thèse nous proposons un nouveau benchmark pour le TDTSP
basé sur des données réelles de trafic (fournies par la Métropole de Lyon) et
nous montrons l’intérêt de prendre en compte la variabilité des durées dans
ce problème. Nous étudions comment mieux modéliser les fonctions de durée
de trajet dépendantes du temps. Nous introduisons et comparons différents
modèles pour résoudre le TDTSP avec la programmation par contraintes
(Constraint Programming / CP). Un premier modèle est directement dérivé
du modèle CP classique pour le TSP. Nous montrons que ce modèle ne permet
pas de raisonner avec des relations de précédence indirectes, ce qui pénalise sa
performance sur notre benchmark. Nous introduisons une nouvelle contrainte
globale qui est capable d’exploiter des relations de précédence indirectes sur
des données dépendantes du temps et nous introduisons un nouveau modèle
CP basé sur notre nouvelle contrainte. Nous comparons expérimentalement
les deux modèles sur notre benchmark, et nous montrons que notre nouvelle
contrainte permet de résoudre le TDTSP plus efficacement.
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Abstract

In the context of urban deliveries, the optimization of delivery tours is usu-
ally modeled as a Traveling Salesman Problem (TSP). Side constraints like
time-windows constraining the delivery times at the client or breaks for the
drivers are also common in this kind of problem and time is an important
dimension to take into account to respect these constraints. With travel
times’ variability in big cities time also tends to have a greater influence
in costs and therefore it should be included in the optimization of delivery
routes. The Time-Dependent Traveling Salesman Problem (TDTSP) is the
extended version of the Traveling Salesman Problem (TSP) where arc costs
depend on the time when the arc is traveled.

In this thesis we propose a set of benchmarks for the TDTSP based
on real traffic data (obtained from the city of Lyon) and show the interest
of handling time dependency in the problem. A study of how to better
model time-dependent travel functions in general and specifically for our
approach is performed. We introduce and compare different models to solve
the TDTSP with Constraint Programming (CP). A first model is derived in a
straightforward way from the classical CP model for the TSP. We show that
this model is not able to reason on indirect precedence relations, so that it has
poor performance on our benchmark. We introduce a new global constraint
which is able to exploit indirect precedence relations on time-dependent data,
and we introduce a second model which is based on our new constraint. We
experimentally compare the two models on our benchmark and show that
the new model is more efficient.
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Chapter 1

Introduction

We live in a time of big urban centers and big data. We have more information
collected than ever before and, as a consequence, a harder time processing all
this data into something useful. This is exactly the aim of the Optimod’Lyon
project: leveraging data collected from the city in order to improve traffic
conditions and therefore reduce travel times for users of the transportation
network as well as carbon emissions. This thesis comes as a part of one
sub-project of Optimod’Lyon called Smart Deliveries.

Optimod’Lyon (http://optimodlyon.fr/en/) is a three year project sup-
ported by the French agency for the environment (ADEME), in which eight
industry partners, among which IBM, four academic institutions, among
which LIRIS, and the metropolitan authority of Lyon (called Métropole de
Lyon) work together to improve urban mobility through better collection,
processing and distribution of mobility information. The flagship applica-
tion of Optimod’Lyon is a real-time, predictive, multi-modal journey plan-
ner. This application lets travelers plan their journey through a combination
of car, public transportation, walk and bike sharing with the best available
information. The expectation is to enable a reduction of 1% of the car modal
share on the city, resulting in saving 25 kTe of carbon emissions per year and
significant traffic improvements during rush hours, at a very reasonable cost
compared to the amount of public works that are usually needed to obtain
similar levels of decongestion.

Despite environmental concerns, there is a large portion of road traffic
that will not lend itself easily to modal transfer. According to a french
report about goods transportation [31], 35% of road trips carry goods rather
than people. If we account for the important portion of movements that
involve moving both goods and persons to deliver a value added service (such
as maintenance and construction visits, catering, sales visits), an even larger
portion of existing road traffic needs to be accounted for. We call this portion
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of the traffic we focus on ”professional urban mobility”.
Businesses are also acutely aware and affected by the cost of mobility and

have direct incentives to improve it. For instance, fuel represents 18% of the
total costs of a small freight operator employing 200 persons (undisclosed
personal communication). Current estimates (CERB, 2007) consider that
20 minutes lost in urban traffic amount to about eight euros for such an
operator, which represents, by-and-large, its gross financial margin for a half-
day vehicle tour (also called vehicle round). We can therefore consider there
is a synergy of goals between public authorities and the private businesses
in curbing congestion and optimizing trips. The shared objective of both
public and private stakeholders is to tend towards the minimization of vehicle-
kilometers and time spent on the road. Smart Deliveries stems from the
observation that a large portion of professional mobility demand is actually
planned and can, therefore, be optimized leveraging the traffic information
obtained from the city.

Smart Deliveries targets planned urban mobility executed as a tour - a
sequence of places to be visited, often (but not necessarily) departing and
returning to the same address, corresponding to the depot. As the name
says, this service is aimed for delivery’s companies even though any planned
moves involving a sequence of visits could use it as well. The theoretical
problem modeling the real-world situation of optimizing a delivery tour is
the Traveling Salesman Problem (TSP), where one has to find the minimal
total distance to travel through a list of cities (going through each city ex-
actly once). The TSP deals with constant distances (or travel times) and is
generally a poor representation of reality when travel times vary considerably
during the day, as it does in urban areas. For this reason, in this thesis we
study the Time-Dependent Traveling Salesman Problem (TDTSP), which is
an extension of the TSP that takes into account variations of travel times
during the day.

In order to better address the optimization demands of the possible users
of Smart Delivers it is necessary to be able to take different kinds of side-
constraints into account. Therefore, it is important to develop a solving
method flexible enough to integrate other constraints in the main model
without hindering performances and ideally in a simple way. This motivated
our choice to tackle the problem using Constraint Programming. Some com-
mon constraints in the business of deliveries are: time-windows when clients
are available for delivery (or other services), regulations concerning break
times for drivers, precedence between deliveries (as in the case of pick-up
and delivery problems). The most common and important of all probably
being the time-window constraint. When this constraint is taken into con-
sideration the problem is called TDTSP with Time-Windows (TDTSPTW).

9



Since the availability of extensive real-world data in the area of urban
transportation is quite recent, the TDTSP has not been much studied in the
literature and Constraint Programming (CP) approaches are even rarer. One
reason for this is that CP is usually less efficient than Integer Linear Pro-
gramming or Meta-heuristics (Local Search, Evolutionary Algorithms, Ant
Colonies) for pure (non time-dependent) vehicle routing problems. On the
other hand, Constraint-Based Scheduling [10], that is the application of CP
to scheduling problems, is one of the biggest industrial success of CP and has
shown that CP technologies can be very efficient for solving temporal prob-
lems. A variety of specialized variable types (interval variables, sequence
variables) and related global constraints and search algorithms have been
developed until recently [56, 57, 58] to improve the expressiveness and effi-
ciency of CP-based models involving temporal domains. Other than that, CP
is also a flexible framework, ideal for taking the side-constraints commonly
present in this context into account in an efficient manner.

Thesis contributions In this context, the main contributions of the PhD
thesis are:

• The generation of a new benchmark for the TDTSP that is based on
real-world data and made available online

• An in-depth analysis about the modeling of time-dependent travel time
functions

• The evaluation of the interests of taking time-dependent travel times
into account in the optimization of (delivery) tours in an urban context

• The evaluation of CP as a suitable approach to tackle the TDTSP, the
development of a new global constraint and propagation algorithm to
model and solve the TDTSP

1.1 Thesis plan

In chapter 2 we give the necessary background to understand the rest of the
work presented here. We first introduce the TSP - as a building block to
tackle the TDTSP later on - and define some useful concepts to model it, as
well as giving an overview of the state-of-the-art approaches to solve it. We
then give an introduction to CP, briefly review CP approaches for the TSP
and shortly introduce CP Optimizer.

10



In chapter 3 we define formally the TDTSP(TW), classify vehicle routing
problems according to time-dependency and review the literature in three
phases ( corresponding to motivation, methods and experiments): (1) we
present of studies performed in the literature in order to motivate the model-
ing of real world delivery problems through TDTSPs instead of its constant
time version, the TSP (2) we list solving approaches for the TDTSP as well
as to the more general Time-Dependent Vehicle Routing Problem (TDVRP)
- where visits have to be attributed to a whole fleet of vehicles instead of
just one as in the TDTSP and (3) we overview the instances commonly used
for testing performances of different solving techniques for the TDTSP and
TDVRP (with Time-Windows), how they are generated (randomly or from
real-world data) and their main characteristics.

Next, in chapter 4 we move from theory to application and describe what
are the steps to transform the real-world problem (data) in instances that
serve as input for optimization models. We then describe how we generated
our set of benchmark instances.

In the chapter that follows, 5, we delve deeper into the modeling of travel
time functions and give some new algorithms to calculate alternate versions
of those functions respecting certain properties that are useful in our solving
technique.

Then, in chapter 6, the modeling of the TDTSP with CP is studied. A
first model, extending the CP model previously presented (in the background
chapter 2) for the TSP, is given and its limitations are pointed out through
an example. A second model solving some of the issues of the first model is
given as well as its performance on the same example. The limitation of this
second model gives rise to the development of a dedicated global constraint,
which is presented in details in the subsequent chapter.

In chapter 7, the model using the new constraint (TDNoOverlap-TDTSP)
is presented, followed by a description of the internal propagation of the
constraint. By the end of the chapter, implementation and complexity of the
constraint are discussed.

In the sequence, in chapter 8, we present an experimental study that
aims at answering two questions: (1) how does the quality of solutions found
with a TSP model and with a TDTSP model compare, i.e., what is the
effect of integrating time-dependency in the optimization model? (2) how
do the different CP models presented in this thesis compare in terms of
performance and how do they scale-up when the size of instances grows?
We end this chapter with a description of other instances considered for
testing our method and the work that has been done in this direction. Final
conclusions and future perspectives are discussed in the last chapter.
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Chapter 2

Background

The first part of this chapter gives the necessary background to understand
the mathematical problem addressed in this thesis, the TDTSP, which is
an extension of the TSP. Therefore, in the first section (2.1), the TSP and
preliminary graph theory concepts are formally defined. The TDTSP is de-
scribed in the following chapter.

The second part of the chapter concerns our approach to solve the TDTSP,
Constraint Programming (CP). In section 2.2, we give an introduction to
Constraint Programming and in section 2.3, CP approaches for the TSP are
briefly presented. In the last section (2.4), the CP solver used in this thesis
(CP Optimizer) is described in what concerns modeling and search, in the
context of scheduling problems.

2.1 TSP

The Traveling Salesman Problem (TSP) is an NP-hard problem and one of
the most studied problems in combinatorial optimization as it appears as a
substructure in many problems but also has several applications in its pure
form. The TSP can be stated as the problem of finding the shortest way
in which to travel through a list of cities and back to the starting point
without going through any of the cities (other than the departing one) twice.
Nowadays, the most common applications of the problem are in the areas
of transportation, planning and logistics but it has also been used for DNA
sequencing [62] and chips manufacturing [54], for example. The TSP is a
specific case of the more general Vehicle Routing Problem (VRP), where a
whole fleet of vehicles has to be routed in an optimal way. In the following
we give some preliminary definitions in order to formally define the TSP and
VRP.
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Definition 1 (Graph) A graph G is defined by a couple (V,A) such that V
is a finite set of vertices, and A ⊆ V × V is a set of arcs. If there are arcs
between all pairs of vertices (i.e., A = V ×V ) then the graph is said complete.
In this thesis, we consider directed graphs such that arcs are oriented, i.e.,
arc (i, j) ∈ A is different from arc (j, i), and we call them graphs for short.

Let G = (V,A, c) be a complete graph, to each arc (i, j) ∈ A such that
i 6= j, is associated a cost function c : A→ R+. This function may represent
an actual cost (for example, a transportation cost), the time or distance
necessary to go from i to j, or a combination of different costs.

Definition 2 (Path) A path in G = (V,A) is a sequence of vertices P =
(v1, ..., vk) such that
(vi, vi+1) ∈ A,∀ i ∈ {1, ..., k − 1}.

Definition 3 (Cost of a path) Given a graph G = (V,A, c), the cost C(P )
of a path P = (v1, ..., vk) on graph G is defined as the sum of the costs of the
arcs in the path:

C(P ) =
k−1∑
i=1

c(vi, vi+1) (2.1)

Definition 4 (Hamiltonian path) A Hamiltonian path is a path where ev-
ery vertex of the graph appears exactly once.

Definition 5 ((Hamiltonian) cycle) A cycle in a graph is a closed path,
a path where the last vertex is the same as the first. A Hamiltonian cycle is
a cycle where every vertex of the graph appears exactly once except for the
first vertex, which is also the last.

Definition 6 ((A)TSP) The TSP is the problem of finding a Hamiltonian
cycle in G = (V,A, c) of minimum cost (as in definition 3). We call it
asymmetric TSP (ATSP) when G has asymmetric costs, i.e., when c(i, j) 6=
c(j, i) for some i, j ∈ V .

The ATSP is actually more realistic from a transportation point of view
where distances (roads) and travel times are rarely symmetric (Fig. 2.2).
A generalization of the TSP is the VRP, where multiple vehicle tours are
optimized at once, as in Definition 7.
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Figure 2.1: Example of an optimal solution to a TSP highlighted in blue

Figure 2.2: Example of asymmetry in the road-network, on the left, and in
the corresponding graph representation (with edge costs equivalent to the
length of the paths), on the right

Definition 7 (VRP) Given a graph G(V,A, c), a depot d in V , a number
m ≥ 1 of vehicles and a cost function c : A → R+, the VRP is the problem
of finding m cycles such that

• each cycle starts and ends at the depot d

• each vertex v in V \{d} occurs exactly once in one cycle

• the sum of the m cycle costs (as in definition 3) is minimum.
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In the TSP, a solution for the problem is often called tour or route. For
the VRP, one solution is made out of multiple tours or routes. The number
of vehicles m is not always fixed in the VRP and this number is sometimes
minimized as a first objective (before optimizing route costs). Nodes of the
graph are often clients with demands and vehicles frequently have capacity
constraints (Capacitated-VRP).

State-of-the-art exact approaches for solving the TSP are based on Integer
Linear Programming (ILP)[8], the most notable example being the special-
purpose TSP solver Concorde [25], that can solve pure symmetric TSPs on
10,000 or more vertices in a reasonable time (the largest to date having 85,900
cities). Nevertheless, this approach is not capable of handling asymmetric
instances or instances containing other constraints (side-constraints), com-
mon in real-life problems. This limitation comes from the fact that Concorde
works by adding cuts and upper bound heuristics specific to the (symmetric)
TSP, which no longer work when side-constraints are added. Current exact
methods able to solve the ATSP with constraints cannot scale beyond a few
hundred vertices.

In the next section we give an introduction to Constraint Programming
and how it has been applied to solve the ATSP so far.

2.2 Introduction to Constraint Programming

Constraint programming (CP) provides high level languages that allow one
to describe (model) a problem in a declarative way by means of constraints,
that is, properties of the solution to be found. The user might as well have
to specify how the solver should search for solutions but some solvers have
automatic search available. The problem is then automatically solved by
embedded algorithms.

In this section we start by explaining what is a Constraint Satisfaction
Problem (CSP), in subsection 2.2.1. In order to solve CSPs with constraint
programming two main parts have to be considered, modeling and search. An
example of modeling language (OPL) is given in subsection 2.2.2 and search
and filtering are presented in 2.2.3. In 2.2.4, the concept of global constraints
is introduced. Global constraints have as goal to ease the modeling of a CSP
and/or improve the search for a solution in CP. And finally, in subsection
2.2.5, Constrained Optimization Problems are introduced. For this thesis, the
OPL language and C++ were used to model COPs, and IBM CP Optimizer
(CPO) was used to solve them.
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2.2.1 Constraint Satisfaction Problem

A constraint satisfaction problem (CSP) is described by a finite set of vari-
ables x ∈ X ranging over specific domainsD(x) and satisfying a finite number
of constraints c ∈ C. Variables usually range over integer, real, binary or
non-numeric domains.

A constraint c(x1, ..., xk) is a relation on the domains of the variables
involved, i.e., c(x1, ..., xk) ⊆ D(x1) × ... × D(xk). It can be viewed as a
requirement that states which combinations of values from the variable do-
mains are admitted. The number k of variables involved is the arity of the
constraint, a constraint on two variables is called binary and, more generally,
a constraint on n variables is called n-ary.

Constraints can be defined in intension, when they can be described by
a predicate. For example, x1 6= x2 or |x1 ∗ x2| < |x3|. Or they can be defined
in extension, when we enumerate explicitly what tuples satisfy it or not. If
D(x1) = {1, 2, 3, 4} and D(x2) = {3} expressing x1 < x2 in extension means
defining it by {(1, 3), (2, 3)}.

Given a set of variables X ′ ⊆ X, an assignment or instantiation of X ′

is a tuple τ ∈ Πx∈XD(x). It is complete if X ′ = X and partial otherwise.
Given a subset of variables X ′′ ⊆ X, and a variable x ∈ X ′′, we note τ |X′′

the restriction of τ to variables of X ′′, and τx the value of x in τ . Given
an assignment τ of X ′ ⊆ X and a constraint c defined on a set of variables
X ′′ ⊆ X ′, τ satisfies c if τ |X′′ ∈ c, and τ violates c otherwise.

A solution to the problem is a complete instantiation such that all con-
straints in C are satisfied simultaneously.

The same problem can usually be modeled by different CSPs. We illus-
trate this fact on the n-queens problem, the problem of placing n queens
onto a n × n chessboard in a way that queens cannot attack each other. A
solution for this problem with n = 8 queens is given in figure 2.3.

One way of modeling this problem in CP is to define two types of variables,
coli and rowi for all i ∈ {1, ..., n}, specifying the column and row of queen
i thus varying in the domain D = {1, ..., n}. The following constraints are
defined:

• coli 6= colj ∀ i, j ∈ D| i 6= j (columns must be different)

• rowi 6= rowj ∀ i, j ∈ D| i 6= j (rows must be different)

• rowi+ coli 6= rowj + colj and rowi− coli 6= rowj− colj ∀ i, j ∈ D| i 6= j
(diagonals must be different)

This first model has 2n variables.
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Figure 2.3: A solution of the 8-queens problem

Since there must be one and only one queen per column or row we can
eliminate one of the two sets of variables, let us say columns, by supposing
that queen k is in column k, i.e. rowk gives the row of queen in column k.
The model then becomes:

• rowi 6= rowj ∀ i, j ∈ D| i 6= j (rows must be different)

• rowi+ i 6= rowj + j and rowi− i 6= rowj− j ∀ i, j ∈ D| i 6= j (diagonals
must be different)

The second model has the advantage of having less variables (with the
same domains as in the previous model) and less constraints. The search
space of a CSP is the set of all complete assignments Πx∈X′D(x). For ex-
ample, the search space of the first model for the n-queens problem contains
n2n tuples, whereas the search space of the second model contains nn tuples.

The n-queens problem illustrates how a single CSP can be modeled in
different ways and how this affects the effectiveness in which it will be solved.
By reducing the search space, as we saw in the example, or by allowing a
more (or less) efficient propagation of constraints, as we explain in Section
2.2.3.

2.2.2 Example of modeling language: OPL

The Optimization Programming Language (OPL) is a modeling language
that supports both mathematical and constraint programming, it uses IBM
ILOG CPLEX Optimizer to solve mathematical programming models and
IBM ILOG CP Optimizer to solve CP models. Similar to AMPL, OPL’s
syntax is close to the mathematical notation of optimization problems.
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The structure of an OPL model contains the following ingredients:

• input values and constants definition

• definition of decision variables and their domains

• a function to minimize or maximize (for CP models it is optional)

• inside a block subject to come all the constraints

• pre and post-processing or flow control instructions can be given in
execute blocks written in JavaScript

Let us give an example of a CP model in OPL for the n-queens problem:

int n=...;

range N= 1..n;

dvar int row[N] in N;

subject to {

forall(i in N, j in N : i != j){

row[i]!= row[j];

row[i] + i != row[j] + j;

row[i] - i != row[j] - j;

}

}

In 2.2.4 we will see a more efficient way of expressing these constraints.

2.2.3 Filtering and search

The simplest way to search for a solution is called generate and test and
it consists in enumerating every complete instantiation in turn and checking
whether it satisfies all the constraints. To generate all complete instantiations
we construct a search tree starting from an empty instantiation (no variables
are instantiated) at the root. We then choose at each node in the tree a non
assigned variable xi and a value vi ∈ D(xi) to instantiate thus extending the
current partial instantiation.

Constraint programming proposes to solve CSPs by combining search and
propagation techniques. For combinatorial problems the number of nodes to
explore in the search tree is exponential so an exhaustive search without
pruning is not an option, for this reason CP combines search with propa-
gation of constraints. Through propagation the solver can save time by not
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visiting some nodes where the values assigned to the variables would cause
inconsistencies.

The propagation of a constraint filters the domains of its variables by
removing values that cannot belong to any solution of the CSP (values in-
consistent with at least one constraint). During propagation these filtering
algorithms are repeatedly called until they no longer alter the domains of
variables (which must happen in a finite number of calls since the domains
are finite). A pioneering work for constraint propagation has been done in
1972 by Waltz for a scene drawing application [85]. Since then, many differ-
ent constraint propagation algorithms have been proposed. The reader may
refer to [11, 61] for more information.

Different filtering algorithms can be proposed for each type of constraint,
these algorithms can differ in their ability to filter constraints or in their time
complexity. The goal is to have the best ratio between time complexity and
filtering efficiency and, of course, the cost of calls of the filtering algorithms
at each node must be less than the time required by the search procedure to
exclude the same values by testing.

A constraint c(X ′) defined for the variables in X ′ is said inconsistent if
c(X ′) = ∅ and consistent otherwise. A value a ∈ D(x) is consistent with
c(X ′) iff x /∈ X ′ or there exists a tuple τ ∈ c(X ′) such that τx = a. Constraint
c(X ′) is said arc consistent if and only if for all a ∈ D(x), such that x ∈ X ′,
a is consistent with c(X ′).

A filtering algorithm is said to establish arc consistency if it removes
all the values of the variables involved in the constraint that are not arc
consistent with the constraint. For example, let us consider the constraint
x + 4 = y with D(x) = {1, 3, 4, 5} and D(y) = {4, 5, 8}. An arc consistent
filtering must eliminate from D(x) all values not corresponding to a value
in D(y) and vice-versa. We see that 3 and 5 are not consistent values for x
because 7 and 9 are not possible values for y. In the same way we eliminate
4 from D(y) because there is no 0 in D(x). Hence, an arc consistent filtering
for this constraint must give D(x) = {1, 4} and D(y) = {5, 8}.

The backtracking algorithm tests consistency of partial instantiations
by only checking constraints concerning at least one fixed variable and veri-
fying whether or not the assigned value is consistent with the constraint. In
this way the algorithm can stop the search sooner in certain branches as we
see in figure 2.4.

In forward checking, once a variable x is fixed to v we eliminate (tem-
porarily) all values from the non instantiated variables’ domains that are
inconsistent with x = v. For this reason we do not need to check consistency
of the current variable with the previously fixed ones since they are neces-
sarily consistent. This method allows to prune branches leading to failure
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Figure 2.4: Backtracking for the second model of the 4-queens problem (figure
by R. Barták [14])

earlier than backtracking as we can see in figure 2.5. This happens because
in forward checking we can discard a branch as soon as the domain of a non
instantiated variable becomes empty (there is no value consistent with the
current partial instantiation), in backtracking this branch would be further
searched until the algorithm tried to fix the inconsistent variable.

Figure 2.5: Forward checking for the second model of the 4-queens problem
(figure by R. Barták [14])

Look ahead ormaintaining arc consistency (MAC) goes further than
forward checking and establishes full arc consistency, meaning that it checks
for consistency not only between the recently assigned variable and the non
instantiated but also amongst the non instantiated. This approach permits to
detect conflicts between future variables (non yet instantiated),as we can see
in figure 2.6. But this knowledge comes at the price that a lot more filtering
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work has to be done. As said before we need to see if testing inconsistent
nodes can be faster than eliminating them previously (as for establishing arc
consistency) to choose the best approach.

Figure 2.6: Look ahead for the second model of the 4-queens problem (figure
by R. Barták [14])

The exploration of the search tree can be guided through variable and
value ordering heuristics [74], they define in what way the search will
choose the next variable to fix (to assign a value to) and what value should it
choose, respectively. Examples of heuristics are: choosing the variable with
the smallest (biggest) domain, choosing first variables of type A and then
those of type B, assigning the smallest (biggest) values in the domain, etc.

2.2.4 Global constraints

To ease the modeling of a CSP and/or improve the search for a solution in
CP, global constraints [82] were introduced. Global constraints have one or
more of the following as goal:

• to be able to model constraints that are difficult, and sometimes im-
possible, to express through basic constraints (like linear or logical)

• to reduce the complexity of the filtering algorithm or of the propagation
phase

• to implement a more efficient filtering algorithm (one that eliminates
more inconsistent values)

• to provide some structural properties in the model that can be exploited
by the search

One of the most common global constraints amongst CP solvers is the
allDifferent constraint. It states that the values of the variables concerned
must be pairwise distinct. This constraint could be alternately represented by
a set of binary constraints. For every pair of variables in the set of variables

23



that must be all different we create a constraint stating that the values of
this pair must be different.

To exemplify the power of global constraints suppose we have a CSP with
3 variables x1, x2, x3 and an allDifferent constraint involving these variables
with D(x1) = {a, b}, D(x2) = {a, b} and D(x3) = {a, b, c}. Establishing gen-
eralized arc consistency for the global constraint removes the values a and b
from the domain of x3, while arc consistency for the set of binary constraints
does not delete any value. The filtering algorithm for this constraint, pro-
posed by [75], creates a matching between variables and the values in their
domains and eliminates edges that cannot be in a maximum matching.

The model for the n-queens problem presented previously, with the allDifferent
constraint, becomes:

int n=...;

range N= 1..n;

dvar int row[N] in N;

dvar int diag1 in N;

dvar int diag2 in N;

subject to {

forall(i in N) {

diag1[i] == row[i]+i;

diag2[i] == row[i]-i;

};

allDifferent(queen);

allDifferent(diag1);

allDifferent(diag2);

};

This model introduces new variables (diag1 and diag2), and the corre-
sponding search space has n3n tuples. However, this search space is explored
much more efficiently thanks to the allDifferent constraint propagation.

2.2.5 Constrained Optimization Problem

A constrained optimization problem (COP) is a CSP P with variables {x1, ..., xk}
together with an objective function f : D(x1)× ...×D(xk) −→ R that must
be either maximized or minimized. To solve this kind of problem with CP
the solver looks for a feasible solution, computes the corresponding objective
value, and then adds a new constraint stating that future solutions must have
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a better value of objective than it. This process is repeated until the system
becomes unfeasible, in which case the last solution found is optimal (or the
COP is unfeasible).

For COPs it is possible to use algorithms to calculate, at each node of
the search tree, a bound of the objective function. In this way branches can
be cut when a bound that is worse than the best solution found so far is
calculated. This method is known as branch-and-bound.

When a new solution is found by the branch-and-bound algorithm there
are two main options, one can either continue a depth-first search (DFS)
in the current tree or restart a new branch-and-bound procedure. The
advantage of the latter being that the heuristic choices can rely on the result
of the last propagation which should lead to a better exploration of the search
tree. The drawback is that this might lead to re-exploring some parts of the
search tree.

The calculation of bounds can be done by any kind of algorithm (not
necessarily another CP model). This allows, for example, to combine CP
with mathematical programming techniques, as Lagrangian relaxations that
can be efficiently calculated. Different papers using this kind of combined
techniques are cited in the next section, proposing CP approaches for the
TSP.

2.3 CP for the TSP

In 1997, Caseau and Laburthe [23] proposed a set of propagation and branch-
ing techniques to improve the performance of constraint programming and
make it a state-of-the-art technique for solving small TSPs (of up to 30 ver-
tices). Recent works [17, 36] have shown that Constraint Programming (CP)
is competitive with state-of-the-art special-purpose TSP solvers, like Con-
corde, for medium-size instances. A review and evaluation of the different
global constraints that have been used in the literature to address the TSP
with CP is given in [36]. Another recent successful application of CP (com-
bined with Lagrangian relaxation) was proposed to a generalization of the
TSP in [22] and also shown to be competitive with state-of-the-art exact
algorithms.

In [17], the authors develop a special filtering for the Weighted-Circuit
global constraint (which maintains a circuit - as in Def. 5 - in a weighted graph
G = (V,A,w)) and compare its performance to the following CP model for
the TSP (which we extend to solve the TDTSP, in chapter 6). In this model
n represents the number of nodes in V .
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intVar position[1..n] ∈ 1..n (2.2)

next[1..n] ∈ 1..n (2.3)

prev[1..n] ∈ 1..n (2.4)

minimize
∑
i∈1..n

w(i, next[i]) (2.5)

subject to position[1] = 1 (2.6)

allDifferent(position) (2.7)

allDifferent(next) (2.8)

∀i ∈ 2..n : position[i] = next[position[i− 1]] (2.9)

allDifferent(prev) (2.10)

inverse(prev, next) (2.11)

next[1] < prev[1] (2.12)

The reason why this model is a good comparison basis for other CP
approaches is because it only uses ”simple” global constraints (as allDifferent
and inverse), proposed in most CP solvers.

2.4 Scheduling and CP Optimizer

Temporal domains occur very often in optimization problems. While a
temporal domain can be considered isomorphic to an integer domain, time
presents important characteristics which should be leveraged to improve the
efficiency and convenience of the use of CP when dealing with such domains.

• time domains are too large to be enumerated efficiently

• time is monotonous

• time presents some cyclical and multi-scale aspects (hours, days, weeks,
months...) which need to be taken into consideration for the expression
of constraints

Over the years, a variety of specialized variable types (intervals) and related
global constraints have been developed [13, 57, 58] to improve the expres-
siveness and efficiency of CP based programs involving temporal domains.

A typical example of a problem that involves temporal domains is the
scheduling of tasks on a single machine that in CP Optimizer can be mod-
eled with the global constraint NoOverlap. This constraint states that tasks

26



performed by the same machine cannot overlap in time. In the same way,
this constraint can be used to model the TSP by constraining the visits per-
formed by the same salesperson to happen in a sequence. More details about
how to model the (TD)TSP with this constraint will be given in chapter 6.3.

Interval variables Generally speaking, CP Optimizer handles optional
interval variables that is, interval variables that are associated with a Boolean
status depending on their presence/absence. For simplicity, we assume here
that all interval variables are present.

An interval variable a is a decision variable that represents a task or
activity with unknown start and end times, i.e. whose domain dom(a) is a
subset of {[s, e)|s, e ∈ Z, s ≤ e}. An interval variable is said to be fixed if its
domain is reduced to a singleton, i.e., if â denotes a fixed interval variable
then â = [s, e). In this case, s and e are respectively the start and end of
the interval and d = e− s its length.

2.4.1 Precedence graph

In order to support the propagation of NoOverlap constraints, CP Optimizer
uses a precedence graph structure [39, 55]. This structure is a directed acyclic
graph with nodes representing the interval variables of the NoOverlap con-
straint and arcs the precedence relations between interval variables. Different
types of precedence relations are distinguished in the precedence graph, as
illustrated on Figure 2.7.

A C D F

B E

G

successor (direct)
successor (indirect)
next

Figure 2.7: Example of precedence graph

A next arc between two nodes i and j means that interval variable j always
comes next to i in any solution, that is, the position of j in the sequence is
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equal to the position of i plus one. A successor arc arc between two nodes i
and j means that interval variable j will come after i in a solution, that is,
the position of j in the sequence is strictly greater than the position of i. Of
course, a next arc subsumes a successor arc. For instance a sequence value
A→ B → C → D → E → F → G is compatible with the precedence graph
of Figure 2.7. The precedence graph automatically maintains the transitive
reduction of the successor arcs as a set of direct successor arcs. Figure 2.7
shows the direct successors of node B (namely C and E) as well as its indirect
successors (D, F and G). Note the difference between the notion of next and
the one of direct successor: the notion of direct successor depends on the
current topology of the graph and does not imply that the two nodes are
next to each other in all the solutions. For instance C is a direct successor
of A but it is not next to A in solution A→ B → C → D → E → F → G.

The precedence graph structure is incrementally maintained when new
next and successor arcs are added during the search (as decisions or because
of constraint propagation). For instance the insertion of a successor relation
C → E on the precedence graph of Figure 2.7 would produce the precedence
graph of Figure 2.8. We see that the precedence C → E has been strength-
ened as a precedence D → E as node E cannot be scheduled between C and
D because of the next arc between C and D. We also see that because of the
path B → C → D → E the successor relation between B and E which used
to be direct is now an indirect one.

A C D F

B E

G

successor (direct)
successor (indirect)
next

Figure 2.8: Example of precedence graph propagation

The precedence graph structure provides iterators to traverse the set of
all successors or all direct successors of a node with a complexity in O(n) if
n is the size of the iterated set.
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2.4.2 Search

To find a solution, the CP Optimizer search functionality implicitly gener-
ates combinations of values for decision variables by means of constructive
strategies. These strategies are executed and guided towards optimal solu-
tions in order to converge rapidly. The default search of CP Optimizer uses
a variety of strategies and uses the most appropriated one depending on the
model structure and on constraint propagation. The two most important
ingredients being Self-Adapting Large Neighborhood Search [56] and Failure
Directed Search [84], which are briefly presented here.

Self-Adapting Large Neighborhood Search combines several ingredi-
ents which are fundamental to its efficiency and robustness:

• Large Neighborhood Search (LNS): by freezing some features of a so-
lution and focusing on re-optimizing the unfrozen features the LNS
framework provides a general and efficient traversal of the search space.
Compared with Tree Search, it avoids being stuck with wrong early de-
cisions. It is more flexible than Local Search for complex problems
involving many types of constraints and resources.

• Partial Order Schedules (POS): a POS is a directed graph G(A, E)
where the edges in E are precedence constraints between activities
with the property that any temporal solution to the graph is also a
resource-feasible solution. Algorithms for transforming a fully instan-
tiated solution into a POS are described in [73, 45].

• Neighborhoods: the LNS uses a portfolio of large neighborhoods ex-
ploiting the temporal dimension of the problem (time-windows) or the
structure (for instance topology of the precedence constraint network)
(examples are RandomizedNHood, TimeWindowNHood, TopologicalN-
Hood). They are all based on the initial generation of a POS con-
structed from a completely instantiated solution where activities have
fixed start times and end times.

• Completion strategy: some completion strategies use a linear relaxation
of the problem and, doing so, has a global vision of the ideal position
of activities in time would there be no resource limitation. In the
context of LNS where only a part of the POS is unfrozen, this relaxation
tends to be very informative as most of the resource constraints are
still captured by frozen precedence arcs of the POS. The branching
scheme of the strategy allows to exploit constraint propagation and
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better explore the bottom of the search tree which clearly is a plus
compared to more classical non-backtracking greedy algorithms.

• Learning: the re-enforcement learning scheme, although quite simple,
ensures a quick convergence on the most effective neighborhoods, com-
pletion strategies and their associated parameter values. Learning is a
key factor in the robustness of the approach.

Failure Directed Search (FDS) operates under the assumption that the
current problem is infeasible, or alternatively, if there is a solution then it
is hard to find (heuristic methods already failed to find it). Therefore it
supposes that it will explore the whole search space (to prove infeasibility or
optimality) or at least a significant part of it (before a solution is found).

With this assumption in mind, FDS gives up on the idea of guiding the
search towards possible solutions. It does exactly the opposite: it drives the
search into conflicts in order to prove that the current branch is infeasible.
Choices that fail the most are preferred. From two branches of a choice the
one that fails the most is preferred. It is the well-known first-fail principle
but applied also on the branch ordering.

2.5 Discussion

In this chapter we started with preliminary definitions necessary to formally
model the TSP which, together with the VRP, describes the real-world prob-
lem of delivering multiple nodes of a network with (one or more) vehicles.
In urban contexts though, estimating travel times in a constant way as it is
done in the TSP and VRP is unrealistic as travel times tend to vary a lot
during the day. In the following chapter the time-dependent version of the
TSP, the TDTSP, is introduced and the literature concerning this problem
is reviewed.

In this thesis we chose to address the TDTSP with Constraint Program-
ming, which we introduced in the second part of this chapter. A brief review
of how CP has been used to tackle the TSP shows that CP can be competitive
with state-of-the-art methods for the TSP, at least for not too large instances.
In spite of this fact, no CP approaches have been investigated in the liter-
ature for the TDTSP. The fact that delivery problems usually have many
side-constraints, often complicated to model or integrate in meta-heuristic
or MIP approaches is a good call for CP, as one of CP’s strengths is the
ease of integration of constraints. Another reason to pick CP is its good
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performance for scheduling problems which is an important dimension of the
TDTSP.
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Chapter 3

TDTSP(TW)

In the case of urban centers, considering travel times to be constant is clearly
a poor model of reality, the biggest cities having huge variations of travel
times during the day. According to TomTom’s traffic index [3], based on
data from 2015, Lyon has a congestion level of 26% - corresponding to the
increase in overall travel times when compared to a free flow situation - with
52% of increase during the morning peak and 50% during the evening peak.

In the deliveries business, precise information about travel times allows to
calculate more reliable schedules and to improve satisfaction of time-related
constraints, like time-windows on deliveries. Another important gain of con-
sidering time-dependent travel times is that minimizing total travel time has
the potential to avoid congested axes and to reduce greenhouse effects as well
as transportation costs.

In this chapter we introduce time-dependency in the TSP, we formally
define travel time functions and related concepts to be able to define the
TDTSP(TW). We then give a classification of routing problems according to
time-dependency to clarify which problem we address in this thesis. In the
last section a literature review of the TDTSP/TDVRP is given, from three
different angles: the motivations for taking time-dependency into account,
the approaches proposed to solve these problems and the instances used for
experimentation.

3.1 Definition of the problem

The theoretical problem studied in this thesis is the TDTSP, an extension
of the TSP where arc costs depend on the time when the arc is traveled.
In the TSP we are given a list of locations and the distances between every
two of them. The objective is to find the tour minimizing the total traveled
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distance while visiting every location exactly once and coming back to the
point of departure (depot). In some cases though, the goal is to minimize
the total travel time instead of distance or simply to schedule interventions
or deliveries in certain time-windows predefined by the client. For these
purposes, one needs to know the travel times between consecutive deliveries.
To produce somewhat reliable schedules it seems necessary to take travel time
variations into account as, in urban zones, variations can be very important
in the course of a day.

In order to integrate time-dependent information about travel times we
define in Def. 8 travel time functions, also called transition times in what
follows.

Definition 8 (Travel Time Function) Given a graph G = (V,A), a travel
time function f : A × R+ → R+ is a function such that for a given arc
(vi, vj) ∈ A, f(vi, vj, t) is the travel time from vi to vj when leaving vi at
time t.

The following property (FIFO) plays an important role in the modeling of
travel times and in the difficulty of routing problems. Here we simply define
it, as it will be further discussed in the following chapters. It states that a
vehicle leaving later from the same departure point and traveling through
the same path as another vehicle cannot arrive earlier at the destination.

Definition 9 (FIFO property) A time-dependent travel time function f :
A× R+ → R+ is said to satisfy the FIFO (First-In First-Out) property iff:

∀(i, j) ∈ A,∀t, t′ ∈ R+, t ≤ t′ ⇒ t+ f(i, j, t) ≤ t′ + f(i, j, t′)

In the case of deliveries and specially of interventions, the duration of
visits is generally not the same so we consider that each vertex v is associated
with a given duration δ(v). The notion of Timed-Path extends the notion of
path (definition 2) in order to associate times to vertices.

Definition 10 (Timed-Path) Given a graph G = (V,A), a starting time
τ ∈ R+, a travel time function f : A × R+ → R+ and a duration function
δ : V → R+, a timed-path is a tuple TP = (P, a, s, e, l) such that P =
(v1, ..., vk) is a path in G, a : [1, k] → R+ defines the arrival time a(i) to vi,
s : [1, k] → R+ defines the start time s(i) of visit vi, e : [1, k] → R+ defines
the end time e(i) of vi, and l : [1, n] → R+ defines the leave time l(i) from
vertex vi. In the general case, times associated with the vertices in P must
satisfy the following constraints (illustrated in Figure 3.1):
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a(v1) = τ

s(vi) ≥ a(vi), ∀i ∈ {1, ..., k}
e(vi) = s(vi) + δ(vi), ∀i ∈ {1, ..., k}
l(vi) ≥ e(vi), ∀i ∈ {1, ..., k}

a(vi+1) = l(vi) + f(vi, vi+1, l(vi)), ∀i ∈ {1, ..., k − 1}

In some cases, it may happen that waiting is not allowed on vertices.
In this case, we have a(vi) = s(vi) and e(vi) = l(vi). When the path P
contains all different vertices, we may note a(vi), s(vi), e(vi) and l(vi) the
times associated with vertex vi in P .

t

v

d(vi)

s(vi) e(vi)a(vi) l(vi) a(vi+1)

f(vi, vi+1, l(vi))

Figure 3.1: Relations between variables of a timed-path

Definition 11 (TDTSP) Given a graph G = (V,A), a depot d ∈ V , a
starting time τ ∈ R+, a travel time function f : A×R+ → R+ and a duration
function δ : V → R+, the Time-Dependent Traveling Salesman Problem
is the problem of finding the timed-path TP = (P = (v1, ..., vk), a, s, e, l)
which starts from the depot (v1 = d) and visits each vertex exactly once
({v1, . . . , vk} = V ), and such that the returning time to the depot, l(vk) +
f(vk, d, l(vk)), is minimal.

If travel times are not FIFO, waiting at nodes to travel at a more advan-
tageous speed later on might improve the total travel time, but waiting at
nodes is not always a possibility since this might imply parking in prohibited
areas or require additional costs. Here we assume that waiting is allowed, as
in the definition of timed-path, the start time at the node can be greater or
equal to the arrival time at the node. The start time of the tour τ could also
have been subject to optimization but the only fixed version is considered
here.
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Travel time functions are not assumed to be symmetrical (i.e. f(vi, vj, t)
may be different from f(vj, vi, t)) therefore when we refer to TDTSP we are
actually considering the more general asymmetrical version that some call
TDATSP. Finally, we can add to the TDTSP time-window constraints, as in
definition 12, and define the Time-Dependent Traveling Salesman Problem
with Time-Windows (TDTSPTW).

Definition 12 (TDTSPTW) Given a graph G = (V,A), a depot d in V ,
a starting time τ ∈ R+, a travel time function f : A×R+ → R+, a duration
function δ : V → R+, and a time-window function tw : V → P (R+ ×
R+) such that tw(vi) = {(ws1, we1), ..., (wsp, wep)} is the set of time-windows
associated with vertex vi, the TDTSPTW is the problem of finding the timed-
path TP = (P = (v1, ..., vk), a, s, e, l) which starts from the depot (v1 = d)
and visits each vertex vi exactly once during one of its time-window (i.e.,
there exists (wsj, wej) in tw(vi) such that s(vi) ≥ wsj and e(vi) ≤ wej), and
such that the returning time to the depot, l(vk) + f(vk, d, l(vk)), is minimal.

In the literature two types of (time-window) constraints are usually con-
sidered, soft and hard. Shortly said, soft constraints can be violated while
adding penalties to the objective and hard constraints have to be satisfied
otherwise the problem is considered unfeasible. If soft time-windows are not
respected in the final solution, costs of earliness (arriving too early at the
client) and/or lateness (arriving too late) might have to be considered. The
time-windows used in this work are hard constraints and have to be satis-
fied as declared by the customer. To ensure that hard time-windows can be
respected it is sometimes mandatory to allow waiting at nodes until a time-
window becomes available and ”service” can start. Otherwise, if waiting is
not allowed, the problem might become unfeasible. The TDTSP can be seen
as a TDTSPTW where every visit has a unique time-window (−∞,∞).

Objective functions In Definitions 11 and 12, we define the objective
function as the minimization of the returning time to the depot. Other
objective functions might be considered, depending on the final application.
For example, the goal might be to minimize CO2 emissions, the length of the
tour or its total cost.

For our application’s purpose the ideal optimization goal would be actual
cost (so that delivery companies adopt it), with a sub-goal of limiting vehicle
emissions (to be beneficial for the city). But the variables that determine
the total cost and vehicle emissions are essentially labor costs and fuel usage,
both of which are strongly correlated to the actual time spent performing the

35



tour. Thus, travel time is a good compromise for our purposes, as it happens
to be easier to estimate reliably.

In the case where time-windows constraints have to be respected, being
too early or too late also impacts costs (parking costs, extra costs for the
client). So being able to estimate arrival time at the client reliably, might be
a goal in itself.

For the problem of minimizing fuel usage (and therefore CO2 emissions)
two main things have to be taken into account, truck travel speeds and the
load being carried by the truck [34]. Since emissions are non-linear in speed
[30] (both low and high speeds yield higher emissions) and trucks travel with
the traffic time-dependent travel speeds, paths and times where speeds are
closer to the emissions-minimizing speed have to be prioritized. Furthermore,
the order of deliveries at customers should aim to reduce as much as possible
the load of the truck along the way. The diversity of factors that have to be
taken into account for this kind of objective function makes it quite complex
to optimize.

There is no difference between optimizing total travel time and return
time to the depot when waiting is not allowed (or it is allowed and travel times
are FIFO), since the end time can be calculated by the sum of travel times
and waiting times between vertices. When waiting is allowed (and travel
times are not FIFO or there are time-window constraints), minimizing total
travel time might imply having larger waiting times (than when minimizing
the end time of the tour) which can have larger costs as a consequence, if
it implies paying extra time to drivers or if parking costs apply. So, in this
thesis, we chose to minimize the end time. The difference in complexity
between these two objective functions depends on the model (as well as on
the instances).

3.2 Classification of routing problems accord-

ing to time-dependency

Since the VRP is a generalization of the TSP and also maybe a more frequent
application in logistics, an important part of the literature on time-dependent
routing addresses the TDVRP rather than the TDTSP. For this reason, in
the following sections, literature concerning vehicle routing in general (single
or multiple vehicles) is considered. On the other hand, papers concerning ap-
plications other than urban routing and scheduling like air traffic control [42]
or maritime logistics [51] are not studied here since modeling considerations
are very different making their general approach harder to compare. For a
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general review of alternative applications of the time-dependent versions of
the TSP and VRP, the reader can refer to [43].

It is important to distinguish between the different problems that have
been addressed as time-dependent in the literature but do not mean the same
thing. Let us divide the problem into five categories concerning their level of
‘time-dependency’: constant, position-dependent, time-dependent, dynamic
and stochastic.

We refer to the TSP (respectively VRP) as the constant costs version or
the constant problem, sometimes called sequence-dependent in the literature.
In this version costs do not depend on time in any degree and only depend
on the pair of nodes (origin-destination).

The position-dependent version is the problem firstly described by Pi-
card and Queyranne in 1978 [72], when scheduling jobs on a single machine
with costs depending on the position of the job in the sequence, i.e., if there
are n vertices, then the cost function is defined on A × [1, n], and c(i, j, k)
gives the cost for traveling from i to j when i is the kth visited vertex. Since
then, [46, 4, 21, 41] also addressed this version of the problem and used the
term time-dependent TSP to describe it even though costs do not directly
depend on time.

In the time-dependent version, the cost (travel time) from one vertex
to the other varies according to the actual departure time from the first
vertex. To our knowledge the first authors to define the TDTSP in this way
were Malandraki and Daskin in 1992 [66]. Earlier than this, Beasley in 1981
[16] and Ahn and Shin in 1991 [5] defined the equivalent time-dependent
version of the VRP. The time-dependent version is limited to predictable
changes in costs, for example, due to periodic variations like week days,
seasons, holidays, rush hours, construction work, etc. Random events cannot
be captured by time-dependent models.

Unpredictable events can be treated either in real-time or in a-priori way.
For the dynamic version of the problem, the Dynamic TSP (DTSP), costs
are updated as they change in real-time and decisions have to be adapted to
take changes into account in an online manner. The DTSP was first proposed
by Psaraftis [48] in 1988 and the two main approaches used in the literature
to solve the problem are evolutionary computation [89, 7] and ant colony
optimization [24].

With stochastic or probabilistic (a-priori) optimization, on the other
hand, one might try to estimate the probabilities of the different possible
outcomes and take them all into account when looking for the best solution.
Two different problems may be addressed in this case: one may search for a
robust solution (such that the probability that the solution becomes unfea-
sible when executing it with real-time data is lower than a given threshold),
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or for a flexible solution (such that, given some online adaptation procedure,
the expected cost of the adapted solution with respect to real-time data is
optimized). Stochastic travel times are addressed in [59] and [52], for exam-
ple. Dynamic and stochastic versions of the problem are often considered
together, [60] discusses both in depth and addresses different variants of the
dynamic and stochastic VRP in his thesis.

Some confusion exists within the vehicle routing literature in what con-
cerns time-dependency: [86, 83] propose a queuing approach (stochastic) for
the ”dynamic” problem but actually meant the time-dependent problem, dif-
ferent authors referred to the position-dependent problem as time-dependent.
For this reason, a clarification of naming conventions seemed important here.

3.3 Literature review

The literature review is organized into three subsections: motivations, meth-
ods and experiments. The first subsection reviews the work done to evaluate
the interest of taking time-dependency into account for the optimization of
vehicles routing problems. In the methods subsection, the different solving
approaches used so far to address the TDTSP(TW) and TDVRP(TW) are
listed and in the experiments subsection the different kinds of instances used
for testing are presented as well as their common characteristics. The two last
subsections show that our work fills a gap in what concerns CP approaches
and benchmark instances for the TDTSP while the first one motivates the
study of time-dependent routing problems.

3.3.1 Motivation: constant versus time-dependent ap-
proaches

Different authors studied the effects of taking time-dependency into consid-
eration when studying the TSP or VRP for urban deliveries. One might
wonder if constant times can be good enough approximations of reality in
such a way that solutions of the constant problem are the same or similar
to solutions of the time-dependent problem. To answer this question the
common approach in the literature has been to compare solutions of the TD-
VRP with solutions to a related constant VRP, where travel times between
nodes are averages (or some other constant approximation) of the different
travel times during the day. The solution sequence found for the constant
problem is then ”simulated” using the more realistic conditions and the to-
tal travel time (or other objective) is calculated using time-dependent travel
times between nodes.
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Fleischmann et al. [38] compared constant against time-dependent travel
times for seven TDVRP instances (five of which have time-window con-
straints) ranging between 58 and 786 clients to deliver. Those instances
were generated from real-world data coming from the traffic information sys-
tem of the city of Berlin and vehicle and client’s order information were
provided by several logistics service providers in the city. Even though their
instances come from real data and their solving method does not suffer from
considering larger amounts of time steps - they report only small increases
in computational times for 5, 10 and 50 time steps - they point to mem-
ory as the limiting factor for using 50 time steps or more per travel time
function (the paper was published in 2004 but tests were performed years
earlier). Total travel times of the optimized sequences (using the varying
numbers of time steps from constant to 50) are then simulated using the
original (non-agreggated) values of 214 time steps. The main goal of their
tests was to compare the different heuristic algorithms (local search) in what
concerns the amount of time steps considered for the travel time functions.
Since the heuristics do not prove optimality it is not possible to conclude
that considering more time steps does not allow to improve results. It may
allow nevertheless, to conclude that the heuristics considered by them have
similar performances, within the given conditions, for 5, 10 and 50 time steps.
On their instances, using constant travel times led to an underestimation of
travel times of about 10% and violations of time-windows.

In 2012, Kok et al. [53] developed a realistic speed model, which they
applied to road-networks from six US cities, and tested four different con-
gestion avoidance strategies on their Capacitated-VRPTW (VRPTW with
capacity constraints for the trucks) instances. The two first strategies are
not specifically avoiding congestion actually, and they calculate optimal so-
lutions for the VRP in the first case supposing constant maximum speeds
for every arc and in the second case using constant speeds estimated by
averaging time-dependent speeds during the day. For strategies 3 and 4,
estimated time-dependent travel speeds are used for the TDVRP and the
difference between the two is that on top of that strategy 4 calculates time-
dependent shortest paths between adjacent nodes of the optimal sequence.
Basically, strategies 1 and 2 are constant and 3 and 4 are time-dependent
with degrees of ”congestion avoidance” increasing from 1 to 4. Kok et al.
[53] have 360 Capacitated-VRPTW instances of 15, 50 and 100 customers,
truck capacity is set to 55 (judged to be a good trade off not to constrain
the length of routes only by time-windows or truck capacity) and start times
are fixed. Half of the customers have time-windows with lengths varying
randomly from 30 to 90 minutes, service times are either 15 or 30 minutes
in the same proportion and customer demands are randomly drawn from 1
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to 10. Their primary objective is to minimize the number of vehicles and
the secondary is to minimize the end time (called by them, duty time) of
all truck drivers. They compare the four different strategies on a number of
performance measures, that can be summed up by: number of vehicles, total
duty time, total traveled distance and total late time at customers. Averages
over all instances are given (results for instances of 100 customers are scaled
up from the smaller instances) and results for strategies from 2 to 4 are given
in percentages relative to strategy 1. Strategy 2 requires 11.70% more vehi-
cles than 1 and increases the total duty time by 3.34% while reducing the
total travel distance by 0.60% and the total lateness by 88.58%. This means
that strategy 2 when compared to 1 adds a lot in terms of reliability but
also in terms of costs (more vehicles and for longer). Strategies 3 and 4 have
quite similar performances with slight improvements using 4. Both require
only around 0.5% more vehicles than strategy 1 on average while allowing to
eliminate lateness at customers completely and to reduce total duty time by
7.69% and total distance by 1.24% (with strategy 4). The conclusion is that
time-dependent strategies have a great impact on the reliability of routes
which ultimately has a great impact on costs (of lateness, of hiring drivers
for longer, of fuel).

Other authors having performed similar studies are [49, 83, 32, 64], these
studies were generally smaller in size or used mostly randomly generated
data. Their conclusions in terms of gains of considering time-dependency
correspond to our conclusions (presented in Section 8.3) that not taking time-
dependent travel times into account has huge impacts on the reliability of
solutions in the presence of time-windows. Their estimated gains ranged be-
tween 1 and 22%, where smaller gains corresponded to ”less time-dependent”
situations.

3.3.2 Methods : existing approaches for solving the
TDTSP and TDVRP

In this section we give an overview of the different techniques that have been
used in the literature to tackle the TDTSP and TDVRP (with and without
time-windows). In Figure 3.3.2 a classification of approaches per type of
problem is given. The branch that describes TDTSP approaches is probably
more complete than the one that describes TDVRP approaches as we are
focusing on the TDTSP in this thesis.

Complete approaches for those problems are all based on MIP, and con-
sist mainly on branch-and-cut. A MIP formulation for the TDVRP and its
adaptation for the TDTSP is given by [66] but the authors do not discuss
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how to solve this formulation, they propose several simple heuristics for that
purpose. For the TDTSPTW and TDVRPTW, [6] and [78] propose a trans-
formation into graphical ATSPs but their approach depends on the tightness
of time-windows in order to produce a compact graphical representation.
Heuristic approaches are more varied and consist for the most part on adap-
tations from existing heuristics for the TSP/VRP, the majority being based
on local search or meta-heuristics.

Figure 3.2: Tree of approaches proposed in the literature for the TDTSP and
the TDVRP, with and without time-windows (TW and no TW, respectively)

Heuristics present the disadvantage that adding new constraints is not
as straight-forward as it usually is with CP (and sometimes with MIP)
approaches. On the positive side, some heuristics can be adapted for the
TDTSP without considerably increasing complexity, as described by [5]. As
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one can see in Fig. 3.3.2, we couldn’t find any heuristic approaches for the
TDTSPTW but a great variety of heuristics for the TSP have been adapted
for the TDTSP (without time-windows).

It is not simple to judge how MIP approaches would behave in the pres-
ence of a larger number of time steps (higher granularity in the discretization
of time) as the papers listed here under MIP approaches did not test their
solution with a number of time steps larger than eight. It would be inter-
esting to see more discussions concerning how MIP models would scale with
a larger number of time steps. Certain constraints can also be very hard to
express accurately with this kind of approaches, so even though it is an exact
approach that can be very fast in certain situations it also seems to come
with important limitations in this context.

To the best of our knowledge, the only paper using a Constraint Program-
ming approach for a time-dependent problem is [51], treating two scheduling
problems with time-dependent task costs. No papers address the TDTSP or
TDVRP with CP.

It seems very hard to compare different methods as they might not address
exactly the same problem (one might have fixed start times as the other may
not, one might consider FIFO travel time functions and the other general
functions) and the lack of a common benchmark also makes comparisons
difficult.

3.3.3 Experiments: instances generation and charac-
teristics

In this section we describe instances used across the related literature in order
to figure out common characteristics and desirable features of a benchmark.
We can distinguish two main types of test sets, instances artificially generated
simulating one or two traffic peak-hours and instances based on real traffic
data.

Artificially generated instances Two main groups of instances artifi-
cially generated should be highlighted here: instances based on Solomon’s
100-customer Euclidean problems [79] - used by [49, 47, 28, 32] mainly for
studying the TDVRP - and TDTSP instances developed by [26, 9] that are, to
the best of our knowledge, the only ones (other than ours) currently available
online. Papers [80] and [28] point to instances no longer available online.

Ichoua et al. [49] first adapted Solomon’s instances in 2003 using three
different scenarios of speed variation. Arcs of the original instances are classi-
fied into one of three categories (fast, medium and slow) and three time-step
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speeds are associated with each kind giving 3×3 speed matrices for each sce-
nario. The geographical distribution of customers in the original instances
follows three different patterns: randomly distributed, clustered and mixed
(some random, some clustered). Instances are further differentiated by num-
ber of customers that can be delivered by one vehicle, some having very tight
time-windows and others, very large. The number of clients being served per
instance can vary between 25 and 100. With a lot of similarities to Ichoua’s
instances but with some particularities, the instances generated by [26] are
described in details in section 8.5 as we tested our method on them. The
sizes of their instances in terms of nodes to be visited varies between 15 and
40.

Only in rare cases in the related literature tests were performed on in-
stances with more than 100 nodes (both real-world and artificial are listed):

• TDTSP instances - [18, 77, 63] used adapted version of BIER127 which
is a TSPLIB95 [76] problem with 127 nodes; [70] up to 200 customers;

• TDVRP instances - [38] tested on four instances of more than 100
with 371, 672, 761 and 786 deliveries (using 15, 18, 20 and 84 vehicles,
respectively), two of which with time-windows; [5] up to 200 customers.

Most randomly generated instances use travel times or speeds that simu-
late one or two traffic peaks during the day, having only between 3 to 5 time
steps, [6] and [21] consider 8 time periods of about 1 hour each.

Real-world instances Instances using real-world data were used by [38,
35] in Germany, [64] in the UK, [32] in Italy and [70] in Japan. In most
cases, authors modeled the road network including real-world data and then
proceeded to extracting the corresponding instances to be optimized (as ex-
emplified in the following chapter), the only exception being [70] which cal-
culates shortest paths and tours in an integrated manner. Another common
trait between these test instances is that they all have a much more detailed
granularity of time than those artificially generated, dealing with a number
of time steps on the order of one or two hundreds and of lengths varying from
5 to 15 minutes.

When time-window constraints are considered they are usually unique per
client and present for either 50% of customers or 100%. Questions concerning
the choice between speeds or times are discussed in section 5.1.1.
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3.4 Discussion

In this chapter we have set the formal basis to study the TDTSP. First,
formal definitions of the TDTSP and of the most common side-constraint,
the Time-Window constraint, were given and the choice of the objective
function to be optimized was discussed. Then, a classification of routing
problems according to time-dependency was given in order to clarify which
works in the related literature address the issue (of time-dependency) in a
similar way and are, therefore, comparable with our study.

Once the exact problem we are addressing is clearly defined, the related
literature was reviewed in three subsections: the interest of studying the time-
dependent problem rather than the constant one, the methods used to solve
the time-dependent problem and the types of instances used for experiments.

In the first subsection we present the studies done in the literature com-
paring constant to time-dependent approaches. The goal of these studies is to
evaluate the potential gains of considering time-dependent information but
also to evaluate what is the impact of using constant information in the real-
world feasibility of the solutions found. All conclude that time-dependency
is important to take into account and perhaps even more so in the presence
of time-windows. We also performed this kind of study during this thesis, us-
ing the benchmark instances we generated, our results are reported in section
8.3.

In the second subsection the approaches used in the literature to tackle
time-dependent routing problems (TDTSP, TDVRP) were listed. We point
out that CP approaches are rare or non-existing, we could only find one
paper [51] treating a similar problem to the TDTSP with CP. Exact MIP
approaches seem to be more restricted in terms of the number of time-steps in
the modeling of travel time functions they can take into account. To the best
of our knowledge there are no papers using MIP approaches in the literature
reporting tests with a larger number of time-steps than 8.

In subsection 3.3.3, instances were differentiated between artificially gen-
erated simulating traffic peak-hours and based in real-world data. They were
then analyzed in terms of number of nodes (customers) and of number of time
steps of the travel times/speeds functions1. The number of customers is usu-
ally between 15 and 100 but some cases with larger amounts were listed.
The number of time-steps varied with respect to how instances were gener-
ated, for artificial ones the number of time-steps considered tends to be quite
small (most commonly around 3 or 4) while for realistic ones they tend to

1Note that we will discuss the choice to use times or speeds in the model more in detail
in section 5.1.1
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be larger, in the order of hundreds. None of the authors studying real world
data made their instances available and only one of the artificially generated
benchmarks is currently accessible online. The available instances only con-
sider up to 40 customers and no time-windows which are limitations when
one looks at the common requirements here described. In that sense, our
benchmark instances presented in the next chapter might fill a gap in what
concerns the ease of evaluation and comparison of TDTSP related methods.
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Chapter 4

A new benchmark for the
TDTSP derived from
real-world data

In the context of the Optimod project we had access to real traffic data
measured from 630 sensors installed in the main axes of Lyon for 6 years. In
this chapter we describe how we generated a TDTSP(TW) benchmark from
this data and present the modeling choices we made with respect to time-
dependent travel times functions. A TDTSP instance in our benchmark
consists of a list of visits with their corresponding duration times, a time-
dependent travel time function and, in the case of the TDTSPTW, time-
window constraints.

Here we distinguish between the city’s road-network and the TDTSP
instance graph. The road-network is a graph where vertices represent in-
tersections between different streets (or different segments of the same street)
and edges correspond to street segments. The TDTSP instance graph is
an aggregated version of the road network where vertices represent delivery
addresses and edges correspond to shortest paths connecting two different
addresses.

In the first section of this chapter, we give a brief description of how the
travel speeds used later in this chapter were estimated. In the second section,
all the steps to transform the road-network graph into an instance graph are
explained in details. Finally, in the third section, the benchmark instances
generation is described.
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4.1 Estimation of travel speeds

In this section, we give some background on what kinds of measuring of
traffic are done and how travel speeds are predicted from the collected data.

There are two main ways in which travel speeds on a given street can be
measured:

• Data coming from sensors inside vehicles: as GPS, Floating car data
(data coming from cellphones)

• Inductive-loop traffic detectors: electromagnetic systems buried in the
traffic lane that are able to detect vehicles passing over it or stopped
within the loop

The first option is limited as not enough data is available, so in this
thesis we use data coming from (a total of 630) inductive-loops installed
across the city of Lyon. These loops measure density (vehicles/km) and
flows (vehicles/hour), one measure every 6 minutes, and from these values it
is possible to estimate speeds using the fundamental diagram of traffic flow.
The three graphs shown in Fig. 4.1 are related by flow = speed ∗ density.

In practice, we used tables given in an internal report from OptimodLyon
that allow to obtain average travel speeds for all possible ranges of occupancy
rates and different types of streets (according to their vehicle capacities, speed
limit, etc. ). For streets without sensors estimations are made through an
interpolation of data from neighboring streets, taking the streets’ directions
into account in the calculations (for example, neighboring streets going in
opposite directions do not impact estimations for one another).

Figure 4.1: Fundamental diagram of traffic flow (from [88])
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Then, travel speeds on a given road segment are predicted for every
6-minute time step by calculating the median value of speeds on the same
time step of similar days (week days, public holidays, sunny or rainy). More
about the predictive model developed specifically for the Optimod’Lyon project
can be read at [87], the model described here is a simpler version developed
with the only purpose to generate the benchmark instances described later
in this chapter.

4.2 From road-network to instance graph

The road-network graph of Lyon is extracted from the Open Street Map
database [2]. The extracted graph has about 100000 edges, corresponding
to one-way or two-way road segments. The edges are connected through
vertices having an average arity of about 2.3. This arity is fairly small,
because the graph needs to be quite detailed in order to allow for all possible
and compliant road maneuvers when calculating routes.

As indicated in [15], we collected real delivery tours data, with a total
of about 10000 tours and an average of 20 visits per tour. After cleaning
the data and verifying delivery addresses, we have randomly selected 255
addresses, among the set of addresses occurring in real tours, which are
displayed in Fig. 4.2.

Figure 4.2: Lyon’s road-network with 255 delivery addresses

The first step to build the instance graph is to add the 255 delivery
addresses as new vertices in the road-network graph, possibly breaking some
of the road-network’s edges in two, in cases where the address is located
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within a street segment. The next step is to compute shortest paths between
every couple of delivery addresses, these shortest paths correspond to the
edges of the instance graph (Fig. 4.3). Usually, for TSP instances, this step
corresponds to finding shortest paths in terms of distances, in a road-network
graph where the edge-costs are the lengths of the associated street segments.
We, on the other hand, are interested in shortest paths in terms of time,
in a context where travel durations are time-dependent. This means that
we want to know for each moment t and each pair of addresses (a, b) which
path leaving from a at time t arrives the earliest at b. In order to calculate
the time-dependent travel times of edges in the instance graph, we need to
have time-dependent travel duration information for each edge in the road-
network graph. Travel times in the road-network are obtained from speeds
estimated from the data collected from sensors, as explained in the previous
section.

20

1

2

3

4

6

5

12

8

13

10

5

8

7

9

14

12

6
9

13

4

7

8

23

19

8

12

6

9

10

11

10
7

10

5

17

Figure 4.3: Example of first transformation step, on the left, where delivery
addresses are added to the road-network graph, and on the right, the instance
graph generated with shortest paths costs for every edge

4.2.1 Estimating time-dependent travel times from time-
dependent speeds

A predictive model is used to estimate time-dependent travel speeds on the
road-network from historic traffic data for each of the 65 time steps of 6
minutes, from 6:00 to 12:30, as described in Section 4.1. From these travel
speed functions (which are step-wise functions as illustrated on the left graph
of Fig. 4.4) we need to calculate travel times, that will be used to calculate
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shortest paths in terms of time in the next step. A simple way of calculating
the travel time ttime on an edge from a given travel speed tspeed (at a certain
departure time t0) would be to divide the length l of the edge by the speed
at time t0: ttime(t0) = l/tspeed(t0). By following this procedure one would
obtain a stepwise travel time function, the red function on the right graph of
Fig. 4.4. In the example of the figure, a travel time ti is obtained by dividing
the length of the edge by the corresponding speed vi with i ∈ 0, 1, 2, 3, 4.

This approach presents the drawback that stepwise travel time functions
do not respect the FIFO property (proof in the following chapter 5) and
this property is essential for the next step of the extraction of an instance
graph from the network-graph (calculating time-dependent shortest paths).
The importance of this property is that the computation of time-dependent
shortest paths is a polynomially solvable problem in FIFO-networks (net-
works in which travels happen in a FIFO manner) [50] whereas it is NP-hard
for non-FIFO networks [71].

In order to generate travel time functions (from travel speeds) respecting
the FIFO property (Def. 9), we use an extension of the algorithm proposed
by Ichoua et al. in [49]. The original, referred to as IGP algorithm in
what follows, is described in Algorithm 1. Given a time-dependent travel
speed function on an edge, the IGP algorithm allows to calculate the travel
time on that edge for a specific departure time. We provide an extension,
Alg. 2, of the IGP algorithm that calculates the whole (piecewise linear)
travel time function at once, instead of just one travel time value for a given
departure time. This algorithm would calculate the black travel time function
on the right graph of Fig. 4.4, which respects the FIFO property (proof in
the following chapter 5).

Figure 4.4: A stepwise travel speed function on the left transformed in travel
time functions on the right. A stepwise function in red obtained by dividing
edge lengths by speeds and a piecewise linear function in black obtained using
the IGP algorithm (figure modified from [28])
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For a given departure time, it might happen that the time it takes to
travel through an edge is larger than the length of the current step of the
speed function, meaning that the speed on that edge might change during
the travel. The goal of the IGP algorithm is to take these changes into
account (they might happen multiple times during one travel) and calculate
the travel time left on an edge always using the most recent travel speed.
Whereas with the simple method presented in the first paragraph of this
section, only the speed occurring during departure time was considered.

The IGP works by iterating over time steps, updating the speed used
in the travel time calculation, as soon as the current time (departure time
plus travel time so far) crosses the boundary of a time step. For example,
in Fig. 4.4, the travel times t(b′, b) in the interval [b′, b[ are calculated using
both speeds of the second and third steps, t(b′, b) = l1

v1
+ l2

v2
, where li is the

portion of the total length l that was traveled using vi, li is a function of the
departure time. While travel times from a to b′ (in this case, constantly t1)
only require the speed from the second step, t1 = l

v1
.

Algorithm 1 IGP algorithm

Input: - an edge (i, j) of length Lij

- a number of time steps M , such that for k ∈ [1,M ], [Tk, Tk+1[ is the k
th

time interval
- a stepwise speed function for (i, j), v : M → R+ such that the speed
on (i, j) is equal to v(k) at any time t in [Tk, Tk + 1[, for each k ∈ [1,M ]
- a starting time t0 ∈ [T1, TM+1[

Output: The time needed to traverse (i, j) when leaving from i at time t0
1: t← t0 // t is the current time
2: Let k0 ∈ [1,M ] be the time step index such that Tk0 ≤ t0 ≤ Tk0+1

3: k ← k0 // k is the index of the time step that contains t
4: d← Lij // d is the portion of (i, j) that remains to be traversed at time

t
5: t′ ← t+d/v(k) // t′ is the arrival time on j if speed had a constant value

equal to v(k)
6: while t′ > Tk+1 do
7: d← d− v(k) ∗ (Tk+1 − t)
8: t← Tk+1

9: t′ ← t+ d/v(k + 1)
10: k ← k + 1
11: end while
12: return t′ − t0
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Algorithm 1 must be called for each possible initial time t0 ∈ [T1, TM +1[,
for each edge (i, j). To speed-up this computation, [28] proposes to search
for ”breakpoints”1, which are points where the travel time function might
change its derivative, and only use the IGP algorithm to calculate travel
times corresponding to these breakpoints - instead of adopting a more naive
approach like iterating over all possible starting times and using the IGP
algorithm for each of them. The resulting travel times, corresponding to each
of the calculated breakpoints, are then connected by linear pieces giving a
continuous piecewise linear function as result (this part is omitted from the
algorithm as it is straightforward). In Fig. 4.4, the breakpoints of the travel
time function are a′, a, b′, b, c′, c, d′, d.

To understand how Algorithm 2 looks for breakpoints, we observe that,
for a given starting time t0, if more than one time step has to be used in the
calculation of the travel time then for all subsequent starting times (belonging
to the same time step as t0) there will be a slope - increasing or decreasing,
depending on the speed function. As long as only one time step speed is
required the travel time remains constant and as soon as a new time step
is needed in the IGP algorithm the slope might change and therefore a new
break-point has to be calculated.

Algorithm 2 calculates (and returns) the set of breakpoints β correspond-
ing to speed function v (on edge (i, j) withM time-steps), IGP ((i, j),M, v, t0)
returns the travel time for departure time t0 using the IGP algorithm (Alg.
1). In what follows we suppose (i, j),M, v fixed and call the algorithm with
only the departure time: IGP (t0). For departure time t0 the related ar-
rival time is given by t0 + IGP (t0). To find breakpoints corresponding to
a fixed time step ts = [Tk, Tk+1 − 1] (Tk+1 is considered in the subsequent
iteration), the algorithm looks at the time step boundaries crossed between
Tk + IGP (Tk) and Tk+1 − 1 + IGP (Tk+1 − 1), the arrival time if leaving at
the start of ts and at the end, respectively. For each boundary Th crossed,
the departing time (somewhere inside time step ts) must be calculated, to do
so a ”backward” version of the IGP algorithm was developed. This version
is given in Appendix A and the departing time obtained with the backward
algorithm is denoted by BackIGP ((i, j),M, v, Th).

1They do not provide a detailed procedure for this purpose (search for breakpoints).
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Algorithm 2 Extension of IGP algorithm

Input: - an edge (i, j) of length Lij

- a number of time steps M , such that for k in [1,M ], [Tk, Tk+1[ is the
kth time interval
- a stepwise speed function for (i, j), v : M → R+

Output: The set β of breakpoints for edge (i, j) and speed function v
1: β ← ∅
2: for all k ∈ {1, ..,M} do
3: β ← β ∪ Tk

4: tb ← Tk // the first time of time-step k
5: te ← Tk+1 − 1 // the last time of time-step k
6: kb ← k′ : Tk′ ≤ tb + IGP (tb) < Tk′+1 // the time-step of the arrival

time when leaving from i at time tb
7: ke ← k′′ : Tk′′ ≤ te + IGP (te) < Tk′′+1 // the time-step of the arrival

time when leaving from i at time te
8: for all h ∈ {kb, .., ke}, the set of time-steps between kb and ke do
9: th ← BackIGP (v, Th) // the time of departure in order to get to

arrive at time Th

10: β ← β ∪ th
11: end for
12: end for
13: return β

4.2.2 Time-dependent shortest paths calculation

As mentioned earlier, finding time-dependent shortest paths is polynomially
solvable in FIFO-networks and a straight-forward adaptation of Dijkstra’s
point-to-point shortest path algorithm to the time-dependent case is enough
to solve the problem. The time-dependent adaptation of Dijkstra, Algorithm
3, was proposed by [33], which at the time did not notice it only worked in
cases where travel times respect the FIFO property.

Given a graph G(V,A, f) (where f : A → R+ is a function giving the
arc costs), a source vertex s ∈ V and a destination d ∈ V , Dijkstra’s clas-
sic algorithm (for the static case) maintains an array of tentative distances
T [u] ≥ t(s, u) for each vertex, where t(s, u) is the shortest distance to go
from s to u. The algorithm visits (or settles) the vertices of the road network
in the order of their distance to the source vertex and maintains the invari-
ant that T [u] = t(s, u) for visited vertices. When a vertex u is visited, its
outgoing arcs (u, v) are relaxed, i.e., T [v] is set to min(T [v], t(s, u)+f(u, v)),
where f(u, v) gives the distance of arc (u, v). Dijkstra’s algorithm terminates
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when all target vertices are visited. In the time-dependent version of Dijk-
stra’s algorithm presented here, the only change is that function f - usually
the weight or distance of an arc in the graph - becomes a time-dependent
function as highlighted in red in Alg. 3.

Algorithm 3 Time-Dependent Dijkstra

Input: a graph G = (V,A, f) with arc costs f : A → R+, an initial vertex
s ∈ V , a set of final vertices D ⊆ V \{s}, a departure time τ

Output: an array T : V → R+ such that for all v ∈ D, T [v] is the shortest
time to go from s to v when leaving s at time τ

1: T [v]←∞ for all v ∈ V
2: T [s]← 0
3: Q← V
4: nbDone← 0
5: while nbDone 6= |D| do
6: u← argminv∈Q{T [v]}
7: if u ∈ D then nbDone++
8: remove u from Q
9: for all (u, v) ∈ A do

10: if T [v] > T [u] + f(u, v, τ + T [u]) then
11: T [v]← T [u] + f(u, v, τ + T [u])
12: end if
13: end for
14: end while
15: return T

Shortest travel times starting from every address are then calculated,
for every 6-minute time step, using Alg. 3, which we will call TDDijkstra.
Stepwise travel time functions are generated by using the beginning of each
time step (at minute 0, 6, 12,...) as departure time input (τ) for TDDijkstra
and using the output of the algorithm as the travel time function’s value
for the corresponding step, as described in Algorithm 4. The output of
TDDijkstra(G(V,A, f), τ , s, d) (with source s, a set of destinations d, and
departure time τ) gives the travel time from s to every destination in d when
leaving s at time τ , whereas the output of Alg. 4 is a stepwise (6-minute
time steps) travel time function f ′(s, d, t) (from source s to destination d).
Since for a given time step tsk = [Tk, Tk+1[, the travel time is constant, we
use f ′(s, d, tsk) to refer to the (constant) travel time of all departure times
belonging to the interval tsk.
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Algorithm 4 Time-Dependent Travel Times Calculation

Input: G(V,A, f), s, d
1: for all k ∈ 1, ...,M do
2: tsk ← [Tk, Tk+1[
3: τ ← Tk

4: f ′(s, d, tsk)← TDDijkstra(G(V,A, f), τ , s, d)
5: end for
6: return f ′(s, d, t)

As we will see later, our solving approach for the TDTSP can handle
piecewise linear functions but in the benchmark we decided to model travel
times as stepwise functions in order to simplify its usage. Piecewise linear
functions could have been generated from the same data by using more so-
phisticated algorithms for the time-dependent shortest path problem as the
ones described in [29]. The fact that we use stepwise travel times (therefore,
not respecting the FIFO property anymore) is further discussed in the follow-
ing chapter, along with a proof of the fact the stepwise travel time functions
are not FIFO.

4.2.3 Generation of dilated travel time functions

One limitation of our calculation of shortest paths is that it does not take
into consideration the time spent in vertices in the path (corresponding to
intersection delays) but we know from experience that the time it takes to
traverse a crossroad or to turn left, for example, is an important factor in
the augmentation of travel times during rush hours. For a more detailed
discussion about route travel time estimation the reader can refer to [15] (in
the context of Optimod’Lyon, using real-world data) and to chapter 5 of [20].

Since our model tends to underestimate the travel time in congested areas,
we generated two additional versions of the function with a dilatation of travel
times of respectively 10% and 20% centered on the average travel time. This
means that values above the average are augmented of 10% or 20% and values
below the average are decreased by the same amount. So we end up with
3 functions: T00 (the original one), T10 and T20. This correction method
might reduce travel times at less congested moments of the day below their
real values but the main point here is to try to better approximate total
variation of travel times instead of travel times per se.

The travel time functions given in the benchmark are naturally repre-
sented as stepwise functions. Figure 4.5, displays the 3 different functions
(T00, T10 and T20) for two different pairs of addresses (corresponding to
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two different edges of the instance graph).
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Figure 4.5: Examples of time-dependent travel time functions between two
adresses

Since our instances with 100 visits require a total travel time longer than
6.5 hours and that we have not computed2 travel times for after 12:30, we
created travel time functions with twice the previous number of times steps
by taking the symmetrical values with respect to 12:30. We suppose that
morning rush hours are repeated similarly by the end of the evening, the
resulting functions have 130 time steps, ranging from 6:00 to 19:00.

4.3 Benchmark instances generation

Given the graphG with 255 vertices, corresponding to real delivery addresses,
and travel-time functions between all pairs of vertices computed as described
previously, we generated a benchmark for the TDTSP. In order to study scale-
up properties, we consider different problem sizes n ∈ {10, 20, 30, 50, 100},
where n is the number of deliveries (vertices). For each problem size n, we
randomly generated 500 different instances. Each instance is obtained by
randomly selecting n vertices, among the 255 vertices of G, and randomly
generating a visit duration d(vi) ∈ [60s, 300s] for each selected vertex.

For the generation of instances with time-window constraints we simply
add time-windows to the previously generated instances. To ensure that
all instances are feasible (i.e., have at least one tour that satisfies all time-
window constraints) the time-window constraints have been defined in the
four following steps:

2Benchmark generation was done in a preliminary phase in the thesis. Different com-
puters and systems were used subsequently which made it complex to come back and
generate new travel times.
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1. We generate a feasible solution (not necessarily a good one) to a TDTSP
instance without time-windows. Let si and ei denote the start and end
time of visit i in the solution.

2. For each visit i in the solution, we randomly select the number of time-
windows ∈ {0, 1, 2} with respective probabilities 0.50, 0.25 and 0.25.

3. For each time-window we randomly select its duration in [3600, 7200],
given in seconds, where dTW1 and dTW2 denote the durations of the
first and the second time-window if applicable.

4. We generate the first time-window so that it contains [si, ei[ and the
second time-window in the remaining space without overlapping.

In step 1, to avoid adding biases to the instances with time-windows, half
of the generated instances come from initial solutions to the original TDTSP
instance and the other half come from solutions to the associated TSP in-
stance (generated by simply taking constant travel times, corresponding to
the mean of the time-dependent travel times, in the TDTSP instance). The
solution is found by stopping the CP search, for the (TD)TSP model, after
finding three solutions.

In step 4, the start and end times of the time-windows are selected in
such a way that the visits in the solution belong to a time-window (so the
solution generated in 1 is still feasible). An example of placement of time-
windows for a given solution is displayed in Fig. 4.6. The procedure to place
the time-windows is as follows.

The rule for placing the start of the first time-window denoted sTW1 is:

• if si > max(0, ei − dTW1) then pick sTW1 randomly in the interval
[0, si −max(0, ei − dTW1)]

• else sTW1 = max(0, ei − dTW1)

Given a value delta of minimal distance from the first time-window, solVal
the value of the objective function of the solution found in step 1 and
horizon = 1.5 ∗ solVal, the rule for placing the start of the second time-
window denoted sTW2 is:

• if sTW1 > 0.75 ∗ solVal and sTW1 − dTW2 − delta > 0 then pick
sTW2 randomly between 0 and sTW1− dTW2− delta

• else if (max(0, sTW1 − dTW2 − delta) + max(0, horizon − dTW2 −
eTW1−delta)) > 0) then pick sTW2 randomly between 0 and max(0, sTW1−
lTW2− delta) + max(0, horizon− dTW2− eTW1− delta)
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• else sTW2 = −1

Figure 4.6: Example of generated instance with 50 visits where gray zones
represent forbidden delivery times and white zones correspond to the autho-
rized time-windows. The colored boxes are as long as the visit duration and
the dashed lines represent transition times between visits

A selection of the benchmark instances presented in this chapter is avail-
able at http://liris.cnrs.fr/christine.solnon/TDTSP.html. The pro-
cedure to select 20 instances per size to use in the benchmark is described in
section 8.2. A larger set of 60 instances per size (only for sizes 10, 20 and 30
and without time-windows) was used in a previous study [68] and the results
obtained as well as the instances are also given in the same web page.

58

http://liris.cnrs.fr/christine.solnon/TDTSP.html


4.4 Discussion

In this chapter we described how to transform real-world data to be able to
use it as input for TDTSP optimization models in general. This is an essen-
tial step in any real-world application but it is not frequently mentioned in
the literature of routing problems. The methods we used are good enough
to generate realistic travel times, and therefore realistic time-dependent in-
stances, but are not state-of-the-art and definitely not suitable for large scale
applications. The implementation of more efficient algorithms would take
longer and were not the focus of the thesis.

In the previous chapter we reviewed the literature related to the TDTSP
and TDVRP in what concerns test instances and showed that having an
available benchmark for the TDTSP(TW) might be of great value for the
community studying routing and scheduling problems in urban context. One
of our contributions with this thesis was the generation of the benchmark
presented in this chapter, which is the first benchmark for the TDTSP(TW)
with realistic travel times to be made available online. In the second part of
this chapter the instances’ generation process was described in details. There
is no doubt that routing problems are vast and applications and models may
vary a lot but we hope that this benchmark can fill a gap in what concerns
the study of the TDTSP(TW).

Two main modeling choices concerning travel time functions were made
for the benchmark instances described in this chapter:

• to represent them as stepwise functions as we judged that this repre-
sentation might be easier to integrate in other approaches, even though
in our approach we take (the more general) piecewise linear functions
into account.

• to give travel times instead of travel speeds (sometimes used in the
related literature) to represent an instance. This choice is discussed in
the following chapter.
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Chapter 5

Modeling time-dependent
travel time functions

The modeling of travel times plays an essential role in the optimization of
vehicle routing problems. A model too precise may be complex to integrate
in the optimization process while a too simple model may yield a solution far
from optimal or infeasible in real conditions. Therefore, the level of precision
in the representation of travel times should be calibrated according to the
optimization method. In this chapter we discuss the mathematical represen-
tation of time-dependent travel time functions as well as how to transform
these functions in such a way that they respect some interesting properties.
It is important to notice that, in our method, these transformations are used
only internally, in the propagation algorithms presented in chapter 7. We
do not use them to modify the problem solved, we aim to develop
a model flexible and general enough to address different applications of the
TDTSP that do not necessarily have to satisfy the properties described in
this chapter.

The chapter is divided into two sections, the first one concerning the FIFO
property and the second one concerning the triangular inequality property. In
both sections, the importance of those properties is discussed in the context of
vehicle routing optimization as well as how to transform travel time functions
to satisfy these properties. The first section also contains a discussion about
the choice of speeds or times as arc costs for the instance graph.

5.1 The FIFO property

In the time-dependent road-network context the FIFO property (Def. 9), also
known as non-passing property, states that two identical vehicles traveling
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through the same path must not pass each other. Here, the “same path”
might be defined in two different ways, the same edge in the instance graph
or the same path in the road-network graph. Noting that an edge in the
instance graph can represent different paths in the road-network
at different times of the day. This has implications on the choice of times
or speeds to model travels on the instance graph, which will be discussed
in subsection . In the following subsections, properties of FIFO travel time
functions are described and used to explain how to transform a non-FIFO
travel time function into a FIFO function. Finally, a review of the main
methods proposed in the literature for this kind of transformation is given.

Most authors (for instance, [5, 49, 38, 37]) argue that the FIFO property
is essential to be taken into account since it is a better model of reality. But,
in reality, traffic will probably not vary as predicted and the FIFO property
may no longer hold. In the case of an accident, for example, a vehicle that
gets stuck on traffic will arrive later than another one that leaves after but
takes an alternative path (that would have been longer if travel times were
as predicted). Despite it being questionable whether FIFO travel times are
really a better model of reality, many methods depend on the satisfaction of
this property to work.

The TDTSP instances we have generated (as described in the previous
chapter) do not necessarily satisfy the FIFO property due to the fact that
travel time functions are stepwise functions. For the sake of generality, we
do not make the FIFO hypothesis in our model, we accept as input time-
dependent travel time functions that do not necessarily respect this property.
On the other hand, it is important to be able to compute functions that
respect this property for internal propagation of our constraint, as explained
later in chapter 7.

5.1.1 Travel times or travel speeds?

The discussion of whether it is equivalent, or not, to use times or speeds to
model time-dependent travels appears quite often in papers concerning time-
dependent vehicle scheduling. Even though the information that is needed
for scheduling and most times for optimization (when the objective is to
minimize total travel times) are travel times, using time-dependent travel
speeds on the instance graph and calculating specific travel times only when
needed was first proposed by Hill and Benton [19] in 1992. Their method of
deriving travel times from travel speeds did not produce FIFO travel times
though, this question was addressed by Ichoua et al. [49] in 2003.

As mentioned previously, Ichoua et al. [49] developed Alg. 1 to transform
stepwise travel speed functions in time-dependent travel time functions re-
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specting the FIFO property. In their paper, though, they transform travel
speed functions given for the instance graph edges and not for the road-
network graph as we did. They say that there are no differences between as-
sociating travel times or speeds to edges since one can be calculated from the
other but the problem is that only one shortest path (of the road-network) can
be considered if travel speeds are associated to edges of the instance graph.
Of course, as it happens frequently in papers studying the (TD)TSP, some
simplifications have to be made in order to focus on solving the theoretical
problem and the first steps of modeling reality are often overlooked. Nev-
ertheless, their algorithm (IGP) is one of the most cited for time-dependent
travel time modeling in vehicle routing context and it can also be used for a
more accurate modeling of reality as proposed by us in the previous chapter.

In 2004, Fleischmann et al. [38] also pointed out that using travel speeds
is a more limiting choice since it only allows to consider one path for a certain
edge in the instance graph (the distance must be fixed in order to compute the
travel time on the edge). As mentioned in the section introduction, an edge
in the instance graph can represent different paths in the road-network at
different times of the day and this possibility can be captured by calculating
time-dependent shortest paths yielding time-dependent travel times. In this
sense, if one wants to use travel speeds for edges of the instance graph, to
be able to model different shortest paths of the road graph, it would be
necessary to also keep a time-dependent distance function, in such a way
that the correct travel times can be calculated later on. For this reason, we
choose to use time-dependent traveling times instead of speeds as edge’s cost
function, in the instance graph.

Recently, in 2013, Ghiani and Guerriero [44] presented a method allowing
to find, for any continuous piecewise linear travel time model, satisfying the
FIFO property, what they called its ”IGP parameters”: a stepwise travel
speeds function and a constant length (distance), for each arc (i, j) of the
instance graph. They concluded from this that the drawback presented by
[38] was wrong. We propose a different way of seeing things, we agree with
[38] in that associating travel speeds to the instance graph does not allow
to consider different shortest paths in the road-network unless, of course, a
function with the distances of the different shortest paths occurring during
the day is kept as well, for every arc. But it is also true that IGP parame-
ters can always be found as [44] have shown, i.e., once a FIFO travel times
function has been calculated one can find a stepwise speeds function and an
arc length (constant during the whole day) that produces FIFO travel times,
when using the IGP algorithm. On the other hand, the speeds calculated
in this way do not correspond to actual speeds on the shortest path
taken in the road-network. Ghiani and Guerriero recognize this by calling
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them ”dummy” speeds. In the same way, the arc length obtained as an IGP
parameter is fake and does not correspond to the length of a path in the road
graph.

As a final observation, in some contexts it might be more useful to know
the time-dependent travel speeds in the graph as in the case of minimizing
CO2 emissions, where travel speeds information is required to estimate fuel
usage, as pointed out by [34]. Ultimately, the choice of modeling with travel
speeds or times depends on the exact problem being studied (as different
objective functions and constraints are possible) as well as on the chosen
solving technique, which might deal better with one option or the other.

5.1.2 Properties of FIFO functions

Depending on how the time-dependent travel times were calculated it is pos-
sible that the generated functions do not respect the FIFO property. To
study the conditions required for a function to be FIFO we first define the
arrival time function (associated with a given time-dependent travel time
function) as the function giving the arrival time at the destination for every
departure time at the source (this function is also called ready time by [28]).

Definition 13 (Arrival time function) The arrival time function farr :
A× R+ → R+ associated with a time-dependent travel time function f is:

farr(i, j, t) = t+ f(i, j, t),∀(i, j) ∈ A, ∀t ∈ R+

Let us assume a fixed arc (i,j) and note f(i,j,t) as f(t) for short. From
definitions 9 (FIFO) and 13 it is straight-forward to note that the arrival
time function has to be monotonically increasing (nondecreasing) for the
travel time function to be FIFO i.e., ∀t ≤ t′, farr(t) ≤ farr(t

′).
From a simple manipulation of Def. 9, a FIFO function f should respect

∀t ≤ t′, f(t
′)−f(t)
t′−t

≥ −1, it is easy to conclude from there that continuous

pieces of the travel time function must respect df(t)
dt
≥ −1. For discontinuous

points, decreases in the value of the function are not FIFO but increases
do not disrespect the property: if t is the “decreasing” discontinuity point,
leaving at t+ ε allows to arrive earlier than leaving at t− ε for ε sufficiently
small (Fig. 5.1). Typically, stepwise functions are FIFO if they are non-
decreasing, which is never the case of real-world travel time functions (as
travel times tend to decrease after rush hours, for example).
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f(t)

tt− ε t+ ε

farr(t− ε)
farr(t+ ε)

Figure 5.1: Example of non-FIFO decreasing step. The function in red farr
gives the arrival times associated with the travel time function in black f

To render stepwise functions FIFO we need to introduce (non-constant)
linear pieces and the resulting function is piecewise linear. Piecewise linear
functions that do not respect the FIFO property can be transformed in the
same manner but they stay piecewise linear after the transformation. They
are the simplest (non-constant) structure one can use that is “invariable”
through FIFO transformation and they are also easily integrated in our solv-
ing approach.

5.1.3 FIFO transformation

In 1992, Malandraki and Daskin [66] said that if waiting is permitted at
nodes then stepwise travel time functions behave as piecewise linear functions
when the steps are decreasing. This is also the main idea we used in Alg. 5
to make travel time functions respect the FIFO property. Ichoua et al. [49]
subsequently argued that this procedure ”induces useless waiting at nodes”
but in reality travel times do not change in a stepwise manner and smoothing
functions by simulating waiting at nodes is only a way of thinking about how
travel times would likely behave in reality. This smoothing method does not
imply that vehicles should actually wait before traveling through an arc.

In what follows we present the algorithm developed to transform general
piecewise linear functions to respect the FIFO property. Differently from
the IGP algorithm (Alg. 1) presented in the previous chapter, our algorithm
calculates a FIFO travel time function from a (piecewise linear) travel time
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function, while the IGP takes travel speeds as input. The function returned
by the algorithm is piecewise linear but not necessarily continuous since only
decreasing times need to be changed in order for the function to be FIFO. We
do not transform stepwise travel time functions into continuous piecewise
linear functions because we wanted to ensure a minimal set of changes that
would still produce a FIFO function, since these FIFO functions are used for
propagation but not for verification of solutions. Basically, the transformed
function in our case has to be a FIFO function that is the closest possible
lower bound of the original function so, if increasing discontinuities were also
smoothed, the bound would only get further from the original function.

The algorithm works by replacing decreasing discontinuities and linear
pieces with a slope smaller than -1 by linear pieces with a slope of exactly
-1, where the slope of a linear piece between two points (x1, y1) and (x2, y2)
is y2−y1

x2−x1
. The interpretation is to simulate waiting at the departure vertex

whenever it can reduce the travel time on the edge. In those cases, the new
travel time becomes the waiting time plus the future (smaller) travel time
taken. In figure 5.2 an example of an execution step of Alg. 5 is shown, the
red dashed lines represent the FIFO function that is being calculated (piece
by piece) from the non-FIFO one in dark lines.

tx0

v0

x0 + v0

Figure 5.2: Transformation of a stepwise function into a FIFO function

Algorithm notation

We suppose a fixed arc (i, j) and f a piecewise linear function and f(i, j, t) is
simplified to f(t). Each time interval pk = [tkmin, t

k
max) on which the function

is linear is called a piece. Since pk is open on tkmax, by abuse of notation, for
a given k, we write f(tkmax) for limx→tkmax

f(x). For instance, if f is not con-

tinuous on tkmax = tk+1
min then f(tkmax) 6= f(tk+1

min). Finally, linear((t, v), (t
′, v′))

denotes the linear function defined by (but not limited by) the two points
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(t, v) and (t′, v′) and min(f1, f2) returns the minimum function, the function
assuming the minimum value between f1 and f2 at every point. The notation
f �p means that f is restricted to interval p and therefore all operations are
done only in this interval.

Algorithm 5 Calculate fFIFO

Input: a piecewise linear function f , composed of ν linear pieces such that
for each piece k ∈ [1, ν], pk = [tkmin, t

k
max[ is the k

th time interval on which
f is linear

1: fFIFO ← f
2: for all pieces pk = [tkmin, t

k
max[ of f , with k ∈ [1, ν − 1] do

3: x0 ← tk+1
min

4: v0 ← f(x0)
5: Let sk be the slope of pk
6: if v0 < f(tkmax) or sk < −1 then
7: fFIFO �[0,x0)← min(fFIFO �[0,x0), linear((0, x0 + v0), (x0, v0)))
8: end if
9: end for

10: return fFIFO

Literature on FIFO transformation methods Since Ahn and Shin [5]
proposed in 1991 to use FIFO travel times to enhance the performance of
existing heuristics, the majority of approaches for the TDTSP work based on
the validity of this property. Most recent approaches adopt the IGP method,
i.e., they use speeds on the instance graph and calculate travel times only
when needed, for a specific departure time.

The only approach similar to ours (that we could find) was Fleischmann’s
[38], which also had access to real-world data and modeled travels on the in-
stance graph using travel times calculated from shortest paths on the road-
network. Differently from us, their focus was on obtaining continuous piece-
wise linear FIFO functions, in such a way that the inverse function always
exists. Even though for our constraint propagations we also need to calculate
some sort of inverse function in order to do ”backward” propagations (i.e.,
propagate the latest leave time from the previous visit in order to arrive at
the current visit at a certain time), we can calculate an adapted version from
a non-continuous piecewise linear FIFO function (described in chapter 7).
Their FIFO transformation method is illustrated in Figure 5.3, in [38] they
describe how to calculate parameters δijk. The algorithm they use to calcu-
late the FIFO transformation takes a departure time as input and calculates
the corresponding FIFO travel time as output.
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Figure 5.3: Fleischmann’s FIFO transformation [38]

Those are the two main methods proposed in the literature to calcu-
late FIFO travel times: the IGP algorithm described in the previous chap-
ter that transforms stepwise speeds into piecewise linear travel times and
Fleischmann’s transformation that, similarly to our algorithm, takes step-
wise travel time function and calculates a piecewise linear FIFO travel time
function from it.

5.2 The triangular inequality property

Another property that is usually expected for TSP instances is that they
respect the triangular inequality, both because it seems reasonable to expect
road networks to satisfy it and because some heuristics make use of this prop-
erty to reduce the search space and can only provide performance guarantees
in its presence. In the context of road networks this property makes sense
since paths between any two points are calculated to be the shortest pos-
sible. In the context of time-dependent routing though not much has been
said about this property other than some authors mentioning whether the
property is used as an hypothesis or not (for instance, [67, 21] mention the
triangular inequality is not assumed in their time-dependent approach).

Once again, we do not make this hypothesis in our models but we need
to be able to calculate time-dependent travel times satisfying the triangular
inequality (from the original ones) for propagation purposes. So here we
formally define an extension of this property to the time-dependent case and
present an algorithm that takes a time-dependent instance and turns it into
an instance satisfying the time-dependent triangular inequality (so that the
two instances have the same optimal solution).
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In general, if there exists a shortest path from i to j, shorter than the
direct arc, then the triangular inequality does not hold. It means that there
is at least one vertex k such that passing through k allows to arrive faster at
j. When travel times vary with the departure time, the triangular inequality
has to be adapted in order to take time-dependency into account. The main
difference is that the time to departure from the intermediate vertex k to
the final destination j must now be at least the departure time from i plus
the travel time from i to k. The departure from k could also happen later,
if waiting is allowed, for this reason the minimum travel time with waiting
time included is considered in Def. 14.

Definition 14 (Time-dependent triangular inequality) A time-dependent
travel time function f : A × R+ → R+ is said to satisfy the triangular in-
equality property if and only if ∀i, j, k ∈ V, ∀t, δ ∈ R+, then:

f(i, j, t) ≤ f(i, k, t) + f(k, j, t+ f(i, k, t) + δ) + δ

For the same reasons as for the FIFO property, time-dynamic road-
networks have no reason to respect the triangular inequality (whenever un-
predicted events take place). On the other hand, if the distances of the
road-network respect the triangular inequality and the instance graph was
generated by calculating time-dependent shortest paths, one could expect
that the time-dependent triangular inequality would be valid on the instance
graph. If it is not valid on the instance graph then there is one k such that
it is shorter (takes less time) to go from i to j going through k first but this
contradicts the fact that the path from i to j is the time-dependent shortest
path.

The only problem is that our time-dependent shortest paths were cal-
culated per time step (for each couple of vertices (i, j) and each time step
[t1, t2[, we compute the duration d of the shortest path from i to j when
leaving i at time t1, and we assume that the duration of the travel from i to
j is equal to d during the whole time step [t1, t2[). And, in the same way
as with the FIFO property, the time-dependent triangular inequality is no
longer guaranteed without continuity between different time-steps.

The following algorithm is an extension of the Floyd Warshall All Pairs
Shortest Path algorithm [27] to the case of time-dependent functions. The
values fmin(i, j) and fmax(i, j) represent respectively the minimum and maxi-
mum travel times assumed by f(i, j, t) and can be easily stored while reading
the functions. The if in line 4 reduces the number of min calculations that
the algorithm needs to perform by eliminating paths that clearly cannot be
shorter.
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The difference between this algorithm and the original Floyd Warshall
lies on line 5, where now the time-dependent triangular inequality has to be
enforced. In Def. 14, if function f is FIFO then waiting is never advantageous
(δ = 0) and the right-hand side becomes simply f(k, j, t+f(i, k, t)). Here we
consider that the travel time functions given as input are FIFO, if not they
can be transformed using the algorithm given in the previous section.

Let νi,j be the number of linear pieces of function f(i, j, t). The algo-
rithm calculating the min on line 5 (enforcing the triangular inequality) goes
through all the pieces of f(i, k, t) and f(k, j, t) to calculate the composed
function f(k, j, f(i, k, t)) (with ≤νi,k + νk,j pieces). Then it goes through the
pieces of f(i, k, t) and f(k, j, f(i, k, t)) to calculate their sum. And finally
through the pieces of f(i, j, t) and f(i, k, t)+f(k, j, f(i, k, t)) to calculate the
minimum. Therefore, the minimum calculation runs in O(νi,j + νi,k + νk,j)
and if ν is the maximum number of steps of any given travel times functions
then the Time-Dependent Floyd Wharshall runs in O(n3 ∗ ν).

Algorithm 6 Time-Dependent Floyd Warshall

Input: f(i, j, t) ∀i, j ∈ {1..n}
1: for all k ∈ {1, ..., n} do
2: for all i ∈ {1, ..., n} do
3: for all j ∈ {1, ..., n} do
4: if k 6= i and k 6= j and i 6= j and fmin(i, k) + fmin(k, j) ≤

fmax(i, j) then
5: f(i, j, t)← min(f(i, j, t), f(i, k, t) + f(k, j, f(i, k, t) + t))
6: end if
7: end for
8: end for
9: end for

5.3 Discussion

In this chapter we presented two properties: (1) the FIFO property, which
is commonly required in time-dependent routing problems (shortest paths
problems included) and (2) the time-dependent triangular inequality, which
to best of our knowledge is a definition introduced by us since most authors
either do not mention this property in the time-dependent context or say that
they do not suppose it holds. We insist on the fact that we do not suppose
these properties hold in our models since we want to be as general as possible
in our modeling but functions satisfying these properties will be automati-
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cally created for propagation purposes of our constraint TDNoOverlap-TDTSP,
presented in chapter 7. Algorithms to turn a time-dependent travel time
function into a FIFO function and to make a TDTSP instance respect the
time-dependent triangular inequality are presented. The FIFO transforma-
tion has been studied by other authors and a comparison of the different
methods and approaches to the question is made in the first section.
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Chapter 6

Modeling the TDTSP with
existing CP concepts

In this chapter we present an adaptation for the TDTSP of the CP model for
the TSP given in Section 2.3 and show the limitations of this adapted model
through an example. A scheduling model addressing one of the limitations
pointed out is then proposed for the TDTSP, using the current constraints
proposed by CP Optimizer.

In what follows, we consider that f is a step function where each time-
step has the same length l so that f is modeled with a cost matrix T . The
input data is :

• A number n > 0 of visits, by convention the first vertex in the list of
visits is considered as depot and for modeling purposes we duplicate
the first visit (the depot) and create a visit n+ 1 which represents the
end of the tour.

• A time horizon H > 0, a number of time steps m > 0 and a duration
l > 0 of time steps so that H = lm.

• A cost matrix T : [1, n + 1] × [1, n + 1] × [0,m − 1] → R+ so that the
travel time from vertex i to vertex j when leaving from i at time t is
given by T [i][j][dt/le].

• A visit duration vector D : [1, n]→ R+.
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6.1 Extension of the classical CP model for

the TSP

We present here a TDTSP model adapted from the classic CP model used to
solve the TSP, described in Section 2.3. We added variables time[i], which
give the arrival time at each vertex i, and modified constraints to take into
account the fact that a duration Di is associated with every vertex i, and
that travel durations are time-dependent.

intVar position[1..n] ∈ 1..n

next[1..n+ 1] ∈ 1..n+ 1

prev[1..n+ 1] ∈ 1..n+ 1

time[1..n+ 1] ∈ 0..H

minimize time[n+ 1]

subject to position[1] = 1 (6.1)

time[1] = 0 (6.2)

prev[1] = n+ 1 (6.3)

next[n+ 1] = 1 (6.4)

allDifferent(position) (6.5)

allDifferent(next) (6.6)

allDifferent(prev) (6.7)

inverse(prev, next) (6.8)

∀i ∈ 1..n+ 1 : next[i] 6= i (6.9)

prev[i] 6= i (6.10)

∀i ∈ 1..n : position[next[i]] = position[i] + 1 (6.11)

∀i ∈ 2..n+ 1 : position[prev[i]] + 1 = position[i] (6.12)

∀i ∈ 1..n+ 1 : time[i] ≥ time[prev[i]] +D[prev[i]] +

T [prev[i]][i][time[prev[i]]/l] (6.13)

∀i ∈ 1..n+ 1 : time[next[i]] ≥ time[i] +D[i] +

T [i][next[i]][time[i]/l] (6.14)

Note that the number of positions in a path is n + 1 since we have to
return to the depot. For each visit i, variables: next[i] and prev[i] give the
next and previous visits, position[i] gives the position of the visit in the
path and time[i] is the time of arrival at i, as shown in Fig. 6.1. Besides
constraints at the extremities of the tour to fix initial and end visits and the
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prev[i] i next[i]

time[i]

1 2 3 4 ...

position[i]

Figure 6.1: Illustration of the classical CP model’s variables

start time ((6.1) to (6.4)), allDifferent constraints ((6.5) to (6.7)) are posted
on each group of variables, whereas prev/next variables are linked with an
inverse constraint (6.8), which enforces next[prev[i]] = i for all i. Constraints
(6.9) and (6.10) prevent cycles of size 1 and constraints (6.11) and (6.12)
state the relations between position variables and next and prev variables.
The relation between time and relative positions of visits is modeled with
constraints (6.13) and (6.14). For a stronger propagation, the term T[...] in
these constraints is modeled using a table constraint (see [65] for more on
table constraints).

The following redundant constraints were added to the model to help
improving the lower bound on the objective term time[n + 1]. This lower
bound is used to prune the current branch of the search tree, each time it
is greater than the best known solution. Therefore, improving this bound
usually improves the solution process. Instead of propagating the objective
function just considering the values of time[prev[n+ 1]], the redundant con-
straints allow to have a better estimate of the total cost of the tour by taking
all transition times and durations into account. We noticed that these re-
dundant constraints help reducing the number of branches by a factor close
to 2 and the CPU time by a factor varying between 1 and 2.

time[n+ 1] ≥
∑
i∈1..n

D[i] +
∑
i∈1..n

T [i][next[i]][time[i]/l] (6.15)

time[n+ 1] ≥
∑
i∈1..n

D[i] +
∑

i∈2..n+1

T [prev[i]][i][time[prev[i]]/l](6.16)

In the search branching scheme used to compare the performance of the
propagation in chapter 8.4.2, we use a search that builds the sequence of
visits in a chronological order. In order to keep track of positions in the
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sequence, we added a new set of variables atPosition[j] that represent the
vertex at the jth position in the sequence. In Figure 6.1, position[i] = 3,
in this case atPosition[3] should have the value i. Variables atPosition are
related with the rest of the model thanks to the following constraints:

intVar atPosition[1..n] ∈ 1..n+ 1

constraints allDifferent(atPosition)

inverse(position, atPosition)

atPosition[1] = 1

next[atPosition[n]] = n+ 1

atPosition[n] = prev[n+ 1]

∀j ∈ 1..n : next[atPosition[j]] = atPosition[j + 1]

∀j ∈ 1..n : prev[atPosition[j + 1]] = atPosition[j]

6.2 Limitations

In the context of TDTSP, time variables time[i] representing the dates of a
visit are very important and their domain should be as tight as possible for
two main reasons: the value of the travel time depends on the value of time
(which in turn affects the domains of the related visits through propaga-
tion) and it also allows for more propagation in the presence of time-window
constraints. An important limitation of the model presented above is the
weakness of the propagation between temporal variables time and sequenc-
ing variables (like next and prev). For instance, it should be clear from their
formulation that constraints like (6.13) and (6.14) would benefit from some
more global reasoning over the travel time between i and prev[i] (resp. be-
tween i and next[i]). Furthermore, reasoning only locally on direct successors
of a visit (next, prev) may miss some important propagation as illustrated
by the following example.

A visit a is called a successor of another visit b if a comes somewhere
after b in the path, it is called next of b if it is visited exactly after b. It
is possible to see that, with the previous model, all the propagation is done
reasoning with direct neighbors of a visit (next, prev).

We can show that reasoning with successors (besides prev/next variables)
allows to obtain tighter bounds on the time of visits, as soon as the problem
is asymmetric1 (in the sense that reversing a solution may change its total

1Some common causes of asymmetry are: asymmetric travel times (like time-dependent
travel times), time windows constraints or precedences between visits.
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travel time or its feasibility). For simplification we will work here with a TSP
example.

Consider the following slightly asymmetric TSP problem where D is the
depot (which we separate into departure and arrival nodes, Dd and Da, to
make things more clear), A,B,C are visits and distances of matrix T are
shown directly on the graph, in Figure 6.2. We suppose that the upper-bound
of the objective is 100, therefore only two paths are feasible (Dd, B, C,A,Da)
and (Dd, C,B,A,Da), each with a total length of 100, as shown in Figure
6.2. Given these two feasible solutions, the tightest possible domains of prev
and next variables can be seen in Table 6.1.

A

C

D

B

9

8

8

8

38

46

46

A

C

D

B

8

8
38

46
A

C

D

B

8

8

38

46

Figure 6.2: Instance graph with travel distance T (at the top) and possible
tours with cost 100 (at the bottom)

visit dom(next) dom(prev)
Dd {B,C}
A {Da} {B,C}
B {A,C} {C,Dd}
C {A,B} {B,Dd}
Da {A}

Table 6.1: Domains of variables next and prev
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In what follows we use dom(a) to refer to the domain of a variable a, a
for the smallest value in its domain and ā for the biggest. If a is fixed then
a= ā and dom(a) is a singleton.

If time bounds are computed using only prev/next variables, the best we
can do to exploit the constraints on time (6.17) and (6.18) (adapted from
(6.13) and (6.14) for the non-time-dependent case)

time[next[i]] ≥ time[i] + T [i][next[i]] (6.17)

time[i] ≥ time[prev[i]] + T [prev[i]][i] (6.18)

boils down to the following formulas to compute time[X], the minimum value
in the domain of time[X]. Those formulas have to be calculated until a fixed
point is reached (meaning that time[X] stays the same for all possible nodes
X ∈ {A,B,C,Da}). The departure time time[Dd] is fixed to 0 in the model
so it doesn’t need to be taken into consideration here.

time[A] = (6.19)

max(time[A],min(time[B] + T [B][A], time[C] + T [C][A]))

time[B] = (6.20)

max(time[B],min(time[C] + T [C][B], time[Dd] + T [Dd][B]))

time[C] = (6.21)

max(time[C],min(time[B] + T [B][C], time[Dd] + T [Dd][C]))

time[Da] = (6.22)

max(time[Da],min(time[A] + T [A][Da]))

For node A, for example, time[A] is updated using (6.19): the maxi-
mum between the current domain lower bound time[A] and a possible better
bound, calculated from taking the minimum possible arrival time when com-
ing from the nodes in the domain of prev[A]. In this case, the fixed point
is achieved in the first iteration and gives time[A] = 16, time[B] = 46 and
time[C] = 8.

Let’s now look at how we could propagate by also considering (indirect)
successors. The distances in matrix T satisfy the triangle inequality2 so cal-
culating the cost of the path (D,A,B,D) gives a lower bound of all possible
tours where A comes before B (and start and finish at the depot). Let us sup-
pose then that A comes before B i.e., that B is a successor of A. In this case,

2If the triangle inequality is not satisfied, one can easily pre-compute a smaller tran-
sition time corresponding to the length of the shortest path (using Floyd-Warshall algo-
rithm) to provide a lower bound on travel times. That is what the NoOverlap-TDTSP

constraint of CP Optimizer is doing internally.
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we can calculate a lower bound of the optimal tour by calculating the cost
of (D,A,B,D): c(D,A,B,D) = T [D][A] + T [A][B] + T [B][D] = 101. Since
this lower bound is already higher than the current objective upper-bound
(100) then B must be visited before A and we can infer a precedence B → A.
This corresponds to the so-called disjunctive constraint in scheduling. With
this, we know that A cannot start before time[A] = T [D][B]+T [B][A] = 92,
which is a lot better than the value of time[A] = 16 found when reasoning
only with prev and next variables.

If the TSP was purely symmetric it would not have been possible to
deduce any successor links (indirect precedence) since any solution would be
reversible and give the same cost. This type of reasoning is interesting as soon
as solutions are asymmetric, which is usually the case for time-dependent
travel times.

6.3 A scheduling model for the (TD)TSP

In order to integrate this kind of reasoning we use the concepts of interval
and sequence variables in CP Optimizer, as described in Section 2.4. Each
visit i is modeled as an interval variable denoted visit[i], this variable con-
tains the start and end time of each visit which can be accessed with the
integer expressions startOf() and endOf() and also its type, which in this
case corresponds to the visit’s location. It is thanks to type that we can
create two visit variables at the same location (in this case, the depot). The
tour is modeled as a sequence variable over the set of visits called tour. The
start time of the next visit in the sequence can be accessed as a variable in
the model with the syntax startOfNext(). The sequence variable maintains a
precedence graph to propagate temporal relations between visits (see 2.4.1)
and the vertices of this graph are the visit variables associated to each visit.

visit[i]tour

type(visit[i]) = i

endOf(visit[i])

typeOfNext(i)

startOfNext(tour, visit[i])

Figure 6.3: Illustration of the scheduling model’s variables

In CP Optimizer the NoOverlap-TDTSP constraint is used to enforce a
minimal transition time between vertices on the precedence graph. The
NoOverlap-TDTSP constraint has different kinds of propagation between vari-
ables (vertices) in the graph given the type of arc connecting them (next or
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successor). The difference in propagation is further explained in the follow-
ing chapter. Since the transition times (costs) matrix T is time dependent
and the NoOverlap-TDTSP constraint only takes constant transition times as
input, we need to calculate the minimum value that T can assume for every
pair of vertices. We define matrix minT : [1, n + 1] × [1, n + 1] → R+ as
the minimum travel time from vertex i to vertex j: mink∈0,..,mT [i][j][k]. The
scheduling model for the TDTSP using the NoOverlap-TDTSP constraint is
as follows:

intervalVar visit[i ∈ 1..n+ 1] sizeD[i]

sequenceVar tour in all(i ∈ 1..n+ 1) visit[i],

for(i ∈ 1..n) type(visit[i]) = i,

type(visit[n+ 1]) = 1

minimize startOf(visit[n+ 1])

subject to first(tour, visit[1])

last(tour, visit[n+ 1])

NoOverlap(tour,minT ) (6.23)

∀i ∈ 1..n : step[i] = endOf(visit[i])/l (6.24)

∀i ∈ 1..n : startOfNext(tour, visit[i]) ≥
endOf(visit[i]) + T [i][typeOfNext(i)][step[i]] (6.25)

Constraint (6.24) is only a simplification of notation so that constraint
(6.25) is more readable. Constraint (6.25) is equivalent to constraint (6.14)
used in the time-dependent extension of the classical CP model for the TSP.
This constraint is used to guarantee that time-dependent transition times
between visits are respected. While NoOverlap-TDTSP connects information
on sequence (successors) with time information (though only lower bounds,
minimal transition times). It should also be noted that, in the real model, the
expression T [i][typeOfNext(i)][step[i]] in constraint (6.25) cannot be written
straight-forwardly like this, as the element constraint in CP Optimizer does
not support arrays with more than one index being a variable. But the same
thing can be expressed by generating a two-dimensional transition times
matrix T2D, such that T2D[i][j + t ∗ n] = T [i][j][t] and replacing constraint
(6.25) by:

∀i ∈ 1..n : startOfNext(tour, visit[i]) ≥
endOf(visit[i]) + T2D[i][typeOfNext(i) + step[i] ∗ n])
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This model is a lot shorter than the previous one presented in this chap-
ter, this is mainly due to the power of expression and complexity level of
variables and constraints in this scheduling model. In the results chapter
(8), a comparison of propagation and efficiency of the different models is
performed and we can see the role of having a more global reasoning while
modeling and solving.

Let’s see how this model would propagate on the example described in
Section 6.2. Here the travel times are time-independent so they are entirely
captured by the minimal travel time minT (in this particular context, con-
straints (6.24) and (6.25) are useless). The NoOverlap constraint would build
the transition distance between pairs of successors (called ttSuccessor[i, j]
here) in the precedence graph. As the transition time already satisfies the
triangle inequality, matrix minT can directly be used as transition distance
between successors (ttSuccessor[i, j] = minT [i][j]) and since visits durations
are not taken into account in the example the start and end of any visit are
the same. Using this matrix, the disjunctive constraint would discover that
B cannot be a successor of A, because: if A came before B then B would have
to start at startMin(B) = 55 (= endMin(A) + ttSuccessor[A,B] = 9 + 46)
or after, but B cannot finish after endMax(B) = 54 (= maxTourCost −
ttSuccessor[B,D] = 100− 46). The propagation would then add the succes-
sor relation B → A into the precedence graph, leading to the propagation
on the visit times described in the end of Section 6.2.

6.4 Discussion

In this chapter we start by extending the classical CP model for the TSP to
model the TDTSP and we also present extra variables and constraints meant
to strengthen the level of propagation of this model. In the second section
we present the limitations of the extended version of the classical model,
namely:

1. it does not make use of precedence relations other than next/previous
- indirect successors are not taken into account for propagation

2. it has weak propagation between sequence related variables and time
related variables.

In the third section we give a scheduling model that addresses the first
limitation but not the second. To tackle the second limitation we extended
the NoOverlap constraint to be able to take time dependent transition times
into account. The new constraint obtained from this extension is named
TDNoOverlap and is presented in details in the following chapter.
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Chapter 7

The TDNoOverlap constraint

In the previous chapter we saw that the NoOverlap constraint allows to
enforce a minimal (constant) transition time between vertices on the prece-
dence graph. In this chapter, we extend NoOverlap into a TDNoOverlap
constraint to take into account time-dependent transition times. In section
7.1, the model using the new constraint is presented and, in the following
sections, details about the propagation and implementation of the constraint
are given.

7.1 CP model with TDNoOverlap

The TDNoOverlap constraint is an extension ofNoOverlap to time-dependent
costs. It has two parameters: a sequence variable, that contains the interval
variables that must not overlap, and a time-dependent cost function, that
defines the time-dependent transition costs between interval variables.

The scheduling model sketched below uses the new TDNoOverlap con-
straint (7.1) instead of constraints from 6.23 to 6.25, used in the scheduling
model presented in the previous chapter. The new model becomes very short
as the TDNoOverlap constraint captures the global structure of the problem.

intervalVar visit[i ∈ 1..n+ 1] sizeD[i]

sequenceVar tour in all(i ∈ 1..n) visit[i]

minimize startOf(visit[n+ 1])

subject to first(tour, visit[1])

last(tour, visit[n+ 1])

TDNoOverlap(tour, T ) (7.1)
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7.2 Propagation of TDNoOverlap

In the same way as for NoOverlap, the TDNoOverlap constraint operates on
a sequence variable (an ordered list of interval variables) which maintains
a precedence graph with next and successor types of arc between interval
variables. To propagate the bounds of the interval variables’ domains we
need lower bound functions for the time-dependent transition time functions.
Given two interval variables i and j, such that there exists a next arc or a
successor arc going from i to j, we define two lower bound functions for each
type of arc (these functions are precisely described in the following sections):

1. fnext
earliest(i, j, td) and f succ

earliest(i, j, td) are the transition times such that
the arrival time at j when leaving i at time td is the earliest
possible.

2. fnext
latest(i, j, ta) and f succ

latest(i, j, ta) are the transition times such that the
departure time from i is the latest possible to allow arriving at j
at time ta at the latest.

To propagate the earliest time for j (as in Fig. 7.1), TDNoOverlap tight-
ens the lower bound of time[j] so that it is greater than the lower bound of
time[i] plus the duration of i and the smallest transition time from i to j,
for both types or arc, next (Eq. 7.2) and succ (Eq. 7.3):

time[j] ≥ time[i] +D[i] + fnext
earliest(i, j, time[i] +D[i]) (7.2)

time[j] ≥ time[i] +D[i] + f succ
earliest(i, j, time[i] +D[i]) (7.3)

t

i

f earliest
x (i, j, emini)

smini
smaxi emini

emaxi

j

sminj
smaxj eminj

emaxj

Figure 7.1: Propagation of the earliest start of j given the earliest end of i

To propagate the latest time for i (as in Fig. 7.2), TDNoOverlap tightens
the lower bound of time[j] so that it is greater than the lower bound of
time[i] plus the duration of i and the smallest transition time from i to j,
for both types of arc, next (Eq. 7.4) and succ (Eq. 7.5):
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time[i] +D[i] ≤ time[j]− fnext
latest(i, j, time[j]) (7.4)

time[i] +D[i] ≤ time[j]− f succ
latest(i, j, time[j]) (7.5)

t

i

f latest
x (i, j, smaxj)

smini
smaxi emini

emaxi

j

sminj
smaxj eminj

emaxj

Figure 7.2: Propagation of the latest time end of i given the latest start of j

Now we introduce the formal definitions of the bounding functions and
explain how to calculate them.

7.2.1 Computation of fnext
earliest

Here we consider a next arc i⇒ j in the precedence graph, i.e., interval j is
just after interval i in the sequence variable. The earliest arrival time at j,
if we leave i at time td, is defined using the transition time function:

fnext
earliest(i, j, td) = min

t≥td
{f(i, j, t) + t− td} (7.6)

In fnext
earliest we check if leaving from visit i later (waiting in place) allows to

arrive at j sooner. If the transition times satisfy the FIFO property, waiting
is never advantageous.

It follows from Def. 9 and from Eq. (7.6) that if f satisfies the FIFO prop-
erty then fnext

earliest and f are equal. Although the FIFO property generally
holds in practice, our approach does not assume that f satisfies the FIFO
property for three reasons: (1) stepwise functions do not satisfy it because
of the discretization, (2) imprecision in data acquisition and time-dependent
travel time calculations may introduce non-FIFO effects and (3) the con-
straint has to be general enough to take other applications into account and
the FIFO property is specific to network routing.

If f is a stepwise or a piecewise linear function, fnext
earliest is a piecewise lin-

ear function. So, as we need in any case to handle piecewise linear functions
in the propagation, in our implementation of the TDNoOverlap constraint we
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decided to treat the more general case where the input function f is a piece-
wise linear function. In Algorithm 5 (given in section 5.1) we describe the
method used in pre-solve phase to calculate fnext

earliest for each pair of vertices
in the graph. This algorithm transforms general piecewise linear functions
into functions respecting the FIFO property.

7.2.2 Computation of fnext
latest

Like in 7.2.1, we consider a next arc i⇒ j in the precedence graph, and we
define the latest departure time from i in order to arrive at j at time ta or
before as follows:

fnext
latest(i, j, ta) = min

t+f(i,j,t)≤ta
{ta − t} (7.7)

Since fnext
earliest already gives us the minimum transition time from a given

time it is clear that the minimum in Equation (7.7) is satisfied for the biggest
t′ such that t′ + fnext

earliest(i, j, t
′) ≤ ta. Then, calculating fnext

latest comes down to
finding this t′.

Algorithm 7 describes the method used in a presolve phase to compute
fnext
latest for a couple (i, j) of interval variables. In the algorithm, we call
arrivalT ime the arrival time function associated with fnext

earliest. The main
idea is to calculate the inverse function of arrivalT ime (arrivalT ime−1) and
to subtract it from the identity function to get the corresponding transition
times.

This is done by ”inverting” piece by piece of the function in such a way
that we can easily address the problem that the inverse of arrivalT ime is
not immediately a function. This happens because arrivalT ime is not neces-
sarily continuous or strictly increasing (but it is always non-decreasing) and
therefore the image of a given t under arrivalT ime−1 can be empty or have
more than one value. When the image has more than one value the algorithm
takes only the maximum value (line 8) and if it is empty the previous value
assumed by the inverse function is taken (line 9).

We suppose a fixed arc (i, j) and f a piecewise linear function defined
on the time domain T = [tMin, tMax) ∈ R and we use the notations defined
in section 5.1.In the implementation, we used the class of piece-wise linear
functions provided by CP Optimizer1. If ν is the number of pieces of the
function, this class allows for a random access to a given piece with an average
complexity of O(log(ν)). Furthermore, when two consecutive pieces of the

1Namely, IloNumToNumSegmentFunction.
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function are co-linear, these pieces are automatically merged so that the
function is always represented with the minimal number of pieces.

Algorithm 7 Calculate fnext
latest

Input: a piecewise linear FIFO function fnext
earliest, composed of ν linear pieces

such that for each piece k ∈ [1, ν], pk = [tkmin, t
k
max[ is the k

th time interval
on which fnext

earliest is linear.
Output: a piecewise linear function fnext

latest

1: arrivalT ime← linear((0, 0), (1, 1)) + fnext
earliest

2: fnext
latest(t)← 0

3: for all k ∈ {0, ..., ν} do
4: x0 ← tkmin

5: x1 ← tkmax

6: v0 ← arrivalT ime(x0)
7: v1 ← arrivalT ime(x1)
8: fnext

latest �[v0,v1)← max(fnext
latest, linear((v0, x0), (v1, x1))) �[v0,v1)

9: fnext
latest �[v1,+∞)← max(fnext

latest, x1) �[v1,+∞)

10: end for
11: fnext

latest ← linear((0, 0), (1, 1))− fnext
latest

12: return fnext
latest

7.2.3 Computation of f succ
earliest

Now we consider a successor arc i → j in the precedence graph, i.e., the
interval variable j occurs after the interval variable i in the sequence. To
estimate the earliest possible time of arrival at j if we leave i at time td or
after we have to check if we can arrive faster at j by passing through other
vertices. Let ℘i,j

τ,f be the set of all timed-paths from i to j starting after time
τ with travel time function f . We have:

f succ
earliest(i, j, td) = min

p∈℘i,j
td,f

t(j, p)− td

where t(j, p) is the start time of j in path p.
If there exists a shortest path from i to j, shorter than the direct arc, then

the triangular inequality extended to the time-dependent case (as in Def. 14
in section 5.2) does not hold. It means that there is at least one vertex k such
that passing through k allows to arrive faster at j. The algorithm we use to
calculate f succ

earliest is Algorithm 6, given in section 5.2, which calculates time-
dependent travel times respecting the time-dependent triangular inequality.
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We use fnext
earliest as input travel time function to the algorithm so that waiting

at intermediate vertices to possibly go faster is already taken into account.

7.2.4 Computation of f succ
latest

The second type of propagation on successor arcs is based on the estimation
of the latest departure time from i in order to arrive at j at time ta or before,
given by:

f succ
latest(i, j, ta) = min

p∈℘i,j
t,f ,t(j,p)≤ta

ta − t

The reasoning for calculating f succ
latest is exactly the same as the one used

for fnext
latest and the algorithm is the same too (Algorithm 7), except that we

use as input f succ
earliest instead of fnext

earliest.

7.2.5 Time-dependent disjunctive propagation

Classical propagation algorithms used in constrained-based scheduling can
be extended to time-dependent transition times. In our implementation of
the TDNoOverlap constraint we extended the disjunctive reasoning [12]. As
soon as two visits i and j are such that one of the conditions below is satisfied
then it is clear that it is not possible to visit j before i and thus, we can add
a successor arc i→ j in the precedence graph:

time[j] +D[j] + f succ
earliest(j, i, time[j] +D[j]) > time[i]

time[i]− f succ
latest(j, i, time[i])−D[j] < time[j]

This extended disjunctive reasoning helps discovering new arcs in the
precedence graph that are themselves propagated as described in subsection
7.2.1.

7.3 Implementation and complexity

Propagation can originate from an event on an interval (in the model, the
variables visit) or on the sequence (tour). Changes in the domain of a
certain interval have to be propagated on its neighbors in the precedence
graph and new arcs on the graph cause domains of related intervals to be
propagated. For a given interval variable i, we note: smini its minimum
possible start (at a given point during search), smaxi its maximum possible
start, emini its minimum possible end, emaxi its maximum possible end.
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This values are related as in Figure 7.3. Furthermore, since durations of
intervals (duri) are fixed in this problem, the relations between start and
end bounds emini = smini + duri and emaxi = smaxi + duri hold. We say
that (i, j) is an outgoing arc for i and an incoming arc for j to address arcs
generally, without having to specify whether it is a next or successor arc.

t

duri

smini
smaxi emini

emaxi

Figure 7.3: Bounds of the domain of interval variable i

In what follows we list the three main types of events and how they are
propagated, the disjunctive propagation is treated separately afterwards.

1. Change in the domain of an interval i:

- Propagate emini, for each outgoing arc (i, j) (of typeX ∈ {next, succ}),
set sminj = emini + fX

earliest(i, j, emini)

- Propagate smaxi, for each incoming arc (j, i) (of type X ∈
{next, succ}), set emaxj = smaxi − fX

latest(j, i, smaxi)

2. New successor arc (i, j):

- Propagate emini, set sminj = emini + f succ
earliest(i, j, emini)

- Propagate smaxj, set emaxi = smaxj − f succ
latest(i, j, smaxj)

3. New next arc (i, j):

- Propagate emini, set sminj = emini + fnext
earliest(i, j, emini)

- Propagate smaxj, set emaxi = smaxj − fnext
latest(i, j, smaxj)

Disjunctive propagation When the domain of an interval variable i in
the precedence graph is modified, the following conditions are tested for
every incoming arc (j, i) or outgoing arc (i, j) such that i and j are not
simultaneously successors of each other (an iterator is available for this):

• if eminj + f succ
earliest(j, i, eminj) > smaxi then the successor arc i→ j is

added to the precedence graph
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• if smaxj − f succ
latest(i, j, smaxj) < eminj then the successor arc j → i is

added to the precedence graph

From an implementation point of view, one of the most critical functions
in the propagation is the computation of the values of functions fX

Y (i, j, t),
with X ∈ {next, succ} and Y ∈ {earliest, latest}, for a given pair (i, j) and
a given time value t. These functions are computed once, before the begin-
ning of the search, but they are accessed very often. In our implementation,
piecewise linear functions are implemented using skip lists to permit a ran-
dom access to fX

Y (i, j, t) in O(log(ν)) in average, where n is the number of
segments of the function 2. We think that the performance could be much
improved by exploiting some support or cache to the last position of the
function accessed for a given pair (i, j).

The complexity of the TDNoOverlap constraint is dominated by the com-
plexity of maintaining the precedence graph and the disjunctive propagation.
The worst-case complexity of the full-fledged propagation is quadratic with
respect to the number of interval variables (i.e., visits in our application).

2See documentation of class IloNumToNumSegmentFunction in CPLEX Optimization
Studio [1]
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Chapter 8

Experimental evaluation

This chapter is divided into five sections, as follows. The first section intro-
duces preliminary concepts and notation necessary for the chapter, in the
following section the experimental setup is given in terms of models used
for experiments, selection of benchmark instances and hardware. The third
section studies the interests of taking time-dependency into account for the
optimization of delivery sequences by comparing the performance of TSP
and TDTSP solutions performed under the same traffic conditions. Section
8.4 compares the model using TDNoOverlap with the other CP models pre-
sented in this thesis and studies their scale up behavior. In the last section,
we present the only other set of TDTSP instances available online and briefly
compare TDNoOverlap with their method on those instances.

8.1 Comparison of TDTSP and TSP solutions

For the comparisons performed in this chapter, some concepts and nota-
tions should be explained beforehand for better comprehension. Mainly in
what concerns the comparison of solutions for the TSP and solutions for the
TDTSP.

Generating a TSP instance from a TDTSP instance Starting from a
TDTSP instance, with time-dependent travel time function T , we calculate
for each pair of visits (i, j) the median travel time over the set of travel
times between i and j for all time steps of the optimization horizon. This
gives us a constant travel time function TMedian which, along with the set
of visits, defines a TSP instance. The choice of median travel times was
made to generate TSP solutions that reflect real conditions to a larger degree
than simply taking minimum, maximum or average travel times occurring
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during the day. The quality of TSP solutions certainly varies according to
the constant travel times chosen but here only the case with median travel
times was studied.

The method chosen to find an optimal solution for the TSP using TMedian

travel times was the scheduling model presented in section 6.3 without con-
straint 6.25 (the one enforcing time-dependent transition times). We call
this model NoOverlap-TSP and it was the model performing the best for the
TSP, among the CP models presented here.

Comparing objective values of TSP and TDTSP solutions The fol-
lowing notation is introduced:

• optTSP , the optimal sequence found by the TSP model (using TMedian)

• optTDTSP , the optimal sequence found by the TDTSP model (using T )

• objTMedian
(optTSP ), the optimal objective value of the TSP (using TMedian)

• objT (optTSP ), the objective value of optTSP evaluated using time-dependent
travel times function T

• objT (optTDTSP ), the optimal objective value of the TDTSP

The relationship between objTMedian
(optTSP ) and objT (optTSP ) is not fixed,

meaning that either one can produce a longer total travel time. On the other
hand, objT (optTSP ) is an upper bound of objT (optTDTSP ), i.e., objT (optTSP ) ≥
objT (optTDTSP ) is always valid, otherwise optTDTSP would not be the opti-
mal solution of the TDTSP. Figure 8.1 gives an example of a TSP solution
evaluated with TMedian (the costs used to find optTSP ) and the same sequence
evaluated in a time-dependent context, using T .
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optTSP

using TMedian
A B C D A

optTSP

using T A B C D A

optTDTSP

using T A C D B A

Figure 8.1: Example of TSP optimal solution evaluated using constant (me-
dian) travel times on the top and using time-dependent travel times in the
middle. On the bottom, the optimal TDTSP solution

Relative gain of time-dependency The difference between objT (optTSP )
and objT (optTDTSP ) allows us to quantify the time-dependency of an instance:
the bigger the difference, the more time-dependent the instance is. We define
the relative gain (in terms of objective value) as:

relative gain =
objT (optTSP )− objT (optTDTSP )

objT (optTDTSP )

The relative gain measures how much travel time, as percentage of the
total travel time of optTDTSP , can be saved by considering time-dependent
data when optimizing the tour.

8.2 Experimental setup

List of models The following models are used for the experiments pre-
sented in this chapter:

1. Classic-TDTSP model for the TDTSP, the time-dependent extension
of the classical CP model for the TSP, presented in section 6.1.

2. NoOverlap-TDTSP model for the TDTSP, the scheduling model using
the NoOverlap constraint described in section 6.3.

3. NoOverlap-TSPmodel for the TSP, a constant version of NoOverlap-TDTSP
using TMedian.

4. TDNoOverlap-TDTSPmodel for the TDTSP, the model using the TDNoOverlap
constraint as shown in section 7.1.
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Instances selection To simplify the benchmark described in section 4.3,
20 instances are picked (out of the 500 randomly generated) for each size
{10, 20, 30, 50, 100}. To do so we first analyze how the different instances
represent the impacts of taking time-dependency into account. The set
of instances with time-window constraints was generated after this selec-
tion process, therefore, this section concerns only instances without time-
windows. The procedure described in section 4.3 to generate instances with
time-windows was performed using as input the smaller set of instances se-
lected hereafter.

One can imagine that in certain cases time-dependency might not change
the optimal solution of the problem, for example: if the area concerned by
the instance’s visits is not heavily affected by traffic; if all paths between
every two visits are affected in the same way; if there is only one obvi-
ous solution as in the case of visits aligned sequentially in the same street.
In those cases solutions can be completely time-independent even if we use
time-dependent data for optimization. On the other extreme of the spectrum
we have situations that are so time-dependent that solutions calculated not
taking time-dependency into account can give: unreliable delivery times; op-
timistic estimations of total travel time, sometimes leading to extra working
hours to the drivers; or unfeasible schedules, if time-windows are imposed. In
order to select 20 instances that are representative of these different possible
behaviors (very time-dependent, not time-dependent at all), we proceed to
study the degree of time-dependency of each instance.

Ideally, to be able to calculate accurate relative gains and therefore, accu-
rate degrees of time-dependency of our instances, optimal solutions (optTSP

and optTDTSP ) would have to be used. The problem is that, for instances
bigger than 20 visits, optimality is hardly ever proved by our CP models
(both for the TSP and the TDTSP). So we simply used the best solutions
obtained in a given time limit and estimated the relative gains from them.
To look for the best solution in the time limit, the models NoOverlap-TSP
and TDNoOverlap-TDTSP are run on restart mode. For sizes 10 to 30 a time
limit of 30 minutes was used, for 50 and 100, the limit was 1 hour. As it
will be shown in section 8.4, the model for the TSP is lighter, in terms of
constraints to propagate, and has a tendency of converging faster than the
TDTSP model at the beginning of the search. This means that occasionally,
solutions found by NoOverlap-TSP had better objT value than those found
by TDNoOverlap-TDTSP (since optimality of neither was guaranteed), giving
negative relative gains.

For each problem size n, a smaller set of 20 instances was selected, to
be representative of the different types of estimated gains between TSP and
TDTSP. These instances were picked randomly within three main groups of
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estimated gains (largest, intermediate, negligible/zero/negative) with equal
probability for each group. Also, as can be seen in Fig. 8.2, gains increase
when traffic variations are more important during the day (represented by
the different matrices T00, T10 and T20). Therefore, to avoid conflicts in the
classification of instances into one of the three categories of gains, they were
classified according to their performance when using T10 as travel times.

In Fig. 8.2 we can see the cactus plot of the relative gains for all 500
instances of size 10. This figure shows that for more than 10% of the T00
instances, the gain is greater than 5%, whereas for 40% of the instances it
is equal to 0%. Note that a gain of 5% is considered as very important in
our context. Furthermore, real-world delivery problems usually have time-
window constraints in which case it is mandatory to consider time-dependent
data in order to have reliable results, as shown in the next subsection. As
expected, the gain tends to increase when using functions T10 and T20 with
larger amplitude of traffic variation (to more than 13% and 21%, respec-
tively).
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Figure 8.2: Relative gain of TDTSP, instances ordered by decreasing gain

A similar behavior was observed for larger problems with 20 and 30 visits
although the gain was slightly smaller, going up to 9% for size 20 and to
around 6% for sizes 30, 50 and 100, with some negative results for 50 and
100 since for those sizes optimality is never proved. Those lower gains are
probably due to the fact that the peaks of traffic congestion occur between
06:00 and 09:00, which more or less corresponds to the time frame of a
10-visit problem so, for larger problems, part of the route is executed on less
congested moments.
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The results presented in the sequel of this chapter were obtained by
running the tests on an IBM Blade HS22 Type 7870 with an Intel Xeon
X5570 (2.93GHz/1333MHz/8MB Cache) processor and 20GB of RAM. For
our benchmark we consider an instance class to be defined by the number of
visits i (∈ {10, 20, 30, 50, 100}), the type of matrix Tj (with j ∈ {00, 10, 20})
and the presence or not of time-windows which is indicated by the suffix
”TW”. The name of an instance class is of the form i T j( TW ) and each of
the 30 classes (5∗3∗2) has 20 instances, which gives a total of 600 instances.
Reference solutions (best objective values, not sequences) for each of these
instances are given online (in the same page as the benchmark instances) and
were obtained by letting the TDNoOverlap-TDTSP model run for 2 hours on
restart mode. Solutions proved to be optimal are marked with ∗.

8.3 Evaluation of the effects of taking time-

dependency into account

In this section a comparison similar to the one done in the previous section is
made. Time-dependent travel times are used to simulate how solutions found
by a TSP model (using median cost values) would behave in “real” conditions.
A solution for the TSP consists in a sequence of visits and hereafter, a TSP
solution is said feasible if it still respects the problem’s constraints when
time-dependent travel times are applied. Since every sequence is a (TD)TSP
solution the only way in which it can become unfeasible with different travel
times is if it no longer satisfies the problem’s side-constraints, in this case,
the time-window constraints. A solution with an objective value greater than
the function time-span of 13 hours is considered infeasible, this can also be
seen as a time-window at the depot, to ensure that tours respect the driver’s
work hours.

The effects of time-dependency are studied in two paragraphs, for in-
stances without and with time-windows. For both cases, we compared the so-
lutions found by NoOverlap-TSP and TDNoOverlap-TDTSP, running in restart
mode, with a time limit of 1 hour.

Instances without Time-Windows For instances without time-windows
the TSP can always find feasible solutions to the TDTSP instances. To make
sure that comparisons are ”correct”, only instances to which both models are
capable of proving optimality were considered (up to size 20, for instances
without time-windows). If the compared solutions are not optimal, noth-
ing can be said about the relative gains of the instance, in terms of time-
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dependency, since they can even be negative when calculated for non-optimal
solutions.

In Table 8.1, one can see that, as expected, taking time-dependency into
account reduces total travel time in average and the relative gains between
the two seem to grow with the dilatation of travel times, i.e., for the different
matrices T00, T10 and T20. Also, as pointed out in the previous section,
relative gains tend to decrease from size 10 to 20. The smallest gain of all
instances of size 10 is 0 and the biggest is 22.57%. And for instances of size
20, the minimum gain is also 0 but the maximum is only 6.94%, which as
mentioned earlier is still considered a quite significant gain in the context of
urban deliveries.

Inst Class Avg Gain StDev Gain Min Gain Max Gain
10 T00 3.00 2.61 0 7.27
10 T10 5.69 4.20 0 13.68
10 T20 10.14 5.03 1.53 22.57
20 T00 1.19 0.97 0 3.03
20 T10 2.24 1.68 0 4.96
20 T20 4.33 1.60 0.80 6.94

Table 8.1: Average (relative) gains, standard deviation, minimum and max-
imum gains per instance class, in percentage

Instances with Time-Windows For instances with time-windows the
TSP model is not always able to find a feasible solution in the time limit of
1 hour. For this reason, in table 8.2 we see a column giving the number of
instances solved by the TSP model, where solved means that at least one
feasible solution has been found - feasibility (using time-dependent travel
times) is checked for every solution found in the search for the optimal TSP
solution with model NoOverlap-TSP. For the best feasible solution found
per instance we calculate the average of their relative gains and standard
deviation (when it applies). Optimality is only proved for instances up to
30 vertices with both models. As instance size grows and with the increase
of amplitudes in the variations of travel times (T00 < T10 < T20) it gets
harder for the TSP model to find feasible solutions for the TDTSPTW and
even for feasible solutions the average gains are a lot larger than those of
instances without time-windows, which shows that in the presence of time-
window constraints it is crucial to consider time-dependent travel times in
the calculation of delivery routes.
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Inst Class Solved (/20) AvgGain StDevGain MinGain MaxGain
10 T00 TW 10 19.31 35.99 0 94.96
10 T10 TW 9 20.93 36.18 0 99.01
10 T20 TW 10 21.60 33.56 0 99.24
20 T00 TW 10 12.92 15.91 0 50.01
20 T10 TW 7 20.35 19.49 0 50.23
20 T20 TW 4 7.57 6.77 3.26 17.59
30 T00 TW 10 8.62 18.50 0.34 60.91
30 T10 TW 5 16.89 25.74 0.66 62.43
30 T20 TW 1 5.50 0 5.50 5.50

Table 8.2: Number of instances solved by NoOverlap-TSP per instance class
(with time-windows). Average gains, standard deviation, minimum and max-
imum gains given in percentage

8.4 Scaling of the different models

In this section experiments are organized into three subsections each studying
how TDNoOverlap-TDTSP compares with the other models presented in this
thesis. The two first subsections compare the TDNoOverlap-TDTSP model
with NoOverlap-TDTSP and Classic-TDTSP models, respectively. The last
one analyzes the speed of convergence of NoOverlap-TSP and TDNoOverlap-TDTSP
and proposes a way of accelerating the search for optimal solutions by com-
bining the two.

8.4.1 NoOverlap-TDTSP versus TDNoOverlap-TDTSP

Different sets of instances were generated along the thesis in order to test
the performance (and proper functioning) of TDNoOverlap-TDTSP - all based
on the same original 255 delivery nodes and time-dependent travel times
described in chapter 4. For the comparisons between NoOverlap-TDTSP and
TDNoOverlap-TDTSP a preliminary set of instances was used (different from
the one selected in section 8.2). This set contains 10 instances per size (15,
20, 50, 100), it is without time-window constraints, and it is used with travel
times matrix T00 only as it is previous to the generation of dilated travel
times (T10 and T20).

This comparison is meant to answer how much one can expect to gain
in terms of time and also in terms of quality of solution, if the search time
is fixed, by integrating the time-dependent travel times directly into the
constraint. Or if instead, the overhead of adding time-dependent reasoning

95



in the propagation of NoOverlap would be too much and only slow down the
search. For this purpose, average convergence curves were generated for all 4
sizes of instance. A convergence curve for a certain instance gives, for each
CPU time t, the gap between the values of the current solution (solcur) (the
best solution found by the search up to instant t) and the reference solution
(solref )

1. The gap is calculated similarly to relative gains:

gap =
objT (solcur)− objT (solref )

objT (solref )

In figures 8.3 and 8.4, the average convergence curves for all sizes are
given. For sizes 15 and 20, TDNoOverlap-TDTSP is capable of proving opti-
mality for all instances (within 120 seconds) while NoOverlap-TDTSP is not
even though it comes closer than 5% of the optimal solution within 20 sec-
onds in both cases. For sizes 50 and 100, none of the models is capable
of proving optimality but NoOverlap-TDTSP is in average 20% further than
TDNoOverlap-TDTSP from the reference solution for size 50 and 40% further
for size 100 (within 180 seconds).
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Figure 8.3: Average convergence of NoOverlap-TDTSP and
TDNoOverlap-TDTSP for sizes 15 (left) and 20 (right)

1The reference solution is the best solution found in a long running time with the best
method, not necessarily proven to optimal
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Figure 8.4: Average convergence of NoOverlap-TDTSP and
TDNoOverlap-TDTSP for sizes 50 (left) and 100 (right)

Those results showed very clearly that even with the non-optimized code
added for the time-dependent propagation of TDNoOverlap-TDTSP the over-
head of propagation was more than compensated by the reduction of the
search space, in such a way that TDNoOverlap-TDTSP improves solutions
considerably faster than NoOverlap-TDTSP. From this point on we consid-
ered that testing with the NoOverlap-TDTSP model was unnecessary since
TDNoOverlap-TDTSP outperforms it.

8.4.2 Classic-TDTSP versus TDNoOverlap-TDTSP

In chapter 6, we pointed out the limitations of the extended Classic-TDTSP

model, here we compare the filtering of this model and TDNoOverlap-TDTSP.
For this purpose, the same depth first search strategy is used for both models
so that we can estimate the impact of constraint propagation on the number
of branches of the complete search tree. Search heuristics follow a chronolog-
ical scheduling of visits and choice of the nearest visit in terms of transition
time first, given that the earliest date of the previous visit is known. For the
Classic-TDTSP model, this means that the search first fixes the variables
atPosition[i] for i = 1, 2, ...n. However, as the search strategy is not static,
the search tree is different (one tree is not a sub-tree of the other). We could
have tested on a static search strategy but this would have resulted in a
more ”artificial” type of search. We measured the number of branches and
the CPU time of the two models on the 20 instances of size 10 and for each
of the 3 functions T00, T10, T20, giving 60 tests at the end.
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Comparison was performed only on instances of size 10 because the
Classic-TDTSP model is not able to solve the larger problems to optimal-
ity in a reasonable time. For those 60 tests, all solved to optimality with
both models, the left side of Fig. 8.5 shows the comparison of the number of
branches of the search tree explored by each approach while the right side
compares the CPU times needed to complete the exploration of the search
tree. Instances are ordered per function (20 instances with function T00 first,
then all with T10 and finally with T20) so one can notice a certain pattern in
the difficulty of resolution that is repeated for each function. Figure 8.6 shows
the same tests described previously but on instances with time-windows.
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Figure 8.5: Comparison of number of branches (left) and CPU time (right)
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Figure 8.6: Comparison of number of branches (left) and CPU time (right)
with Time-Windows

Not only the TDNoOverlap-TDTSP model propagates a lot more (about
50 times fewer branches) but it also finds better solutions faster than the
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classical CP model. For 10-sized instances the search is about 100 times
faster on average for instances without time-windows and more than 10 times
faster for instances with time-windows (the problems with time-windows are
easier to solve due to reduced search space).

For instances of sizes 20 and more, we used the automatic search of
CP Optimizer, which is more sophisticated than depth first search and is
able to find better solutions much faster. The same search heuristics as
above was used but, depending on the type of model (Classic-TDTSP or
TDNoOverlap-TDTSP), the automatic search of CP Optimizer uses different
meta-heuristics. This makes the comparison difficult to analyze precisely,
since we cannot separate the effects of propagation (shown in figure 8.6) and
search.

For those instances, Classic-TDTSP is not capable of proving optimality
within the 1-hour time limit. The TDNoOverlap-TDTSP model finds and
proves the optimal solution for all 120 instances of size 20 (with and without
time-windows) and it proves optimality for 48 instances of size 30 with time-
windows but cannot prove optimality for instances of this size without time-
windows. On the other hand, it finds the reference solutions (or solutions
with the same value) way before the 1 hour time-limit for sizes 20 and 30 as
we can see in the average convergence graphs of figures 8.7 and 8.8. These
graphs show the average of convergence curves over the 20 instances of an
instance class.

In the average convergence graphs we see that Classic-TDTSP does not
find a first solution immediately, the log scale makes it seem longer than
it actually takes, but this time corresponds to an initialization of the auto-
matic search by CP Optimizer. From analyzing the results of Classic-TDTSP
and TDNoOverlap-TDTSP for size 10 that already indicate the superiority of
TDNoOverlap-TDTSP to then looking at the scale-up behavior of both models
for sizes 20 and 30 it seems straight-forward to conclude that TDNoOverlap-TDTSP
does a better and faster job when it comes to solving the TDTSP(TW).
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for size 20 with and without TW
100



10−1 100 101 102 103

0

2

4

6

8

10

12

CPU time ins seconds (log)

O
b
je
ct
iv
e
ga
p
(%

)

Convergence 30

TDNoOver-T00

TDNoOver-T10

TDNoOver-T20

ClassicCP-T00

ClassicCP-T10

ClassicCP-T20

10−1 100 101 102 103

0

5

10

15

20

25

CPU time in seconds (log)

O
b
je
ct
iv
e
ga
p
(%

)

Convergence 30 TW

TDNoOver-T00

TDNoOver-T10

TDNoOver-T20

ClassicCP-T00

ClassicCP-T10

ClassicCP-T20

Figure 8.8: Average convergence of Classic-TDTSP and TDNoOverlap-TDTSP

for size 30 with and without TW
101



In an effort to visualize all solutions instead of averages, as in the con-
vergence curves shown above, we took snapshots of the values of the best
solutions found by both models for a given search time t. In Fig. 8.9 we
see one such snapshot took after 300 seconds of search for instances of size
30 with and without time-windows. In both cases TDNoOverlap-TDTSP is
superior to Classic-TDTSP, as all values are plotted on the lower diagonal of
the graph showing that values obtained by TDNoOverlap-TDTSP are smaller
than those obtained by Classic-TDTSP. There seems to be no difference be-
tween the three matrices in terms of easiness of resolution, for one method
or the other, since the different colored groups representing the matrices are
all mingled together. We judged unnecessary to present other snapshots here
since they do not bring any more information than this one.

14000 16000 18000 20000

14000

16000

18000

20000

Classical CP

T
D
N
oO

ve
rl
ap

Matrix T00

Matrix T10

Matrix T20

15000 20000 25000

15000

20000

25000

Classical CP

Matrix T00

Matrix T10

Matrix T20

Figure 8.9: A colored circle on (x, y) represents one instance, where x is the
cost of the best solution found by Classic-TDTSP and y is the cost found by
TDNoOverlap-TDTSP, for problems of size 30 without time-windows (on the
left) and with (on the right) after 300s

8.4.3 Comparison of convergence of NoOverlap-TSP and
TDNoOverlap-TDTSP

When studying the effects of time-dependency on TSP solutions (section 8.3)
we noticed that the model using median travel times NoOverlap-TSP had a
”quick” convergence towards good TDTSP solutions. It could be interesting
to make use of this fact to accelerate the search, if NoOverlap-TSP was able
to find better solutions faster than TDNoOverlap-TDTSP. In this subsection
we compare the convergence of those methods for instances without time-
windows only since, as presented in section 8.3, the model NoOverlap-TSP
most frequently produces infeasible solutions for the TDTSPTW.

102



In figures 8.10 and 8.11, the average convergence curves of both mod-
els are given for sizes 20, 30, 50 and 100. For the convergence curves of
NoOverlap-TSP (represented in the graphs below by the dark colored curves,
labeled with ”TSP-”), the values plotted at each time correspond to the value
of the best solution in terms of time-dependent travel times found so far. This
means that TSP solutions found during the search are plotted only if they
improve the current time-dependent objective objT , i.e., if solTSP∗ was the
last solution plotted, a new solution solTSP only appears in the convergence
curve if objT (solTSP ) < objT (solTSP∗).

As a general rule, NoOverlap-TSP produces solutions with smaller gaps
for matrix T00 and then T10 and finally T20. This is normal since the
larger the variations of travel times during the day, the larger the errors
of estimation made with constant travel times. For sizes 20 and 30, the
TDNoOverlap-TDTSPmodel tends to find better solutions than NoOverlap-TSP
after at most 10 seconds (except for size 20 with T00, where TDNoOverlap-TDTSP
takes a little longer to surpass NoOverlap-TSP). The larger the instances
grow, the later this crossing point of convergences curves arrives, at around
30 seconds for size 50 and 400 seconds for size 100. This indicates that pro-
viding NoOverlap-TSP solutions (obtained after a few seconds) as a starting
point for the TDNoOverlap-TDTSP model could accelerate the search but we
did not have time to test that. One can also notice certain plateaus - for
example, for the TDTSP curves of size 30 at around 1 and 2 seconds and for
curves of size 100 between 5 and 10 seconds for the TSP and between 30 and
100 seconds for the TDTSP - that can be explained by the failure directed
search of CP Optimizer.

When analyzing those graphs it is important to keep in mind that time
is in log scale so at a first glance it might seem like it takes a very long
time for TDNoOverlap-TDTSP to catch up, which is not the case (up to size
50). The main reason why NoOverlap-TSP improves solutions faster than
TDNoOverlap-TDTSP is that the model is a lot lighter without the time-
dependent travel time constraints. Another important factor to take into
account in the comparison is that NoOverlap-TSP is not able of provid-
ing good solutions for the TDTSP with time windows, as a matter of fact,
the solutions produced by this model are infeasible most of the time. So
the only thing that can come out of it is an idea about how to speed up
TDNoOverlap-TDTSP’s search.
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(bottom)

105



8.5 Tests on other instances

As mentioned in section 3.3.3, the only instances for the TDTSP available
online (other than ours) are the ones from Cordeau et al. [26]. Time-window
constraints are not provided online but in a subsequent paper [9], the authors
randomly generate and test their approach on instances with time-windows.
Here we briefly describe their instances (without time-windows) and the work
done to adapt them to our format.

Travel speeds functions model Their instances are based on stepwise
travel speeds functions vi,j for every couple of visits (i, j), the horizon [0, T ]
is discretized into H time steps [Th, Th+1]. Given a couple of visits (i, j) and
a time step h, the travel speed function can be written in terms of three
factors: vi,j,h = δi,j,h ∗ bh ∗ ui,j, where ui,j is the maximum travel speed
across arc (i, j) during the whole horizon [0, T ], bh = maxi,j{vi,j,h/ui,j} is the
lightest congestion factor for the whole graph (during time step h) and δi,j,h
represents the degradation of the congestion factor of arc (i, j) with respect
to the least congested arc during time step h. Both bh and δi,j,h belong to
[0, 1]. This decomposition of speeds into those three factors is important for
their method as they calculate different travel time bounds with them.

Instances structure Cordeau et al. generated 30 instances for each pos-
sible value of visits n in the set {15, 20, 30, 40}, that can be combined with
each of two distinct traffic density patterns (A or B), giving a total of 60
instances per size.

• The number of customer locations n, which are randomly chosen within
a [0, 100]2 square. The depot is located at the center of this square and
traffic density varies according to three concentric circular zones C1,
C2 and C3 (Fig. 8.12).

• A time steps matrix H × 2 gives the beginning and end of each time
period, where the H is the number of times periods (always 3 for these
instances), and the first and the last periods correspond to morning
and evening rush hours respectively. In [26], they seem to indicate
that this matrix is slightly modified according to the departure node,
meaning that the boundaries of time periods vary for different nodes
of the graph though they do not mention it in the sequel paper [9].
Therefore we used the matrix exactly as given in the input data files
(the same for every node of the graph).
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• A cluster matrix C (n×n), giving the clusters c ∈ Clusters = {C1, C2, C3},
for each couple of visits i, j. It is not clear how the authors attributed
clusters for each arc as the instances description seem to suggest that
nodes belong to clusters (as in Fig. 8.12) but in the input data, a matrix
defines a unique cluster for each arc (i,j).

• A distance matrix D (n × n), giving the distances for each couple of
visits i, j.

• A speed matrix S, which has to be multiplied by traffic pattern values
to obtain the final speeds, corresponding to bh ∗uc for each time period
h and each cluster c

Figure 8.12: Example of customer locations, with concentric zones C1, C2
and C3 (from [9])

Traffic patterns (δc,h values) A and B are given in table 8.3, for each
time step h and each cluster h. Traffic pattern A represents situations where
the old city center is located in C1 with lower congestion, higher in C2
and decreasing towards C3 while traffic pattern B represent cities that have
highest congestion in the center C1, that ”continuously” decreases the further
one gets from the center.

A h=1 h=2 h=3
C1 1 1 1
C2 [0.70,0.98] 1 [0.70,0.98]
C3 [0.95,0.99] 1 [0.95,0.99]

B h=1 h=2 h=3
C1 [0.70,0.98] 1 [0.70,0.98]
C2 [0.80,0.99] 1 [0.80,0.99]
C3 1 1 1

Table 8.3: Traffic patterns A and B
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Adaptation to our input format In order to test with their instances,
they have to be ”transformed” to fit our input format, as described in the
following steps:

• Obtain stepwise speed functions f s for each cluster c: for every time
step h, f s

c,h = Sc,h ∗ δc,h.

• Calculate piecewise linear travel time function f t from f s and distance
matrix D, using algorithm 2. It is important to use IGP’s algorithm,
as this is the one used by the authors on their method.

Our model TDNoOverlap-TDTSP can take general piecewise linear func-
tions as input but it can only handle integer values for travel times (as inter-
val variables have to have integer bounds) so, if a certain travel time is not
integer it has to be rounded up for propagation. This process might intro-
duce rounding errors that add up and produce a final objective value that is
slightly different than the values obtained by Cordeau et al. In an effort to
reduce this errors we added a conversion factor to increase the ”precision”
of travel times. The conversion factor is introduced by multiplying all travel
times by it and then dividing the final solution by it again to retrieve the
normal scale.

Using a conversion factor of 10, the worse gap between TDNoOverlap-TDTSP
optimal solutions (proved up to size 20) and Cordeau’s solutions is of 0.25%
with an average gap of 0.06%. When TDNoOverlap-TDTSP no longer manages
to prove optimality, from sizes 25 to 40, the maximum gap obtained when
running TDNoOverlap-TDTSP for a time limit of 10 minutes was 2.6%, while
the average gap for those instances was only 0.69%. It is possible that dif-
ferences in optimal values are explained by the boundaries of time steps that
might have been different in their case, as mentioned earlier. Their method
does not prove optimality for all instances, and it ran with a time limit of
one hour. We also observed that the computation times of their method
seems to vary quite a lot with the instance, varying from 0.56 seconds to
38.29 for instances of size 20, while ours had a very similar running time for
all instances of the same size, running in around 20 seconds for size 20.

Experimentation on their instances was not thorough as we judged that
proper comparison was hard, so here we only gave an idea of why it was
not simple to compare with their results (float versus integer comparison
and ambiguity on their instances’ definition) and did not present results for
all instances and different conversion factors. Even if solutions produced
were not exactly the same, it was interesting to validate our model on other
instances as well. For a more complete and fair comparison between both
methods it would be interesting to test their approach on our instances (with
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a larger number of time steps, travel time functions for every arc instead
of clusters and also with time-window constraints), even though the same
difficulty of comparing float and integer solutions would remain.
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Chapter 9

Conclusion

In this thesis we presented the practical and theoretical aspects of scheduling
a vehicle delivery tour in a urban center. In the initial chapters (from 1 to
3) the context, the necessary background, as well as a formal definition and
a literature review of the theoretical problem concerned, the TDTSP(TW),
were given.

In a second part, questions concerning the modeling of road-networks,
using real-world time-dependent data obtained in the context of the Opti-
mod’Lyon project, were studied. In chapter 4, the procedure used to generate
a set of benchmark TDTSP(TW) instances was described in details and more
specific questions concerning the time-dependent travel time functions mod-
eling were discussed in chapter 5. The contributions of chapter 4 and 5 were
the benchmark and algorithms: Alg. 2, the extension of the IGP algorithm
that calculates a travel time function instead of a single travel time; Alg.
5, that calculates a piecewise linear FIFO travel time function as close as
possible to the input travel time function (stepwise or piecewise linear); and
Alg. 6, which transforms a TDTSP instance graph to make it satisfy the
time-dependent triangular inequality.

In a third part, our solving approach was introduced. In chapter 6, a CP
model for the TDTSP was presented, based on a CP model for the TSP. The
limitations of this model were pointed out - namely, lack of reasoning with
indirect successors and no global reasoning with time-dependent transition
times - and a scheduling model tackling the first of the drawbacks of the first
model was given. This scheduling model served as basis for the development
of a new global constraint, aiming to solve the second limitation. The inter-
nal functioning of the new constraint TDNoOverlap-TDTSP was presented in
details in chapter 7. From an application perspective, one of the interests of
a constraint-based scheduling model is that it is very easy to integrate addi-
tional constraints like precedence between visits or disjunctive time-windows,
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these constraints are in fact directly available in CP Optimizer.
An experimental evaluation was performed in chapter 8, in three steps:

(1) an evaluation of the effects of taking time-dependency into account con-
firmed previous results of the literature showing that gains of up to 20%
in terms of total travel time can be obtained with time-dependent mod-
els and that time-window constraints are almost never satisfied when time-
dependency is ignored (2) a comparison of the scaling of the different models
proposed in this thesis showed that the new constraint has better perfor-
mance than the models presented in chapter 6 but we also see that there is
still room for improvement (3) the instances proposed by [9] and the work
done in order to take those instances as input were presented though a de-
tailed comparison was not possible.

We believe that CP can be a good platform for vehicle scheduling prob-
lems but a lot of work still has to be done in order to compare it with other ap-
proaches. Part of the work is to improve the performance of TDNoOverlap-TDTSP
by optimizing the implementation as proposed in 7.3. The lack of common
benchmarks for the TDTSP or TDVRP also makes comparisons difficult, in
that sense, we expect to contribute to the community with the benchmark
instances proposed in this thesis.

Future research One research direction to explore would be to improve
the propagation of TDNoOverlap-TDTSP by calculating tighter bounds for the
TDTSP, using Minimum Spanning Trees or Assignment Problem relaxations
on the precedence graph, extending the approaches described in [40, 17, 36].
It would also be interesting to see if the successor relations stored in the
precedence graph could be exploited in this context. Still on the solving
part, it would be interesting to test with different branching heuristics and
to take a closer look into the search in general, as we have focused on the
propagation.

In what concerns the final application, a possible future research direction
would be the adaptation to the dynamic case - taking into account changes
occurring in the road-network while the tour is being executed. Detecting
that a change of speeds in a given arc can potentially have an impact on the
tour (even if the tour does not currently, or in the future, travel through that
arc) is a not an easy job. A re-optimization of the sequence of deliveries left
can be done once time-dependent shortest paths are updated accordingly. An
alternative, in order to produce more robust solutions that would not suffer
so much from changes in travel times, would be to consider the stochastic
version of the time-dependent problem.

Another possibility would be to generalize to other constraints the work
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of extension done for the NoOverlap constraint, in order to be able to effi-
ciently reason on time-dependent data and solve other problems where data
varies with time. For example, in the case of the shortest path problem with
resource constraints, for which [69] proposed the Multicost-Regular global
constraint. In an urban context, costs (and specially durations) depend on
time and it would be interesting to extend this global constraint as we have
done for NoOverlap in this thesis.
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Appendix A

Backward IGP algorithm

Input: v, tf
1: t← tf
2: k ← kf : Tkf ≤ tf < Tkf+1

3: d← Lij

4: t′ ← t− d/v(i, j, k)
5: while t′ < Tk do
6: d← d− v(i, j, k) ∗ (t− Tk)
7: t← Tk

8: t′ ← t− d/v(i, j, k + 1)
9: k ← k − 1

10: end while
11: return t′
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