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We consider a way of defining quantum Hamiltonians involving particle
creation and annihilation based on an interior-boundary condition (IBC)
on the wave function, where the wave function is the particle-position
representation of a vector in Fock space, and the IBC relates (essentially)
the values of the wave function at any two configurations that differ only
by the creation of a particle. Here we prove, for a model of particle
creation at one or more point sources using the Laplace operator as the
free Hamiltonian, that a Hamiltonian can indeed be rigorously defined
in this way without the need for any ultraviolet regularization, and that
it is self-adjoint. We prove further that introducing an ultraviolet cut-
off (thus smearing out particles over a positive radius) and applying a
certain known renormalization procedure (taking the limit of removing
the cut-off while subtracting a constant that tends to infinity) yields, up
to addition of a finite constant, the Hamiltonian defined by the IBC.
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1 Introduction

Interior-boundary conditions (IBCs) provide a method of defining Hamiltonian op-
erators with particle creation and annihilation that has received little attention so
far. These Hamiltonians are related to extensions of differential operators to sin-
gular functions, somewhat like Hamiltonians describing point interactions. At least
for some models, the IBC approach provides an alternative solution to the problem
of ultraviolet (UV) divergences. In this paper, we consider a specific non-relativistic
model of quantum field theory with point-shaped sources for creation and annihila-
tion of bosonic particles, for which the UV problem has been solved by renormal-
ization. For this model we prove that the IBC Hamiltonian HIBC is a well-defined
self-adjoint operator and agrees, up to addition of a constant, with the renormalized
Hamiltonian H∞.

The UV problem, in the form relevant to us, is the following. In the Fock space
formulation of quantum field theories, the Hamiltonian involves annihilation and
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creation operators a(χ) and a∗(χ) that annihilate or create particles with wave
function χ. For square-integrable functions χ these operators are densely defined
operators on Fock space. However, in most physically relevant field theories the
particles are created and annihilated at points in space, and χ is a distribution that
is not square-integrable. For our model, χ will be the Dirac δ-distribution. While
a(δ) can still be given mathematical sense as a densely defined operator, this is no
longer possible for a∗(δ). Renormalization then amounts to making sense of the
limit χ→ δ.
The IBC approach allows for the direct definition of Hamiltonians HIBC, without

a renormalization procedure, also in cases where χ is not square-integrable. It
starts out from the particle-position representation of a vector in Fock space as a
wave function on a configuration space of a variable number of particles. In this
representation, the absorption of particle 1 by particle 2 corresponds to a jump from
a configuration with 1 at the same location as 2 to the configuration without 1,
while the emission of a particle corresponds to the opposite jump. These processes
are therefore related to the flux of probability into (or out of) the set C of collision
configurations in configuration space (i.e., the configurations with two particles at
the same location). As we will show, a non-trivial such flux is possible for wave
functions satisfying a suitable boundary condition, with C regarded as the boundary
of configuration space; the relevant boundary condition is a relation between the
values of the wave function at the two configurations connected by the jump just
mentioned; since it relates a boundary point to an interior point of another sector,
we call this condition an interior-boundary condition (IBC). Since wave functions
in the domain of the Hamiltonian satisfy the IBC, the domain is not the same as
that of a free field Hamiltonian. As we will show, the only common element of these
domains is the zero vector. As a consequence, IBC Hamiltonians cannot be obtained
as perturbations of free field Hamiltonians in any simple way.
While we discuss more general situations in [TeTu15, LaSch18, Lam18], we focus

in our present rigorous study on the simple model of a single non-relativistic bosonic
scalar field whose quanta are created or annihilated at one or more point sources
at fixed locations. For a single source at the origin, the formal expression for the
Hamiltonian reads

Hχ := dΓ(h) + g
(
a(χ) + a∗(χ)

)
(1.1)

with χ = δ. The free Hamiltonian dΓ(h) is the second quantization of the non-
relativistic 1-particle Hamiltonian h = −∆ + E0, E0 is a real constant called the
rest energy, and g is a real coupling constant. Operators of the form (1.1) belong
to the class of van Hove Hamiltonians [vH52, Schw61, Der03]. Our model can be
regarded as a non-relativistic variant of the Lee model [Lee54] or Schweber’s scalar
field model [Schw61, Sec. 12a].
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A rigorous definition of van Hove Hamiltonians is discussed by Dereziński [Der03]
for general h and χ. For our case of h = −∆+E0 and χ = δ, the Hamiltonian H∞ of
[Der03] can be obtained through the following renormalization procedure. Consider
a sequence of square-integrable functions χn approaching the δ distribution, χn → δ.
Then the sequence Hχn of Hamiltonians defined by (1.1) converges, after subtraction
of a suitable divergent sequence of constants En, to H∞. As described in more detail
in Section 3, for E0 > 0 there exists a unitary Weyl operator W∞ such that H∞ =
W ∗∞ dΓ(h)W∞ with domain D(H∞) = W ∗∞D(dΓ(h)). For E0 ∈ R, [Der03] provides
an explicit formula for e−iH∞t and defines H∞ as its generator. For a broader
discussion of the UV problem, see, e.g., [vH52, Lee54, Schw61, GlJa85, GlJa87] and
also Section 3.
Here we show instead that the IBC Hamiltonian HIBC corresponding to the formal

expression

Hδ := dΓ(h) + g
(
a(δ) + a∗(δ)

)
(1.2)

is rigorously defined, self-adjoint, and (if E0 ≥ 0) bounded from below. The domain
of HIBC is explicitly characterized in terms of interior-boundary conditions. The
action of HIBC involves extensions of the Laplacian to functions singular on the set
C where one particle hits the origin. Moreover, we show that HIBC is equal, up to
addition of a finite constant, to the Hamiltonian H∞ obtained through renormaliza-
tion. This yields a new explicit characterization of the domain of H∞ and its action
thereon that is not easily available otherwise. Thus, one conclusion from our results
is that quantum field Hamiltonians obtained through renormalization can have a
simple and explicit form when expressed in the particle-position representation, al-
beit not in terms of creation and annihilation operators but in terms of IBCs. And,
as mentioned already, they are no longer defined on the domain of the free operator
dΓ(h), but D(dΓ(h)) ∩D(H∞) = {0}.

As a mathematical problem we have to study an infinite system of inhomogeneous
boundary value problems. Here, the configuration space is the disjoint union of
n-particle configuration spaces called sectors, and the boundary on each sector is
a union of codimension-three planes. A particular difficulty arises from the fact
that, in sectors with more than one particle, these planes intersect. This makes
the regularity issues more complicated, and general approaches to elliptic problems
with boundaries of higher codimension (e.g., [Ma91]) cannot be applied directly.
The intersections of these planes play an important role in the theory of point
interactions involving more than two particles, see [Min11, CDFMT12, CDFMT15,
MiOt17, MoSe17]. See also Remark 5.7 at the end of Section 5 for the relation of
our results to the theory of abstract boundary value problems (e.g., [BM14]). In our
case, some of the technical difficulties associated with the boundary value problem
could be circumvented if we contented ourselves with proving merely essential self-
adjointness, as we do for the generalized models of Section 4. However, in that
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case we do not obtain an explicit characterization of the domain of self-adjointness.
Moreover, the enhanced understanding of these boundary value problems provided
by our direct approach proves useful when dealing with further variants of the IBC
approach and point interactions. In particular, in [LaSch18] the IBC approach is
applied to a large class of models with dynamical sources, including the Nelson
model [Nel64] and the Fröhlich polaron. In [Lam18] the model of the present paper
is generalized to dynamical sources, a case that is of particular interest as no rigorous
definition of the corresponding Hamiltonian was known before.
The plan of the paper is as follows: In Section 2 we motivate and define the IBC

Hamiltonian (HIBC, DIBC) and state the main theorem about its self-adjointness for
a single point source at the origin. In Section 3 we discuss the relation of the IBC
Hamiltonian to a Hamiltonian obtained from a standard renormalization procedure.
In Section 4 we explain that our results also apply to the situation of several (finitely
many) point sources that can emit and absorb particles, located at fixed points
in R3. Furthermore, we also provide in Section 4 a discussion of a 4-parameter
family of IBCs and possibilities for further generalizations. In Sections 5–7 and the
Appendix, we provide the proofs: In Section 5 we prove symmetry of HIBC based
on the regularity results provided in the Appendix. In Section 6 (essential) self-
adjointness is proved by combining the symmetry result with the explicit knowledge
of a core of the renormalized Hamiltonian H∞. In Section 7 we prove the statements
on generalized IBC Hamiltonians from Section 4.
Let us end the introduction with remarks on related literature. IBCs have been

considered in the past, in some form or another, in [LaPei30, Mo51a, Mo51b, Mo51c,
Tho84, MoLo91, Yaf92, TuGe04]. Recent and upcoming works exploring various
aspects of IBCs include [TeTu15, TeTu16, KeSi16, Gal16, DGTTZ18, LaSch18,
Lam18]. Introductory presentations of the kind of models considered here can be
found in [TeTu15, TeTu16], and the physical motivation is discussed in [TeTu15].
Landau and Peierls [LaPei30] obtained conditions similar to IBCs when trying to for-
mulate quantum electrodynamics in the particle-position representation, although
their Hamiltonian was still ultraviolet divergent (and thus mathematically ill de-
fined). Moshinsky [Mo51a, Sec. III] considered (as an effective description of nuclear
reactions) a model with IBCs that is essentially equivalent to ours (including the
4-parameter family of IBCs discussed in Section 4), except that he considered only
the sectors with n = 0 and n = 1 particles; he did not provide rigorous results about
the Hamiltonian. Yafaev [Yaf92] independently considered the same model (again
only the sectors with n = 0 and n = 1 particles), proved that the Hamiltonian is well
defined and self-adjoint, and showed that the 4-parameter family mentioned above
exhausts all possible IBC Hamiltonians in this case. Thomas [Tho84] considered a
model analogous to ours with moving sources, but only (what corresponds to) the
sectors with n = 2 and n = 1 particles [Tho84, Sec. III], respectively [Tho84, Sec. II]
with n = 1 and n = 0 particles, proving self-adjointness of the corresponding Hamil-
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tonian. Moshinsky and Lopez [MoLo91] proposed a non-local kind of IBC for the
Dirac and Klein-Gordon equations. Tumulka and Georgii [TuGe04, Sec. 6] consid-
ered IBCs for boundaries of codimension 1 (whereas the boundary relevant here has
codimension 3) and did not provide rigorous results. Keppeler and Sieber [KeSi16]
described a physical reasoning leading to IBCs and discussed IBCs in 1 space dimen-
sion (though not rigorously). Galvan [Gal16] suggested another approach towards a
well defined Hamiltonian that has strong parallels to the IBC approach.
The mathematical study of Hamiltonians with IBCs is closely related to that of

point interactions, a field that has recently received renewed attention. Hamiltoni-
ans for N -particle systems with point interactions were constructed rigorously using
quadratic forms by Correggi, Dell’Antonio, Finco, Michelangeli, Teta [CDFMT12,
CDFMT15] and by Moser, Seiringer [MoSe17]. The problem was approached from
the point of view of self-adjoint extensions by Minlos [Min11] and more recently
by Michelangeli and Ottolini [MiOt17] (see also references therein for a more com-
plete bibliography). Note that most of the literature on point interactions concerns
fermionic systems. We expect that the IBC approach can also be applied to creation
and annihilation of fermions.

2 The IBC Hamiltonian

We model the emission and absorption of non-relativistic particles at a point in R3,
which we choose to be the origin. We thus call the origin the “source” and may think
of it as a different kind of particle (which however remains at a fixed location).
Let H := L2(R3) = L2(R3,C) be the one-particle Hilbert space, Hn := SymH⊗n its

n-fold symmetric tensor product, and F := Γ(H) =
⊕

n∈N0 H
n with H0 := C the sym-

metric Fock space over H. An element ψ of F has the form ψ = (ψ(0), ψ(1), ψ(2), . . .)
with

ψ(n) = ψ(n)(x1, . . . , xn) ∈ L2(R3n) (2.1)

symmetric under permutations of its arguments and
∑∞
n=0 ‖ψ(n)‖2Hn < ∞. For

a bounded operator T on H, an operator Γ(T ) on F is defined by (Γ(T )ψ)(n) =
T⊗nψ(n), and for a self-adjoint operator h (possibly unbounded), we define dΓ(h) as
the generator of Γ(e−ith). Its action is given by

(dΓ(h)ψ)(n) =
n∑
j=1

hjψ
(n) , (2.2)

where hj = 1 ⊗ . . . ⊗ h ⊗ . . . ⊗ 1 is h acting on the jth factor. From now on we
reserve the symbol h for the free one-particle Hamiltonian,

(h,D(h)) = (−∆ + E0,H2(R3)) . (2.3)
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As a little digression, we point out how to set up a Hamiltonian with ultraviolet
cut-off. We write z for the complex conjugate of z ∈ C. For χ ∈ H, the annihilation
operator

(a(χ)ψ)(n)(x1, . . . , xn) :=
√
n+ 1

∫
R3

dxχ(x)ψ(n+1)(x, x1, . . . , xn) (2.4)

and its adjoint, the creation operator

(a∗(χ)ψ)(n)(x1, . . . , xn) := 1√
n

n∑
j=1

χ(xj)ψ(n−1)(x1, . . . , x̂j , . . . , xn) (2.5)

(where ˆ denotes omission) are densely defined, closed operators on F that are in-
finitesimally dΓ(h)-bounded when E0 > 0. Thus, for E0 > 0 and any coupling
constant g ∈ R, the total Hamiltonian Hχ defined in (1.1) is self-adjoint on the
domain of dΓ(h) by the Kato-Rellich theorem.
We now explain how to construct explicitly an operator HIBC that captures, as

we believe, the physical meaning of “Hδ” and agrees, as we will show, with the
renormalized Hamiltonian up to addition of a finite constant. Recall that with the
free Schrödinger evolution generated by the Laplacian on L2(R3) there is associated
a probability current

jψ(x) = 2 Imψ(x)∇ψ(x) . (2.6)

In order to allow for annihilation or creation of particles at the origin, a non-vanishing
probability current into or out of the origin must be possible. Using spherical coor-
dinates r = |x| and ω = x

|x| ∈ S
2 = {v ∈ R3 : |v| = 1}, this current is

jψ0 := 2 lim
r→0

∫
S2

dω r2 ω · Imψ(rω)∇ψ(rω)

= 2 lim
r→0

∫
S2

dω r2 Imψ(rω) ∂r ψ(rω) . (2.7)

However, for jψ0 to be non-vanishing, ψ or ∂rψ must be sufficiently singular at the
origin. Since such singular functions are not in the standard domain H2(R3) of
the Laplacian, we need to consider the one-particle Laplace operator on a domain
that includes singular functions that allow for non-vanishing currents into and out
of the origin. Of course, such operators cannot be self-adjoint, since they cannot
generate unitary groups.1 In order to obtain a self-adjoint Hamiltonian and a unitary

1Note that operators with δ-like potentials are defined in a similar way by enlarging the domain
of the Laplacian, cf. [DFT08]. However, in order to obtain a self-adjoint operator, an additional
condition of the form limr→0 (∂rrψ(rω)− α r ψ(rω)) = 0 with α ∈ R is imposed, precisely to
ensure jψ0 = 0.
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evolution on Fock space one thus needs to compensate the loss of probability in one
sector by a corresponding gain in another sector. This is achieved by connecting
different sectors with boundary conditions. Here, the configuration space is ∪∞n=0R3n,
and the “boundary” of its n-particle sector is the set

Cn :=
{
x ∈ R3n

∣∣∣ n∏
j=1
|xj | = 0

}
(2.8)

of those n-particle configurations with at least one particle at the origin. (This
is the relevant set of collision configurations here; at these configurations, one of
the moving particles collides with the source.) The “interior-boundary condition”
connects the wave function ψ(n) on Cn with the wave function ψ(n−1) one sector
below.
We now prepare for the precise definition of HIBC. Define the operator ∆n to be

the Laplacian with domain H2
0(R3n \ Cn) ⊂ L2(R3n), which is defined as the closure

of C∞0 (R3n \ Cn) in the H2-norm. We then set(
∆∗n, D(∆∗n)) is the adjoint of

(
∆n,H2

0(R3n \ Cn)
)
. (2.9)

Since ∆n is densely defined, closed and symmetric, the adjoint ∆∗n extends ∆n and
its domain is given by (cf. [ReSi75, Sect. X.1])

D(∆∗n) = D(∆n)⊕ ker(∆∗n − i)⊕ ker(∆∗n + i) . (2.10)

We will always regard D(∆∗n) as a Banach space with the graph norm of ∆∗n. Com-
bining the ∆∗n yields an operator ∆∗F on Fock space, whose action is given by

(∆∗Fψ)(n) := ∆∗nψ(n) , (2.11)

for those ψ ∈ F such that ψ(n) ∈ D(∆∗n).
The role of the annihilation operator a(δ) will be played by an operator A on Fock

space that we define sector-wise by2

(Aψ)(n)(x1, . . . , xn) :=
√
n+ 1
4π lim

r→0
∂r r

∫
S2

dω ψ(n+1)(rω, x1, . . . , xn) . (2.12)

Its dense domain will be specified later. It is not difficult to see that for ψ(n+1) ∈
H2(R3(n+1)) ∩ Hn+1,

(Aψ)(n)(x1, . . . , xn) =
√
n+ 1ψ(n+1)(0, x1, . . . , xn) = (a(δ)ψ)(n)(x1, . . . , xn) . (2.13)

2Here and throughout the paper, we follow the convention, in order to write fewer brackets, that
a derivative operator acts on all factors to the right of it, not just the one immediately to the
right, unless otherwise indicated by brackets. Thus, in (2.12), ∂r acts also on ψ.
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However, some ψ(n+1)(rω, . . .) in the domain of HIBC diverge like 1/r as r → 0, and
A is an extension of a(δ) to such functions.

The boundary conditions are formulated in terms of an operator B on Fock space
that can again be defined sector-wise by

(Bψ)(n)(x1, . . . , xn) := −4π
√
n+ 1 lim

r→0
r ψ(n+1)(rω, x1, . . . , xn) . (2.14)

We will define B on a dense domain where, in particular, the right hand side does
not depend on ω. Again it is easy to see that for ψ(n+1) ∈ H2(R3(n+1)) ∩ Hn+1 we
have (Bψ)(n) = 0.

In the one-particle sector, n = 1, the domain D(∆∗1) is explicitly known and it is
straightforward to prove that A and B are well defined functionals on D(∆∗1). For
γ ∈ C with Re(γ) > 0 define the function

fγ(x) := − 1
4π

e−γ|x|

|x|
. (2.15)

Clearly, fγ ∈ L2(R3) but fγ /∈ H2(R3). Moreover, ∆∗1fγ = γ2fγ and fγ is the unique
L2−solution to this equation. Consequently, with (2.10) it follows that

D(∆∗1) = D(∆1)⊕ V V = span
{
fγ
∣∣∣γ ∈ {(1± i)/

√
2}
}
. (2.16)

Then, writing ψ ∈ D(∆∗1) as ψ0 +φ with ψ0 ∈ D(∆1) and φ ∈ V and integrating by
parts in spherical coordinates, one finds that that the degree of asymmetry of ∆∗1
can be expressed by A and B, that is

〈ϕ,∆∗1ψ〉H − 〈∆∗1ϕ,ψ〉H = 〈Bϕ,Aψ〉C − 〈Aϕ,Bψ〉C . (2.17)

We will give a rigorous proof of this equation and generalize it to the case n ≥ 2
in Propositions 5.1 and 5.4 in Section 5. We remark that this implies that −∆1
has a one-parameter family of self-adjoint extensions, known as point interactions
(cf. [AGHH88]). Their domains correspond to one-dimensional subspaces of V on
which the right hand side of Equation (2.17) vanishes.
To illustrate the importance of Equation (2.17), we define the simplest possible

IBC Hamiltonian on the truncated Fock space F(1) := C⊕ L2(R3) by

H
(1)
IBC :=

(
0 gA
0 −∆∗1 + E0

)
(2.18)

on the domain

D
(1)
IBC :=

{
(ψ(0), ψ(1)) ∈ F(1)

∣∣∣ ψ(1) ∈ D(∆∗1), Bψ(1) = gψ(0)
}
. (2.19)
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Here Bψ(1) = gψ(0) is the interior-boundary condition (IBC). Equation (2.17) now
implies that, contrary to what it may seem like, H(1)

IBC is symmetric: for ϕ,ψ ∈ D(1)
IBC

〈ϕ,H(1)
IBCψ〉F(1) − 〈H(1)

IBCϕ,ψ〉F(1) =
= −〈ϕ(1),∆∗1ψ(1)〉H + 〈∆∗1ϕ(1), ψ(1)〉H + 〈ϕ(0), gAψ1〉C − 〈gAϕ(1), ψ(0)〉C

(2.17)= 〈Aϕ(1), Bψ(1)〉C − 〈Bϕ(1), Aψ(1)〉C + g〈ϕ(0), Aψ1〉C − g〈Aϕ(1), ψ(0)〉C
IBC= g〈Aϕ(1), ψ(0)〉C − g〈ϕ(0), Aψ1〉C + g〈ϕ(0), Aψ1〉C − g〈Aϕ(1), ψ(0)〉C
= 0 . (2.20)

It is not difficult to see (and was also shown in [Yaf92]) that H(1)
IBC is even self-adjoint.

Our main result states that also the natural extension of H(1)
IBC to the whole Fock

space is (essentially) self-adjoint.

Theorem 2.1. For every g,E0 ∈ R the operator

HIBC := −∆∗F + dΓ(E0) + gA (2.21)

is essentially self-adjoint on the domain

DIBC :=
{
ψ ∈ F

∣∣∣∣∣ψ(n) ∈ D(∆∗n) ∩ Hn for all n ∈ N ,
Hψ ∈ F , Aψ ∈ F , and Bψ = gψ

}
. (2.22)

If g 6= 0 then DIBC ∩D(dΓ(−∆)1/2) = {0}. For E0 ≥ 0, the Hamiltonian HIBC is
bounded from below.
If moreover E0 > 0, the domain of self-adjointness D(HIBC) equals DIBC and

D(HIBC) ∩ D(dΓ(h)1/2) = {0}. In this case, the spectrum of HIBC is given by
{Emin} ∪ [Emin + E0,∞), and Emin = g2√E0/4π is a simple eigenvalue.

Note that the first two conditions in (2.22) just ensure that H maps the domain
DIBC back into Fock space. The third condition, Aψ ∈ F, might be redundant and
follow from the second one, but we cannot show that. The last condition,

Bψ = gψ , (2.23)

is the interior-boundary condition, which connects the limiting behavior of ψ(n) at
the boundary of the n-particle sector (where one particle reaches the origin) with the
wave function ψ(n−1) one sector below. In particular, the IBC (2.23) immediately
yields that if ψ(n) 6= 0, then ψ(k) 6= 0 for all k > n, and hence the Fock vacuum does
not belong to DIBC.
Formally, an analogous computation to the one for H(1)

IBC shows that HIBC is
symmetric (see the proof of Corollary 5.5). However, in order to establish Equa-
tion (2.17) for n ≥ 2, we need to first investigate the regularity of functions in the
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adjoint domain D(∆∗n). This will be carried out in Section 5, with the main result
given by Proposition 5.4. The proof of (essential) self-adjointness in Section 6 uses
the symmetry established in Section 5, a dense domain of coherent states contained
in (2.22) and a Weyl operator to be discussed in Section 6.2.

3 The connection to renormalization

As mentioned already, the formal expression Hδ as in (1.2) can be regularized by
means of an ultraviolet cut-off, then the cut-off can be removed (while constants En
tending to ±∞ get subtracted) in order to obtain a renormalized Hamiltonian H∞.
Our main result in this section, Theorem 3.1, asserts that HIBC agrees with H∞
(up to addition of a finite constant relative to the standard choice of En). We
state Theorem 3.1 in Section 3.1 and then put it into perspective in Section 3.2 by
connecting it to known facts, techniques, and hitherto open questions about H∞.

3.1 Definition of H∞ and relation to HIBC

We approximate the formal Hamiltonian Hδ with regularized (cut-off) Hamiltonians

Hn = dΓ(h) + g
(
a(χn) + a∗(χn)

)
= H0 +HIn (3.1)

with any choice of χn ∈ L2(R3) such that χn → δ as n → ∞ in the sense that
χ̂n → χ̂∞ := δ̂ = (2π)−3/2 pointwise with ‖χ̂n‖∞ uniformly bounded. Here Fχ = χ̂
denotes the Fourier transform of χ ∈ L2(Rd). It is easy to see using standard
arguments (and will be explained below) that if E0 > 0 then Hn − En converges in
the strong resolvent sense for

En := −g2〈χn, h−1χn〉L2 . (3.2)

Note that for E0 > 0 the free one-particle operator h = −∆ + E0 ≥ E0 > 0 is
invertible. The limit is called the renormalized Hamiltonian,

H∞ := lim
n→∞

(Hn − En) . (3.3)

For E0 ≤ 0, a modification of the same procedure (or alternatively a formula for the
unitary group e−iH∞t) allows to define a Hamiltonian H∞ as well [Der03]. However,
we will compare H∞ to HIBC only for E0 > 0.

Theorem 3.1. For E0 > 0, the renormalized operator (H∞, D(H∞)) agrees with
(HIBC, DIBC) up to an additive constant:

DIBC = D(H∞) and HIBC = H∞ + g2√E0
4π 1F . (3.4)
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Theorem 3.1 is established in Section 6. Together with Theorem 2.1, it provides
a new characterization of D(H∞) = DIBC, and of the action of H∞ thereon (2.21),
and shows that D(H∞) ∩D(H1/2

0 ) = {0}.

3.2 Remarks on the renormalization procedure

The above described renormalization scheme is a particularly simple case of a some-
what more general renormalization procedure that can be applied to a wider class
of UV divergent Hamiltonians with the following common structure. There is a
self-adjoint operator (H0, D(H0)) and a sequence of operators HIn that are small
perturbations of H0 in the sense that

Hn := H0 +HIn (3.5)

is self-adjoint on D(H0). If the interaction operator HIn converged as n→∞ to an
operator that is relatively (form-)bounded by H0 with relative bound smaller than
one, then no renormalization would be necessary. In a typical manifestation of the
UV problem, however, HIn does not converge. But in the cases of interest, there is
a sequence of numbers En → ±∞ such that H∞ = limn→∞(Hn − En) exists in the
strong resolvent sense.
In the examples we have in mind, the essential steps in finding this sequence En

and proving the convergence of Hn − En are, first, to construct a certain sequence
of unitary operators Wn on Fock space, called dressing transformations, such that
WnHnW

∗
n assumes a manageable form; second, to split WnHnW

∗
n into

WnHnW
∗
n = H ′n + En (3.6)

such that H ′n converges in the strong resolvent sense to a well defined operator H ′∞.
Third, one shows that Wn has a strong limit W∞ (which is automatically unitary).
Then it follows that

Hn − En = W ∗nH
′
nWn

n→∞−−−→W ∗∞H
′
∞W∞ = H∞ (3.7)

in the strong resolvent sense.
Depending on the concrete model, the determination of the limiting Hamiltonian

H ′∞ = limn→∞H
′
n can be more or less tricky and, as a consequence, its domain

can be more or less explicit. In all examples discussed in the following, Wn leaves
invariant the domain D(H0), but this is no longer true for W∞.
In his seminal paper [Nel64], Nelson showed that the model nowadays named after

him can be renormalized according to the general scheme just sketched. He used the
so-called Gross transformation for Wn and was able to characterize (H ′∞, D(H ′∞))
as a form perturbation of H0. Hence, he could not explicitly determine D(H ′∞) but
merely conclude that D(H ′∞) ⊂ D(H1/2

0 ).
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Whenever H ′∞ is an operator-bounded perturbation of H0, one has D(H ′∞) =
D(H0) and D(H∞) = W ∗∞D(H0) can be determined through the mapping proper-
ties of W ∗∞. Recently, Griesemer and Wünsch [GrWü16] proved that the Fröhlich
Hamiltonian, which describes polarons, is of that type. In this case, one can define
H∞ also directly via its quadratic form without the detour via the dressing trans-
formation. However, then the domain of H∞ remains unknown, while the result
of [GrWü16] provides an explicit characterization of it. In our model (1.2), the
situation is even simpler, since it turns out that H ′n = H ′∞ = H0.

After the existence of a self-adjoint renormalized Hamiltonian H∞ is established,
two questions remain in general open. First, is there a direct characterization of
the domain D(H∞) = W ∗∞D(H ′∞)? And second, how does H∞ act explicitly? As
Nelson [Nel64] put it:

It would be interesting to have a direct description of the operator H∞.
Is D(H∞) ∩D(H1/2

0 ) = 0?

The answer to the second question has been given by Griesemer and Wünsch for
the Fröhlich Hamiltonian in [GrWü16] and for the Nelson model in [GrWü17] by
studying the mapping properties of W ∗∞. A direct description in terms of IBCs, and
thus a complete answer to both questions, is provided for our model in Theorem 3.1,
and for the Fröhlich and Nelson Hamiltonians in [LaSch18].
Here is what the dressing transformation Wn looks like for our model (1.2). Since

h−1χn ∈ L2(R3) for n ≤ ∞, the field operator

Φ(h−1χn) := a(h−1χn) + a∗(h−1χn) (3.8)

is self-adjoint. Therefore,

Wn := e−iΦ(igh−1χn) (3.9)

is unitary for all n ≤ ∞. It is straightforward to show that (3.6) now holds with En
as in (3.2) and H ′n := dΓ(h). The proof can be found in Section 6.3, or, for example,
also in [Deck04, Der03]. Then limn→∞En = −∞, and H ′∞ = limn→∞H

′
n = dΓ(h)

clearly exists. As a consequence,

H∞ = W ∗∞ dΓ(h)W∞ on D(H∞) = W ∗∞D(dΓ(h)) . (3.10)

4 Variants of the IBC Hamiltonian

4.1 General interior-boundary conditions

The IBC Bψ = gψ discussed in the previous sections is not the only possibility
of implementing interior-boundary conditions for the Laplacian. In this section we
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present a four-parameter family of different interior-boundary conditions that all
lead to a self-adjoint Hamiltonian on Fock space. In a certain sense, this family
covers all possible types of IBCs.
The wider class of IBCs involves, instead of the values of the wave function on the

boundary (like a Dirichlet boundary condition), a linear combination of the values
and the derivative of the wave function on the boundary (like a Robin boundary
condition); such IBCs were formulated in [TeTu15, TeTu16] for boundaries of codi-
mension 1 (and are also considered in [SchTu18] for particle creation, where the
boundary has codimension 3). Specifically, in this wider class, we replace

B → eiθ(αB + βA) , A→ eiθ(γB + δA) , (4.1)

where θ ∈ [0, 2π) and α, β, γ, δ ∈ R are such that

αδ − βγ = 1 , (4.2)

so that four of the five parameters can be chosen independently. We absorb the
coupling constant g into the constants α, β, γ, δ. That is, we replace the IBC Bψ =
gψ by

eiθ(αB + βA)ψ = ψ (4.3)

and the Hamiltonian HIBC = −∆∗F + dΓ(E0) + gA by

H̃IBC = −∆∗F + dΓ(E0) + eiθ(γB + δA) . (4.4)

The previous IBC (2.23) and Hamiltonian (2.21) are obviously contained in this
scheme by chosing θ = 0 = β = γ and α−1 = g = δ. As discussed in detail
in [SchTu18], the phase θ can be removed by means of the gauge transformation
ψ(n) → e−iθnψ(n) if there is a single source, but not if there are several sources
with different θ’s, a situation that we consider in the next section. We refrain from
stating and proving the analogue to Theorem 2.1 also for H̃IBC, although it could
be proved along the same lines as for HIBC. Instead, Theorem 4.1 below implies
already a statement that is merely slightly weaker, namely that, for E0 > 0, H̃IBC
is essentially self-adjoint on a dense domain satisfying the IBC (4.3).
To which extent does the family H̃IBC cover all possible Hamiltonians with IBCs?

Yafaev [Yaf92] showed that for the model on the truncated Fock space C ⊕ L2(R3)
with either zero or one particle all possible extensions of the (not densely defined)
operator

H◦ = (0,−∆) on D(H◦) = {0} ⊕ C∞0 (R3 \ {0}) (4.5)

are of the above type. On Fock space, however, one has in principle much more
freedom. We could connect different sectors by different IBCs, i.e., make θ, α, β, γ, δ
all depend on n, or even let them depend on the configuration of the other particles.
But if we exclude such a dependence, then Yafaev’s result shows that the family
H̃IBC is complete.
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4.2 IBCs for multiple sources

We now consider a finite number N of sources fixed at (pairwise distinct) locations
ξ1, . . . , ξN ∈ R3. To keep things simple, we assume E0 > 0 for the remainder of this
section. For each source ξi, 1 ≤ i ≤ N , we choose parameters

vi := (θi, αi, βi, γi, δi) ∈ [0, 2π)× R4 (4.6)

which fullfill separately

αiδi − βiγi = 1 1 ≤ i ≤ N . (4.7)

We write v for (v1, . . . , vN ). For suitable ψ ∈ H, define

Aiψ := lim
x→ξi

∂ri(riψ(x)) , Biψ := −4π lim
x→ξi

(riψ(x)) , where ri := |x− ξi| ,

(4.8)

and

Xi := eiθi(αiBi + βiAi) , Yi := eiθi(γiBi + δiAi) , 1 ≤ i ≤ N . (4.9)

The corresponding Fock space operators

XF
i

∣∣
Hn+1 :=

√
n+ 1Xi ⊗ 1Hn , Y F

i

∣∣
Hn+1 :=

√
n+ 1Yi ⊗ 1Hn (4.10)

are densely defined in F. Then (∆∗1, D(∆∗1)) := (∆1, C
∞
0 (R3 \ {ξ1, ξ2, . . . , ξN}))∗ is

a closed but non-symmetric operator on H. Nevertheless, we will use the symbol
dΓ(−∆∗1) to denote the operator which acts as −

∑n
j=1 11,...,j−1 ⊗∆∗1 ⊗ 1j+1,...,n on

the n-th sector of Fock space. It is well known [AGHH88, DFT08] that

h̃ := −∆∗1 + E0 on U(v) :=
N⋂
i=1

kerXi ⊂ D(∆∗1) (4.11)

is a self-adjoint operator that is bounded from below. It is called the N -center point
interaction with energy offset E0 and parameters ai := αi

βi
, where βi = 0 corresponds

to ai = +∞.

Theorem 4.1. Let E0 > 0 and v be any set of parameters obeying the condition
(4.7) given above. There exists a dense subspace D̃IBC ⊂ F such that for ψ ∈ D̃IBC
the IBCs

XF
i ψ = ψ ∀ 1 ≤ i ≤ N (4.12)
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hold and such that

H̃IBC := dΓ(−∆∗1 + E0) +
N∑
i=1

Y F
i (4.13)

is essentially self-adjoint on D̃IBC. If h̃ is strictly positive3, then H̃IBC is bounded
from below and possesses a unique ground state.

Remark 4.2. Suppose that βi = 0 for all 1 ≤ i ≤ N . Then

h̃ = h = (−∆∗1 + E0,H2(R3)) (4.14)

is the free one-particle operator, which is strictly positive. In this case H̃IBC is
bounded from below for any choice of distinct points ξ1, . . . , ξN .
Remark 4.3. Let N = 1. In this case, for all values of a1 = α1

β1
∈ (−∞,∞], the essen-

tial spectrum of the point-interaction operator is σess(h̃) = [E0,∞), cf. [AGHH88].
If a1 ≥ 0, then h̃ has no point spectrum. If a1 < 0, then there is exactly one eigen-
value λ0 of h̃. It is explicitly given as λ0 = E0−16π2a2

1. Therefore H̃IBC is bounded
from below if a1 > 0 or if a1 ≤ 0 but still a1 > −

√
E0

4π .
Under certain assumptions on v and E0, we are able to further characterize H̃IBC.

In order to state the theorem, we have to introduce some abbreviations:
For any λ > 0 let

wλi (x) := f√λ(x− ξi) = −e−
√
λ|x−ξi|

4π|x− ξi|
∈ L2(R3) , (4.15)

and define the matrices

Gλij := wλi (ξj) = wλj (ξi) , (4.16)

and

Sij(λ) := δijeiθi
(
αi +

√
λ

4π βi
)

+ (1− δij)eiθiβiG
λ
ij , (4.17)

where δij denotes the Kronecker symbol. Note that S depends on all of λ, ξ1, . . . , ξN ,
v1, . . . , vN .

Theorem 4.4. Let (H̃IBC, D̃IBC) also denote the unique self-adjoint extension that
has been constructed in Theorem 4.1. If the vector (1, 1, . . . , 1)T lies in the range of
S(E0), then there exists φ ∈ D(∆∗1) ⊂ H such that we have the equality

eiΦ(iφ) H̃IBC e−iΦ(iφ) = dΓ(h̃) + C(φ)1F (4.18)

as self-adjoint operators on Fock space F. Here C(φ) ∈ R is a constant, Φ has been
defined in (3.8) and dΓ(h̃) denotes the second quantization of h̃ = (−∆∗1 + E0, U).

3i.e., there is a positive constant c such that h̃ ≥ c.
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The definition of D̃IBC in terms of coherent states obtained from vectors in D(∆∗1),
as well as the proof of Theorems 4.1 and 4.4 and the explicit form of the ground
state, of φ and of C(φ) are given in Section 7. As discussed in detail in [SchTu18],
H̃IBC is time reversal invariant if and only if all θi coincide up to addition of an
integer multiple of π.

5 Symmetry of HIBC

In this section we prove symmetry of (HIBC, DIBC). The main ingredient is Equa-
tion (2.17), which will be proved in Proposition 5.1 below, and its generalization to
n ≥ 2.

Proposition 5.1. For n = 1 the maps A and B are well-defined continuous linear
functionals on D(∆∗1) and for any ϕ,ψ ∈ D(∆∗1) we have

〈ϕ,∆∗1ψ〉H − 〈∆∗1ϕ,ψ〉H = 〈Bϕ,Aψ〉C − 〈Aϕ,Bψ〉C . (5.1)

Proof. Recall that D(∆∗1) = D(∆1)⊕V with V = span
{
fγ
∣∣∣ γ ∈ {(1± i)/

√
2}
}
. On

the functions fγ one easily evaluates

Afγ = γ

4π and Bfγ = 1 . (5.2)

On D(∆1) we have A = 0, since for ψ ∈ C1(R3)

Aψ = 1
4π lim

r→0

∫
S2

(ψ(rω) + rω · ∇ψ(rω)) dω = ψ(0) , (5.3)

and the point evaluation is continuous on D(∆1) = H2
0(R3 \ {0}). Clearly also

B = 0 on D(∆1). Now since H2
0 is a closed subspace of D(∆∗1), the projection

p : D(∆∗1)→ D(∆∗1)/H2
0
∼= V is continuous. Thus A,B : D(∆∗1)→ C are continuous

as they can be written as the composition of p with a linear functional on a finite
dimensional space.
The difference on the left hand side of (2.17) vanishes if either ϕ or ψ are elements

of H2
0(R3 \ {0}), and so does the right hand side by the considerations above. Thus,

it is sufficient to verify the claim for ϕ = fγ1 , ψ = fγ2 . As noted before we have
∆∗1fγ = γ2fγ and

〈fγ1 , fγ2〉 = 1
4π

∫ ∞
0

dr e−(γ1+γ2)r = 1
4π(γ1 + γ2) . (5.4)

Thus

〈fγ1 ,∆∗1fγ2〉 − 〈∆∗1fγ1 , fγ2〉 = γ2
2 − γ2

1
4π(γ1 + γ2) = γ2 − γ1

4π

= Bfγ1Afγ2 −Afγ1Bfγ2 . (5.5)
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Proposition 5.1 can be understood as a generalized integration-by-parts formula
for the singular functions in D(∆∗1). Its generalization to the case n ≥ 2, given in
Proposition 5.4 below, requires knowledge of the regularity properties of functions
in D(∆∗n). These are rather subtle, as the following example shows:
Let f ∈ H−1/2(R3), and set

ψ(x, y) = − eT |x|

4π|x|f(y) , (5.6)

where eT |x| denotes the contraction semi-group with generator T = −
√
−∆y + 1,

D(T ) = H1(R3), acting on L2(R3
y). One easily checks that ψ ∈ L2(R6) with norm

proportional to ‖f‖H−1/2 . By the smoothing properties of the semi-group, ψ is a
smooth function on R6 \ {x = 0} ⊃ R6 \ C2. The action of ∆∗2 on ψ is thus given by
differentiating on R6 \ C2 and yields

∆∗2ψ = ψ , (5.7)

so ψ ∈ D(∆∗2) is an eigenfunction of ∆∗2 with eigenvalue one. However, applying
only the differential expression ∆x gives ∆xψ = T 2ψ, which is not an element of ψ ∈
L2(R6) unless f ∈ H3/2(R3). Thus we have ψ ∈ D(∆∗2), but applying the Laplacian
in only one of the variables does not give a square-integrable function, i.e. ψ /∈
D(∆∗1 ⊗ 1). Furthermore, the formula for ψ suggests that Bψ =

√
2f ∈ H−1/2(R3)

is a distribution, so the “boundary values” of ψ on the collision configurations C2

will be of low regularity.
We now state our results concerning the definition of the operators A and B on

D(∆∗n), which we prove in Appendix A. To allow for a lighter notation, we will use
the symbol Ωn to denote the configuration space of n particles, that is Ωn := R3n\Cn.

Lemma 5.2. For any n ∈ N, every ϕ ∈ D(∆∗n) has a representative for which the
limits

(A(n)ϕ)(x1, . . . , xn−1) :=
√
n

4π lim
r→0

∂r

∫
S2
rϕ(rω, x1, . . . , xn−1) dω (5.8)

and

(B(n)ϕ)(x1, . . . , xn−1) := −4π
√
n lim
r→0

rϕ(rω, x1, . . . , xn−1) (5.9)

exist in H−2(Ωn−1) and this defines continuous linear maps

A(n), B(n) : D(∆∗n)→ H−2(Ωn−1) . (5.10)

Furthermore, B(n) vanishes on H1(R3n) ∩ D(∆∗n) and the restriction of A(n) to
H2(R3n) is given by the Sobolev-trace on {x1 = 0}.
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In the following we will drop the superscript from A(n) and B(n) for better read-
ability. Let

D∗n :=
{
ψ ∈ D(∆∗n) ∩ Hn

∣∣∣Aψ ∈ L2(R3n−3) , Bψ ∈ L2(R3n−3)
}
⊂ Hn . (5.11)

and equip this space with the norm ‖ψ‖Hn +‖∆∗nψ‖Hn +‖Aψ‖Hn−1 +‖Bψ‖Hn−1 . The
following Proposition characterizes H2 ⊂ D∗n in terms of boundary values.

Proposition 5.3. Let ϕ ∈ D∗n. Then Bϕ = 0 if and only if ϕ ∈ H2(R3n).

With this a priori information on the functions in D∗n we can now characterize the
asymmetry of ∆∗n in terms on the operators A and B.

Proposition 5.4. For all ψ,ϕ ∈ D∗n we have that

〈∆∗nψ,ϕ〉Hn − 〈ψ,∆∗nϕ〉Hn = 〈Aψ,Bϕ〉Hn−1 − 〈Bψ,Aϕ〉Hn−1 . (5.12)

Proof. By definition of the norm on D∗n, the maps A,B : D∗n → Hn−1 are continuous,
and so is the map

B : D∗n → Hn−1 ⊕ Hn−1 , ψ 7→ (Bψ,Aψ) . (5.13)

The skew-hermitean sesquilinear form

β(ψ,ϕ) := 〈∆∗nψ,ϕ〉 − 〈ψ,∆∗nϕ〉 (5.14)

is also continuous on D∗n. Suppose for the moment that there exists a continuous,
skew-hermitean sesquilinear form α on ranB ⊂ Hn−1 ⊕ Hn−1 such that β = α ◦B.
Any continuous sesquilinear form on ranB is already determined by its values on
any subspace of ranB which is dense in the ‖ · ‖n−1 + ‖ · ‖n−1-norm. Therefore, β is
already determined by its values on a subspace D0 whose image B(D0) is dense in
Hn−1⊕Hn−1. That is, it suffices to verify (5.12) on D0. Such a subspace is given by

D0 := {ψ ∈ D∗n|ψ = ψA+ψB, ψA ∈ Dn
A, ψB ∈ Dn

B} DA/B := kerA/B ⊂ D(∆∗1) .
(5.15)

Here Dn
A and Dn

B are the spans of symmetric n-fold tensor products of elements of
kerA and kerB on D(∆∗1). These kernels are the domains of self-adjoint extensions
of ∆1; in fact kerB = H2(R3), and kerA is the domain of a point source with infinite
scattering length. We have, by Proposition 5.1,

B(D0) = (B(Dn
A), A(Dn

B)) =
(
Dn−1
A , Dn−1

B

)
⊂ Hn−1 ⊕ Hn−1 , (5.16)

so B(D0) is in fact dense.
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Now let ψ = ψA + ψB, ϕ = ϕA + ϕB ∈ D0. The action of ∆∗n on ψ,ϕ is given
by the action of ∆∗1 on every factor. Because (∆∗1, DA) and (∆∗1, DB) are symmetric
operators and β is skew-Hermitean, β(ψA, ϕA) = β(ψB, ϕB) = 0 and we only need
to compute one cross-term β(ψA, ϕB). Applying Proposition 5.1 yields

β(ψA, ϕB) =
n∑
i=1
〈(∆∗1)xiψA, ϕB〉Hn − 〈ψA, (∆∗1)xiϕB〉Hn

= n (〈(∆∗1)x1ψA, ϕB〉Hn − 〈ψA, (∆∗1)x1ϕB〉Hn)
= 〈AψA, BϕB〉Hn−1 − 〈BψA, AϕB〉Hn−1

= −〈BψA, AϕB〉Hn−1 . (5.17)

We still have to construct an α with β = α ◦B. Here Proposition 5.3 enters as the
key ingredient: we have that

kerB = kerB ∩ kerA = {ψ ∈ H2(R3n)∩Hn|Aψ = ψ|Cn = 0} = H2
0(Ωn) . (5.18)

As a consequence β(ψ,ϕ) = 0 for all ϕ ∈ D∗n if ψ ∈ kerB. Thus we can define on
the quotient the sesquilinear form

α̃ : D∗n/ kerB×D∗n/ kerB→ C , ([ψ], [ϕ]) 7→ β(ψ,ϕ) (5.19)

and (5.18) guarantees that this is well defined. Let π denote the quotient map. Then
β = α̃ ◦ π, which means that α̃ is continuous in the quotient topology. There exists
a unique continuous isomorphism B′ : D∗n/ kerB → ranB such that B = B′ ◦ π.
Inserting the identity we get

β = α̃ ◦ π = α̃ ◦ (B′)−1 ◦B′ ◦ π = α̃ ◦ (B′)−1 ◦B . (5.20)

If we define α := α̃ ◦ (B′)−1, it is obviously continuous. This proves the claim.

Corollary 5.5. (HIBC, DIBC) is symmetric for all E0 ∈ R.

Proof. Recall the definition of the domain

DIBC :=
{
ψ ∈ F

∣∣∣∣∣ψ(n) ∈ D(∆∗n) ∩ Hn for all n ∈ N ,
Hψ ∈ F , Aψ ∈ F , and Bψ = gψ

}
. (5.21)

Now Hψ ∈ F together with Aψ ∈ F clearly implies (−∆∗F + dΓ(E0))ψ ∈ F, so we
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may split the operator and compute with the help of Proposition 5.4:

〈ϕ,Hψ〉F = 〈ϕ, (−∆∗F + dΓ(E0))ψ〉F + 〈ϕ, gAψ〉F
=
∑
n∈N
〈ϕ(n),−∆∗nψ(n)〉n + 〈ϕ,dΓ(E0)ψ〉F + 〈ϕ, gAψ〉F

(5.12)=
∑
n∈N
〈−∆∗nϕ(n), ψ(n)〉n + 〈Aϕ(n), Bψ(n)〉n−1 − 〈Bϕ(n), Aψ(n)〉n−1

+ 〈ϕ,dΓ(E0)ψ〉F + 〈ϕ, gAψ〉F
IBC= 〈(−∆∗F + dΓ(E0))ϕ,ψ〉F + 〈ϕ, gAψ〉F

+
∑
n∈N
〈Aϕ(n), gψ(n−1)〉n−1 − 〈gϕ(n−1), Aψ(n)〉n−1

= 〈(−∆∗F + dΓ(E0))ϕ,ψ〉F + 〈gAϕ,ψ〉F = 〈Hϕ,ψ〉F . (5.22)

Another simple corollary of our results in this section is the fact that, if g 6= 0, the
intersection of DIBC and the form-domain of dΓ(−∆) contains only the zero vector.
For E0 ≥ 0, the form-domain of the free operator dΓ(h) is of course contained in
that of dΓ(−∆).

Corollary 5.6. If g 6= 0 we have for any E0 ∈ R

DIBC ∩D
(
dΓ(−∆)1/2

)
= {0} . (5.23)

Proof. Take ψ 6= 0 ∈ DIBC. Then ψ(n) 6= 0 for some n ∈ N. This implies that
Bψ(n+1) = gψ(n) 6= 0. But D(dΓ(−∆)1/2)|Hn+1 = H1(R3(n+1)) ∩ Hn+1, and, by
Lemma 5.2, B vanishes on this set. Hence ψ /∈ D(dΓ(−∆)1/2).

Remark 5.7. Propositions 5.3 and 5.4 prove that (Hn−1, B,A) is a quasi boundary
triple (in the sense of [BM14]) for the operator (−∆∗n, D∗n). This allows for a complete
characterization of the adjoint domain D(∆∗n) and the self-adjoint extensions of ∆n

(restricted to symmetric functions Hn). The following statements are consequences
of the general theory [BM14, Prop. 2.9, 2.10], but can also be concluded directly in
our setting from Propositions 5.3 and 5.4.
For any λ > 0 we have that

D(∆∗n) ∩ Hn = H2(R3n) ∩ Hn ⊕Kλ , (5.24)

with Kλ = ker(−∆∗n + λ) ∩ Hn. The map

B : Kλ →
(
H1/2(R3(n−1)) ∩ Hn−1)′ ⊂ H−1/2(R3(n−1)) (5.25)
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is continuous, as can easily be seen from the proof of Lemma 5.2. By Proposition 5.3
it is one-to-one. It is also surjective, with inverse given, as in (5.6), by

f 7→ Symn

(
e−
√
−∆+1|xn|

4π|xn|
f(x1, . . . , xn−1)

)
= Symn

(
(−∆ + 1)−1f(x1, . . . , xn−1)δ(xn)

)
. (5.26)

Such formulas for functions in D(∆∗n) have been widely used in the literature on
point interactions, see e.g. [Min11]. An alternative proof that, for a similar problem
with n = 2, the whole adjoint domain can be obtained in this way has been indicated
recently in [MiOt17, Prop. 4].

6 Essential Self-Adjointness of HIBC

6.1 Coherent Vectors and Denseness

The aim of this subsection is to introduce a set of coherent vectors in the domain
DIBC on which we can perform many computations explicitly. A standard choice
of a dense set in Fock space is the space F0 containing the vectors with a bounded
number of particles, i.e., ψ ∈ F0 iff there exists N ∈ N such that ψ(n) = 0 for
n > N . However, F0 ∩DIBC = {0} since the IBC Bψ = gψ immediately yields that
if ψ(n) 6= 0, then ψ(k) 6= 0 for all k > n.

For u ∈ H the associated coherent vector ε(u) ∈ F is defined by

ε(u)(n) := u⊗n√
n!
. (6.1)

It holds that 〈ε(v), ε(u)〉F = exp(〈v, u〉H); thus, the nonlinear map ε : H → F,
u 7→ ε(u), is continuous,

‖ε(v)− ε(u)‖2 = 〈ε(v), ε(v)〉F + 〈ε(u), ε(u)〉F − 2Re (〈ε(v), ε(u)〉F)

= e‖v‖2
H + e‖u‖2

H − 2Re e〈v,u〉H v→u−−−→ 0 . (6.2)

For a subset D ⊆ H, consider the subspace spanned by coherent vectors of elements
of D, that is

E(D) := span{ε(u)|u ∈ D} ⊂ F . (6.3)

We will refer to this subspace as the coherent domain over D. When working with
coherent vectors, we will need the following generalized polarization identity.
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Proposition 6.1. Let V be a complex vector space and v1, . . . , vn ∈ V . Then there
exist vectors u1, . . . , um ∈ V and coefficients d1, . . . , dm ∈ C such that

Sym (v1 ⊗ · · · ⊗ vn) =
m∑
k=1

dk u
⊗n
k . (6.4)

See Appendix B for the proof, including an explicit formula for uk and dk. For
a densely defined, non-self-adjoint operator (T,D), we use the expression dΓ(T ) to
denote the operator which acts as

∑n
j=1 11,...,j−1 ⊗ T ⊗ 1j+1,...,n on the n-th sector

of Fock space. This expression obviously has meaning on E(D).

Proposition 6.2. If D ⊂ H is dense, then E(D) is a dense subspace of F. Moreover,
let (T,D) be a densely defined operator on H. Then for f ∈ H we have

a(f) ε(u) = 〈f, u〉H ε(u) for all u ∈ H , (6.5)

a∗(f) ε(u) = d
dt

∣∣∣∣
t=0

ε(u+ tf) for all u ∈ H , (6.6)

dΓ(T ) ε(u) = a∗(Tu) ε(u) = d
dt

∣∣∣∣
t=0

ε(u+ tTu) for all u ∈ D . (6.7)

Proof. For u ∈ H the map R → F, t 7→ ε(tu), has derivatives of any order at t = 0
with (

dn

dtn

∣∣∣∣
t=0

ε(tu)
)(m)

=
{

0 m 6= n√
n! u⊗n m = n .

(6.8)

Thus, E(H) is dense in the span of all vectors of the form (0, . . . , u⊗n, 0 . . . ). Then, by
the generalized polarization identity (Proposition 6.1) and standard approximation
arguments, E(H) is also dense in F. The continuity of the map u 7→ ε(u) finally
implies that E(D) is dense in E(H) whenever D is dense in H. The formulas (6.5)–
(6.7) follow directly from the definitions of the corresponding operators.

The natural candidate for the set D is of course D(∆∗1). However, we still need to
make sure that the coherent vectors generated by D satisfy the boundary condition.
Let

Dγ
g :=

{
ϕ ∈ H

∣∣∣ϕ = gfγ + φ, φ ∈ H2(R3)
}

(6.9)

for some γ with Re γ > 0. The affine subspace Dγ
g is dense in H because H2(R3) is

dense. Then, according to Proposition 6.2, the coherent domain E(Dγ
g ) over Dγ

g is
a dense subspace of F; in fact, it is included in DIBC:

Corollary 6.3. We have that E(Dγ
g ) ⊂ DIBC for the value of g used in DIBC and

any γ ∈ C with Re γ > 0. As a consequence, DIBC is dense in F.
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Proof. Let ϕ ∈ Dγ
g ⊂ D(∆∗1). Then obviously ε(ϕ)(n) ∈ D∗n as in (5.11), and

(Bε(ϕ))(n) =
√
n+ 1(Bϕ) ϕ⊗n√

(n+ 1)!
= g

ϕ⊗n√
(n)!

= gε(ϕ)(n) , (6.10)

so ε(ϕ) satisfies the interior-boundary condition. Additionally,

(Aε(ϕ))(n) =
√
n+ 1(Aϕ) ϕ⊗n√

(n+ 1)!
= (Aϕ)ε(ϕ)(n) , (6.11)

which defines an element of F since A is bounded on D(∆∗1) by Proposition 5.1.
Observe that (∆∗1)xjε(ϕ)(n) ∈ L2(R3

xj ,L
2(R3n−3)). Therefore the action of ∆∗n coin-

cides on E(Dγ
g ) with that of

∑n
j=1(−∆∗1)xj . It is also straightforward to check that

∆∗Fε(ϕ) ∈ F, and this completes the proof.

6.2 Unitary Equivalence

To avoid unnecessary technicalities, we define the dressing transformation e−iΦ di-
rectly for coherent states and not in terms of its generator Φ = a+ a∗. That is, we
write W (ϕ) for e−iΦ(iϕ) and construct W (ϕ) as follows. For ϕ, u ∈ H, let

W (ϕ) ε(u) := e−〈ϕ,u〉H−
‖ϕ‖2

H
2 ε(u+ ϕ) . (6.12)

Lemma 6.4. For every ϕ ∈ H, the map W (ϕ) can be extended uniquely to a unitary
transformation on Fock space; its inverse is given by W (−ϕ).

See, e.g., Section IV.1.9 in [Mey93] for the rather elementary proof.

Proposition 6.5. Let (T,D) be a self-adjoint operator on H. Then its second
quantization dΓ(T ) is essentially self-adjoint on the coherent domain E(D).

Proof. The coherent domain E(D) is a subspace of D(dΓ(T )) and the associated
unitary group of dΓ(T ) is given by Γ(e−iTt). Since its action on coherent vectors is
extremely simple, Γ(e−iTt)ε(u) = ε(e−iTtu), the coherent domain over D is invariant
under Γ(e−iTt) because D is. Now the statement follows from Nelson’s invariant
domain theorem [ReSi80, Thm. VIII.11].

Lemma 6.6. Let (T,D) be a densely defined operator on H. Suppose that ϕ, u ∈ D,
and letW (ϕ) be the corresponding unitary dressing transformation defined by (6.12).
Then

W (−ϕ)dΓ(T )W (ϕ)
∣∣
E(D) = dΓ(T ) + a∗(Tϕ) + a(Tϕ) +G(T, ϕ)

∣∣
E(D) , (6.13)

where G(T, ϕ) is an operator on E(D) whose action is given by

G(T, ϕ)ε(u) = (〈ϕ, Tu〉H − 〈Tϕ, u〉H + 〈ϕ, Tϕ〉H) ε(u) . (6.14)
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Proof. This is a consequence of Proposition 6.2 and the following straightforward
computation:

W (−ϕ)dΓ(T )W (ϕ)ε(u) (6.15)
(6.7)= W (−ϕ) d

dt
∣∣
t=0ε(u+ ϕ+ tT (u+ ϕ))e−〈ϕ,u〉−

‖ϕ‖
2

(6.12)= d
dt
∣∣
t=0ε(u+ tT (u+ ϕ))et〈ϕ,T (u+ϕ)〉

(6.6)= (a∗(T (u+ ϕ)) + 〈ϕ, Tu〉H + 〈ϕ, Tϕ〉H) ε(u)
(6.7)= (dΓ(T ) + a∗(Tϕ) + 〈ϕ, Tu〉H + 〈ϕ, Tϕ〉H) ε(u)
(6.5)= (dΓ(T ) + a∗(Tϕ) + a(Tϕ) + 〈ϕ, Tu〉H − 〈Tϕ, u〉H + 〈ϕ, Tϕ〉H) ε(u) .

Corollary 6.7. Let (T,D) be a self-adjoint operator on H which is invertible, i.e.
0 ∈ ρ(T ). Then for ψ ∈ H and u ∈ D it holds that

W (−T−1ψ)dΓ(T )W (T−1ψ)
∣∣
E(D) = dΓ(T ) + a∗(ψ) + a(ψ) + 〈ψ, T−1ψ〉H1F

∣∣
E(D)

(6.16)

Proof. Apply Lemma 6.6 with ϕ = T−1ψ and observe that, because T is symmet-
ric, it holds that 〈ϕ, Tu〉H − 〈Tϕ, u〉H = 0. So the operator G(T, ϕ) reduces to
multiplication with the constant 〈T−1ψ,ψ〉H = 〈ψ, T−1ψ〉H.

Corollary 6.8. Let E0 ∈ R, γ > 0, fγ be given by (2.15) and let h = −∆ +E0 with
domain H2(R3). Then on the coherent domain E(H2(R3)) we have

W (−gfγ)HIBCW (gfγ)
∣∣
E(H2(R3))

= dΓ(h) + (−γ2 + E0) (a∗(gfγ) + a(gfγ)) + C(g, γ, E0)1F

∣∣
E(H2(R3)) (6.17)

where the constant reads

C(g, γ, E0) = (−γ2 + E0)‖gfγ‖2H + g2 γ

4π . (6.18)

Proof. We start by noting that (6.11) gives for u ∈ H2(R3)

gAW (gfγ)ε(u) = g(A(gfγ+u))W (gfγ)ε(u) =
(
g2γ

4π + gu(0)
)
W (gfγ)ε(u) . (6.19)

Now set (T,D) = (−∆∗1 + E0, D(∆∗1)) and ϕ = gfγ in Lemma 6.6. Then

W (−gfγ)HIBCW (gfγ)ε(u) (6.20)

= W (−gfγ)dΓ(−∆∗1 + E0)W (gfγ)ε(u) +
(
g2γ

4π + gu(0)
)
ε(u)

=
(

dΓ(h) + (E0 − γ2) (a∗(gfγ) + a(gfγ)) +G(T, ϕ) +
(
g2γ

4π + gu(0)
))

ε(u) .
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It remains to show that for u ∈ H2(R3)(
G(T, ϕ) + g2γ

4π + gu(0)
)
ε(u) = C(g, γ, E0)ε(u) . (6.21)

It follows from Proposition 5.1 that

G(T, ϕ) + gu(0) = g〈fγ , Tu〉 − g〈T (fγ), u〉+ g2〈fγ , T fγ〉+ gAu

= g〈fγ ,−∆∗1u〉 − g〈−∆∗1fγ , u〉+ gAu+ (−γ2 + E0)‖gfγ‖2H
= gAfγBu− gBfγAu+ gAu+ (−γ2 + E0)‖gfγ‖2H
= (−γ2 + E0)‖gfγ‖2H , (6.22)

since Bu = 0 and Bfγ = 1.

Proposition 6.9. For all E0 ∈ R the operator (HIBC, DIBC) is essentially self-
adjoint and for any γ > 0 the space W (gfγ)E(H2(R3)) ⊂ DIBC is a core. If E0 ≥ 0,
then the Hamiltonian HIBC is bounded from below.

Proof. According to Corollary 6.8 and by symmetry of (HIBC, DIBC) it suffices to
show that

dΓ(h) + (−γ2 + E0) (a∗(gfγ) + a(gfγ)) (6.23)

is essentially self-adjoint on E(H2(R3)). By Proposition 6.5, the operator
(dΓ(h), E(H2(R3))) is essentially self-adjoint.
For E0 ≥ 0 the perturbation a∗(gfγ) + a(gfγ) is infinitesimally bounded with

respect to dΓ(h) (see Proposition 3.8 in [Der03]) and thus, by Kato-Rellich, essential
self-adjointness of (6.23) on E(H2(R3)) holds. Here one uses the fact that

f̂γ(k) = −(2π)−
3
2 (|k|2 + γ2)−1 = −δ̂(k) · (|k|2 + γ2)−1 Re(γ) > 0 , (6.24)

and therefore 〈f̂γ , ĥ−1f̂γ〉 <∞ even for E0 = 0.
If E0 < 0, essential self-adjointness of (6.23) is shown using Nelson’s Commutator

Theorem (Theorem X.36 in [ReSi75]) with comparison operator N = 1F + dΓ(h −
E0 + 1), cf. Proposition 3.11 in [Der03].

Proposition 6.10. If E0 > 0, then the operator (HIBC, DIBC) is self-adjoint and

HIBC = W (gf√E0
)
[
dΓ(h) + g2√E0

4π

]
W (−gf√E0

) . (6.25)

Proof. As E0 > 0, we may choose γ =
√
E0 in Corollary 6.8 and set φ := gfγ=

√
E0
.

The constant C(g,
√
E0, E0) then reduces to g2√E0

4π and the equality (6.25) holds on
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the common core W (φ)E(H2(R3)). This extends to the common domain of self-
adjointness W (φ)D(dΓ(h)).

The inclusion DIBC ⊆W (φ)D(dΓ(h)) follows from the symmetry of (HIBC, DIBC),
Proposition 5.5. To show that alsoW (φ)D(dΓ(h)) ⊆ DIBC, we use thatW (φ)D(dΓ(h))
is the closure of W (φ)E(H2(R3)) in the graph norm of W (φ)dΓ(h)W (−φ). We need
to show that for ψ ∈ W (φ)D(dΓ(h)) we have ψ(n) ∈ D(∆∗n) and Aψ ∈ F. Let
u ∈ H2(R3), then we have the estimate

‖u(0)W (φ)ε(u)‖2F =
∑
n≥0

1
n!‖u(0)u⊗n‖2Hn

≤
∑
n≥0

C

(n+ 1)!(n+ 1)‖(−∆xn+1 + E0)u⊗(n+1)‖2L2(R3(n+1))

≤ C‖dΓ(h)ε(u)‖2F , (6.26)

where we have used that |u(0)| ≤ C‖u‖H2 and that 〈∆xju
⊗(n+1),∆xiu

⊗(n+1)〉 ≥ 0.
In view of Equation (6.19) this implies that

‖AW (φ)ε(u)‖F ≤ C‖dΓ(h)ε(u)‖F (6.27)

for some constant C > 0. This clearly implies that for any n ∈ N

‖(−∆∗n+nE0) (W (φ)ε(u))(n) ‖Hn ≤ ‖(H−gA)W (φ)ε(u)‖F ≤ C‖dΓ(h)ε(u)‖F . (6.28)

As ∆∗n is closed, it follows that W (φ)D(dΓ(h))|Hn ⊂ D(∆∗n).
Consequently by Lemma 5.2 the expressions for A and B are well defined (as

distributions) and continuous on each sector of W (φ)D(dΓ(h)). Now (6.27) implies
that A maps W (φ)D(dΓ(h)) to F, so in particular Aψ(n) ∈ L2(R3n−3). Since Bψ =
gψ on the dense set W (φ)E(H2), this also holds on W (φ)D(dΓ(h)) by continuity,
and we have proved W (φ)D(dΓ(h)) ⊂ DIBC.

We remark that the expressions A and B defined on some natural domain D ⊂⊕
nD(∆∗n) are not necessarily closable, e.g., B vanishes on the dense (in F) subspace

D(dΓ(h)), so we cannot directly conclude from an estimate such as (6.27) that these
expressions are well defined on the closure of W (φ)E(H2).

By virtue of the unitary equivalence, we can compute the ground state of HIBC
explicitly, provided E0 > 0. The unique ground state of the free field dΓ (h) is the
vector Ω0 := (1, 0, 0, . . . ) ∈ F, which is called the Fock vacuum. With φ = gfγ=

√
E0

we conclude that ψmin := W (φ)Ω0 is the unique ground state of HIBC with ground
state energy g2√E0

4π , i.e.

HIBC ψmin = g2√E0
4π ψmin . (6.29)
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Note that because of Ω0 = ε(0) we can calculate ψmin explicitly by using (6.12),

ψmin = W (φ)Ω0 = W (φ)ε(0) = e−
‖φ‖2

2 ε(φ) . (6.30)

Taken together, Corollary 5.6 and Propositions 6.9, 6.10 prove Theorem 2.1.

6.3 Renormalization: Proof of Theorem 3.1

Let h = (−∆ + E0,H2(R3)), where we now assume that E0 > 0. This operator is
self-adjoint and invertible. In Section 3 we defined Wn := W (gh−1χn) where χn is
any sequence of elements of L2(R3) such that χn → δ as n → ∞ in the sense that
χ̂n → χ̂∞ := δ̂ = (2π)−3/2 pointwise with ‖χ̂n‖∞ uniformly bounded.
We first use Corollary 6.7 with ψ = gχn and T = h to establish that, in the notation
of Section 3,

WnHnW
∗
n = Wn (dΓ(h) + a∗(gχn) + a(gχn))W ∗n = dΓ(h)− g2〈χn, h−1χn〉H

= dΓ(h) + En . (6.31)

The assumptions we made on the sequence χn imply that F (gh−1χn) converges in
L2 to the function g(2π)−3/2ĥ−1. Therefore, according to (6.24), gh−1χn converges
to −gf√E0

. We have defined the family of unitary operators W (ϕ) in (6.12) via
coherent vectors. From this definition it follows that the mapping ϕ 7→ W (ϕ)ψ is
continuous because the mapping ϕ 7→ ε(ϕ) is. As a consequence, the Wn converge
strongly, and the limiting operator is

W∞ = lim
n→∞

Wn = lim
n→∞

W (gh−1χn) = W (limn→∞ gh−1χn) = W (−gf√E0
) . (6.32)

Moreover, for any z ∈ C \ R also

lim
n→∞

(Hn − En − z)−1 = lim
n→∞

W ∗n(dΓ(h)− z)−1Wn = W ∗∞(dΓ(h)− z)−1W∞

= (W ∗∞dΓ(h)W∞ − z)−1 (6.33)

converges strongly because supn ‖W ∗n‖ = 1. Recalling the definition (3.3) of H∞, we
find that

H∞ := lim
n→∞

(Hn − En) = W ∗∞dΓ(h)W∞ = W (gf√E0
) dΓ(h)W (−gf√E0

)
(6.25)= HIBC − g2√E0

4π (6.34)

on W (gf√E0
)D(dΓ(h)) = DIBC. We have proven Theorem 3.1.
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7 Variants of the Model

Throughout this section, let E0 > 0 and N ∈ N be fixed. We will use the notation
that has been introduced in Section 4 and in particular assume the condition (4.7).
Here we will properly define D̃IBC and prove Theorems 4.1 and 4.4.

Observe that wλi ∈ D(∆∗1) and that ∆∗1wλi = λwλi for 1 ≤ i ≤ N , cf. [AGHH88].
It is known that that the maps ψ 7→ Aiψ and ψ 7→ Biψ define continuous linear
functionals on D(∆∗1). Furthermore, using a partition of unity, the degree of non-
symmetry of ∆∗1 may be expressed with their help:

〈ϕ,−∆∗1ψ〉H − 〈−∆∗1ϕ,ψ〉H =
N∑
i=1
〈Biϕ,Aiψ〉C − 〈Aiϕ,Biψ〉C . (7.1)

Note the following: The set U(v) :=
⋂N
i=1 kerXi is a subspace of D(∆∗1), which is

L2-dense. By further inspection Xi(ψ) = 0 for all 1 ≤ i ≤ N is identified with the
conditions that specify the domain of point interactions centered in ξ1, . . . , ξN with
parameters ai = αi

βi
, where βi = 0 formally corresponds to ai =∞, see [DFT08].

The matrix S(λ) is invertible if and only if −λ is not an eigenvalue of the point-
interaction operator (−∆∗1, U(v)), see Theorem II.1.1.4 in [AGHH88]. The number of
eigenvalues of this operator is finite, and all its eigenvalues are negative and situated
below the essential spectrum, which covers the non-negative real axis. That implies,
in particular, that for all E0 > 0 and for all admissible choices of v there exists λ > 0
such that S(λ) is invertible.

Lemma 7.1. Let v obey the condition (4.7) and let (1, 1, . . . , 1)T ∈ ranS(λ). Then
there exists φ = φ(λ) ∈ D(∆∗1) with the properties

∆∗1φ = λφ (7.2)
Xk(φ) = 1 1 ≤ k ≤ N . (7.3)

Proof. For every choice of c1, . . . , cN ∈ C the sum
∑N
l=1 clw

λ
l is an eigenvector of ∆∗1

with eigenvalue λ. To obtain (7.3), we first compute

Xk

(∑N
l=1 clw

λ
l

)
=

N∑
l=1

clXk(wλl ) =
N∑
l=1

clαkeiθkBk(wλl ) + clβkeiθkAk(wλl )

=
N∑
l=1

clαkeiθkδkl + clβkeiθk(δkl
√
λ

4π + (1− δkl)Gλkl) =
N∑
l=1

Sklcl . (7.4)

Since (1, 1, . . . , 1)T ∈ ranS(λ), there are numbers cl ∈ C such that
∑N
l=1 Sklcl = 1

for all 1 ≤ k ≤ N . Then we set φ :=
∑N
l=1 clwl.
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Lemma 7.2. Let v obey the condition (4.7). Then the degree of non-symmetry of
∆∗1 can be expressed using Xi and Yi: for ϕ,ψ ∈ D(∆∗1),

〈ϕ,−∆∗1ψ〉H − 〈−∆∗1ϕ,ψ〉H =
N∑
i=1
〈Xiϕ, Yiψ〉C − 〈Yiϕ,Xiψ〉C . (7.5)

Lemma 7.3. Let ψ ∈ U(v) =
⋂N
i=1 kerXi and let φ(λ) ∈ D(∆∗1) with the properties

(7.2) and (7.3). Then

(a)
N∑
i=1

Yi(ψ) = 〈φ, (−∆∗1 + E0)ψ〉H − 〈(−∆∗1 + E0)φ, ψ〉H

(b)
N∑
i=1

Yi(φ) ∈ R .

The proofs can be found in the Appendix B.
As mentioned above, the operator h̃ = (−∆∗1 +E0, U) is self-adjoint and is called the
N -center point-interaction with energy offset E0 > 0. The coherent domain E(U)
is a core of dΓ(h̃), see Proposition 6.5. Next we turn to another subset of D(∆∗1),
which is an affine subspace. If (1, 1, . . . , 1)T ∈ ranS(λ), define

M = M(λ) := {ϕ ∈ D(∆∗1)|ϕ = φ(λ) + ψ ,ψ ∈ U(v)} . (7.6)

Since U(v) is L2-dense, so is M(λ) and therefore the coherent domain over E(M)
is a dense subspace of the symmetric Fock space F. Set D̃IBC := E(M). Then on
D̃IBC we find

Y F
i (ε(ϕ)) = Yi(φ+ ψ)ε(ϕ) = (Yi(φ) + Yi(ψ))ε(ϕ) (7.7)

and

XF
i (ε(ϕ)) = Xi(φ+ ψ)ε(ϕ) = Xi(φ)ε(ϕ) = ε(ϕ) . (7.8)

We are now in a position to define the operator (H̃IBC, D̃IBC) which depends on the
set of parameters (v,E0) where v obeys the relation (4.7):

H̃IBC := dΓ(−∆∗1 + E0) +
∑N
i=1 Y

F
i on D̃IBC := E(M) . (7.9)

Proof of Theorem 4.1 and Theorem 4.4. Let ψ ∈ U . Choose λ > 0 such
that S(λ) is invertible and use (1, 1, . . . , 1)T ∈ ranS(λ) to construct φ(λ) with the
properties (7.2) and (7.3). Due to property (7.2) of φ = φ(λ), using Lemma 6.6 we
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get

W (−φ)dΓ(−∆∗1 + E0)W (φ)ε(ψ) +W (−φ)
[∑N

i=1 Y
F
i

]
W (φ)ε(ψ)

=
(
dΓ(h̃) + (−λ+ E0) (a(φ)∗ + a(φ))

)
ε(ψ)

+ (〈φ, (−∆∗1 + E0)ψ〉H − 〈(−∆∗1 + E0)φ, ψ〉H) ε(ψ)

+ 〈φ, (−∆∗1 + E0)φ〉Hε(ψ) +
[∑N

i=1 Yi(φ) + Yi(ψ)
]
ε(ψ)

=
(
dΓ(h̃) + (−λ+ E0) (a(φ)∗ + a(φ))

)
ε(ψ)

+
[
(−λ+ E0) ‖φ‖H +

∑N
i=1 Yi(φ)

]
ε(ψ) . (7.10)

We have used statement (a) of Lemma 7.3. Due to statement (b) of this lemma,
the constant in brackets is real. Because h̃ is bounded from below, we can use
Nelson’s Commutator Theorem to show essential self-adjointness of the operator on
E(U), cf. Proposition 6.9 and [Der03]. Now essential self-adjointness of H̃IBC on
W (φ(λ))E(U) = E(M) = D̃IBC follows.
If (1, 1, . . . , 1)T ∈ ranS(E0), set λ = E0 to get (4.18). We have proven Theo-

rem 4.4. In this case H̃IBC may be unbounded from below.
If h̃ is strictly positive, then −E0 is not an eigenvalue of (−∆∗1, U) and S(E0)

is invertible. From the explicit form (4.18) we see that, because dΓ(h̃) is strictly
positive as well, Ω0 is the unique ground state of dΓ(h̃). As a consequence H̃IBC is
bounded from below by

C(φ(E0)) =
N∑
i=1

Yi(φ(E0)) (7.11)

and

ψmin = e−
‖φ(E0)‖2

2 ε(φ(E0)) (7.12)

is the unique ground state of H̃IBC.

A Regularity

Here, we give the details on the regularity questions regarding D(∆∗n), A(n), and
B(n). We will need to work with Hilbert-space-valued distributions. Keep in mind for
the following that for defining distributions the removal of a point {0} from R3 or the
sets Cn from R3n matters, while L2(R3 \ {0}, X) = L2(R3, X) and L2(R3n \Cn, X) =
L2(Ωn, X) = L2(R3n, X).
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Lemma A.1. Let ϕ ∈ D(∆∗n) and equip this space with the graph norm. Then for
j = 1, . . . , n

∆xjϕ ∈ L2
(
R3
xj ,H

−2(Ωn−1)
)
, (A.1)

where ϕ is regarded as a vector valued distribution on R3
xj \ {0} and ∆xj is the

Laplacian of distributions on that domain taking values in H−2(Ωn−1). Moreover,

‖∆xjϕ‖L2(R3,H−2) ≤
√

2‖ϕ‖D(∆∗n) . (A.2)

Proof. We will show the case j = 1. Recall that D(∆n) = H2
0(Ωn). For any ϕ ∈

D(∆∗n), the map

∆x1ϕ : H2
0(Ωn)→ C , ψ 7→ 〈ϕ,∆x1ψ〉 = 〈∆∗nϕ,ψ〉 −

N∑
i=2
〈ϕ,∆xiψ〉 (A.3)

extends by density to a bounded linear functional on the Bochner space
L2 (R3

x1 ,H
2
0(Ωn−1)

)
, i.e.,

∆x1ϕ ∈ L2
(
R3
x1 ,H

2
0(Ωn−1)

)′
. (A.4)

Since H−2(Ωn−1) := H2
0(Ωn−1)′ and this space is reflexive, we obtain that ∆x1ϕ ∈

L2 (R3
x1 ,H

−2(Ωn−1)
)
. It remains to show that this ∆x1ϕ is in fact also the Laplacian

of ϕ in the sense of H−2(Ωn−1)-valued distributions, i.e. that for all φ ∈ C∞0 (R3\{0})
and ξ ∈ H2

0(Ωn−1) we have

(∆x1ϕ)(φξ) =
∫
R3
〈ϕ(x1, . . . , xn)), ξ(x2, . . . , xn)〉(H−2,H2

0) ∆φ(x1) dx1 . (A.5)

The left hand side is, by its definition (A.3),

(∆x1ϕ)(φξ) = 〈ϕ, (∆φ)ξ〉L2(R3n) , (A.6)

and, since ϕ ∈ L2(R3
x1 ,L

2(R3n−3)), the right hand side equals∫
R3

∫
Ωn−1

ϕ(x1, . . . , xn)ξ(x2, . . . , xn)∆φ(x1) dx = 〈ϕ, (∆1φ)ξ〉L2(R3n) . (A.7)

Finally, the bound on the norm of ∆x1ϕ follows from Equation (A.3) by

‖∆x1ϕ‖L2(R3,H−2(Ωn−1)) ≤ sup
‖ψ‖

L2(R3,H2
0)

=1

(
‖∆∗nϕ‖L2‖ψ‖L2 + ‖ϕ‖L2‖ψ‖L2(R3,H2

0)

)
≤ ‖∆∗nϕ‖L2(R3n) + ‖ϕ‖L2(R3n) ≤

√
2‖ϕ‖D(∆∗n) .
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Proof of Lemma 5.2. For clarity, we use the notation A(n) and B(n) in this proof
for the operators on D(∆∗n) ⊂ L2(R3n). The case n = 1 has been proved in Proposi-
tion 5.1 and we will use it here to show continuity of A(n) and B(n) for n ≥ 2. Our
proof basically follows ideas for the construction of distribution-valued trace maps
on Sobolev spaces, as presented, e.g, in [LiMa72].
Define the space

D∗H−2 := {ϕ ∈ L2(R3,H−2(Ωn−1))|∆xϕ ∈ L2(R3,H−2(Ωn−1))} , (A.8)

where ∆x denotes the Laplacian on vector-valued distributions on R3 \ {0}, and

‖ϕ‖2D∗
H−2

:= ‖ϕ‖2L2(R3,H−2) + ‖∆xϕ‖2L2(R3,H−2) . (A.9)

Then, by Lemma A.1, we have the continuous injection

D(∆∗n) ↪→ D∗H−2 . (A.10)

We will show that A(n) is continuous on D∗H−2 , which of course implies continuity
on D(∆∗n). To do so, we approximate any ϕ ∈ D∗H−2 by a sequence ϕN in the
following way: Let (ηk)k∈N be a complete orthonormal set in H−2(Ωn−1) and set
ϕk(x) := 〈ηk, ϕ(x, ·)〉H−2 . Because ϕ ∈ L2(R3,H−2(Ωn−1)), it holds that

N∑
k=1

ϕk(x)ηk := ϕN (x) N→∞→ ϕ(x) (A.11)

pointwise in H−2(Ωn−1) and by dominated convergence in L2(R3,H−2(Ωn−1)). Now
let ψ ∈ C∞0 (R3\{0}) and observe that, because 〈ηk, · 〉H−2 is continuous on H−2(Ωn−1)
and ϕ(x, ·)∆ψ is integrable, we have that∫

R3
ϕk∆ψ dx =

∫
R3
〈ηk, ϕ(x, ·)∆ψ〉H−2 dx =

〈
ηk,

∫
R3
ϕ(x, ·)∆ψ dx

〉
H−2

=
〈
ηk,

∫
R3
ψ∆xϕ(x, ·) dx

〉
H−2

=
∫
R3
〈ηk,∆xϕ(x, ·)〉H−2ψ(x) dx . (A.12)

Since ϕ ∈ D∗H−2 , 〈ηk,∆xϕ(x, ·)〉H−2 ∈ L2(R3) and thus ϕk ∈ D(∆∗1) with ∆∗1ϕk =
〈ηk,∆xϕ(x, ·)〉H−2 .

To prove that the limit in the expression for A(n) exists, let

ϕ̃k(r) := 1
4π

∫
S2
rϕk(rω)dω . (A.13)

One easily sees that ‖ϕ̃k‖H2((0,∞)) = ‖ϕk‖D(∆∗1), and thus ϕ̃k has a representative in
C1, 1

4 ([0,∞)) and there exists a constant K such that for R, r ∈ [0, 1]

|ϕ̃′k(R)− ϕ̃′k(r)| ≤ |R− r|1/4‖ϕ̃k‖C1, 1
4 [0,1]

≤ K|R− r|1/4‖ϕk‖D(∆∗1). (A.14)
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where ϕ̃′k denotes the derivative of ϕ̃k. Then we also have that∥∥∥∥∥
∞∑
k=1

(ϕ̃′k(R)− ϕ̃′k(r))ηk

∥∥∥∥∥
2

H−2(Ωn−1)

=
∞∑
k=1
|ϕ̃′k(R)− ϕ̃′k(r)|2

≤ K2|R− r|1/2
∞∑
k=1
‖ϕk‖2D(∆∗1)

= K2|R− r|1/2
∞∑
k=1

(
‖ϕk‖2L2(R3) + ‖∆∗1ϕk‖2L2(R3)

)
= K2|R− r|1/2)2

( ∞∑
k=1
‖ϕkηk‖2L2(R3,H−2) +

∞∑
k=1
‖∆xϕkηk‖2L2(R3,H−2)

)
= K2|R− r|1/2‖ϕ‖2D∗

H−2
. (A.15)

It follows that the limit limr→0
∑∞
k=0 ϕ̃

′
k(r)ηk exists for this representative of ϕ and

yields the value of A(n)/
√
n. In addition, we have that

‖A(n)ϕN‖2H−2 =
∥∥∥∥∥A(n)

N∑
k=1

ϕkηk

∥∥∥∥∥
2

H−2

= n

∥∥∥∥∥
N∑
k=1

(A(1)ϕk)ηk

∥∥∥∥∥
2

H−2

≤ n‖A(1)‖2D(∆∗1)′
N∑
k=1
‖ϕk‖2D(∆∗1)

= n‖A(1)‖2D(∆∗1)′‖ϕN‖
2
D∗

H−2
. (A.16)

Thus, A(n) defines a bounded linear map. The proof for B(n) follows the same steps.
This proof shows that the action of A(n), B(n) is determined by the action of A(1),

B(1) on the ϕk. If ϕ is an element of H2(R3n) or H1(R3n), then the ϕk are in the
corresponding space over R3. In case ϕ ∈ H1(R3n) we thus have that B(n)ϕ = 0
since B(1) = 0 on D(∆∗1)∩H1(R3) = H2(R3) because fγ /∈ H1(R3). If ϕ ∈ H2(R(3n)),
A(n) acts as the Sobolev-trace, because A(1)ϕk = ϕk(0).

In order to establish regularity of the functions ϕ ∈ D(∆∗n) with B(n)ϕ = 0, we
use a theorem of Hörmander, which is formulated using the following spaces:

H(2,s) := L2([0,∞),H2+s(Rd)) ∩H2((0,∞),Hs(Rd)) . (A.17)

Theorem A.2. Let d2

dr2 and ∆Rd denote the distributional Laplacians on (0,∞) and
Rd, respectively. The map

H(2,s) → L2([0,∞),Hs)⊕Hs+ 3
2 (Rd) ,

η 7→
((

d2

dr2 + ∆Rd − 1
)
η, η(0)

)
(A.18)

is an isomorphism of topological vector spaces.
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This theorem is a direct consequence of [Hoer64, Corollary 10.4.1]. It gives rise
to the following regularity lemma, where we denote by P : L2(R3) → L2(R3) the
projection to the space of radial functions; for j ∈ {1, . . . , n}, Pj is the projection P
acting on the j-th factor of L2(R3n) = L2(R3)⊗n; and Qj = 1− Pj .

Lemma A.3. Let ϕ ∈ D(∆∗n) with Bϕ = 0 and χε ∈ C∞b (R3n−3) such that, for
some ε > 0,

suppχε ⊂ Uε(Cn−1) :=
{

(x2, . . . , xn) ∈ R3n−3
∣∣∣|xi| > ε for all i

}
. (A.19)

Then χεP1ϕ ∈ H2(R3n).

Proof. We assume without loss of generality that ϕ is radial in the first argument,
i.e., ϕ = P1ϕ. Let ϕ̃(r, y) := r χε(y)ϕ(r, y) ∈ L2([0,∞),L2(R3n−3)). First note that

∆ϕ̃ = χε( d2

dr2 + ∆y)rϕ+ (∆yχε)rϕ+ 2r∇yχε · ∇yϕ
= χε r∆∗nϕ︸ ︷︷ ︸

∈L2

+(∆yχε) rϕ︸︷︷︸
∈L2

+2∇yχε ·∇yrϕ︸ ︷︷ ︸
∈L2([0,∞),H−1)

(A.20)

and that Bϕ = 0 implies ϕ̃(0) = 0 ∈ H−2. This of course means that ϕ̃(0) ∈ Hs+ 3
2

for any s ∈ R. Thus, Theorem A.2 implies that

ϕ̃ ∈ H(2,−1) ⊂ L2([0,∞),H1(R3n−3)) . (A.21)

Plugging this information into Equation (A.20), we conclude that ∆ϕ̃ ∈ L2([0,∞),L2).
Another use of Theorem A.2 then yields ϕ̃ ∈ H(2,0) with ϕ̃(0) = 0. Hence

ϕ̃

r
= χεP1ϕ ∈ L2(R3,H2(R3n−3)) ∩H2(R3,L2(R3n−3)) = H2(R3n) . (A.22)

For I ⊂ {1, 2, . . . , n} define the following sets:

CI :=
{
x ∈ R3n

∣∣∣ ∏
j∈I
|xj | = 0

}
. (A.23)

Then we have CI ⊂ Cn = C{1,2,...,n}. We will also use the abbreviation Ck :=
C{n−k+1,n−k+2,...,n}.

Proof of Proposition 5.3. We will prove that ϕ ∈ D(∆∗n) ∩ Hn together with
Bϕ = 0 implies ϕ ∈ H2(R3n). This will prove the statement when combined with
Lemma 5.2.
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In this proof we write D∗(X) for the adjoint domain of the Laplacian defined on
X ⊂ H2(R3n). For I ⊂ {1, . . . , n} let PI :=

∏
i∈I Pi and QI :=

∏
i∈I(1 − Pi). Then

for f ∈ L2(R3n)

f =
n∏
i=1

(Pi +Qi)f =
∑

I⊂{1,...,n}
PIQIcf . (A.24)

Now let ψ ∈ H2(R3n). Then

〈ϕ,∆ψ〉 =
∑

I⊂{1,...,n}
〈PIQIcϕ,∆ψ〉 =

∑
I⊂{1,...,n}

〈PIϕ,∆QIcψ〉 . (A.25)

Since Qjψ|xj=0 = 0, we have that QIcψ ∈ H2
0(R3n \ CIc) (cf. [Sve81]), and so it is

sufficient to show that

PIϕ ∈ D∗(H2
0(R3n \ CIc)) (A.26)

in order to conclude ϕ ∈ D∗(H2(R3n)) = H2(R3n). By symmetry it suffices to
consider the sets I = {1, . . . , k} for k ≤ n, which will be done by induction over k.

For k = 1, I = {1}, Equation (A.26) follows from Lemma A.3 in the following
way: Let ψ ∈ H2

0(R3n \ Cn−1) and let ψε be a sequence in C∞0 (R3n \ Cn−1) with
suppψε ⊂ U2ε converging to ψ in H2. Then Lemma A.3 implies

〈P1ϕ,∆x1ψε〉 = 〈χε(x2, . . . , xn)P1ϕ,∆x1ψε〉 = 〈χε∆x1P1ϕ,ψε〉 = 〈∆x1P1ϕ,ψε〉 ,
(A.27)

where we have used a cutoff χε with χε ≡ 1 on U2ε. Since ψε ∈ L2 (R3
x1 ,H

2
0(Ωn−1)

)
,

we find that

〈P1ϕ,∆ψ〉 = lim
ε→0
〈P1ϕ,∆ψε〉

(A.4)= lim
ε→0

〈∆x1P1ϕ,ψε〉+ 〈P1ϕ,
n∑
j=2

∆xjψε〉


(A.3)= lim

ε→0
〈∆∗nP1ϕ,ψε〉 = 〈∆∗nP1ϕ,ψ〉 . (A.28)

Hence, P1ϕ ∈ D∗(H2
0(R3n \ Cn−1)).

Now assume the induction hypothesis

P{1,...,k}ϕ ∈ D∗(H2
0(R3n \ C{k+1,...,n})) . (A.29)

By symmetry, the argument for k = 1 independently gives also

P{k+1}ϕ ∈ D∗(H2
0(R3n \ C{1,...,k,k+2,...,n})) . (A.30)
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Thus, P{1,...,k+1}ϕ is in the intersection of these two domains (A.29) and (A.30).
Clearly, for two dense domainsD1, D2 it holds thatD∗(D1)∩D∗(D2) ⊂ D∗(D1+D2).
We thus need to show that

H2
0(R3n \ C{k+1,...,n}) + H2

0(R3n \ C{1,...,k,k+2,...,n}) (A.31)

is dense in H2
0(R3n \ C{k+2,...,n}), as this implies that the adjoint domains are equal.

The functions in this sum vanish on

C̃ :=
(
C{k+1} ∩ C{1,...,k}

)
∪ C{k+2,...,n} . (A.32)

Conversely, any function f ∈ C∞0 (R3n \ C̃) can be written as a sum f = f1 + f2 with
f1 ∈ C∞0 (R3n\C{k+1}) and f2 ∈ C∞0 (R3n\C{1,...,k}). Thus the sum (A.31) is dense in
H2

0(R3n \ C̃), but the latter space is equal to H2
0(R3n \C{k+2,...,n}), as C{k+1}∩C{1,...,k}

has codimension six, see [Sve81].

B Algebraic identities

Proof of Proposition 6.1. We will prove the following formula:

Sym(v1 ⊗ · · · ⊗ vn) =
∑
j∈J

dju
⊗n
j , (B.1)

where J = {0, 1}n and

uj =
n∑
k=1

(−1)jkvk , dj = (−1)j1+...+jn

2nn! . (B.2)

Note that we may rewrite u⊗nj as a sum:

u⊗nj =
(

n∑
k=1

(−1)jkvk

)⊗n
=

∑
k∈{1,...,n}n

(−1)jk1+...+jkn vk1 ⊗ · · · ⊗ vkn

=
∑
k∈P

(−1)jk1+...+jkn vk1 ⊗ · · · ⊗ vkn

+
∑

k∈{1,...,n}n\P
(−1)jk1+...+jkn vk1 ⊗ · · · ⊗ vkn

=: (uj)P + (uj)PC . (B.3)

Here we have introduced a set P of multi-indices:

P :=
{
x ∈ Nn

∣∣ ∃σ ∈ Sn : x = σ(1, 2, . . . , n)
}
⊂ {1, 2, . . . , n}n . (B.4)
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We will focus on (uj)P first and insert it into our ansatz (B.1):∑
j∈J

dj(vj)P = 1
2nn!

∑
j∈J

∑
k∈P

(−1)j1+...+jn(−1)jk1+...+jkn vk1 ⊗ · · · ⊗ vkn

= 1
2nn!

∑
j∈J

∑
σ∈Sn

(−1)j1+...+jn(−1)jσ(1)+...+jσ(n) vσ(1) ⊗ · · · ⊗ vσ(n)

= 1
2nn!

∑
j∈J

∑
σ∈Sn

(−1)j1+...+jn(−1)j1+...+jn vσ(1) ⊗ · · · ⊗ vσ(n)

= |{0, 1}
n|

2nn!
∑
σ∈Sn

vσ(1) ⊗ · · · ⊗ vσ(n) = Sym(v1 ⊗ · · · ⊗ vn) . (B.5)

It remains to show that
∑

j dj(uj)PC = 0:

2nn!
∑
j∈J

dj (uj)PC

=
∑
j∈J

∑
k∈{1,...,n}n\P

(−1)j1+...+jn(−1)jk1+...+jkn vk1 ⊗ · · · ⊗ vkn

=
∑

k∈{1,...,n}n\P

∑
j∈J

(−1)j1+...+jn(−1)jk1+...+jkn

 vk1 ⊗ · · · ⊗ vkn . (B.6)

We will show that the expression in brackets vanishes. For every k ∈ {1, . . . , n}n \P
there is at least one s ∈ {1, . . . , n} such that none of the ki is equal to s. Therefore,
we can factor out∑

j∈J
(−1)j1+...+jn(−1)jk1+...+jkn

=
1∑

js=0
(−1)js

∑
j∈{0,1}n−1

(−1)j1+...+ĵs+...+jn(−1)jk1+...+jkn , (B.7)

because the remaining term on the right does not depend on js any more. Now∑
js(−1)js = 0.

Proof of Lemma 7.2. For ϕ,ψ ∈ D(∆∗1),

〈Xi(ϕ), Yi(ψ)〉C − 〈Yi(ϕ), Xi(ψ)〉C

=
〈

eiθi(αiBi + βiAi)(ϕ), eiθi(γiBi + δiAi)(ψ)
〉
C

−
〈

eiθi(γiBi + δiAi)(ϕ), eiθi(αiBi + βiAi)(ψ)
〉
C

(4.7)= (αiδi − βiγi)〈Biϕ,Aiψ〉C − (αiδi − βiγi)〈Aiϕ,Biψ〉C
= 〈Biϕ,Aiψ〉C − 〈Aiϕ,Biψ〉C (B.8)
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because the terms involving twice Bi or twice Ai cancel, and only the mixed terms
survive. Summing the terms from all sources i = 1, . . . , N yields the claim.

Proof of Lemma 7.3. By assumption, Xi(ψ) = 0 and Xi(φ) = 1 for i = 1, . . . , N .
Thus, from Lemma 7.2 with ϕ = φ,

N∑
i=1

Yi(ψ) =
N∑
i=1
〈Xi(φ), Yi(ψ)〉C =

N∑
i=1
〈Xi(φ), Yi(ψ)〉C − 〈Yi(φ), Xi(ψ)〉C

= 〈φ,−∆∗1ψ〉H − 〈−∆∗1φ, ψ〉H
= 〈φ, (−∆∗1 + E0)ψ〉H − 〈(−∆∗1 + E0)φ, ψ〉H . (B.9)

This proves statement (a). To see why (b) is also true, observe that, since by
assumption ∆∗1φ = λφ,

2i Im
(

N∑
i=1

Yi(φ)
)

=
N∑
i=1

Yi(φ)− Yi(φ) =
N∑
i=1
〈Xi(φ), Yi(φ)〉C − 〈Yi(φ), Xi(φ)〉C

= 〈φ,−∆∗1φ〉H − 〈−∆∗1φ, φ〉H

= 〈φ, (−λ+ E0)φ〉H − 〈(−λ+ E0)φ, φ〉H = 0 , (B.10)

which completes the proof.
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