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We illustrate the utility of expert elicitation, explicit recognition of uncertainty, and the value of information for
directing management and research efforts for invasive species, using tegu lizards (Salvator merianae) in south-
ern Florida as a case study.Weposited a post-birth pulse,matrixmodel inwhich four age classes of tegus are rec-
ognized: hatchlings, 1 year-old, 2 year-olds, and 3+ year-olds. This matrix model was parameterized using a 3-
point process to elicit estimates of tegu demographic rates in southern Florida from 10 herpetology experts. We
fit statistical distributions for each parameter and for each expert, then drew and pooled a large number of rep-
licate samples from these to form a distribution for each demographic parameter. Using these distributions, as
well as the observed correlations among elicited values, we generated a large sample of matrix population
models to infer how the tegu population would respond to control efforts. We used the concepts of Pareto effi-
ciency and stochastic dominance to conclude that targeting older age classes at relatively high rates appears to
have the best chance of minimizing tegu abundance and control costs. We conclude that expert opinion com-
bined with an explicit consideration of uncertainty can be valuable in conducting an initial assessment of what
control strategy, effort, and monetary resources are needed to reduce and eventually eliminate the invader. Sci-
entists, in turn, can use the value of information to focus research in a way that not only increases the efficacy of
control, but minimizes costs as well.

Published by Elsevier B.V.
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1. Introduction

The demography of a species in a novel environment is usually un-
known or highly uncertain and this can seriously compromise the con-
trol of invasive species, particularly in the early stages of the invasion.
Rather than postpone analyses of control actions until more is known,
one possible approach is to elicit judgements from experts to form a
basis for decision making (Canessa et al., 2015a; Converse et al., 2013;
McBride et al., 2012; Runge et al., 2011). This so-called collective
wisdom can be an effective method for forming accurate judgements
in cases of high uncertainty (Lyon et al., 2015). In the case of invasive
species, experts might be those familiar with the species' demography
in its native range, those knowledgeable about closely related species,
or those engaged in research or management of the invasive species in
situ. Although it is common practice to convene a panel of experts and
ask them to produce consensus judgements about the values in ques-
tion, preserving the diversity of opinions among experts is seen as
more representative of the actual state of knowledge (Morgan, 2014).
Demographic information, whether from expert opinion or empirical
data, is then used to parameterize models of the invasive species,
which in turn are used to predict how abundance, and perhaps spatial
distribution, is likely to change over time in response to dynamic envi-
ronmental conditions and specific control actions. In most cases these
predictions will be highly uncertain, especially if based on expert opin-
ion. Decision analysis that accounts for the probabilistic nature of these
predictions is technically straightforward, but it depends critically on
understanding the risk attitude of the decision maker (Canessa et al.,
2016). For example, some outcomesmay be so undesirable that the de-
cision maker may accept a lower net benefit overall if it minimizes the
chance of themost undesirable outcomes. There are also decision-mak-
ing tools for cases of deep uncertainty – those in which possible out-
comes lack any (reliable) stochastic structure (Johnson and Williams,
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2015). In either case, demographic models must make predictions
about the consequences of control actions in terms that are relevant to
thedecisionmaker's objectives. At aminimum, these objectives are like-
ly to include the desire to minimize abundance of the invasive species
and the costs of control. Other common objectives include minimizing
the impacts of control on non-target species and protecting sites of
high value (e.g., conservation reserves) from invasion.

A useful tool for addressing questions about the nature and implica-
tions of uncertainty is the expected value of information (VOI) (Canessa
et al., 2015b; Clemen, 1996; Runge et al., 2011; Williams et al., 2011;
Williams and Johnson, 2015a, 2015b). In particular, the expected value
of perfect information (EVPI) expresses the gain in the value expected
fromoptimalmanagement if uncertaintywere to be eliminated. Obvious-
ly, uncertainty can never be eliminated in resource management prob-
lems, but EVPI nonetheless provides a useful heuristic for determining
the extent to which uncertainty is relevant to management decisions.
EVPI is simply the difference between the objective value expected if
there were no uncertainty and the best that could be expected with
values that are averaged over uncertain outcomes. Also of potential use
in the design of research and management programs is the expected
value of partial information, inwhich the value of eliminating one ofmul-
tiple sources of uncertainty is assessed. The value of information is often
expressed monetarily, but any relevant performance metric will suffice.
Expressing VOI in dollars is useful, however, for determining what man-
agers should be willing to spend onmonitoring and other data-collection
programs designed to reduce uncertainty.

We illustrate the utility of expert elicitation, explicit recognition of
uncertainty, and the value of information for directing management
and research efforts for an invasive species of lizard in southern Florida.
Argentine black and white tegus (Salvator merianae) were likely intro-
duced from the pet trade in Miami-Dade County around 2000 (Krysko
et al., 2011), and by 2010 were established as a breeding population
(Pernas et al., 2012). Tegus are large, long-lived, fecund and omnivorous
lizards (Fitzgerald, 1994). As such, they present a growing threat to eco-
logical resources of concern in southern Florida, including the nests of
crocodilians (Crocodilia), sea turtles (Chelonioidea), and ground-
nesting birds (Mazzotti et al., 2015). While some early detection –
rapid response efforts were attempted, it is clear that this population
has grown rapidly and the focus has now shifted to containing (or elim-
inating) the population to prevent expansion into areas of high ecolog-
ical value, including Everglades National Park (ENP), the Florida Keys,
and critical habitat for American crocodiles (Crocodylus acutus) at the
Turkey Point Nuclear Generating Station near Homestead, Florida.

There have been concerted efforts to control tegus in the natural
areas just east of ENP (Southern Glades Wildlife and Environmental
Area), but there is concern that these efforts are not meeting the identi-
fiedmanagement objective of containing the population. Current efforts
to address the tegu invasion include trapping, as well as research pro-
jects to characterize movements, brumation, reproduction, habitat use,
and diet, and to develop more efficient control methods. However,
given limited resources, managers need to consider how to optimize
the allocation of resources for management and research. To this end,
a decision-making workshop was held in August 2015 to help identify
management objectives and available actions, to link research and
modeling efforts to management needs, and to identify the capacity
and constraints of interested parties. This workshop was attended by
representatives from various state and federal resource agencies, as
well as university scientists. During and following the workshop, we
elicited estimates of key demographic parameters of the tegu popula-
tion in southern Florida from ten experts, who had both general knowl-
edge andfield experiencewith tegus in their native range or in southern
Florida. We then considered the experts' uncertainty about these pa-
rameters to generate inferences concerning population growth rate
and other demographic characteristics of interest. Finally, we used
these inferences to examine control strategies intended to minimize
tegu abundance and control costs.
2. Methods

2.1. Expert Elicitation

At the workshop, experts were provided the limited information
available concerning survival and fecundity of wild tegus in South
America (Fitzgerald, 1994). We then used a 3-point process (Soll
and Klayman, 2004; Speirs-Bridge et al., 2010) to elicit from each ex-
pert their best guess (median) and its 95% confidence interval for
tegu demographics in southern Florida. These estimates were collat-
ed and then shared with the entire group. The experts were then
allowed to revise their estimates if they desired based on discussions
within the group. Several months after the workshop, we contacted
the experts via email to allow them to revise their estimates again
if they wished. We encouraged the experts to draw on any published
or unpublished information that they believed to be relevant. Al-
though we encouraged experts to discuss their estimates, we did
not use the Delphi process (or its variants), in which experts are en-
couraged to develop consensus on elicited values (Morgan, 2014).
The concern is that such consensus is not based on genuine agree-
ment, but rather is the result of strong group pressure
(Woudenberg, 1991). Indeed, we were interested in assessing the
full range of experts' opinions about the uncertain parameters
(Clemen and Winkler, 1999; Morgan, 2014).

There is an extensive literature on how to combine the diverse
opinions of experts (Budescu and Rantilla, 2000; Lyon et al., 2015).
A general conclusion from this literature is that some form of averag-
ing is almost always optimal. The most common averaging ap-
proaches involve weighting experts equally or weighting experts
by the precision of their elicited values. Giving more weight to
more precise judgments can give good results (Yaniv and Foster,
1997), but more recent literature indicates that overconfidence
tends to predominate in interval judgments (Morgan, 2014; Soll
and Klayman, 2004). Several methods have been suggested to reduce
overconfidence, including the 3-point elicitation process we used
(Soll and Klayman, 2004). Nonetheless, we believed it prudent to
weight experts equally because we could not be sure that precision
was an accurate reflection of an expert's actual knowledge about
the parameter in question. Equal weighting of experts can better ac-
count for outlying opinions, is guaranteed to be no less accurate than
the typical individual judgments, and has been shown to be surpris-
ingly accurate (Lyon et al., 2015; Morgan, 2014).

Most experts' confidence intervals were asymmetric, and this re-
quires special consideration in aggregating estimates (O'Leary et al.,
2015). For each expert and for each parameter, we fit an appropriate
statistical distribution to the three elicited values depending on the
nature of the demographic parameter. We used a beta distribution
for rates that are naturally constrained between zero and one (e.g.,
survival). We used a log-normal distribution for parameters that
were bounded by zero and infinity (e.g., clutch size). Distributions
were fit using the rriskDistributions package (Belgorodski et al.,
2015) of the open-source computing language R (RCoreTeam,
2016). We then used the fitted distribution for each expert and for
each parameter to generate 10,000 samples of the parameter in
question. The samples for a given parameter were then pooled across
experts (equal weighting of experts) to produce a single discrete dis-
tribution for each parameter. We then generated 50,000 complete
sets of all parameters by drawing samples from the cumulative dis-
tribution functions for the pooled samples. Because considerable
correlation existed between some pairs of elicited demographic pa-
rameters (see Supplementary Material, Fig. S1), we used a Cholosky
decomposition (Morris and Doak, 2002) to preserve this correlation
structure. We then confirmed that the marginal distributions of pa-
rameters and the correlation matrix were similar to the original
data. These 50,000 sets of demographic parameters were then used
to draw inference from a population model.
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2.2. Population Model

Matrixmodels can be effective for understanding the growth poten-
tial of an invasive population, the life stages with themost influence on
population growth, and the importance of transient dynamics (i.e.,
those occurring prior to reaching the asymptotic growth rate) in
predicting abundance and responses to control efforts (Morris et al.,
2011; Shea and Kelly, 1998). We posited a post-birth pulse model in
which four age classes of tegus are recognized: hatchlings, 1 year-old,
2 year-olds, and 3+ year-olds. Only tegus aged three years or older
are assumed to breed regularly, although we acknowledge that size
may be a more important determinant of sexual maturity than age
(Fitzgerald et al., 1993). We parameterized survival (S) and fecundity
(F) using estimates elicited from our 10 experts. Fecundity was defined
as the product of clutch size and egg survival divided by 2, as we as-
sumed a 1:1 sex ratio in the population. We emphasize that this
model has no spatial aspect and thus assumes there is a single popula-
tion in Miami-Dade County. The life cycle diagram and matrix model
are provided in Fig. 1.

The matrix model was parameterized using the set of 50,000 demo-
graphic parameters described above. To understand the population
level consequences of the tegu life cycle we used the popdemo package
of R (Stott et al., 2014) to calculate the finite growth rate (λ), stable age
distribution, damping ratio (d), and elasticities (e) of demographic rates
for each of the 50,000 matrices. We chose elasticities rather than sensi-
tivities because proportional (rather than additive) perturbations were
more in line with the type of management intervention we examined
(i.e., removal rate) (Caswell, 2001). Convergence time to the stable
age distribution was calculated using the mean matrix and a range of
plausible initial conditions; these computations were also conducted
using the popdemo package. We calculated tegu lifespan (lmax) as the
number of years required for 99% of an initial population of hatchlings
to die (Slade et al., 1998).

2.3. Tegu Control Strategies

We first calculated the removal rate (h) required to stabilize the
population, assuming that the same removal rate would be applied to
all age classes, as h=(λ−1)/λ (Slade et al., 1998). Then we used the
method of Hauser et al. (2006) to calculate combinations of removal
rates for hatchlings, 1, 2, and 3+year-olds thatwould stabilize the pop-
ulation. We used the mean matrix (i.e., the mean of the 50,000
Fig. 1. Post birth-pulse, life-cycle diagram (top) and corresponding matrix model
(bottom) for Argentine black and white tegus in southern Florida. Age classes are
hatchings (H), and 1, 2, and 3+ year-olds. Demographic rates are survival (S) and
fecundity (F = hatchlings produced per breeding female).
matrices) for these calculations. The purpose of these calculations was
to demonstrate how various combinations of age-specific removal
rates could prevent further population growth, and to emphasize that
a lack of control over age-specific removal rates can lead to unpredict-
able population trajectories (Hauser et al., 2006).

The principal method of tegu control currently available is to trap
and remove individuals with some level of effort, which is summarized
by a removal rate, h (i.e., the proportion of an age class removed per
year). The time of year when trapping occurs affects the age classes
available for capture and this can be used to target specific age classes.
We examined control strategies for reducing tegu population size by ex-
amining a range of removal rates targeted at certain age classes. As a
basis for comparison, strategy A consisted of varying removal rates
targeted at all age classes equally (here and elsewhere we assume that
trap mortality is additive to other sources of mortality), such that the
projection matrix with control was:

Aa ¼
0 0 1−hð ÞFS2 1−hð ÞFS3

1−hð ÞSh 0 0 0
0 1−hð ÞS1 0 0
0 0 1−hð ÞS2 1−hð ÞS3

2
664

3
775

We used a coauthor's (FM) empirical data on catch per trap day
(ω=0.034), total trap days in a season (δ=192; February–October),
and an approximate cost per trap per season (θ=$1000USD). The
total annual cost (C) associated with this (and the following) strategies
was calculated by first determining the total number of removals (R) for

a simulated population vector (N
!
) and age-specific removal rate (h).

Thus, for strategy A, removals were:

R ¼
h 0 0 0
0 h 0 0
0 0 h 0
0 0 0 h

2
664

3
775 � N!

Thus, total annual cost (C) was:

C ¼ R
ωγ

θ

Strategy B consisted of varying removal rates for animal aged 1+
years (i.e., no hatchlings), such that the projection matrix with control
was:

Ab ¼
0 0 1−hð ÞFS2 1−hð ÞFS3
Sh 0 0 0
0 1−hð ÞS1 0 0
0 0 1−hð ÞS2 1−hð ÞS3

2
664

3
775

Catch per trap day (ω=0.043), trap days per season (δ=131), and cost
per trap per season (θ=$683USD) were derived from trap statistics
during the March–August period when few hatchlings are caught.

Strategy C consisted of varying rates of nest destruction, such that
the projection matrix with control was:

Ac ¼
0 0 1−hð ÞFS2 1−hð ÞFS3
Sh 0 0 0
0 S1 0 0
0 0 S2 S3

2
664

3
775

The number of nests destroyed was a function of the removal rate and
the number of 3+ year-olds alive at the time of breeding:

Nests ¼ h
n2S2 þ n3S3

2

� �

where h = removal rate, n2 and n3 are the number of 2 and 3+ year-
olds at the start of the annual cycle, respectively, and S2 and S3 are the

Image of Fig. 1


Table 1
Summary statistics for demographic parameters of Argentine black and white tegus in
South Florida elicited from 10 experts.

Parameter Mean Median 90% credible interval

Hatchling survival,Sh 0.273 0.211 0.082–0.664
1 year-old survival, S1 0.501 0.502 0.269–0.738
2 year-old survival, S2 0.616 0.631 0.380–0.811
3+ year-old survival, S3+ 0.726 0.762 0.511–0.899
Lifespan, lmax 11.7 8.9 4.0–24.9
Clutch size, c 26.5 25.8 20.2–34.0
Egg survival, Se 0.813 0.894 0.007–1.000
Population size in 2008 768 500 75–2483
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annual survival rates of 2 and 3+year-olds, and division by 2 is because
only females nest. Empirical data on the cost of nest searching are not
available, but we thought it was important to see how this strategy
might perform using assumed, but plausible, trapping statistics. We as-
sumed conservatively that one search crew could find 3 nests in the
March–May period (δ=92 days, ω=3/92=0.03) and that the cost of
nest searching was twice that of trapping (θ=$958USD).

Finally, strategy D consisted of varying removal rates of breeding-
aged adults just prior to nesting in the spring (δ=65days; March–
May), such that the projection matrix with control was:

Ad ¼
0 0 1−hð ÞFS2 1−hð ÞFS3
Sh 0 0 0
0 S1 0 0
0 0 1−hð ÞS2 1−hð ÞS3

2
664

3
775

Catch per day (ω=0.44) and cost per trap per season (θ=$338USD)
were estimated from empirical trap data.

2.4. Simulating Age-specific Control Strategies

We simulated application of the four control strategies (A, B, C, and
D) with removal rates varying from h = 0.0 to h = 0.6 in increments
of 0.1; thus, there was a no-removal strategy and 6 possible removal
rates for each of the 4 strategies (25 combinations in all). We initialized
each simulation of the 50,000 populationmatriceswith a draw from the
distribution of the elicited population size in 2008 and the stable age
distribution associated with each matrix. Note that the simulation of
each matrix is deterministic (no environmental variation), so that
each only needed to be run once. We used the elicited size of the tegu
population in 2008 because of uncertainty about the year of introduc-
tion and the size of the founding population. We assumed no tegu re-
movals until 2016, and then simulated the removal strategy for
10 years. We then examined the performance of each removal strategy
by plottingmedians of the final population size and average annual cost
of removals. The goal here was to identify strategies that were Pareto-
efficient (Kennedy et al., 2008) and most likely to produce both low
tegu abundance and cost of removals.

After using the above exercise to identify a subset of Pareto-efficient
alternatives, we normalized final population size and cumulative costs
for each matrix model, such that 0 was the worst performing strategy
and 1 was the best performing strategy in terms of each management
objective. We then combined the two management objectives into a
single objective function, using a proportional weight w to specify the
relative importance of annual removal cost:

V πð Þ ¼ w Cjπ;mð Þ þ 1−wð Þ Njπ;mð Þ

where the value Vof a removal strategy π is the sum of the weighted,
normalized cumulative cost C and the weighted, normalized, ending
population sizeN, given a particularmatrixmodelm. To identify the op-
timal removal strategy we used the concept of stochastic dominance to
account for the full range of uncertainty concerning strategy perfor-
mance (Canessa et al., 2016). This approach first examines the cumula-
tive distribution function (cdf) of objective values (over all matrix
models) for each strategy being investigated. The strategy associated
with the lowermost cdf is the optimal choice if, and only if, it does not
cross the cdf for any of the remaining strategies (called first-order dom-
inance). If cdf's cross, then it is necessary to know the general risk atti-
tude of the decision maker to identify an optimal strategy. We
assumed a risk averse (rather than risk seeking) decision maker, so
the ascending integrals of the cdf's were examined. An ascending inte-
gral depicts the area under the cdf from 0 to increasingly larger values
of x (the objective value, V(π), in this case). The strategy associated
with the lowermost ascending integral is the optimal choice for a risk-
averse decision maker if, and only if, it does not cross the ascending in-
tegral for any of the remaining strategies (called second-order
dominance). We calculated ascending integrals of the cdf's using nu-
merical integration.

2.5. Value of Information

We calculated the expected value of perfect information (EVPI)
based on our subset of Pareto-efficient alternative control strategies.
EVPI is the difference between the best performance (in objective func-
tion value) expected if all model uncertainty could be eliminated (the
first term) and the best performance expected in the face of continued
model uncertainty (the second term):

EVPI ¼ E
m

max
π

V π;mð Þð Þjm
h i

− max
π

E
m
V π;mð Þjm½ �

Both terms involvemaximizing and averaging, but in different orders. In
the first term, we are averaging the value of the optimal strategy for
eachmodel. In the second termwe aremaximizing themodel-averaged
performance of each strategy.We examined EVPI for varyingweights on
cost from 0 to 1, and expressed EVPI as the proportional gain in expect-
ed management performance.

We also calculated the expected value of partial information (EVPXI)
(Williams and Johnson, 2015b). We focused on the potential gain in
performance that could be expected by eliminating uncertainty about
fecundity and survival rates. We again used our subset of Pareto-effi-
cient alternative control strategies and, for each demographic parame-
ter, began by assigning the 50,000 potential demographic rates into
one of 5 bins based on the 20% quantiles of their empirical distribution.
The probability associated with each of the bins was thus 0.20. The sec-
ond term of EVPXI is identical to that of EVPI, and represents the best
performance expected in the face of continued uncertainty. The first
term of EVPXI was calculated by first averaging the performance of
each strategy in each of the 5 bins. Then for each bin, we took the max-
imumperformance across strategies. Finally these valueswere averaged
using the bin probability as weights. This first term thus expresses the
expected performance that could be expected if uncertainty about the
most appropriate bin for the demographic rate in question were
known, while accounting for the residual uncertainty in other demo-
graphic rates. EVPXI is thus:

EVPXI ¼ E
b

max
π

E
i
Vi π; bð Þð Þjb

� �
− max

π
E
m
V πjmð Þ½ �

where b = a parameter bin and i = an individual model within a bin.
We calculated EVPXI for fecundity and survival rates only for the case
where ending population size and cumulative costs were equally
weighted.

3. Results

As expected, empirical distributions for parameters based on expert
opinion reflected a high degree of uncertainty (Table 1; Supplementary
Material, Figs. S2–S8). Survival rates tended to be bimodal, with the ex-
ception of survival of 1-year olds. Mean lifespan was lmax=11.7,
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comparable to a value of lmax=13 reported from the tegu's native range
(Fitzgerald, 1994). Clutch size exhibited a fairly smooth distribution, but
the distribution of egg survival reflected widely varying judgements
among experts. Initial population size (i.e., population size in in 2008)
was 768 tegus (90% Credible Interval: 75–2483).

Based on the 50,000 alternative matrix models, the mean finite
growth ratewas λ=1.29 (90% Credible Interval: 0.461–2.313) (Supple-
mental Material, Fig. S9). A population exhibiting this constant growth
rate will double every 2.8 years. The mean stable age distribution was
69% hatchlings, 13% 1 year-olds, 5% 2 year-olds, and 13% 3+ year-
olds. Due to a highly skewed distribution, we report the median
damping ratio as d = 1.58 (90% Credible Interval: 1.30–11.2), suggest-
ing the population can exhibit significant transient dynamics (Caswell,
2001). For example, based on the mean matrix, populations not at the
stable age distribution typically take ≥10 years for the age ratio to stabi-
lize. Mean elasticity was highest for survival of 3+ year-olds, followed
by fecundity, hatchling survival, and survival of 1 year-olds (Table 2).
Survival of 2 year-olds had the lowest elasticity.

The mean removal rate required to stabilize the population, assum-
ing all age classes are removed at the same rate, was h=0.19 (90% Cred-
ible Interval: 0.00–0.54). When no hatchlings can be removed, the
removal rates of the other age classes necessary to stabilize the popula-
tion generally were N0.25 (Fig. 2). In contrast, if high removal rates of
hatchlings (or nests) could be achieved (e.g., N0.4), removal rates for
the other age classes could be reduced substantially.

Based on simulations, the uncontrolled tegu population potentially
grew from a median of 500 individuals (90% Credible interval: 75–
2473) in 2008 to a median of 2483 individuals (90% Credible Interval:
2–410,800) in 2016. Of the possible removal strategies, removing all
age classes at the same rate (strategy A) performed well in terms of
mean tegu abundance, but was the most costly on average (Fig. 3).
The removal strategies affiliated with nest destruction (strategy C)
were of low to moderate costs, perhaps not surprisingly so due to our
conservative cost assumption. However, the strategy C alternatives var-
ied widely in terms of minimizing tegu abundance. Tomake this a more
viable alternative, nest searching would have to be more efficient than
we assumed. Removal strategies focused on either removing all age
classes except hatchlings (strategy B) or removing breeding-aged adults
in the spring (strategy D) were most cost-effective overall. We chose
four of these along the Pareto frontier for analysis of stochastic domi-
nance: (1) strategyBwith h=0.5; (2) strategy Bwith h=0.6; (3) strat-
egy Dwith h=0.5; and (4) strategy Dwith h=0.6.With equalweights
on the objectives to minimize cost and tegu abundance, strategy Dwith
h = 0.6 had the highest mean value V(π)=0.77, closely followed by
strategy B with h = 0.6, which had a mean of V(π)=0.73 (recall that
V(π)=1 represents the best possible outcome). Without considering
the range in objective values (V(π)), a risk-neutral decision maker
would choose one of these two strategies. Examining medians and in-
terquartile ranges (IQR) because of the highly variable and skewed dis-
tributions, strategy D with h = 0.6 produced a median population size
of 158 tegus after 10 years of control (IQR: 0–16,930), at a median
Table 2
Elasticities (and SD) and the value of partial information (EVPXI) for demographic param-
eters of Argentine black andwhite tegus in South Florida as elicited from 10 experts. Elas-
ticities represent the proportional change in the finite growth rate expected with a
proportional change in a demographic rate. EVPXI is the proportional increase inmanage-
ment performance (i.e., objective value) that could be expected as a result of eliminating
uncertainty about a demographic rate.

Demographic parameter Elasticity (SD) EVPXI

Fecundity, F 0.208 (0.064) 0.123
Hatchling survival,Sh 0.208 (0.064) 0.134
1 year-old survival, S1 0.208 (0.064) 0.146
2 year-old survival, S2 0.118 (0.031) 0.175
3+ year-old survival, S3+ 0.259 (0.217) 0.142
annual cost of $8641 (IQR: $580–$166,500). The median number of
tegus removed annually was 73 (IQR: 5–1406).

None of the subset of 4 Pareto-efficient strategies had first-order
dominance (Fig. 4, left panel), meaning that the optimal strategy cannot
be identified without knowing the risk attitude of the decision maker.
The risk-averse decision maker, however, should have a clear prefer-
ence for strategy D with h = 0.6, as this is second-order dominant to
the other 3 alternatives (Fig. 4, right panel).

The expected value of perfect information varied depending on the
relative weight of cost in the objective function, with the highest EVPI
(a 25% gain in performance) at a cost weight of w = 1.0 (Fig. 5). In
this case, of course, cost is the sole objective and the gain in performance
simply represents the cost savings whenmodel uncertainty is eliminat-
ed; tegu abundance is irrelevant. At a cost weight ofw=0.0, EVPI = 0,
meaning that the expected performance is equivalent in the case of
model certainty or model uncertainty (i.e., the optimal strategy for all
models is the one that minimizes tegu abundance, regardless of cost;
strategy B with h = 0.6). Beyond this, EVPI increases rapidly up to a
cost weight ofw=0.42, after which EVPI goes upmore slowlywith fur-
ther increases in cost weight. Most of the potential performance gain
from eliminating model uncertainty is achieved when there is approxi-
mate parity in the relative importance of the two objectives. At a cost
weight of w = 0.5, the expected value of partial information was
more homogeneous among fecundity and survival rates than was the
case for elasticities (Table 2). Eliminating uncertainty about survival of
2 year-olds had the highest EVPXI (18%), but the lowest elasticity. Fe-
cundity had the lowest EVPXI (12%), but an intermediate elasticity.

4. Discussion

As a benchmark, our analyses suggested that a removal rate of h =
0.19 on all age classes each (and every) yearwould be required to stabi-
lize the tegu population in southern Florida. Assuming trap efficiency is
constant, removal rates higher than this may be feasible (by increasing
the number of traps) and potentially affordable, and could potentially
reduce tegu abundance. We urge caution, however, as there is a great
deal of uncertainty associated with this value. Based on our elicited de-
mographic rates, there is a 50% chance that the removal rate needed to
stabilize the population could be higher, and possibly much higher.
Moreover, it is not unusual for trapping efficiency to decline with effort
and decreasing populations (Epanchin-Niell and Wilen, 2012), which
would make higher removal rates less feasible. Finally, even if popula-
tion size were stabilized, tegus would likely continue to expand their
range; yet ourmodels do not account for dispersal into areas not subject
to control.

Targeting older age classes (strategies B and D) appears to have the
best chance of minimizing both tegu abundance and control costs. Cur-
rent trapping efforts (which span 192days) tend to producemore of the
older (or at least larger) age classes, and it appears additional cost sav-
ings could be incurred by limiting trapping to those periods that pro-
duce the oldest individuals. Whatever the targeted removal rates, we
stress that the removal rate of each class must be at least partially con-
trolled (i.e., removal rates vary about some mean rate that does not
vary). Otherwise, even a constant removal rate overall will lead to un-
predictable changes in tegu abundance (Hauser et al., 2006).

We also wish to emphasize that each of our simulated populations
was initialized in 2008 at its stable age distribution as based on the cor-
respondingmatrixmodel.We believe this to be likely if and only if tegus
began breeding immediately after the initial release(s) around 2000.
Otherwise, tegu abundance would likely be very different than in the
year we began simulated control (2016). For example, a population
consisting of mostly breeding-age adults in 2008 would have resulted
in a much larger population in 2016 than we simulated and, thus, our
control costs and final tegu abundance would be negatively biased. Fi-
nally, we remind the reader that our matrix models exhibited no densi-
ty-dependent growth, as seems likely at some (unknown) level of tegu



Fig. 2. Removal rates of Argentine black and white tegus in southern Florida required to stabilize the population, as based on expert elicitation. Each panel represents a different (fixed)
removal rate of hatchlings. The x and y axes represents removal rates of 1 and 2 year-olds respectively. Colors represent the required removal rates of 3+ year-olds.White space in the top
right of the graphs represent combinations that would result in a declining, rather than stable, population. White space in the bottom left of the graphs represent conditions for which a
solution to stabilize the population does not exist.
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abundance. Accounting for density dependence may lead to lower
values of removal rates to stabilize the population and thereforemay re-
sult in more optimistic outcomes in terms of population control.

With respect to the value of information, some authors (e.g., (Moore
and McCarthy, 2010; Walters, 1986) have observed that EVPI is often
low in practice. Indeed, our finding of EVPI ≤ 25% is relatively large com-
pared to some reports in the natural resource literature (Johnson et al.,
2014; Williams and Johnson, 2015b), but nonetheless comparable to
others (Runge et al., 2011). EVPIwill be low if uncertainty is low or if op-
timal management actions are insensitive to model choice. In some
cases, management may be constrained (e.g., by laws or cultural
norms) in such a way that it is not possible to capitalize on what is
learned. Clearly, EVPI will be low where time horizons are short
(Hauser and Possingham, 2008), or where the future is heavily
discounted (Moore et al., 2008). We also note that the magnitude of
EVPI in our study was variable, depending on the relative emphasis
placed on minimizing tegu control costs. In fact, EVPI shrinks to zero
when control cost is of no consequence. This is because a sole objective
to minimize tegu abundance will always suggest the highest available
removal rate, regardless of how the population model is parameterized
(i.e., there is no value in reducing model uncertainty). The appropriate
trade-off of the objectives to minimize cost and minimize tegu abun-
dance is necessarily a value judgement of the decision maker. These
analyses can help inform this decision, but cannot identify the “correct”
tradeoff because there is no objective basis for doing so.

Tegu population growth in southern Florida appears to bemost sen-
sitive to proportional changes in survival of 3 year-olds, perhaps not
surprisingly because tegus are relatively long-lived. Interestingly,
EVPXI was highest for survival of 2 year-olds, yet this demographic
rate had the lowest elasticity. In general, the range of EVPXI values for
all demographic parameters was smaller than that of elasticities.
These patterns are perhaps not surprising given that elasticity and
EVPXI address different questions. Elasticity suggests which demo-
graphic rates could be perturbed to produce the greatest change in
growth rate of the tegu population. In amanagement setting, that infor-
mation has value only to the extent that control efforts could feasibly
target that particular demographic rate. EVPXI, on the other hand, char-
acterizes the loss in management performance resulting from uncer-
tainty about the various demographic rates. In this light, we suggest
EVPXI is a better metric than elasticity for focusing research and moni-
toring efforts because it is a metric tied explicitly to management per-
formance, which must consider cost as well as tegu abundance.
Ongoing telemetry and camera-trapping efforts in southern Florida
could contribute to meeting this need. Without empirical data, man-
agers run considerable risk of allocating too little effort to control the
expanding tegu population.

Image of Fig. 2


Fig. 3. Simulated performance of control strategies for Argentine black and white tegus in
southern Florida, as based on expert elicitation. Strategy A consisted of varying removal
rates targeted at all age classes equally. The digit following the letter represents the
removal rate times 10 (e.g., 1 stands for a removal rate of h = 0.10). Strategy B
consisted of varying removal rates for animal aged 1+ years (i.e., no hatchlings).
Strategy C consisted of varying rates of nest destruction. Strategy D consisted of varying
removal rates of breeding-aged adults just prior to nesting in the spring. Values on the x
and y axes are medians from 50,000 population matrices simulated for 10 years of
control. Strategies performing the best on both objectives are those in the bottom left of
the graph.

Fig. 5. The expected value of perfect information (EVPI), expressed as a proportional gain
inmanagement performance, for controlling Argentine black and white tegus in southern
Florida. EVPI is the expected increase in objective value that could be attained by
eliminating all uncertainty about tegu demography as expressed by a panel of experts.
The x axis represents the weight placed on the objective to minimize annual control
cost. The weight on the objective to minimize tegu abundance after 10 years is the
compliment of the cost weight.
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This study represents the first attempt to model population demog-
raphy of Argentine black and white tegus in southern Florida. Given the
absence of empirical data, it was not surprising that experts varied
widely in their judgements about demographic rates of this newly
established invader. This variation produced rather extreme variability
in simulated population sizes, and thus in control efficacy and costs.
Nonetheless, quantification of these expert opinions, as well as their
Fig. 4.Cumulativedistribution function (cdf) of objective values (left panel) and ascending
integrals of those cdf's (right panel) for 4 strategies to control Argentine black and white
tegus in southern Florida, as based on simulation of 50,000 population matrices for
10 years of control. Strategy B consisted of varying removal rates for animal aged 1+
years (i.e., no hatclings). Strategy D consisted of varying removal rates of breeding-aged
adults just prior to nesting in the spring. The digit following the letter represents the
removal rate times 10 (e.g., 5 stands for a removal rate of h = 0.5).
associated uncertainty, is a critical first step in developing an informed
control strategy. Acting more aggressively to control tegus before em-
pirical data are available may be prudent, particularly given the
population's estimated doubling time of about three years. We note
that the parameters of our populationmodel can be treated as prior dis-
tributions, which can then be updated as empirical information from
field studies becomes available (Royle and Dorazio, 2008). Finally, we
note that a separate population of tegus is also established near
Tampa, Florida (Engeman et al., 2011), and there have been multiple
tegu sightings at locations across peninsular Florida (https://www.
eddmaps.org/distribution/viewmap.cfm?sub=18346).We thus believe
this study could help provide preliminary guidance for controllingwhat
appears to be a growing threat throughout the state.

By definition, invasions of exotic plants and animals occur in novel
environments, where demography may be poorly understood even if
the species is well studied in its native range. Expert opinion, combined
with suitable techniques like stochastic dominance to explicitly consid-
er uncertainty, can be a valuable approach for an initial assessment of
what control strategy, effort, and monetary resources are needed to re-
duce and eventually eliminate the invader. In these situations, like with
the tegu, any honest effort to characterize uncertainty is likely to lead to
a level of precision that is less than satisfying. However, such quantifica-
tion of uncertainty can be useful to management because those out-
comes with apparently low probability, but with highly undesirable
consequences,mayneed to be considered in addition tomore likely out-
comes. And the attitude towards that risk must ultimately reflect social
values and norms, which are the purview of managers rather than sci-
entists. Scientists, in turn, can use the value of information to focus re-
search in a way that not only increases the efficacy of control, but
minimizes costs as well.

Adaptive management has also been increasingly suggested as a
way to reduce uncertainty and improve management performance
(Williams, 2011). Doremus (2011)made an effective case that adaptive
management is an information problem, in that the key question to be
addressed is whether the lack of information about ecological processes
and system responses to human intervention is the principal impedi-
ment to decision making and effective management. Decision makers
thus require someway to identify pertinent and reducible uncertainties
so they can determinewhether a particular resource conservation issue

https://www.eddmaps.org/distribution/viewmap.cfm?sub=18346
https://www.eddmaps.org/distribution/viewmap.cfm?sub=18346
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is a good candidate for adaptive management, whether learning
through management is possible, and whether an effective adaptive
management program can be designed. Adaptive management can be
expensive, and decision makers naturally want some assurance that
those costs can be offset by improvements in management perfor-
mance. Quantifying the value of perfect and partial information can be
a powerful tool for helping address these issues.
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