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In this paper are introduced the ordinal integers ,the ordinal rational numbers ,the ordinal real numbers ,the ordinal p-adic numbers ,the ordinal complex numbers and the ordinal quaternion numbers .It is also introduced the ordinal characteristic of linearly ordered fields. The final result of this series of papers shall be that the three different techniques of surreal numbers, of transfinite real numbers ,of ordinal real numbers give by inductive limit or union the same class of numbers known already as the class No and that would deserve the name the "infinitary totally ordered Newton-Leibniz realm of numbers ".

The present papers define the topological and algebraic structure of the ordinal real numbers and does not refer at all to their stochastic interpretation. Nevertheless as in practical applications of pre-emptive Goal Programming in Operations Research and operating systems of computers, the non-Archimedean or lexicographic order is usually called preemptive prioritization order .the ordinal real numbers could as well be called (for the sake of practical applications) Linearly ordered pre-emptive real numbers .

In a communication (1992) that the author had with N.L. Alling and his group of researchers on analysis on surreal numbers, suggested the term ordinal real numbers instead of surreal numbers. Some years later and before the present work appears for publication, it appeared in the bibliography conferences aboutreal ordinal numbers .

In these last three papers is studied a special Hierarchy of transcendental over the real numbers, linearly ordered fields that are characterized by the property that they are fundamentally (Cauchy ) complete. It shall turn out that they are isomorphic to the transfinite real numbers (see [Glayzal A. (1937)]).The author was not familiar with the 5 pages paper of [ Glayzal A. (1937)] ,and his original term was "transfinite real numbers". When one year later (1991) he discovered the paper by A. Glayzal ,he changed the term to the next closest :"Ordinal Real Numbers" .One more year later he proved that the transfinite real numbers ,the surreal numbers and the ordinal real numbers were three different techniques leading to isomorphic field of numbers. He then suggested (1992) to researchers of surreal numbers, like N.L.Alling to use the more casual term "ordinal or transfinite real numbers " for the surreal numbers.

In the present work it is introduced a new, better, classifying and more natural technique in order to define them. This technique I call "free operationsfundamental completion". It is actually the same ideas that lead to the process of construction of the real numbers from the natural numbers through fundamental (Cauchy) sequenses. In the modern conceptual context of the theory of categories this may demand at least three adjunctions (see [ MacLane S 1971 ]).It is developed their elementary theory which belongs to algebra. Their definition uses the Hessenberg operations of the ordinal numbers .It may be considered as making use of an infinite dimensional K-theory which is mainly not created yet. In this first paper it is also introduced the ordinal characteristic of any linearly ordered field .It is a principal ordinal number, that is of type . These numbers ,as defined with the present technique of the "free operations-fundamental completion " and prior to the proof that the resulting linearly ordered fields are isomorphic to the transfinite real numbers (as in [Glayzal A. (1937)]) ,we shall call Ordinal real numbers. The relevancy with the surreal numbers and the non-standard (hyper) real numbers ,shall be studied in a later paper. In detail, the next Hierarchies are defined: The field Rα is also the unique maximal field of characteristic α ( that is, it is Hilbert complete) , and the unique fundamentally (Cauchy ) complete field of characteristic α. It is also a real closed field , according to the theory of Artin-Schreier . These will be proved in the next paper on ordinal real numbers.

As it is known there are three more techniques and Hierarchies of transcendental over the real numbers, linearly ordered fields. Namely (in the historical order): The transfinite real numbers (see [Glayzal A. 1937 ]), and the surreal numbers (see [START_REF]On numbers and games Academic press[END_REF] ]).

In this series of papers, it is proved (among other results ) that all the previous three different techniques and Hierarchies give by inductive limit, or by union, the same class of numbers (already known as the class No ). § 1. The ordinal characteristic of linearly ordered fields.

Corrective Remark (2022) : The ordinal characteristic is essentially a measurement of the size of a linearly ordered commutative field with a semi-ring of Ordinal natural numbers (Hessenberg natural commutative operations in the ordinal numbers, as developed in the two previous papers-sections). We embed systems of ordinal natural numbers in a linearly ordered field, so that not "gaps" exist. There is always a minimal such system the natural numbers themselves. The definition of the ordinal characteristic of such ordinal natural numbers is always the supremum of the ordinals which are contained in it, and it is a principal ordinal numbers as we have described in the previous papersection. Then we embed with monomorphisms and with 1-1 functions , such semi-rings of ordinal natural numbers in a linearly ordered commutative field so that the 0 and 1 of the ordinal real numbers goes to the 0, 1 of the linearly ordered field and there are no "gaps", in other words the image is the minimal such possible set in the linearly ordered field. All such possible monomorphic with no gaps in a linearly ordered field, which is a set, give a set of corresponding ordinal characteristics of such semi-rings of ordinal natural numbers which is upper bounded, because of the cardinal and corresponding ordinal of the set and linearly ordered field. Thus as such ordinal are a subset of a well ordered set of ordinals it holds the supremum property, and there is such a supremum ordinal. Since also such a maximal embedding is also a semi-ring of ordinal natural numbers, this supremum is also a principal ordinal number which exist and its unique, it measures the size of the linearly ordered field and we call the it its ordinal characteristic. Having defined the ordinal characteristic as above the next definitions follow with minor corrections. Definition 0. We remind the reader that a linearly (totally) ordered, double abelian semigroup (semiring ) M is a set with two operations denoted by +,., such that with each one of them it is an abelian semigroup. Furthermore the distribution law holds for multiplication over addition. A linear ordering is supposed defined in M that satisfies the following compatibility conditions with the two operations 1) if x>y,

x'>y' x,x',y,y' M then x+x'>y+y' and xx'+yy'>xy'+yx' (The symbol < is used for  and not equal) if M is also a monoid relative to the two operations, and zero is absorbent unit for M, M is called ordered double abelian monoid. (semiring) (e.g.The set of natural numbers ,denoted by N).

In the next we shall consider linearly (totally) ordered fields.( For a definition see [Lang S.] ch xi §1 pp 391).

Also

in the next we shall use ordinal numbers.

(For a reference to standard symbolism and definitions see [START_REF] Kuratowski | Set Theory North -Holland[END_REF]] ch vii, [START_REF] Cohn | Universal Algebva Harper -Row[END_REF]] pp 1-36 )

In the following paragraphs we will not avoid the use of larger totalities than the sets of the Zermelo-Frankel set theory, namely classes.

We may suppose that we work in the Zermelo-Frankel set theory, augmented with axioms for classes also, as is presented for instance in bibliography [START_REF] Cohn | Universal Algebva Harper -Row[END_REF] p.1-36 with axioms A1-A11. Wee denote by Ω1 the class of the ordinal numbers. (The last capital letter of the Greek alphabet with subscript 1). The axioms A1-A11 allow for larger entities than sets, to define algebraic fields or integral domains or semi-groups. Hence we will also study classes that have two algebraic operations (Their Cartesian square treated as classes of sets of the form {{x, y}, {x}}, that is of ordered pairs) that satisfy the axioms of an algebraic field and have a subclass called the class of positive elements, with properties 1. 2., that they define a compatible ordering in the field (again as a class of ordered pairs) such classes that are ordered fields we will call again ordered fields and if we want to discriminate them from set-fields, especially when they are classes that are not sets, we will write for them that they are c-fields similarly we write cintegral domains or c-semigroups. We must not confuse the term "c-field" with the term "class-field" of the ordinary set-fields of "class-fields theory" (see [ Van der Waerden B.L 1970], [START_REF] Artin | Class Field Theory Benjamin[END_REF]). A subset (or subclass) denoted by X  F of a linearly ordered field F, is said to be cofinal with F, if for every a  F there is a b X with ab.

Definition 1. We say that an ordinal number α' is contained in a linearly ordered field (or integral domain or double abelian monoid ) denoted by F, if there is an ordinal α, α'<α and , (omega in the power of omega in the power of x) where x is an ordinal ,and a subset A of F + {O} and a function h: W(α)  A which is an order isomorphism (similarity) of W(α) and A and such that h(0)=0 and if β is an ordinal number with β<α then h(s(β))=h(β)+1 in the field operations and furthermore the set A is closed to sum and product in the field (integral domain or double monoid) operations and isomorphic by h to the W(α) relative to the Hessenberg natural operations , furthermore the closure in the order topology of the field of the set A (range of h) is the minimal such set with the previous properties (so we ensure that there are no gaps at the limits that are included).

Remark 2. If an ordinal number α' is contained in the field F, then also the sequent of α', S(α') is contained in F. This holds since the sequent of α' is again in W(α) where α as in the definition above.

Remark 3. If the ordinal number α is contained in the field F, then obviously every ordinal number less than α, is also contained in the field F. In the next, we will suppose (for simplification of symbolism) that if the ordinal α is contained in F, the set α is α subset of F, and also α is the element h(α) of the field F. We fix a mapping h for each ordinal that is contained in F .So we can talk about the set of ordinals contained in F as if it is a subset of F .The set of ordinal numbers that are contained in a linearly ordered setfield, is obviously a non-empty set. (Because as F is linearly ordered, charF =  hence for every natural number n, we have that it is a (finite) ordinal contained in the field F).

But even more by the remarks 2, 3, we have that the set of ordinals contained in a linearly ordered field ,which of course by the non-Neuman definition of ordinals is itself an ordinal , is either of the form W(x) or W(x)  {x} = W(S(x)) for some ordinal number x (in other words either it shall be a limit ordinal or it shall have a immediately previous ordinal ). The last case is directly excluded (by remark 2) hence it is of the form W(x) = x, that is this set is itself a limit ordinal number. In case the linearly ordered field F, is a c-field then all the ordinals contained in F is again a set which is limit ordinal number, or the class Ω1 of all ordinal numbers. Definition 4. Let a linearly ordered set-field (or integral domain or double abelian monoid) demoted by F. Let α be the set of ordinals contained in F (which is itself a limit ordinal number). We say that the field (or integral domain or double abelian monoid ) F is of characteristic α and we shall write charF = α.

If F is a c-field we include the case of characteristic Ω1 and we write charF = Ω1 if all ordinals contained in F is the class Ω1 and also it is a cofinal subclass with F.

Remark . In the case of a set-field F with α = charF, we do not need to suppose that the subset of elements of F corresponding to the ordinal in α by the definition 1 (it always exists ,by making use of the definition by transfinite induction and its version that uses only a set of functions sufficient for an inductive rule), see appendix A), is cofinal with F, as this is a consequence of the definition. For, if there is an element with β<X0 for every ordinal number β with βa, then the set α{X0} can be extended , with the field operations ,to its closure in the natural Hessenberg operations (a semiring) (see [Kyritsis C. Alt] ) and it becomes similar to an initial segment of a principal ordinal number Thus α+1 is an ordinal contained in F, contradiction with the definition of a .

By the previous definitions we realize that every linearly ordered set-field has characteristic which is a limit ordinal number.

The fact that the linearly ordered field F has characteristic ω (the least infinite ordinal) is equivalent with the statement that the field F is Archimedean.

In the followings when we will work on a linearly ordered field denoted by F of ordinal characteristic α, α=charF (or Ω1= charF) we will supposed that is fixed an embedding of the ordinal numbers of the initial segment w(α) in the set F (or of Ω1 in F).

If the characteristic is ω, the embedding is obviously unique as it can be proved by finite induction.

Remark.5 Let a linearly ordered field denoted by F .Obviously there is an extension which is a real field .Let us denote by R(F) the real closure of F .(For results of the theory of Artin-Schreir on real and real closed fields see e.g. [START_REF] Lang | [END_REF]] ch xi .or [Artin E.-Shreier O. 1927]) Since R(F) can be obtained by adjunction of the square roots of the positive elements of F and Zorn's Lemma on algebraic extensions see [START_REF] Lang | [END_REF]] ch i proposition 2.10 theorem 2.11 pp 397), it is direct that the characteristic of the real closure R(F) is the same with that of F.

For the definitions of the terms infinite, finite, infinitesimal elements in an extension of such fields, see e.g.[ Lang S] ch xi paragraph 1 pp 391, the definitions can be given relative to extensions of any linearly ordered field to an other linearly ordered field ,and not only extensions of the real numbers. §2 The ordinal natural numbers N . The ordinal-integers Z .

Let w(α) a principal initial segment of ordinal numbers. Let us denote by + and . the Hessenberg's natural sum and product in w(α). They satisfy properties 0.1.2.3.4.5.6. after lemma 1 in §1 in [ Kyritsis C.1991 Alter] Definition 6. The set w(α)=α where for some ordinal x, is an abelian double monoid relative to sum and product and furthermore it satisfies the cancellation low (see [ Kyritsis C. 1991 Alter] lemma 1 ).This set I call the (double abelian) monoid of ordinal natural numbers of characteristic a and I denote it by Nα. Thus Nα =α.

Remark 7. It is obvious that the (double abelian, well ordered ) monoid Nα, is the minimal such monoid of characteristic α and the embedding of the ordinal numbers of W(α) in it is unique . Furthermore it can be proved by transfinite induction that it is a unique factorization monoid (called simply factorial monoid also).

The additive cancellation low in α has as a consequence that α is monomorphicaly embedded in its Grothendieck group denoted by k(α) (see [START_REF] Lang | [END_REF] Ch.1 §9 p. 44). Furthermore the Grochendieck group k(Nα) can be ordered by defining the set of positive elements k(α) + = {v/v = (x,y) with x,y w(α) and x > y }. We remind the reader that if we denote by Fab(α) the free abelian group generated by α, and by ((x+y)-x-y) the normal subgroup of Fab(α) generated by elements of the form (x+y)-x-y, then By (x,y) we denote the equivalence class that is defined in Fab(α) in the process of taking the quotient group Fab(α)/((x+y)-x-y) by the representative x+(-y).

The first part of property 6. (lemma 1 in [Kyritsis C.1991 Alter]) guarantees that this ordering in k(α) restricted on α coincides with the usual ordering of ordinal numbers. [START_REF] Kuratowski | Set Theory North -Holland[END_REF] 

Definition 8. The ordered Grothendieck group k(α) of an initial segment of ordinals relative to natural sum, we call transfinite cyclic group of exponent α and we denote it by Γα. (by

ch vii §7 pp 252-253 exercises 1.2.3.the ordinal α has to be of the type ω x . If the ordinal α is principal then I denote it also by Zα).

Every element of the group Zα is represented as a difference x-y with x,y w(α). Then we define multiplication in Zα by the rule (*) (x-y).(x'-y')=(x.x'+y.y')-(xy'+x'y)

where sum and product are the natural sum and product in w(α). This makes Zα a commutative ring with unit (the element 1).

If (x-y)(x'-y') = 0 and both (x-y), (x'-y') are not zero, we get by property 6 in lemma 1 in [Kyritsis C. 1991Alter] that xx'+yy'  xy'+yx' or (x-y)(x'-y')  0, contradiction. Then one of (x-y), (x'-y') is zero that is the ring Zα has no divisors of zero and it is an integral domain. Remembering that Zα + = {v|v Zα and v = (x,+y) with x,y w(α) x > y}, by property 6 lemma 1 in [ Kyritsis C. 1991 Alter], we get that the sum and product of elements of Zα + are again elements of Zα + . From all these we get: 

Every integral domain Zα is minimal integral domain of characteristic α. That is every integral domain of characteristic α, contains a monomorphic image of Zα.

Proof. Put Rα an integral domain of characteristic α, where α is a principal ordinal number ( ).

Then the initial segment w(α) is contained in Rα (more precisely an order preserving image of w(α)). The principal initial segment is closed to the integral domain operations and by theorem 13,14 of [ Kyritsis C. 1991 Alter], they coincide with the natural sum and product of Hessenberg. Then, applying the construction of this paragraph for the integraldomain Zα, we remain inside the integral-domain Rα, that is ZαRα. This proves the minimality.

Remark 12. The ordinal integers are semigroup-rings of quotient monoids of semigroups that are used to define as semigroup-rings the hierarchy of integral domains of the transfinite integers (see [START_REF] Gleyzal | Transfinite real numbers[END_REF]] pp 586).I use the term hierarchy not only as a well ordered sequence but also as a net (thus partially ordered ). The transfinite real numbers are thus an hierarchy.

The transfinite integers over the order-type λ symbolised by Z(λ), is the semigroup-ring But Z [ ]=Z(λα), which was the assertion to be proved.

Remark 13

The equation gives an alternative, simpler definition of the ordinal integers without the use of the Hessenberg multiplication, since the ordinal powers of ω coincide n the abelian Hessenberg operations and the usual ordinal operations (see [Kyritsis C.1991 Alter] Remark 7.5) ) and without the use of the Grothentick group .The monoid Mx is defined as the initial segment W(ω x ) (or simply as the ordinal ω x ) in the Hessenberg addition . §3 The definition of the fields Qα, Rα, Cα, Hα.

In this paragraph, I shall introduce the hierarchies of fields of ordinal rational ,real, complex ,quaternion numbers. These hierarchies give the unification of the other three techniques and hierarchies, namely of the transfinite real numbers, of the surreal numbers. Furthermore we introduced the hierarchies of transfinite complex and transfinite quaternion numbers. Definition 14. The localization (field of quotients) of the integral domain Zα, I will denote by Qα and I will call ordinal rational numbers (of characteristic α) (see [START_REF] Lang | [END_REF]] ChII §3).

Remark. Since we have that cancellation low holds, we do not have to use the Malcev-Neuman theorem (see [START_REF] Cohn | Universal Algebva Harper -Row[END_REF]] Ch VII §3. Theorem 3.8). We define as set of positive element of Qα the set . It is elementary in algebra that if the integral domain is linearly ordered then also its field of quotients (localization) with the previous definition for its set of positive elements, is a linearly ordered field with the restriction of its ordering on the integral domain to coincide with the ordering of the integral domain. Obviously the ordinals of the initial segment of w(α) are contained in Zα and also in Qα. By a direct argument, holds also that the characteristic of Qα is a: Char Qα = α.

Remark From the construction of Qα we infer easily that (Qα) =  (α) and if α < β where α, β are two principal ordinals then QαQβ. The converse obviously holds.

Lemma 15. Every element x of the field Qα is of the form where αi, βj w(α) and α1>α2>...>αn0, β1>β2>...>βm0 and ai, bj for i = 1,...,n, j = 1,...,m are finite integers.

Proof. Direct from the definition of localization and lemma 6 in [ Kyritsis C. 1991Alter].

Theorem 17. (Minimality)

The field Qα is a minimal field of characteristic α, in the sense that every field of characteristic α, contains the field Qα (more precisely an order preserving monomorphic image of Qα).

Remark. This property is already obvious for the field of rational numbers, that in the statement of Theorem 17 is denoted by Qω.

Proof. Let a field of characteristic α, that we denote by Fα. Then the principal initial segment w(α) of ordinals is contained in Fα and the field-inherited operations coincide with the natural sum and product of Hessenberg (see theorem 14 in [ Kyritsis C. 1991 Alter]). Then constructing first the integral domain Zα and afterwards its localization Qα we always remain in the field Fα.

Thus Qα  Fα (or more precisely h(Qα)  Fα where h is a order-preserving monomorphism of Qα in to Fα)

Q.E.D.

Definition 18. The (strong) Cauchy completion of the topological field Qα we denote by Rα and I call ordinal real numbers of characteristic α.

Remark.The process of extensions ,beginning with a principal initial ordinal α=Nα which is the minimal double, abelian monoid of characteristic α, and ending with the field Rα which is the maximal field of characteristic α ,we call K-fundamental densification .

Lemma 19. The characteristic of the (strong) Cauchy completion of a linearly ordered field F ,is the same with that of the field F.

Proof. If the characteristic ofthe field is α, let us denote it by Fα, and its completion by .

Obviously the characteristic of is not less than α.

Suppose that there is an ordinal β with α < β which is contained in (see Definition 1).

Then there is a Cauchy net {xi|i I} of elements of Fα that converges to . Let ε Fα 0<ε<1, then there is i0 I such that for every i I i  i0 xi (b-ε, b+ε) . But this gives an element of Fα greater than α, hence than every element of Fα, which is a contradiction. Thus Char Rα = α.

Q.E.D.

Corollary 20. The characteristic of Rα is α .

From the definition of Rα we infer that (Rα)  2 (α) and that α<β  Rα Rβ for two principal ordinals denoted by α, β.

Remark.21

We denote by R(λ) the transfinite real numbers of order-base λ . It holds by definition that R(λ)=R((LR λ )), where LR λ is the lexicographic product of a family of isomorphic copies of the real numbers R ,with set of indices the order-type λ.

Remark . It is said that a field F has formal power series representation, if there is a formal power series ring R((G)) and a ideal I of it such that F has a monomorphic image in R((G))/I .From the universal embedding property of the hierarchy of transfinite real numbers we get that every linearly ordered field has formal power series representation .Thus: As it is known if F is a linearly ordered field ,and K a linearly ordered subfield of the real numbers and FK is an extension respecting the ordering, then this extension defines the order-valuation (see [N.L. [START_REF] Alling | Foundations of analysis over surreal number fields North-Holland Μath[END_REF]] ch 6 § 6.00 pp 207) .Actually every extension of any two linearly ordered fields F, K, KF, respecting the ordering, defines a place, thus a valuation v. (I use the place and valuation as are defined e.g. by O.Zariski in [Zariski O.-. Samuel P.1958] vol ii ch vi §2, §8.and not as are defined by A.Weil in [Weil A. 1967] ch iii or by v.der Waerden in [Van der Waerden B.L. 1970] vol ii ch 18 .The definition of Zariski is equivalent with the definition of v.der Waerden only for the non Archimedean valuations of the latter).

The place-ring is the Fν ={x/x F and there are a, b K with a<x<b }. The maximal ideal of the place (or valuation v ) is the ideal of infinitesimals of K relative to F. This valuation we call extension -valuation (and the corresponding place extensionplace) It has as special case the order valuation .The rank of the extension-place (see [Zariski O.-. Samuel P.1958] vol.II §3 pp 9) we call the rank of the extension .If char(F)>char(K) then the extension is transcendental ,and has transcendental degree and basis ;the latter is to be found in the ideal of infinitesimals or in the set of infinite elements .

Definition 27 .

Let F a field of ordinal characteristic. Let R a subring of F that has F as its field of quotients. Let p a prime ideal of R, such that the triple (pRp, Rp, F) where Rp is the localization of R at p, defines a place of F. Such a place (or valuation denoted by vp) I call p-adic of the field F. In the valuation topology of the valuation vp, that has a local base of zero the ideals of R ) the field F is a topological field and the (strong) Cauchy completion I denote by Fp, it is a (topological field ) and I call p-adic extension field of F. Definition 28. For F=Qa and R=Za in the previous definition the field Qα,p I call ordinal p-adic numbers of characteristic α. Final remark .Using inductive limit ,or union of the elements of the hierarchies of the previous ordinal and transfinite number systems, we get corresponding classes of numbers .The classes of ordinal natural, integer, rational, real, complex, quaternion numbers denoted respectively by Ω1, (or On ), Ω1Z, Ω1Q, Ω1R, Ω1C, Ω1H.

And the classes of transfinite integer, rational, real, complex, quaternion numbers denoted respectively by: CZ, CQ, CR, CC, CH.
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  1) The Ordinal natural numbers, denoted by Nα .2) The Ordinal integral numbers, denoted by Zα 3)The Ordinal rational numbers, denoted by Qα 4)The Ordinal padic numbers, denoted by Qα,p 5)The Ordinal real numbers, denoted by Rα 6)The Ordinal comlpex numbers, denoted by Cα7)The Ordinal quaternion numbers, denoted by Hα, of characteristic α . The fields Qα,p, Rα, Cα, Hα are fundamentaly (Cauchy)complete topological fields.

Lemma 9 .

 9 The ring Zα is a linearly ordered integral domain of characteristic the principal ordinal α (see § 1 Def.1).The set Zα + is a linearly ordered double abelian monoid and Zα + Nα Definition 10 . The integral domain Zα I call ordinal integers of characteric α . The integral domain Zα of characteristic α has minimality relative to its property of being an integral domain of characteristic α, in the following sense: Every integral domain of characteristic α contains a monomorphic image of Zα. Theorem 11 (Minimality).

(

  also module Z-algebra and integral domain) of the linearly ordered monoid , where is the coproduct, or direct sum denoted also by , of a family of isomorphic copies of N with set of indices the order-type λ. Thus Z(λ) =Z[ ]. Thus any ring of polynomials of a linearly ordered set of variables with integer coefficients is an integral domain of transfinite integers and conversely. It can be proved with the axiom of choice and transfinite induction , as in the case of finite set of variables, that Z(λ) is a unique factorization domain . On the other hand the Cantor normal form in the Hessenberg operations of the ordinal numbers (see lemma 6 in [Kyritsis C. 1991 Alter]) gives that any element x of Zα is of the form xi are ordinals with x1>...>xn. The ordinal powers of ω in Zα is an abelian well ordered monoid (see e.g. [Neumann B.H. 1949] §2 pp 204-205) of ordinal characteristic β=ω x , if . Let us denote it by Mβ. Actually Mβ=β. Let us denote by , or simply by λα the order type of the Archimedean equivalent classes of Mβ. Then we get by the Cantor normal form that Zα =Z [Mβ] (The semigroup ring of Mβ). The monoid Mβ can be obtained as quotient monoid of the free abelian multiplicative monoid of λα variables, which is the monoid .
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The ordinal real numbers 1. The ordinal characteristic.

APPENTIX A.

A MORE EFFECTIVE FORM OF DEFINITION BY TRANSFINITE INDUCTION.

1.Given a set Z and an ordinal α, let Φ be a set of ξ-sequences with the properties: a) If f belongs to Φ then f/W(ξ) belongs to Φ for every ξ <= domain of f. b) For every ξ<α there is at least one f belonging to Φ with ξ=w(ξ)=domain(f) and values belonging to Ζ. c)If fξ is an α-sequence of ξ-sequences of Φ such that whenever γ<ξ1 , ξ2 <α , fξ1 /w(γ) = fξ2 /w(γ) ;then the α-sequence cα (ξ)=fξ (ξ), belongs to Φ also.

For each function h in Z Φ , there is one and only one transfinite sequence f defined on ξ<=α, f in Φ and such that f(ξ)=h[f/w(ξ)] for every ξ<=α .

The function h is called a recursive rule for Φ. The set Φ with the properties a). b), c), is called ,sufficient for recursive rules.

Proof: Not much different than the ordinary form of definition by transfinite induction.